
Combining XML querying with ontology reasoning: Xcerpt and DIG

Włodzimierz Drabent1,2, Artur Wilk1

1Dept. of Computer and Information Science,
Linköping University, S 581 83 Link̈oping, Sweden

2Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, Pl – 01-237 Warszawa, Poland

{wlodr, artwi}@ida.liu.se

Abstract

The paper addresses the problem of combining ontolog-
ical reasoning with querying XML data. We present an ex-
tension of a rule-based XML query and transformation lan-
guage Xcerpt. The extension allows to interface an ontology
reasoner from Xcerpt programs. In this way querying can
employ the ontology information, for instance to filter out
semantically irrelevant answers. Communication between
Xcerpt programs and ontology reasoner is based on DIG
interface. The extension can be implemented without modi-
fying the underlying Xcerpt implementation.

1. Introduction

XML, designed by W3C1, is increasingly used for repre-
senting semistructured data on the Web. XML is supported
by query languages, including the W3C Candidate Recom-
mendation XQuery [11]. Querying of XML data in such
languages relies on the structure of the queried XML data: a
query identifies a (possibly empty) set of fragments of given
XML data. The structure-based querying of XML data is
thus based on the syntax of the data. XML data may include
semantic annotations, referring to concepts defined by on-
tologies. However, XML query languages do not provide
ontology reasoning capabilities. The objective of this paper
is to show how structure-based querying can be combined
with ontology reasoning. For this we combine the XML
query language Xcerpt [9, 8] with ontology queries. Xcerpt
is being developed by the EU Network of Excellence REW-
ERSE2 in the 6th Framework Programme. It differs from
most other XML query languages in that it is rule based and
uses pattern matching instead of path navigation for locat-
ing and extracting data.

1http://www.w3.org/
2http://www.rewerse.net/

As already stated, the objective of our work is to enhance
structural querying of XML data with ontology reasoning.
We assume that XML data contains annotations referring to
an ontology. We would like to query XML data using this
ontological information. For instance we may want to filter
XML documents returned by a structural query by reason-
ing on semantic annotations included therein. This can be
illustrated by the following example. Assume that an XML
database of culinary recipes is given. Each recipe indicates
ingredients (like flour, salt, sugar etc.). We assume that the
names of the ingredients are defined by a standard ontol-
ogy, accessible separately on the Web and providing also
some classification. For example, the ontology may specify
disjoint classes of gluten-containing and gluten-free ingre-
dients (see Figure 1). Thus, the names of ingredients in the
XML recipe can be seen as semantic annotations. To pre-

ingredient

gluten-freegluten-containing

flour spaghetti tomato salt sugar orange rice

Figure 1. Recipe ontology graph

pare a gluten-free meal we would query the XML database
for recipes, and query the ontology to check if the ingredi-
ents are gluten-free.

Thus, the problem outlined above can be seen as the
problem of interfacing an XML query language with an on-
tology reasoner. We propose a solution for XML query lan-
guage Xcerpt and any ontology reasoner supporting DIG

http://www.w3.org/
http://www.rewerse.net/

interface. DIG is a standard interface to ontology reasoners,
supported by e.g. RacerPro3 or Pellet4.

The presented work is inspired by [1] where a frame-
work for hybrid combination of rule languages with con-
straint languages is proposed. Combination of (a negation-
free subset of) Xcerpt and an ontology language is proposed
as a possible instance of the framework. Our approach is
different. It imposes no restrictions on Xcerpt. It allows ar-
bitrary ontology queries expressible in DIG, while [1] con-
siders only Boolean queries. The fixpoint semantics of the
approach of [1] is equivalent to performing the rule com-
putation first and then evaluating the ontology queries (that
have been accumulated during the rule computation). Our
semantics does not have this property.

The presented work continues the efforts described in
[10] and introduces substantial improvements. One of them
is that the language Extended Xcerpt can be implemented
without modification of the underlying Xcerpt implementa-
tion. The previous paper presents two methods of interac-
tion between Xcerpt and a reasoner; the approach presented
here is more general than each of them. It allows more flex-
ible semantic filtering of data. Also due to a possibility of
passing a query context from ask to response rules we can
build more interesting queries.

