
Combining safe rules and ontologies by interfacing
of reasoners

Jakob Henriksson
Fakultät für Informatik,

Technische Universität Dresden
Email: jakob.henriksson@tu-dresden.de

Jan Małuszyński
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Abstract— The paper presents a scheme for hybrid integration
of rules languages with constraints languages including but not
restricted to Description Logic-based ontologies. The proposed
scheme is apt for logical rule languages such as Datalog, but
also opens up for rules lacking logical semantics, e.g. the XML
query and transformation language Xcerpt. To reason in the
integrated language, we aim at re-using and interfacing existing
reasoners for the component languages. Here we show how this
can be accomplished for integrating Datalog and Xcerpt with
OWL by interfacing XSB and an Xcerpt engine with a DL
reasoner, respectively. Finally, we suggest ideas on how toimprove
reasoning performance by allowing for more frequent interaction
between the component systems.

I. I NTRODUCTION

This paper addresses the issue of building the rule level on
top of the ontology level of the Semantic Web tower [8]. As
argued, e.g. in [26], applications need rules, which cannotbe
expressed in DL languages, such as OWL-DL. On the other
hand, the rule languages should make it possible to integrate
the structural knowledge provided by ontologies. There have
already been several proposals in that direction, defining differ-
ent specific languages integrating rules and ontologies (see e.g.
[17], [14], [11], [15], [3], [20], [21], [23], [25]). The diversity
of the languages seems to be unavoidable since different kind
of applications will call for different languages integrating
rules and ontologies. In contrast to the proposals mentioned
above, our main objective is not to define a specific language
integrating rules and ontologies, but a generic scheme for
hybrid integration. A reasoner of an integrated language is
then obtained by applying the scheme by interfacing existing
reasoners of the component languages.

The idea ofhybrid reasoning appeared already in [12], and
was adopted, among others, in the well-knownAL-log work
[10] on integrating Datalog and DL. It is also present in the
CARIN work [22], even if this aspect is not explicitly stressed
therein. In the context of the Semantic Web it is used in [11]
for combining answer set reasoning with DL reasoning, and
in [25] where theoretical issues of integration of disjunctive
Datalog with OWL-DL are discussed.

This paper addresses the problem of hybrid integration
of rules and ontologies in a more general framework of
integrating rules with constraints expressed in a language
of an external theory. The proposed framework applies to a
class of rule languages with fixpoint semantics. We define a

generic scheme for extending such rule languages by adding
constraints in rule bodies. A fixpoint semantics of an extended
language obtained in this way is formally defined by referring
to the semantics of the components. The paper shows how
to reason in the extended language by interfacing existing
reasoners of the components instead of fully integrating them
into a new dedicated system.

We illustrate the scheme by two example instances. First,
we describe a reasoner for the integration of Datalog with
OWL obtained by interfacing XSB Prolog [2] with any DIG
[1] compliant DL reasoner (e.g. Racer [16]). Then, we describe
how to integrate the rule-based XML query and transformation
language Xcerpt [9] with OWL, which make possible semantic
filtering of the XML documents obtained by Xcerpt queries.

When the rule language considered is Datalog and the con-
straint theory is expressed in a DL, our framework provides in-
tegrated languages that coincide with previous approaches(see
Section V for more discussion). The main contributions of this
paper is however a more general framework for integrating rule
languages, not restricted to logical languages, with constraint
theories (not necessarily a DL theory). The paper shows how
the queries to an integrated KB can be answered by re-using
existing reasoners of the component languages, specifically
illustrated by a prototype system integrating Datalog with
OWL using XSB Prolog [2] and a DL reasoner. While not
currently implemented, we also describe the idea of how to
achieve the same integration with Xcerpt as the rule language.

II. PRELIMINARIES

The question addressed in this paper is how to combine a
rule language with an ontology language so that reasoning in
the integrated language can be done by interfacing reasoners
of the component languages. This section formulates general
requirements for the component languages and refers to the
languages satisfying them.

A. Rules

We consider rules of the form

H ← B1, . . . , Bn

where,n ≥ 0 and H, B1, . . . , Bn are some primitive/atomic
syntactic constructs (atoms) over a certain alphabet, including
variables. As usual, we will callH the head of the rule



and B1, . . . , Bn its body. Instances of a rule are created by
substitutions, which map variables of the rule to terms. A rule
with empty body (i.e. withn = 0) is sometimes called afact.
A rule will be calledsafe if all variables of the head appear
in the body; thus safe facts are ground (i.e. variable-free). In
this paper we only consider safe rules. To define the syntax of
a specific rule language we thus have to define the syntax of
the primitive rule constructs and the syntax of the terms. By
a rule programwe mean a finite set of rules.

The rules we consider can be used to derive new atoms
from given ground atoms. For this a matching relation has
to be defined between (possibly non-ground) body atoms
and ground atoms. As a result of successful matching of
body atoms and some given ground atoms, the variables of
the body atoms become bound to ground terms. Due to the
safeness assumption the resulting binding(s) applied to the
head determines its ground instance(s) derived from the ground
atoms matched by the body atoms. For every specific rule
language a formally defined concept of matching makes it
possible to associate an operatorTP on sets of ground atoms
with every rule programP :

TP (S) = {Hθ | (H ← B1, . . . , Bn) ∈ P and
(B1, . . . , Bn) matches someA1, . . . , An in S

with resultθ}

The operator is monotone, since the atoms which match a
given pattern in a setS will also match it in any supersetS′

of S. ThusTP (S) ⊆ TP (S′) for any S ⊆ S′. The semantics
of P can now be defined as the least fixpoint ofTP . We will
call it the standard model1 of P . Intuitively, the operatorTP

reflects the mechanism for deriving ground atoms with rules
of P .

Examples of rule languages in the discussed category are:

• Datalog (without negation), which is a decidable subset
of FOL. The terms of Datalog are variables and constants.
The atoms are built in a usual way from predicate
symbols and terms. The semantics is based on syntactic
matching (syntactic unification with ground terms). It
is well-known that for a Datalog programP the least
fixpoint of TP is the least Herbrand model ofP , which
is the set of all ground atomic logical consequences of
the rules ofP considered as the formulae of FOL.

