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Abstract. Type checking and type inference are important concepts
and methods of programming languages and software engineering. Type
checking is a way to ensure some level of consistency, depending on the
type system, in large programs and in complex assemblies of software
components. Type inference provides powerful static analyses of pre-
existing programs without types, and facilitates the use of type systems
by freeing the user from entering type information. In this paper, we
investigate the application of these concepts to systems biology. More
specifically, we consider the Systems Biology Markup Language SBML
and the Biochemical Abstract Machine BIOCHAM with their reposito-
ries of models of biochemical systems. We study three type systems: one
for checking or inferring the functions of proteins in a reaction model,
one for checking or inferring the activation and inhibition effects of pro-
teins in a reaction model, and another one for checking or inferring the
topology of compartments or locations. We show that the framework of
abstract interpretation elegantly applies to the formalization of these ab-
stractions and to the implementation of linear time type checking as well
as type inference algorithms. Through some examples, we show that the
analysis of biochemical models by type inference provides accurate and
useful information. Interestingly, such a mathematical formalization of
the abstractions used in systems biology already provides some guidelines
for the extensions of biochemical reaction rule languages.

1 Introduction

Type checking and type inference are important concepts and methods of pro-
gramming languages and software engineering [1]. Type checking is a way to en-
sure some level of consistency, depending on the type system, in large programs
and in complex assemblies of software components. Type inference provides pow-
erful static analyzes of pre-existing programs without types, and facilitates the
use of type systems by freeing the user from entering type information.

In this paper, we investigate the application of these concepts to systems
biology. More specifically, we consider the Systems Biology Markup Language
SBML [2] and the Biochemical Abstract Machine BIOCHAM [3]. In both of
these languages, the biochemical models are described through a set of reaction
rules. We study three type systems:



1. one for checking or inferring the protein functions in a reaction model,
2. one for checking or inferring the activation and inhibition effects in a reaction

model,
3. and another one for checking or inferring the topology of compartments or

locations in reaction models with space considerations.

To this end, the formal framework of abstract interpretation will be used
to provide type systems with a precise mathematical definition. Abstract inter-
pretation is a theory of abstraction introduced by Cousot and Cousot in [4] as
a framework for reasoning about programs, their semantics, and for designing
static analysers, among which type inference systems [5]. Although not strictly
necessary to the presentation of the type inference methods considered in this
paper, we believe that that formal framework is very relevant to systems biology,
as a formalism for providing a mathematical sense to modeling issues concerning
multiple abstraction levels and their formal relationship.

We show that the framework of abstract interpretation elegantly applies to
the formalization of the three abstractions considered in this paper and to the
implementation of linear time type checking as well as type inference algorithms.
Through examples of biochemical systems coming from the biomodels.net and
BIOCHAM repositories of models, we show that the static analysis of reaction
models by type inference provides both accurate and useful information. Interest-
ingly, we show that these considerations also provide some guidelines concerning
the extensions of biochemical reaction rule-based languages.

2 Preliminaries on Abstract Interpretation, Type
Checking and Type Inference

2.1 Concrete Domain of Reaction Models

Following SBML and BIOCHAM conventions, a model of a biochemical system
is a set of reaction rules of the form e for S => S′ where S is a set of molecules
given with their stoichiometric coefficient, called a solution, S′ is the transformed
solution, and e is a kinetic expression involving the concentrations of molecules
(which are not strictly required to appear in S). The set of molecules is notedM.
We will use the BIOCHAM operators + and * to denote solutions as 2*A + B, as
well as the syntax of catalyzed reactions e for S =[C]=> S’ as an abbreviation
for e for S+C => S’+C.

A set of reaction rules like {ei for Si => S′i}i=1,...,n over molecular concen-
tration variables {x1, ..., xm}, can be interpreted under different semantics. The
traditional differential semantics interpret the rules by the following system of
Ordinary Differential Equations (ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp.
left) member of rule i. Thanks to its wide range of mathematical tools, this



semantics is the most commonly used, when the data is available and the sys-
tem of a reasonable size. The stochastic semantics interpret the kinetic expres-
sions as transition probabilities (see for instance [6]), while the boolean seman-
tics forget the kinetic expressions and interpret the rules as a non-deterministic
(asynchronous) transition system over boolean states representing the absence
or presence of molecules. In BIOCHAM these three semantics are implemented
[7], while in the SBML exchange format, no particular semantics are defined.

For the simple analyzes considered in this paper, the concrete domain of
reaction models will be the syntactic domain of formal reaction rules, with no
other semantics than a data structure. A reaction model is thus a set of reaction
rules, and the domain of reaction models is ordered by set inclusion, i.e. by the
information ordering.

Definition 1. The universe of reactions is the set of possible rules
R = {e for S => S′ | e is a kinetic expression,

and S and S′ are solutions }.
The concrete domain DR of reaction models is the power-set of reaction rules

ordered by inclusion DR = (P(R),⊆).

2.2 Abstract Domains, Abstractions and Galois Connections

In the general setting of abstract interpretation, an abstract domain is a lattice
L(v,⊥,>,t,u) defined by the set L and the partial order v, and where ⊥, >,
t, u denote the least element, the greatest element, the least upper bound and
the greatest lower bound respectively.