The problem of combination of XML queries with on-
tology queries seems to be important for the Semantic Web.
There exist approaches, like SWRL5 in which rules and on-
tologies are combined into one logical language. Usually
such a language combines the semantics of ontology and
of rules in a sophisticated way. In contrast, we are inter-
ested in a hybrid approach where a rule language and an
ontology language are interfaced, preserving their original
semantics as much as possible. Previous related work ad-
dresses mostly integration of logic programming language
Datalog with Description Logics. Early work of this kind is
represented by AL-log [4] and CARIN [6], where Datalog
rule bodies are extended with queries to a given ontology
(DL axioms). The authors discuss theoretical foundations
as well as implementation of such an integration, but do not
consider the context of the Semantic Web. More recently,
Eiter et al. [5] extend Datalog with so-called DL-queries
which make it possible to query locally modified DL axioms
thus allowing information flow in both directions between
rules and ontologies. A theoretical study of integration of
logic programming rules and DL ontologies is presented
by Rosati [7] (see also references therein for other related
work). In contrast to the above mentioned papers our rules
are not Datalog clauses but Xcerpt queries.

The rest of the paper is organized as follows. Section
2 briefly introduces the query language Xcerpt and gives

3http://www.racer-systems.com/
4http://www.mindswap.org/2003/pellet/
5http://www.w3.org/Submission/SWRL/

some background information on the DIG interface. Sec-
tion 3 presents an extension of Xcerpt allowing querying
XML using ontological information. It also provides pro-
gram examples illustrating a usage of the extended system.
Finally, Section 4 provides some conclusions.

2 Preliminaries

This section gives a brief introduction to the XML query
and transformation language Xcerpt and the DIG Interface.
These are basic techniques applied in the presented work.

2.1 Xcerpt

An Xcerpt program is a set of rules consisting of a body
and of a head. The body of a rule is a query intended
to match data terms. If the query contains variables such
matching results in answer substitutions for variables. The
head uses the results of matching to construct new data
terms. The queried data is either specified in the body or
is produced by rules of the program. There are two kinds
of rules: goal rules produce the final output of the program,
while construct rules produce intermediate data, which can
be further queried by other rules. Their syntax is as follows:

GOAL CONSTRUCT
head head

FROM FROM
body body

END END

Sometimes, we will denote the rules ashead← bodyne-
glecting distinction between goal and construct rules.

XML data is represented in Xcerpt asdata terms. Data
terms are built from basic constants and labels using two
kinds of parentheses: brackets [] and braces{ }. Ba-
sic constants represent basic values such as attribute val-
ues and character data (called PCDATA). A label represents
an XML element name. The parentheses following a la-
bel include a sequence of data terms (its direct subterms).
Brackets are used to indicate that the direct subterms are
ordered (in the order of their occurrence in the sequence),
while braces indicate that the direct subterms are unordered.
The latter alternative is used to encode attributes of an XML
element by a data term of the formattr{l1[v1], . . . , ln[vn]}
whereli are names of the attributes andvi are their respec-
tive values.

Example 1. This is an XML element and the corresponding
data term.

<CD price="9.90">
<title>Empire</title>
<artist>Bob Dylan</artist>

</CD>

http://www.racer-systems.com/
http://www.mindswap.org/2003/pellet/
http://www.w3.org/Submission/SWRL/

CD[
attr{ price["9.90"] },
title["Empire"],
artist["Bob Dylan"]

] �

There are two other kinds of terms in Xcerpt: query
terms and construct terms.

Query terms are (possibly incomplete) patterns which
are used in a rule body (query) to match data terms. In par-
ticular, every data term is a query term. Generally query
terms may include variables so that a successful matching
binds variables of a query term to data terms. Such bindings
are called answer substitutions. A result of a query term
matching a data term is a set of answer substitutions. For
example a query terma[b[], var X] matches a data term
a[b[], c[]] resulting in answer substitution set{X/c[]}.
Query terms can be ordered or unordered patterns, denoted,
respectively, by brackets and braces. For example a query
terma[c[], b[]] is an ordered pattern and it does not match
a data terma[b[], c[]] but a query terma{ c[], b[] }, which
is an unordered pattern, matchesa[b[], c[]]. Query terms
with double brackets or braces are incomplete patterns. For
example a query terma[[b[], d[]]] is an incomplete pat-
tern which matches a data terma[b[], c[], d[]]. As the
query term uses brackets the matching subterms of the data
term must occur in the same order as in the pattern. Thus
the query terma[[b[], d[]]] does not match a data term
a[d[], b[], c[]]. In contrast a query terma{{ b[], d[] }}
matchesa[d[], b[], c[]]. To specify subterms at arbitrary
depth a keyworddesc is used e.g. a query termdesc d[]
matches a data terma[b[d[]], c[]].