• A negation-free subset of the XML query and transfor-
mation language Xcerpt2 [9]. Ground atoms of Xcerpt
are calleddata termsand can be seen as abstraction of
XML documents. A data term is either a constant or it is
of the form p[t1, . . . , tn] or of the form p{t1, . . . , tn},
n ≥ 0 where p is a label and t1, . . . , tn are data
terms. Intuitively, Xcerpt labels model XML tags. Thus,
in contrast to predicate letters they do not have fixed
arity and the numbern of direct sub-termsti of a data

1This terminology is justified by the fact that in the special case of Datalog,
the least fixpoint ofTP is indeed a model in the sense of logic.

2The following presentation is oversimplified, neglecting many details. The
objective is to give a minimal information needed to discussintegration of
Xcerpt with OWL.

term with labelp may vary. The direct sub-terms of a
data term may be ordered (which is indicated by square
brackets) or unordered (which is indicated by braces).
Body atoms of Xcerpt rules are calledquery terms.
They are patterns matched against data terms and usually
include variables, for which bindings to data terms are
produced by successful matchings. The heads of Xcerpt
rules are data terms with variables. The rule produces data
terms by applying the bindings, obtained by matching
of its body, to the head. The concept of matching is
quite elaborate. A data term matched against a query term
may produce more than one binding. There is no logical
counterpart of the fixpoint semantics.

A common task to be solved by a rule reasoner is querying
of the standard model of a given rule program. An atomic
query is an atomA with variables. The answer is any substi-
tution θ such thatAθ is an element of the model.

As Datalog is a subset of Prolog, queries may be answered
by Prolog systems based on SLD-resolution. The work pre-
sented in this paper uses XSB Prolog. Reasoning in the Xcerpt
prototype3, which is implemented in Haskell, is based on
backward chaining and uses a special kind of unification.

B. Ontologies

In this paper, we consider ontologies formalized in De-
scription Logics (DLs) [7], which are decidable subsets of
first-order logic (FOL). The syntax of a DL is built over the
distinct alphabets ofclass namesC (also known asconcepts),
property namesR (also known asroles) and individual names
O. Depending on the kind of DL, different constructors are
provided to build class expressions (or brieflyclasses) and
property expressions (or brieflyproperties). Intuitively, classes
are used to represent sets of individuals of a domain and
property expressions are used to represent binary relations over
individuals. The names of the individuals are used to represent
them and can be seen as logical constants. In Description
Logics, it is often assumed that different names represent
different individuals of the domain (unique nameassumption).

By an ontology we mean a finite set of DL axioms of
the form: A ≡ C (concept definition), C ⊑ D (concept
inclusion), R ≡ S (role definition), R ⊑ S (role inclusion),
C(a) (concept assertion) and R(a, b) (role assertion), where
A is an atomic concept,C, D arbitrary concepts,R, S roles
anda, b individuals. The axioms are thus of two different kinds
and can accordingly be divided into two parts:

• a T-Box (terminology) consisting of concept (resp. role)
definitions and inclusions;

• an A-Box (assertions) describing concept (resp. role)
assertions relating to individuals.

Class expressions, property expressions and assertions can
be seen as an alternative representation of FOL formulae.
For example, class expressionC where C is a class name
corresponds to the FOL formulaC(x), and property ex-
pressionR whereR is a property name corresponds to the

3http://www.xcerpt.org



FOL formula R(x, y), where x and y are free variables.
Similarly, expressions built with constructors can also beseen
as FOL formulae. The inclusion axioms are equivalent to
the universally quantified implications, e.g.R ⊑ S, where
R and S are property names corresponds to the formula
∀x, yR(x, y)→ S(x, y). The assertions correspond to atomic
formulae. Thus, the semantics of DLs is defined by referring
to the usual notions of interpretation and model.

Due to the restricted syntax, Description Logics are decid-
able and are supported by dedicated reasoners.

Given an ontologyΣ the reasoner is used to answerqueries.
The query languages supported by different reasoners may
vary. For the work presented in this paper we are mostly
interested in reasoning related to the A-Box of the underlying
DL KB. Traditionally DL reasoners provide limited forms of
querying on the A-Box, the most important service being the
instance check, checking whether an individual is a member
of some class. In our work we will need DL queries obtained
by disjunction and/or conjunction ofbasic conjunctive queries
defined as follows:

Definition A basic conjunctive queryis the existential closure
of a formula of the formC(t) and R(t1, t2) where C is a
concept, R is a role andt, t1, t2 are constants or variables,
or the existential closure of the conjunction of such formulae.

These are boolean queries, i.e. giving ayesor no answer. A
queryQ is to check ifQ is a logical consequence ofΣ. Only
a few existing reasoners (see Section IV-A) answer conjunc-
tive queries with additional syntactic restrictions. Disjunctive
queries are usually not allowed.

There have been several proposals for ontology specification
languages. A recent W3C standard OWL [24] comes in three
versions, where OWL-DL is based on a highly expressive
Description Logic and is supported by several reasoners.

III. H YBRID INTEGRATION OFSAFE RULES AND

EXTERNAL THEORIES

This section presents our framework for hybrid combination
of rules and ontologies. Existing proposals are often restricted
to rules with logical semantics. This makes it possible to pro-
vide logical semantics of the combined language and to prove
that the proposed reasoning algorithm is sound and complete.
The rule languages considered in this paper are assumed to
have a fixpoint semantics. This does not exclude the cases of
logical rule languages, like Datalog, but opens for languages
for which a logical semantics may not be defined. Even for
such rules there may be a practical motivation to integrate
them with ontologies. For example, consider an XML database
including culinary recipes. Each recipe lists ingredientsusing
terminology of a food ontology. The ontology defines classes
of products, e.g. a class of gluten-containing products. Wemay
use Xcerpt rules to query the database for recipes, but to filter-
out dishes not containing gluten we have to extend Xcerpt with
ontology queries. This section outlines a systematic way for
defining such extensions.