A query termq in a rule body may be associated with
a resourcer storing XML data or data terms. This is done
by a construction of the formin [r, q]. The meaning of this
construction is thatq is to be matched against data inr.
Query terms in the body of a rule which have no associated
resource are matched against data generated by rules of the
Xcerpt program.

Queries are constructed from query terms (possibly with
indicated resources) using logical connectives such asor ,
and , andnot . A rule body is a query.

Construct terms are used in rule heads to construct new
data terms. They are similar to data terms, but may con-
tain variables. Data terms are constructed out of construct
terms by applying answer substitutions obtained from a rule
body. Construct terms may also use a grouping construct
all which is used to collect all instances that result from
different variable bindings.

Example 2. Consider a documentcatalogue.xcerptcon-
taining a data term:

catalogue[
cd[

title["Empire"],
artist["Bob Dylan"],
year["1985"]],

cd[
title["Hide your heart"],
artist["Bonnie Tyler"],
year["1988"]],

cd[
title["Stop"],
artist["Sam Brown"],
year["1988"]]

]

Here is an Xcerpt rule which queries the document and
extracts titles and artists of the CD’s issued in 1988 and
presents the results in a changed form (title as name and
artist as author).

GOAL
results [

all result[name[var TITLE],
author[var ARTIST]]

]
FROM

in["file:catalogue.xcerpt",
catalogue{{

cd{
title[var TITLE],
artist[var ARTIST],
year["1988"] } }}

]
END

The result returned by the rule is:

results[
result[

name["Hide your heart"],
author["Bonnie Tyler"]],

result[
name["Stop"],
author["Sam Brown"]]

] �

Xcerpt rules may be chained to form complex query pro-
grams, i.e. rules may query the results of other rules.

2.2 DIG interface

Ontologies provide information about concepts, roles
and individuals in a given application domain. Thus an on-
tology gives a common vocabulary to be understood in the
same way by various applications in the domain. A main
language used to defined ontologies is OWL developed by
W3C. OWL is based on description logics.

An OWL file representing an ontology is just an encod-
ing of a set of axioms. To make use of the axioms one needs
an ontology reasoner. Using an ontology reasoner it is pos-
sible to draw conclusions from the set of axioms such as

discovering implicit subclass relationships and discovering
class equivalence. To communicate with the reasoner we
need to use a reasoner interface. For this purpose we have
chosen DIG interface [2] which is supported by many rea-
soners.

The DIG interface is an API for a general description
logic system. It is capable of expressing class and prop-
erty expressions common to most description logics. Us-
ing DIG clients can communicate with a reasoner through
the use of HTTP POST requests. The request is an XML
encoded message of one of the following types: manage-
ment, ask or tell. Management requests are used e.g. to
identify the reasoner along with its capabilities or to allocate
a new knowledge base and return its unique identifier. Tell
requests, containingtell statements, are used to make as-
sertions into the reasoner’s knowledge base. Ask requests,
containingask statements, are used to query the knowl-
edge base. Replies to ask requests contain response state-
ments. Tell, ask and response statements are build out of
concept statements which are used to denote classes, prop-
erties, individuals etc. Here we present an extract of DIG
statements used in our examples (C,C1, C2, . . . are concept
statements):

• Concept statements:

– <catom name=" CN"/> – a concept (class)CN

– <ratom val=" RN"/> – a role (property)RN

– <some> R C </some> – the concept whose ob-
jects are in relationR with some objects of a con-
ceptC (it corresponds to the formula∃R.C in
description logics)

• Tell statements:

– <defconcept name=" CN"/> – introduces a
conceptCN

– <defrole name=" RN"/> – introduces a role
RN

– <impliesc> C1 C2</impliesc> – introduces
an axiom stating that a conceptC1 is subsumed
by a conceptC2

• Ask statements:

– <subsumes> C1 C2</subsumes> – Boolean
query, asks whether a conceptC2 is subsumed
by a conceptC1

– <children> C</children> – asks for the list
of direct subclasses of a conceptC

• Response statements:

– <true/> – if a statement is a logical conse-
quence of the axioms in the knowledge base

– <false/> – if a statement is not a logical con-
sequence of the axioms in the knowledge base

– <error/> – if, for instance, a concept queried
about is not defined in the knowledge base

– <conceptSet>

<synonyms> C11 . . . C1n1 </synonyms>

...

<synonyms> Cm1 . . . Cmnm </synonyms>

</conceptSet>

Elements of the Ask and Response language contain also
attributes. For instance, the attributeid is used to associate
the obtained answers with the submitted queries.

Example 3. This is an example of a query request to be sent
to an ontology reasoner. It contains three queries. The first
two ask whether conceptssugarandpotatoare subclasses
of the conceptgluten-containing. The third one asks for
direct subclasses of the classgluten-containing.

<?xml version="1.0"?>
<asks
xmlns="http://dl.kr.org/dig/2003/02/lang">
xmlns:xsi="http://www.w3.org/2001/..."
xsi:schemaLocation="http://dl.kr.org/dig/...
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"
uri="urn:uri_of_knowledge-base">

<subsumes id="q1">
<catom name="gluten-containing"/>
<catom name="sugar"/>

</subsumes>
<subsumes id="q2">

<catom name="gluten-containing"/>
<catom name="potato"/>

</subsumes>
<children id="q3">

<catom name="gluten-containing"/>
</children>

</asks>

This is a possible response to the query:

<?xml version="1.0"?>
<responses
xmlns="http://dl.kr.org/dig/2003/02/lang">
xmlns:xsi="http://www.w3.org/2001/..."
xsi:schemaLocation="http://dl.kr.org/dig/...
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd">

<true id="q1"/>
<error id="q2" message="Undefined concept

name potato in TBox DEFAULT"
</error>
<conceptSet id="q3">

<synonyms>
<catom name="flour"/>

</synonyms>
<synonyms>

<catom name="spaghetti"/>
</synonyms>

</conceptSet>
</responses>

3. Interfacing ontology reasoner with Xcerpt

The main idea of our extension of Xcerpt is that an
Xcerpt rule can be used to produce Ask queries to be de-
livered to an ontology reasoner, and the responses from the
reasoner can be queried by an Xcerpt program. To distin-
guish ontology queries and responses from other data, and
to link queries with their responses, we select a setO of
Xcerpt labels which will be used for this purpose. (Thus
we assume that they do not occur elsewhere, particularly in
the data queried by programs.) A label fromO will be de-
noted by#l, or by a sequence of alphanumeric characters
beginning with#.

A DIG ask term is a construct term of the form#l[ca, c],
whereca, c are construct terms. A DIG ask rule is a query
rule whose head is a DIG ask term. Such a rule produces
data terms of the form#l[c′

a, c′]. The intention is thatc′
a is

a DIG ask statement to be send to a reasoner, andc′ is addi-
tional information to be attached to the reasoner’s response.
This is the information about the context of the query which
the programmer decided to pass.

A DIG response term is a query term of the form
#l[qr, q], whereqr, q are query terms. The intention is to
applyqr to DIG answers to the questions produced by DIG
ask rules with label#l. The query termq is intended to
match the additional information attached to the ask state-
ment.

An Extended Xcerpt program is an Xcerpt program con-
taining DIG response rules and DIG ask rules. Syntactically
it is just an Xcerpt program. However its semantics is dif-
ferent. The Xcerpt semantics would apply DIG response
terms as queries to the the data terms produced by DIG ask
rules. Instead, the data terms are used in querying a DIG
reasoner, and the DIG response terms query the answers of
the reasoner.

A rule c← Q directly depends on a rulec′ ← Q′, which
is not a DIG ask rule, if a queryQ′′ from Q matches some
instance of the construct term c’. Notice thatQ′′ is not a
DIG response term. A DIG response rulec ← Q directly
depends on a DIG ask rule#l[. . .] ← Q′ if Q contains an
DIG response term of the form#l[. . .]. The fact that a rule
p directly depends on a rulep′ is denoted asp′ ≺ p. A rule
p depends on a rulep′ in a programP if there exist rules
p1, . . . , pk in P such thatk ≥ 0 andp′ ≺ p1 ≺ . . . ≺ pk ≺
p.

A recursive Extended Xcerpt program is a program con-
taining a rule which depends on itself. A program is DIG
recursive if it contains a DIG ask rule which depends on it-

self. Checking whether a program is (DIG) recursive can
be done by constructing a dependency graph for the rules
in the program. In this paper we define the semantics for
programs which are not DIG recursive.