Let R be a rule program in a rule language and letΣ be
a set of axioms in a first-order languageL, to be called an
external theory. In this paper we focus on external theories
given by DL axioms encoded in OWL, but the discussion in
this section is not restricted to this case. We assume that the
languages share constants and variables while the predicate
letters of the external theory are not in the alphabet of the
rule language.

We define the language of extended rules by allowing
formulae ofL to be (optionally) added in the bodies of the
rules ofR. If a formula ofL added to the body of a rule has
free variables, they must also appear in the original rule. Thus
an extended rulep has the form

H ← B1, . . . , Bm, C

whereH ← B1, . . . , Bm is a rule inR (called thecore rule
of p and denotedp ↓) and C, if present, is a formula ofL
called theconstraint, whose free variables do not appear in
the core.

A finite setP of extended rules will be called anextended
rule program. By P ↓ we denote the set{p ↓| p ∈ P}.
An extended rulep is said to besafe iff p ↓ is safe. We
only consider safe rules. We assume thatC is (implicitly)
existentially quantified on all its free variables that do not
appear in the core of the rule. Such a variable will be called
internal. Notice, that due to the safety condition every free
variable of a constraint that appears in the head must also
appear in the body of the core rule.

Intuitively the constraints restrict the standard model of
P ↓ by referring to the external theoryΣ. Formally, we will
considerconstrainedatoms of the formA; C where A is a
ground atom inR and C is a formula in L without free
variables. A ground atomA is considered to be a constrained
atom of the formA; true. By the core atomof a constrained
atomA; C to be denoted(A; C) ↓ we mean the atomA. The
notation is extended to sets of constrained atoms:S ↓= {A |
(A; C) ∈ S}.

We will first extend the definition ofTP to sets of con-
strained atoms:

TP (S) = {Hθ; (Cθ ∧ C1 ∧ . . . ∧ Cn) |
(H ← B1, . . . , Bn, C) ∈ P and
for someA1; C1, . . . , An; Cn in S

(B1, . . . , Bn) matchesA1, . . . , An with resultθ}

It follows by this definition thatlfp(TP↓) = {A | (A; C) ∈
lfp(TP )} since the extended operator does not use constraints
for derivation of core atoms, but simply takes the conjunction
of constraints as the associated constraints of the derivedcore
atom. Thus the extended operator derives the same core atoms
as theTP↓ operator but associates them with constraints. The
semantics of the extended rule programP can now be defined
as a subset of the standard model ofP ↓ by referring to the
associated constraints of the core atoms. Denote byCA the
disjunction of all constraintsC such that the constrained atom
A; C is in the least fixpoint ofTP .



Definition The standard model of an extended rule program
P over an external theoryΣ is defined as the set

M(P ) = {A | A ∈ lfp(TP↓) andΣ |= CA}

Thus we restrict the standard model ofP ↓ to those elements
A for which the disjunction of all constraints associated with
A by TP is true in all models of the external theoryΣ. In
this way the semantics of the extended language is defined as
a combination of the fixpoint semantics of the rule language
with the logical semantics of the external theory. This applies
to any particular rule language in the considered class and
to any particular external theory. Obviously the membership
problem forM(P ) may be undecidable.

Consider the special case when the rule language component
is Datalog (without negation). In this case extended rules are
formulae of FOL. It can be proved that the standard model
of an extended rule programP over Σ consists of atomic
formulae that are logical consequences of the knowledge base
P ∪ Σ.

The least fixpoint ofTP can be computed by iteratingTP

starting from the empty set. Due to the safety condition the
core of any constrained atom produced by an iteration ofTP

is ground and in the associated constraint all free variables
are instantiated to some constants that appear in the program.
Thus there is only a finite number of different constraint atoms
that can be produced. An atomA is inM(P ) iff it appears as
a core of some constraint atoms in the least fixpoint ofTP and
if the disjunctive constraintCA is a logical consequence of the
axioms of the external theory. Thus, if the theory is decidable,
so is the membership problem for the standard model of
any extended rule program over this theory. This applies in
particular to combinations of Datalog with Description Logics,
such as CARIN [22], restricted to safe extended rules. Note
that our notion of a safe extended rule is different from the
notion of arole-saferule introduced in CARIN. Role-safe rules
were introduced as a sufficient condition for decidability of
the problem of whether or not a ground atom is a logical
consequence of a given CARIN knowledge base.

In practice we want to query extended programs, e.g. by
checking if a given ground atomA is in the standard model
of P overΣ. This can be done by (1) constructing derivations
of A and collecting the disjunction of the associated constructs
(constructingCA) (2) checking ifCA is a logical consequence
of Σ. The reasoner of the rule language is able to query
P ↓ with A. This is usually done by backward or forward
rule chaining. However, it is not clear how to re-use the
reasoner forP so that all associated constraints ofA can
be constructed. Problem (2) limits the approach to theories
supported by sufficiently powerful reasoners.

In the following we show how the above mentioned prob-
lems can be solved for the special case of integrating Datalog
with OWL, by interfacing XSB Prolog with a DL reasoner. We
also sketch the idea of how the problems can be solved for
integrating Xcerpt with OWL by interfacing an Xcerpt engine
with a DL reasoner.

As discussed above, the query answering problem for an
extended rule language may be undecidable, even though the
outlined approach may be used for answering (some) queries.
Well known examples of extended rule languages are:

• AL-log [10] where the external axioms are in the lan-
guage of the Description LogicALC and Datalog rules
are extended with constraints of the formC(x) where
C is a concept and x is a variable or a constant. Query
answering inAL-log is decidable. For every query the
number of associated constraints is finite. The algorithm
discussed in [10] uses SLD-resolution to construct them
and a DL reasoner for checking validity of their disjunc-
tion wrt to a given theory.