3.1 Operational semantics of Extended
Xcerpt

Evaluation of an Extended Xcerpt programP0 is a se-
quence of executions of Xcerpt programs and ontology
queries. This can be implemented in a rather simple way; an
implementation invokes an Xcerpt system and an ontology
reasoner with a DIG interface.

We construct a sequence of (non DIG recursive) pro-
gramsP0, . . . , Pm, by iteratively employing an ask rule to
create DIG queries and replacing the rule by data terms
representing the corresponding ontology reasoner answers.
The process is repeated until obtainingPm without ask
rules. Evaluation ofPm by Xcerpt produces the result of
the initial Extended Xcerpt programP0.

ProgramPi+1 is obtained fromPi in the following way.
Let pa = ha ← ba be an ask rule fromPi which does not
depend on other ask rules.

• Find results ofpa. We construct a programP ′
i out of

Pi by removing all the goal rules and replacingpa by
a goal rulep′

a = g[allha] ← ba whereg is a fixed
label. (The constructall is added to collect all the re-
sults of the rule.) The programP ′

i is evaluated by the
Xcerpt system, producing a resultg[d1, . . . , dn]. Thus
eachdi is a data term of the form#l[ai, si]. The sub-
term ai should represent a DIG ask statement andsi

is the context information to be returned together with
the corresponding answer.

• Obtain reasoner answers. Out of the DIG ask state-
ments represented bya1, . . . , an we build an DIG ask
request (which is an XML document additionally con-
taining a header with DIG namespace declarations, and
unique identifiers for the elements corresponding to
a1, . . . , an). The DIG ask request is sent to the rea-
soner which replies with a response that (after remov-
ing its attributes) can be represented by a data term
responses[r1, . . . , rn] where eachri is a response for
ai.

• Replacepa with data terms representing reasoner an-
swers. For each data termri we build a data term
d′

i = #l[ri, si]. The programPi+1 is Pi where the rule
pa is replaced by the set of data terms{d′

1, . . . , d
′
n}.

(Data terms can be represented by rules with empty
bodies.)

3.2 Examples

Now we present some examples of Extended Xcerpt pro-
grams.

Example 4. Gluten-containing recipes.
Consider an XML documentrecipes.xml, which is a collec-
tion of culinary recipes. The document is represented by the
data term:

recipes[
recipe[

name["Recipe1"],
ingredient[

name["sugar"],
amount[attr{unit["tbsp"]}, 3]],

ingredient[
name["orange"],
amount[attr{unit["unit"]}, 1]]],

recipe[
name["Recipe2"],
ingredient[

name["flour"],
amount[attr{unit["dl"]}, 3]],

ingredient[
name["salt"],
amount[attr{unit["ml"]}, 1]]],

recipe[
name ["Recipe3"],
ingredient[

name["spaghetti"],
amount[attr{unit["kg"]}, 0.5]],

ingredient[
name["tomato"],
amount[attr{unit["kg"]}, 0.4]]]

]

Also consider the culinary ingredients ontology from the
introduction (Figure 1). We assume that the ontology is
loaded into an ontology reasoner with which we can com-
municate using DIG. We also assume that the names of the
ingredients used in the XML document are defined by the
ontology. We want to find all the recipes in the XML docu-
ment which are not gluten-free. This can be achieved using
the following Extended Xcerpt program:

GOAL
bad-recipes[all name[var R]]

FROM
#gluten[

true[[]],
name[var R]

]
END

CONSTRUCT
#gluten[

subsumes[

catom[attr{ name["gluten-containing"] }]
catom[attr{ name[var I] }]],

name[var R]
]

FROM
in[resource["file:recipes.xml"]

desc recipe[[
name[var R],
ingredient[[name[var I]]]

]]
]

END

The program consists of two rules: the first one is a DIG
response rule, the second is a DIG ask rule. The ask rule
obtains pairs of a recipe name and an ingredient by querying
the XML document. It produces ontology queries which ask
whether particular ingredients aregluten-containing. The
additional information attached to the query is the name of
a recipe (that uses the ingredient queried about). The recipe
name accompanying a query will be attached to the reasoner
response to the query; so it is known to which recipe each
answer is related.

The responses obtained from the reasoner are queried
by the response rule. The responses could be<true/> ,
<false/> , or <error/> , and the body of the rule
matches only<true/> . Thus the names of recipes con-
taining at least onegluten-containingingredient are re-
turned by the response rule.