• CARIN-ALCNR where the external axioms are in the
language of the Description LogicALCNR and Datalog
rules are extended with constraints of the formC(x) or
R(x, y) where C is a concept expression,R is a role
expression andx, y are variables or constants. It should
be noticed that CARIN rules may not be safe in our sense.
It is only required that the variables of the head appear
in the body, but their occurrence in non-constraint atoms
is not assumed. Query answering in recursive CARIN is
undecidable.

IV. I NTERFACING EXISTING SYSTEMS

This section describes applications of the proposed approach
to interface existing systems.

In Section IV-A we briefly discuss what services exist-
ing DL reasoners usually support, since this is essential to
solving the ontological constraints we address in this paper.
In Section IV-B we give a first example instance of our
scheme by describing how to reason in a language integrating
Datalog with OWL by interfacing XSB Prolog with a DL
reasoner. In Section IV-C we describe yet another example
dealing with how to interface a reasoner for the XML query
and transformation language Xcerpt with a DL reasoner in a
similar fashion.

A. Ontology reasoners

In the rest of this paper, the only kind of constraints that we
consider to appear in rules, are ontological. When we want to
re-use existing reasoning engines for solving these constraints
it is important to know what kind of constraints can be handled
by these systems.

Checking (un)satisfiability of a KB is the most common
reasoning procedure supported by existing DL systems and
other services are usually reduced to it [7]. Some systems
also provide more complex query languages, which are usually
languages supporting conjunctive queries with some limita-
tions on what kind of variables may be used (distinguished
or non-distinguished) and how they may appear in the query.
For a brief survey of such systems and the query languages
they support, please refer to [5]. However, the constraints
that we are required to solve, according to the description in
Section III, are disjunctive and may include non-distinguished
variables. The existence of non-distinguished variables is due



to our safety restriction. Thus, none of the existing systems
supporting conjunctive query languages are sufficient for
our purposes. Instead, we implement support for disjunctive
queries (limited to concepts), which makes use of existing
DL reasoners that are able to check (un)satisfiability of the
underlying KB (see Section IV-B).

B. Combining Datalog with OWL

As mentioned in Section III we need a way to collect the
constraints associated with a queryA in order to interface
a rule reasoner and a solver for the external theory. This
collecting of constraints must be specific for every existing
rule reasoner that is to be re-used in this hybrid context. In
this section we show how this can be achieved for Datalog
using a standard Prolog system (XSB Prolog) and also how we
verify if the disjunction of the collected constraints is indeed
a logical consequence of the associated theory. The external
theory in this setting is a set of DL axioms represented as an
OWL ontology.

We make use of the list-construct available in XSB Prolog
to collect the constraints, i.e. atoms that are not to be solved by
the rule reasoner. An extended rule programP is transformed
into a corresponding programP ′ in the following manner.
Every predicate is extended with a new parameter to represent
the constraint associated with that atom. A rule fact has an
empty body and is therefore associated with an empty list of
constraints. E.g. a factp(a, b) is transformed intop(a, b, []).
The constraint atoms appearing in the body of a rule are
moved into an additional head parameter and constructed as
a list. E.g. the rulep(X, Y ) ← q(X, Y ), R(X, Y ), C(X),
whereR andC are ontological constraints, is transformed into
p(X, Y, [R(X, Y ), C(X)|A])← q(X, Y, A). If there are more
rule predicates in the body, the constraints of all of them are
joined together into a single list using the list-constructappend
provided by XSB Prolog. We show this transformation on an
example below.

The transformed programP ′ thus hides the external con-
straints in Prolog lists making sure that they are not evaluated
by the rule engine. At the same time, the variables appearing
in the constraints are properly grounded as expected when
the rule is being evaluated. The programP ′ is executable
in a Prolog system. Each derivation for a queryA results
in a conjunction of constraints. As already argued, we need
to collect the constraints from all derivations of a queryA

and construct their disjunction. This is also how we treat the
collected constraint list constructed by querying a transformed
programP ′ (see example below).

The brief DL query language survey in Section IV-A
informed us that the support for disjunctive queries is not well
supported by existing DL systems. However, the theoreticalso-
lution of how to handle disjunctive queries (restricted to class
expressions) is documented in literature (see e.g. [6],[18]).
Most DL solvers implement satisfiability verification of a KB
as the main reasoning service. All other services provided are
reduced to the problem of checking satisfiability of the KB
[7]. For example, to verify if the individuala is a member

Σ

T-Box:
European ⊓American ⊑ ⊥
EuropeanAssociate := ∃Associate.European

AmericanAssociate := ∃Associate.American

NoFellowCompany := ∀Associate.¬American

InternationalCompany := EuropeanAssociate⊔
AmericanAssociate

A-Box:
⊤(a),⊤(high), InternationalCompany(b)

Fig. 1. Company ontology described as DL axioms

of the classC (instance check) the KB would be extended
with the following axiom{a : ¬C} whereupon satisfiability
of the KB would be checked. The queryC(a) is a logical
consequence of the KB if the extended KB is not satisfiable.
A disjunctive queryC(a) ∨ D(b) is solved by extending the
KB with {a : ¬C, b : ¬D} and again resolving to verifying
(un)satisfiability [6]. Our safety condition does not enforce
groundness of collected constraints but assures that no variable
in a collected constraint is free. In particular, the internal
variables of rules that appear in the collected constraintsmay
be handled by the ontology reasoners discussed in Section IV-
A as non-distinguishedvariables. We might have a constraint
involving a non-distinguished variable likeC(X) whereC is
a concept andX a variable. In this case the KB is augmented
with the axiom⊤ ⊑ ¬C whereupon (un)satisfiability of the
extended KB is verified. A disjunctive queryQ1 ∨ . . . ∨ Qn

where the disjuncts are conjuncts of class expressions (what
would be the result of evaluating a query wrt. a transformed
Prolog programP ′ as described above) can be solved in
the following manner [18]. The query is transformed into its
conjunctive normal form (CNF). Each conjunct is a disjunction
of class expressions which can be solved as described above.
If all the conjuncts are held to be logical consequences of the
underlying theory, then so is the original query.