The first phase of evaluation of the program is obtaining
the ask statements to be send to the reasoner. The first rule
is removed from the program and the second rule changed
into a goal rule:

GOAL
g[

all #gluten[
subsumes[

catom[attr{ name["gluten-containing"]}]
catom[attr{ name[var I] }],

name[var R]
]

]
FROM

in[resource["file:recipes.xml"]
desc recipe[[

name[var R],
ingredient[[name[var I]]]

]]
]

END

The modified program is executed by the Xcerpt system, the
result is a data term:

g[
#gluten[

subsumes[

catom[attr{ name["gluten-containing"]}],
catom[attr{ name["sugar"] }]],

name["Recipe1"]],
#gluten[

subsumes[
catom[attr{ name["gluten-containing"]}],
catom[attr{ name["orange"] }]],

name["Recipe1"]],
#gluten[

subsumes[
catom[attr{ name["gluten-containing"]}],
catom[attr{ name["flour"] }]],

name["Recipe2"]],
#gluten[

subsumes[
catom[attr{ name["gluten-containing"]}],
catom[attr{ name["salt"] }]],

name["Recipe2"]],
#gluten[

subsumes[
catom[attr{ name["gluten-containing"]}],
catom[attr{ name["spaghetti"] }]],

name["Recipe3"]],
#gluten[

subsumes[
catom[attr{ name["gluten-containing"]}],
catom[attr{ name["tomato"] }]] ,

name["Recipe3"]]]

Out of this data term we build a DIG ask request (which
is an XML document), containing six ask statements. The
statements are augmented by unique identifiers1, . . . , 6; for
instance the first of them is

<subsumes id="1">
<catom name="gluten-containing"/>
<catom name="sugar"/>

</subsumes>

It is remembered which recipe name corresponds to each
ask statement.

The DIG ask request is sent to an ontology reasoner. Its
XML answer represented by a data term is (the attributes of
the elementresponsesare removed):

responses[
false [attr{ id="1" }],
false [attr{ id="2" }],
true [attr{ id="3" }],
false [attr{ id="4" }],
false [attr{ id="5" }],
true [attr{ id="6" }]

]

Based on the answer we construct the following set of data
terms:

#gluten[false[attr{id="1"}],name["Recipe1"]]
#gluten[false[attr{id="2"}],name["Recipe1"]]
#gluten[true [attr{id="3"}],name["Recipe2"]]

#gluten[false[attr{id="4"}],name["Recipe2"]]
#gluten[false[attr{id="5"}],name["Recipe3"]]
#gluten[true [attr{id="6"}],name["Recipe3"]]

Now we take the initial Extended Xcerpt program and
replace the second rule by the obtained set of data terms:

GOAL
bad-recipes[all name[var R]]

FROM
#gluten[

true[[]],
name[var R]

]
END

CONSTRUCT
#gluten[

false[attr{id="1"}],
name["Recipe1"]]

END
...
CONSTRUCT

#gluten[
true[attr{id="6"}],
name["Recipe3"]]

END

We run this program in Xcerpt obtaining the following
final answer:

bad-recipes[
name["Recipe2"],
name["Recipe3"]

] �

Example 5. Gluten-free recipes (1).
Let us now construct a query producing a list of gluten-

free recipes, instead of those containing gluten. This may
be less obvious, as we have to take care that none of the
ingredients of a recipe contains gluten. One way to find
gluten-free recipes is by using the program from Example 4,
and extract fromrecipes.xml all the recipes not found
by that program to contain gluten. Thus the program from
Example 4 is extended with the following rule:

GOAL
good-recipes[all name[var R]]

FROM
and[

in[resource["file:recipes.xml"]
desc recipe[[

name[var R],
ingredient[[name[var I]]]

]]]
not bad-recipes[[name[var R]]]

]
END

Also the goal rule of the original program is changed into a
construct rule so its results can be queried by other rules:

CONSTRUCT
bad-recipes[all name[var R]]

FROM
#gluten[

true[[]],
name[var R]

]
END

The result of the program is:

good-recipes[name["Recipe1"]] �

Example 6. Gluten-free recipes (2).
The same result as in the previous example can be

achieved directly without the intermediate step of finding
’bad-recipes’. For this purpose we can use a program con-
sisting of the ask rule from Example 4 and the following
response rule:

GOAL
good-recipes[all name[var R]]

FROM
and[

#gluten[
var A,
name[var R]

],
not #gluten[

true[[]],
name[var R]

]
]

END

The response rule is used to query reasoner answers
which are the same as in Example 4. It selects those recipe
namesR for which there does not exist an answertrue.

Xcerpt evaluates first the non negated queries of a
rule body. In our case, the query#gluten[var A,
name[var R]] binds R to the recipe names for which
some ontology answers are produced, i.e. ”Recipe1”,
”Recipe2”, ”Recipe3”. (Bindings of variableA to the on-
tology answers are not used, asA does not occur anywhere
else in the rule.) Then, for each value ofR, the negated
query checks that no ontology answertrueexists. The check
succeeds only for ”Recipe1” (as#gluten[true[[]],
name[var R]] succeeds forR bound to ”Recipe2” and
to ”Recipe3”). Hence the final result of the program is:

good-recipes[name["Recipe1"]]
�

The examples presented so far illustrate usage of filters
where Boolean queries are sent to an ontology reasoner.
However the presented approach can be used to ask the rea-
soner arbitrary questions (not only Boolean) which are ex-
pressible in DIG.

Example 7.
Consider the ingredients ontology (Figure 1) extended

with a classvitamin, its three subclasses:A,B,Cand a prop-
erty containedin. The extended ontology contains also ax-
ioms which indicate in which ingredients a particular vita-
min is included. These are the axioms as DIG Tell language
statements represented by data terms:

impliesc[
catom[attr{ name["A"] }],
some[

ratom[attr{ name["contained_in"] }],
catom[attr{ name["tomato"] }]]]

impliesc[
catom[attr{ name["B"] }],
some[

ratom[attr{ name["contained_in"] }],
catom[attr{ name["tomato"] }]]]

impliesc[
catom[attr{ name["B"] }] ,
some[

ratom[attr{ name["contained_in"] }],
catom[attr{ name["orange"] }]]]

impliesc[
catom[attr{ name["B"] }],
some[

ratom[attr{ name["contained_in"] }],
catom[attr{ name["flour"] }]]]

impliesc[
catom[attr{ name["B"] }],
some[

ratom[attr{ name["contained_in"] }],
catom[attr{ name["spaghetti"] }]]]

impliesc[
catom[attr{ name["C"] }],
some[

ratom[attr{ name["contained_in"] }],
catom[attr{ name["orange"] }]]]

impliesc[
catom[attr{ name["C"] }],
some[

ratom[attr{ name["contained_in"] }],
catom[attr{ name["tomato"] }]]]

The following Extended Xcerpt program queries the docu-
mentrecipe.xmland the ontology to provide a list of vita-
mins for each recipe in the document. The second rule (ask
rule) produces queries to an ontology reasoner which ask
about vitamins included in a particular ingredient. The rea-
soner responses are queried by the first rule (response rule).

GOAL
vit-recipes[all recipe[var R, all var V]]

FROM
#vitamins[

conceptSet [[
synonyms[[catom[attr{ name [var V] }]]]

]],

name[var R]
]

END

CONSTRUCT
#vitamins[

children[
some[

ratom[attr{ name["contained_in"] }],
catom[attr{ name[var I] }]

]
],
name[var R]

]
FROM

in[resource["file:recipes.xml"]
desc recipe[[

name[var R],
ingredient[[name[var I]]]

]]
]

The result of the program is:

vit-recipes[
recipe["Recipe1", "B","C"],
recipe["Recipe2", "B"],
recipe["Recipe3", "A","B","C"]

] �

3.3 Discussion

We believe that the presented examples illustrate practi-
cal usability of the proposed approach. The examples use
arbitrary ontology queries, not only Boolean. Notice that
there is no restriction on Xcerpt, any its construct can be
used. Also there is no restriction on usage of DIG. For in-
stance with a DIG response term#gluten[[error[[]],

name[var R]]] an Extended Xcerpt program can check,
for which data the reasoner returns error.

The ask rules of Extended Xcerpt are used to query an
ontology by sending DIG Ask statements to a reasoner.
However the rules can be generalized to modify the ontol-
ogy, by sending DIG Tell statements to the reasoner. In
this way ability to modify ontologies could be added to Ex-
tended Xcerpt.

The operational semantics that we presented (Section
3.1) requires that Extended Xcerpt programs are non DIG
recursive. The restriction was chosen to simplify the seman-
tics. We expect that a generalization to arbitrary programs is
not difficult. It is not clear whether DIG recursive programs
are needed in practice.