We will look at an example (taken from [22] but slightly
modified) where we show the steps performed by our pro-
totype system to solve a query wrt. a hybrid knowledge
base consisting of an extended Datalog rule-set and an OWL
document.

Π r1: price-in-usa(X,high) :- made-by(X,Y),
NoFellowCompany(Y).

r2: price-in-usa(X,high) :- made-by(X,Y),
AmericanAssociate(Y),
monopoly-in-usa(Y,X).

r3: made-by(a,b).
r4: monopoly-in-usa(b,a).

Fig. 2. Price rules

Given the queryprice-in-usa(a,high)wrt. the KB Σ ∪ Π



Π
′ r1: price-in-usa(X,high,[NoFellowCompany(Y)|A]) :-

made-by(X,Y,A).
r2: price-in-usa(X,high,[AmericanAssociate(Y)|A]) :-

made-by(X,Y,A1),
monopoly-in-usa(Y,X,A2),
append(A1,A2,A).

r3: made-by(a,b,[]).
r4: monopoly-in-usa(b,a,[]).

Fig. 3. Transformed price rules

(Figure 1 and 2), the following steps are executed by our
prototype system to solve the query.

1) The rule-baseΠ is transformed intoΠ′ (Figure 3).
2) The queryprice-in-usa(a,high,A)is run by XSB Prolog

wrt. the rule programΠ′. The result as returned by XSB
is:

A = [ [c NoFellowCompany(c b)],
[c AmericanAssociate(c b)] ]

where the prefixc is simply used for convenience to
refer to the specific underlying ontology.

3) Each sublist of the answerA correspond to a conjunc-
tion of class expressions. This disjunctive normal form
(DNF) is turned into its CNF (one conjunct):

NoFellowCompany(b) ∨AmericanAssociate(b)

4) The underlying ontology is extended with the following
two axioms:

b : ¬NoFellowCompany, b : ¬AmericanAssociate

and then a check is performed to see if the newly
extended KB is satisfiable. If the extended KB is not
satisfiable we conclude that the original query holds wrt.
Σ ∪Π.

As explained in [22], the queryprice-in-usa(a,high)is true
becauseb is either a member of the classNoFellowCompany

or the classAmericanAssociate in all models ofΣ (i.e. the
constraint is a logical consequence of the KB).

This examples also gives a motivation as to why we
need to collect the constraints from all derivations and con-
struct a disjunctive constraint which then has to be verified
wrt. the underlying KB. This can be seen since neither
NoFellowCompany(b) norAmericanAssociate(b) are log-
ical consequences ofΣ, but their disjunction is.

The prototypical system interfaces XSB Prolog with any
DIG [1] compliant DL reasoner. DIG is a language for dealing
with statements of DL. The Java library Jena4 is used to handle
the underlying ontology referenced by the rules. When solving
the disjunctive DL queries, Jena is used to augment the KB
with the additional axioms. Checking for satisfiability of the
extended KB is also done via Jena to which a DIG compliant
DL reasoner is connected. A well known DIG compliant
reasoners used today is RACER [16].

4http://jena.sourceforge.net/

C. Combining Xcerpt with OWL

It is also interesting to extend non-logical rules languages
with constraints in a similar way that was done with Datalog
in Section IV-B. As hinted in Section III, one might want to
extend an XML query language, such as Xcerpt, with onto-
logical constraints in order to make use of domain knowledge
from ontologies and thus be able to filter out certain unwanted
results. E.g. to find all gluten-containing recipes in an XML
database of recipes by referring to an ontology modeling food
products.

Such an integration between Xcerpt and OWL was ad-
dressed in [27] and is in line with our integration scheme
defined in Section III. However, in [27], an ad-hoc integration
between the component reasoning engines was implemented
and the Xcerpt engine used for this integration was altered
to be usable in this new context. Since our aim is to re-
use existing reasoning engines for the integration, we here
show a way of achieving such an integration by re-using an
unmodified Xcerpt engine. Thus, in this section our aim is
to show a way to integrate Xcerpt with OWL by re-using an
Xcerpt engine and a DL reasoner in a similar way to what
was described for Datalog and OWL in Section IV-B.

The following Xcerpt data term, describing recipes and their
ingredients, represents an XML database.

1r e c i p e s [
r e c i p e [ name [ ” Recipe 1 ” ] ,

3i n g r e d i e n t s [
i n g r e d i e n t [ name [ ” sugar ” ] ,

5amount [ a t t r { u n i t [ ” tbsp ” ] } , 3 ] ] ,
i n g r e d i e n t [ name [ ” orange ” ] ,

7amount [ a t t r { u n i t [ ” u n i t ” ] } , 1 ] ]
] ] ,

r e c i p e [ name [ ” Recipe 2 ” ] ,
9i n g r e d i e n t s [

i n g r e d i e n t [ name [ ” f l o u r ” ] ,
11amount [ a t t r { u n i t [ ” d l ” ] } , 3 ] ] ,

i n g r e d i e n t [ name [ ” s a l t ” ] ,
13amount [ a t t r { u n i t [ ” krm ” ] } , 1 ] ]

] ] ,
r e c i p e [ name [ ” Recipe 3 ” ] ,

15i n g r e d i e n t s [
i n g r e d i e n t [ name [ ” r i c e ” ] ,

17amount [ a t t r { u n i t [ ” d l ” ] } , 1 ] ] ,
i n g r e d i e n t [ name [ ” water ” ] ,

19amount [ a t t r { u n i t [ ” d l ” ] } , 2 ] ]
] ] ,

r e c i p e [ name [ ” Recipe 4 ” ] ,
21i n g r e d i e n t s [

i n g r e d i e n t [ name [ ” bar ley ” ] ,
23amount [ a t t r { u n i t [ ” d l ” ] } , 3 ] ] ,

i n g r e d i e n t [ name [ ” s a l t ” ] ,
25amount [ a t t r { u n i t [ ” tbsp ” ] } , 1 ]

] ] ]
]

When adding constraints to standard Xcerpt rules with the
aim to filter out some uninteresting results, we need a way to
extend the syntax of rules to accommodate this. To this aim
we here adopt the syntax used in [27], i.e. use an additional
Xcerpt rule constructfilter where the ontological constraints
are described. As in the Datalog case, the rules written in an
extended syntax will be transformed into rules in syntax of the
original rule language before being sent to the rule reasoner
for processing.

The extended Xcerpt rule shown below is used to query
an XML documentrecipes.xml(found above as an Xcerpt



data term) and to filter out recipes with no gluten-containing
ingredient. The body of the rule finds names of recipes
and ingredients in the XML document and binds them to
the variablesR and N , respectively. Thefilter construct
reference the ingredient names (N ) and requires that at least
some ingredient of the recipe is found to be an instance
of the conceptGlutenContainingin the underlying ontology
http://www.owl.org/rec. The head of the rule expresses that all
recipes, for which the associated constraint holds, shouldbe
given as answers.

Π

GOAL
2ou t { r e s o u r c e { ” f i l e : r e s u l t . xml ” } ,

r e s u l t s [ r e s u l t [ a l l name [ var R ] ] ]
4}

FILTER
6i n [ r e s o u r c e [ ” h t t p : / / www. owl . org / rec ” ] as ” ont ”

i n s t a n c e [
8i nd [ name [ var N ] ] ,

catom [ name [ ” ont#GlutenConta in ing ” ] ]
10]

]
12FROM

in [ r e s o u r c e [ ” f i l e : rec ipes . xml ” ] ,
14r e c i p e s [ [

r e c i p e [ [
16name [ var R ] ,

i n g r e d i e n t s [ [ i n g r e d i e n t [ [ name [var N ] ] ]
] ]

18] ]
] ]

20]
END

DIG [1] is an XML-based language for communicating with
DL reasoners. As an Xcerpt rule gives XML data as output,
the constraint in the filter-construct is intentionally written as
an Xcerpt data term, such that it can be used to output the
ontological constraints in DIG syntax.

The idea is to transform the extended ruleΠ into an Xcerpt
rule Π′, such thatΠ′ constructs the same answers asΠ would,
should the filter-construct be absent (i.e. answers produced by
the ruleΠ ↓). The transformed rule must be a valid Xcerpt rule
so that it can be processed by an existing Xcerpt engine. The
core ofΠ (Π ↓) constructs the following answers, expressed
as an Xcerpt data term:

1r e s u l t s [
r e s u l t [ name [ ” Recipe 1 ” ] ,

3name [ ” Recipe 2 ” ] ,
name [ ” Recipe 3 ” ] ,

5name [ ” Recipe 4 ” ] ] ]

However, the answers constructed byΠ′ should (possibly)
be associated with constraints that will have to be verified
before the final answers can be returned to the user. If the
associated constraint of a constructed answer is a logical
consequence of the underlying ontology, then the answer is
passed to the user, otherwise it is discarded. Thus, the ruleΠ
above can be transformed into the ruleΠ′ below.

Π
′

1GOAL
ou t { r e s o u r c e { ” f i l e : r e s u l t . xml ” } ,

3r e s u l t s [
a l l r e s u l t [

5name [ var R ] ,
c o n s t r a i n t [

7i n s t a n c e [

i nd [ name [ var N ] ] ,
9catom [ name [

” h t t p : / / www. owl . org / rec#GlutenConta in ing ”
] ]

11] ] ] ]
}

13FROM
in [ r e s o u r c e [ ” f i l e : rec ipes . xml ” ] ,

15r e c i p e s [ [
r e c i p e [ [

17name [ var R ] ,
i n g r e d i e n t s [ [ i n g r e d i e n t [ [ name [var N ] ] ]

] ]
19] ]

] ]
21]

END

The specified constraint (filter-construct) inΠ was moved
into the head of the rule ofΠ′, in a similar way to what was
done for Datalog in Section IV-B, such that the constraints
can be constructed. The following is the Xcerpt data term
constructed byΠ′:

r e s u l t s [
2r e s u l t [

name [ ” Recipe 1 ” ] ,
4c o n s t r a i n t [

i n s t a n c e [
6i nd [ name [ ” sugar ” ] ]

catom [ name [
” h t t p : / / www. owl . org / rec#GlutenConta in ing ”
] ] ] ] ] ,

8r e s u l t [
name [ ” Recipe 1 ” ] ,

10c o n s t r a i n t [
i n s t a n c e [

12i nd [ name [ ” orange ” ] ]
catom [ name [

” h t t p : / / www. owl . org / rec#GlutenConta in ing ”
] ] ] ] ] ,

14r e s u l t [
name [ ” Recipe 2 ” ] ,

16c o n s t r a i n t [
i n s t a n c e [

18i nd [ name [ ” f l o u r ” ] ]
catom [ name [

” h t t p : / / www. owl . org / rec#GlutenConta in ing ”
] ] ] ] ] ,

20r e s u l t [
name [ ” Recipe 2 ” ] ,

22c o n s t r a i n t [
i n s t a n c e [

24i nd [ name [ ” s a l t ” ] ]
catom [ name [

” h t t p : / / www. owl . org / rec#GlutenConta in ing ”
] ] ] ] ] ,

26r e s u l t [
name [ ” Recipe 3 ” ] ,

28c o n s t r a i n t [
i n s t a n c e [

30i nd [ name [ ” r i c e ” ] ]
catom [ name [

” h t t p : / / www. owl . org / rec#GlutenConta in ing ”
] ] ] ] ] ,

32r e s u l t [
name [ ” Recipe 3 ” ] ,

34c o n s t r a i n t [
i n s t a n c e [

36i nd [ name [ ” water ” ] ]
catom [ name [

” h t t p : / / www. owl . org / rec#GlutenConta in ing ”
] ] ] ] ] ,

38r e s u l t [
name [ ” Recipe 4 ” ] ,

40c o n s t r a i n t [
i n s t a n c e [

42i nd [ name [ ” bar ley ” ] ]
catom [ name [

” h t t p : / / www. owl . org / rec#GlutenConta in ing ”
] ] ] ] ] ,



44r e s u l t [
name [ ” Recipe 4 ” ] ,

46c o n s t r a i n t [
i n s t a n c e [

48i nd [ name [ ” s a l t ” ] ]
catom [ name [

” h t t p : / / www. owl . org / rec#GlutenConta in ing ”
] ] ] ] ] ]

In such a way, the output fromΠ′ is basically a set of
tuples, where each tuple consists of a constructed answer and
an associated constraint. The output from the transformed rule
needs to be parsed by a controlling system and the constraints
needs to be verified using a DL reasoner. Since the constraints
are already expressed in DIG syntax, this process is simplified
if a DIG compliant reasoner is used, e.g. Racer or Pellet.