The semantics of Extended Xcerpt imposes certain im-
plicit type requirements on programs. The data terms pro-
duced by a DIG ask rule should be of the form#l(a, s),
wherea is a DIG ask statement (represented as a data term).

A DIG response term should match data terms of the form
#l(r, s), wherer is a DIG response statement (as a data
term). Moreover,r is a response for some ask statement
a such that some some rule in the program is able to pro-
duce#l(a, s). It is better to check such conditions stati-
cally, instead of facing run-time errors. For this purpose the
descriptive type system for Xcerpt [3, 12] can be used.

The presented extension of Xcerpt requires the program-
mer to use DIG syntax for ontology queries. Also, one has
to write ask rules, which create DIG queries, and response
rules, which deal with DIG responses. Such approach may
be considered as rather low level. One may prefer augment-
ing Xcerpt rules with ontology queries, and using rules of
the formc ← O,Q, wherec is a construct term,O an on-
tology query andQ an Xcerpt query. We expect that a con-
venient way of implementing such generalization of Xcerpt
is compiling it to Extended Xcerpt.

We expect that the approach of this paper can be applied
to composing some other XML query languages with ontol-
ogy querying.

4 Conclusions

The paper addresses the problem of how to use ontolog-
ical information in the context of querying XML data. The
proposed solution extends the XML query language Xcerpt
by adding the possibility of querying ontologies. Programs
in Extended Xcerpt communicate with an ontology reasoner
using DIG interface. No restrictions are imposed on the
Xcerpt language and on the DIG ask statements used. In
particular, ontologies can be queried with arbitrary, not only
Boolean, queries. Data obtained from ontology querying
can be used in XML querying, and vice versa. An im-
plementation of Extended Xcerpt can employ an existing
Xcerpt implementation and an existing ontology reasoner;
they are treated as “black boxes” (no modifications to the
Xcerpt system or the reasoner are needed).

References

[1] U. Aßman, J. Henriksson, and J. Małuszyński. Combining
Safe Rules and Ontologies by Interfacing of Reasoners. In
International Workshop, PPSWR 2006, Budva, Montenegro,
June 2006, Proceedings, pages 31–43, 2006.

[2] S. Bechhofer. The DIG Description Logic Interface:
DIG/1.1. InProceedings of DL2003 Workshop, Rome, 2003.

[3] S. Berger, E. Coquery, W. Drabent, and A. Wilk. Descriptive
typing rules for Xcerpt. InInternational Workshop, PSWR
2005, Dagstuhl Castle, Germany, September 2005, Proceed-
ings, number 3703 in LNCS, pages 85–100. Springer Verlag,
2005.

[4] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Al-log:
integrating datalog and description logics.J. of Intelligent
and Cooperative Information Systems, 10:227–252, 1998.

[5] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.
Combining answer set programming with description logics
for the semantic web. InInternational Conference of Knowl-
edge Representation and Reasoning, 2004.

[6] A. Y. Levy and M.-C. Rousset. CARIN: A Representa-
tion Language Combining Horn Rules and Description Log-
ics. InEuropean Conference on Artificial Intelligence, pages
323–327, 1996.

[7] R. Rosati. Semantic and computational advantages of
the safe integration of ontologies and rules. InInterna-
tional Workshop, PPSWR 2005, Dagstuhl Castle, Germany,
September 2005, Proceedings, volume 3703, pages 50–64,
2005.

[8] S. Schaffert. Xcerpt: A Rule-Based Query and Transfor-
mation Language for the Web. PhD thesis, University of
Munich, Germany, 2004.

[9] S. Schaffert and F. Bry. Querying the Web Reconsidered: A
Practical Introduction to Xcerpt. InProceedings of Extreme
Markup Languages 2004, Montreal, Quebec, Canada (2nd–
6th August 2004), 2004.

[10] E. Svensson and A. Wilk. XML Querying Using Ontologi-
cal Information. InInternational Workshop, PPSWR 2006,
Budva, Montenegro, June 2006, Proceedings, pages 187–
199, 2006.

[11] W3 Consortium. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/ .

[12] A. Wilk. Descriptive Types for XML Query Language
Xcerpt. Technical report, Link̈oping universitet, Sweden,
2006.

	. Introduction
	Preliminaries
	Xcerpt
	DIG interface

	. Interfacing ontology reasoner with Xcerpt
	Operational semantics of Extended Xcerpt
	Examples
	Discussion

	Conclusions