Two different constraints were constructed for the answer
Recipe 2:

1r e s u l t [
name [ ” Recipe 2 ” ] ,

3c o n s t r a i n t [
i n s t a n c e [

5i nd [ name [ ” f l o u r ” ] ]
catom [ name [

” h t t p : / / www. owl . org / rec#GlutenContaining ” ]
] ] ] ] ,

7r e s u l t [
name [ ” Recipe 2 ” ] ,

9c o n s t r a i n t [
i n s t a n c e [

11i nd [ name [ ” s a l t ” ] ]
catom [ name [

” h t t p : / / www. owl . org / rec#GlutenContaining ” ]
] ] ] ]

Thus, as explained in Section III, we should construct the
disjunction of its constraints to verify it as a valid answer:

Σ |= GlutenContaining(flour)∨
GlutenContaining(salt)

whereΣ is the underlying ontology. Since this constraint
is assumed to hold (flour is an instance of the concept
GlutenContaining in all models ofΣ), the answerRecipe 2
is valid and can be given as an answer to the original query.
For the resultRecipe 1, however, he following holds:

Σ 6|= GlutenContaining(sugar)∨
GlutenContaining(orange)

Thus, the answerRecipe 1is discarded. The following result
should be returned to the user:

r e s u l t s [
2r e s u l t [ name [ ” Recipe 2 ” ] ,

name [ ” Recipe 4 ” ] ] ]

We have here tried to sketch an idea of how to integrate the
rule language Xcerpt with OWL. The aim has been to trans-
form an extended rule, which possibly includes ontological
constraints, into a rule of the component language Xcerpt such
that an unmodified Xcerpt engine can be re-used to work on
the rule. The aim of the modified rule is two-fold, to construct
answers to the original rule and at the same time to collect
any ontological constraints to be verified by a DL reasoner.

Rule languages for the Semantic Web lacking a logical
semantics, such as Xcerpt, have not traditionally been treated
in integration schemes for rules and ontologies. We have here

followed the ideas from [27] and have aimed to adapt it into
our integration framework. Further investigations into practical
treatment of Xcerpt as rule language in our framework is
needed and is planned as future work.

In contrast to the integration in Section IV-B, this particular
instance has not yet been implemented. However, it fits our
integration framework and such a prototype is part of future
work.

D. Outlook: Optimization strategies

As explained in Section IV-B, it is sometimes necessary to
collect all possible constraints for a given query in order to
prove its membership in the standard model of an integrated
program. But, we might sometimes be able to reduce computa-
tion time by aborting rule reasoning in a preemptive fashionto
verify some constraints, which possibly are sufficient to give
an answer to the user. We will be referring to this technique
aseager interaction. Three different strategies are available to
us.

1) Conjunctive constraints For every found answer sub-
stitution to a query in a rule reasoner, there might be an
associated conjunctive constraint, which needs to be verified
using the constraint reasoner. In some cases, as in the example
in Section IV-B, such a conjunctive constraint will not be
sufficient to prove the query. Instead, a disjunctive constraint
needs to be collected from several derivations of the query to
possibly verify the query wrt. the underlying program. In other
cases, such a conjunctive query will hold wrt. the external
theory and will then be sufficient to give a correct answer
to the query. We might exploit this fact and verify whether
the associated constraint holds for every answer substitution
found by the rule reasoner. Should this be the case, there is
no need to collect a complete disjunctive constraint. Such an
eager interaction scenario between the component reasoners
would likely improve response time for users. This because
the need to collect all possible constraints to a query in a rule
reasoner before handing it over to the constraint solver, asdone
in Section IV-B, might rarely be needed in real applications.

2) Removing inessential constraintsA conjunctive con-
straint collected by a rule reasoner wrt. a query to an integrated
program might be insufficient to prove the query. However,
as seen in Section IV-B, such a constraint might be important
later as part of a disjunctive constraint constructed from several
derivations of the query. On the other hand, a conjunctive
constraint might also be found to be useless in such a case
and should thus be discarded as soon as possible to save
computation time in verifying the disjunctive constraint.This
is the case if the negation of the conjunctive constraint is
a logical consequence of the underlying external theory, i.e.
Σ |= ¬C, whereΣ is the theory andC is the constraint.

3) Eager checking disjunctive constraintsAgain, it might
not always be the case that every constraint is needed in
order to prove a query wrt. an external theory. When the
query has not yet been proven, but at least two sets of
constraints have been collected, their disjunction might be used
to prove the query. While it is not known which constraints



will be required, eager interaction might reduce the number
of constraints needed to be checked to prove a query wrt. a
constraint domain.

While in some cases, eager interaction is likely to improve
reasoning performance, it might also be costly due to the
overhead of switching between the reasoning systems. Real
experience with such eager interaction schemes is yet to be
investigated and is part of future work.

V. RELATED WORK

Our work extends the ideas ofAL-log [10] to a more gen-
eral framework for hybrid integration of rules and constraint
theories. An instance of the proposed framework is the proto-
type system of Section IV-B, anAL-log style integration of
Datalog and OWL-DL, based on re-use of existing reasoners.

In the language of extended rules supported by our proto-
type the constraint predicates are restricted to OWL concepts.
Also in AL-log constraints are restricted to concepts. This
restriction is lifted in CARIN [22], where both concepts and
roles are allowed as constraints in rules. The logic obtained
in that way is undecidable in general. In contrast to CARIN
our rules are safe, in which case allowing roles in constraints
does not introduce undecidability.5 Further extension of our
prototype to such a subset of CARIN is possible, but would
require a reasoner supporting disjunctive DL queries, where
roles are allowed to appear.

Our approach is restricted to rules without negation and
does not support non-monotonic reasoning. This facilitates
definition of the semantics of an extended rule program as
a restriction of the semantics of the underlying core rules.
The core rules are assumed to have fixpoint semantics, and
are not restricted to logical formulae. The approach can be
easily extended tostratified rule programs with negation (for
the notion of stratified logic program see e.g. [4]). This kind
of negation is used, among others in Xcerpt. More advanced
forms of negation and non-monotonic reasoning can only be
handled by specific restrictions imposed on the considered
rule languages. For example, some recent work on hybrid
integration of rules and ontologies is based onstable model
semantics oranswer setsemantics [13] for Datalog rules with
negation. In the approach of [11], [21] the bodies of the
extended rules may include ontology queries possibly locally
modifying the A-Box of the ontology. The reasoning in the
extended language can be done by re-using a rule reasoner
supporting the stable model semantics and a DL-reasoner
answering the DL queries. An extension and refinement of [11]
is described in [21] which makes it possible to handle several
DL KBs. Both [11] and [21] however do not take into account
the issues discussed in [10], [22] with regards to completeness
of the integration, whereas we do.Safe hybrid knowledge
basesdiscussed in [25] provide a general formal framework for
integrating DL ontologies and rules, where the rule languages
considered include various subsets of disjunctive Datalogwith

5Notice that our safety condition is different from that known as role-
safeness, defining a decidable subset of CARIN.

stable model semantics. This approach allows DL predicatesin
the heads of rules, so that the interaction between DL and rules
is more advanced than in our approach. The paper focuses on
the semantic issues but sketches also a two-step algorithm for
deciding satisfiability of a given hybrid KB, where one of
the steps relies on standard DL reasoning and the other on
standard search of stable model of Datalog rules.

Another approach to combining rules and ontologies does
not stress hybrid reasoning but instead aims at defining a
logical language extending DLs with rules. In such an ap-
proach there is no distinction between rule predicates and
DL predicates, so that both the heads and the bodies of rules
are built from concepts and roles. Examples of this approach
include a decidable logic: the Description Logic Programs of
[14] and an undecidable logic whose XML encoding is known
as the Semantic Web Rule Language (SWRL) [17]. A closely
related approach to [17] is a recent extension of OWL-DL with
rules [23]. The integrated language is similar to the language
in our prototype but we do not allow DL-predicates to appear
in the heads of rules. Our safety condition is different from
DL-safety of [23]. The latter requires that each variable ofan
integrated rule appears in a non-DL-atom in the rule body,
while we only require that each variable in the head appears
in a non-DL-atom of the body. The main distinction is that
the query answering in [23] is done by using a compilation
of the integrated program to disjunctive Datalog, while our
prototype is a hybrid reasoner interfacing existing reasoners
of the component languages.

The objectives of our work, aiming at re-using existing
reasoners are not compatible with the language extension
approach where a new reasoner has to be constructed for every
new defined extension.

VI. CONCLUSIONS ANDFUTURE WORK

We presented a general scheme for combining various kinds
of safe rules with various kinds of constraints. For a particular
rule language with a fixpoint semantics and for a particular
constraint language the scheme defines the syntax and the
semantics of their composition. The language obtained in that
way allows for specification of knowledge bases, consisting
of extended rules and FOL axioms. Our scheme shows how
reasoners of the underlying languages should be interfaced
for querying the knowledge bases. The idea is to use the
original rule reasoner on the cores of the extended rules while
the constraints are to be checked by the original constraint
reasoner. For this the rule reasoner has to be able to collect
and instantiate the constraints associated with the core rules
involved in reasoning. This feature is not supported by the
existing rule reasoners but, as illustrated by our prototype, can
sometimes be implemented by transformation of the source of
the extended rules. To make existing rule reasoners applicable
in our framework one should develop techniques for collecting
constraints during their operation and for scheduling cooper-
ation between the rule reasoner and the constraint solver.

We have in this paper considered a layered approach where
a rule layer is put on top of an ontology layer. One can also



consider several layers interleaving components of rules and
ontologies. In the special case, when constraints are formulated
in a DL, the A-Box can be specified by extended rules. To
achieve such a multi-layering of rules and ontology com-
ponents, one needs to define a component model describing
how the components are interfaced with one another. From a
software engineering perspective, this component model opens
up the way of interoperability between various combinations of
logical languages, for which type mappings between types in
interfaces can be given. It would enable us to encapsulate the
reasoners for the languages and to connect them via proxies,
mapping the different data formats to each other. This would
define a CORBA-like mechanism for logical languages, which
is an inevitable interoperability mechanism for the future
Semantic Web.

The prototype described in Section IV-B now only allows
ontological constraints asconcepts. It would be desirable to
also support usage ofroles in constraints as done in e.g.
CARIN [22]. This is doable by plugging in already developed
techniques for rolling-up of queries involving roles into queries
which only contain concepts. Once this process is done, the
constraint is rid of any roles and the techniques in Section IV-
B can be used as described.

Another relevant topic is how to organize interaction of
different constraint solvers when different kinds of constraints
are used.

As the underlying rules of any extended rule programP

are safe, the constraints in our approach are only used to
restrict the finite model ofP ↓. Admission of unsafe rules
would enhance the expressive power of the extended rule
languages. The family of extended rule languages obtained
in that way would have a close relation to the CLP(X) family
of constraint logic programming languages [19]. Clarification
of this relation would allow for re-use of existing expertise of
CLP in the Semantic Web.
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