As often the case in program analysis, the concrete domain and the abstract
domains considered for analyzing biochemical models, are power-sets, that is
set lattices P(S)(⊆, ∅,S,∪,∩) ordered by inclusion, with the empty set as ⊥
element, and the base set S (such as the universe of reaction rules here) as >
element. An abstraction is formalized by a Galois connection as follows [4]:

Definition 2. A Galois connection C →α A between two lattices C and A is
defined by abstraction and concretization functions α : C → A and γ : A → C
that satisfy ∀c ∈ C,∀y ∈ A : x vC γ(y) ⇔ α(x) vA y.

For any Galois connection, we have the following properties:

1. γ ◦α is extensive (i.e. x vC γ ◦α(x)) and represents the information lost by
the abstractions;

2. α preserves t, and γ preserves u;
3. α is one-to-one iff γ is onto iff γ ◦ α is the identity.

If γ ◦ α is the identity, the abstraction α loses no information, and C and A are
isomorphic from the information standpoint (although γ may not be one-to-one).

We will consider three abstract domains: one for protein functions, where
molecules are abstracted into categories such as kinases and phosphatases, one
for the influence graph, where the biochemical reaction rules are abstracted in
activation and inhibition binary relations between molecules, and one for location
topologies, where the reaction (and transport) rules are abstracted retaining only
the neighborhood information between locations.



2.3 Type Checking and Type Inference by Abstract Interpretation

In this setting, a type system A for a concrete domain C is simply a Galois
connection C →α A. The type inference problem is, given a concrete element
x ∈ C (e.g. a reaction model) to compute α(x) (e.g. the protein functions that
can be inferred from the reactions). The type checking problem is, given a con-
crete element x ∈ C and a typing y ∈ A (e.g. a set of protein functions), to
determine whether x vC γ(y) (i.e. whether the reactions provide less and com-
patible information on the protein functions) which is equivalent to α(x) vA y
(i.e. whether the typing contains the inferred types).

The simple type systems considered in this paper will be implemented with
type checking and type inference algorithms that basically browse the reactions,
and check or collect the type information for each rule independently and in
linear time.

3 A Type System for Protein Functions

To investigate the use of type inference in the domain of protein functions we
first restrict ourselves to two simple functions: kinase and phosphatase. These
correspond to the action of adding (resp. removing) a phosphate group to (resp.
from) a compound.

For the sake of simplicity, we do not consider other categories such as protease
(in degradation rules), acetylase and deacetylase (in modification rules), etc. This
choice is in accordance with the BIOCHAM syntax which allows to mark the
modified sites of a protein with the operator ~, as in P~{p,q} without distin-
guishing however between a phosphorylation and an acetylation for instance.
We thus consider BIOCHAM models containing compounds with different levels
of phosphorylation or acetylation, without distinguishing the different forms of
modification, and call them phosphorylation, by abuse of terminology.

The analysis of protein functions in a reaction model is interesting for several
reasons. First, the kind of information (kinase activity) collected on proteins
can be checked using online databases like GO, the Gene Ontology [8]. Second,
in the context of the machine learning techniques implemented in BIOCHAM
for completing or revising a model w.r.t. a temporal logic specification [7], the
information that an enzyme acts as a kinase or as a phosphatase drastically
reduce the search space for reaction additions, and help find more biologically
plausible model revisions.

3.1 Abstract Domain of Protein Functions

Definition 3. The abstract domain of protein functions DF is the domain of
functions from molecules M to pairs of booleans, representing “has kinase func-
tion” (true/false) and “has phosphatase function” (true/false).

Definition 4. α : DR → DF is defined for each molecule as the disjunction of
α on each single rule and each pair of rules:



α(A =[B]=> C) = where C is more phosphorylated than A (i.e. its set of active
phosphorylation sites strictly includes that of A) is abstracted as B has kinase
function.

α(A =[B]=> C) = where, on the contrary, A is more phosphorylated than C,
we abstract that B has phosphatase function.

α(A + B => A-B, A-B => C + B) = where C is more phosphorylated than A
is abstracted as B has kinase function.

α(A + B => A-B, A-B => C + B) = where, on the contrary, A is more phos-
phorylated than C, we abstract that B has phosphatase function.

3.2 Evaluation Results

MAPK model. On a simple example of the MAPK cascade extracted from
the SBML repository and originally based on [9], the type inference algorithm
determines that RAFK, RAF~{p1} and MEK~{p1,p2} have a kinase function; RAFPH,
MEKPH and MAPKPH have a phosphatase function; and the other compounds have
no function inferred.

If we wanted to type-check such a model, we would correctly check all phos-
phatases but would miss an example of the kinase function of MAPK~{p1,p2},
since its action is not visible in the above model.

Kohn’s Map. Kohn’s map of the mammalian cell cycle control [10] has been
transcribed in BIOCHAM to serve as a large benchmarking example of 500
species and 800 rules [11]. To check if this abstraction scales up we tried it on
this model, and indeed obtain the answer in less than one second CPU time (on
a PC 1,7GHz). Here is an excerpt of the output of the type inference:

cdk7-cycH is a kinase

Wee1 is a kinase

Myt1 is a kinase

cdc25C~{p1} is a phosphatase

cdc25C~{p1,p2} is a phosphatase

Chk1 is a kinase

C-TAK1 is a kinase

Raf1 is a kinase

cdc25A~{p1} is a phosphatase

cycA-cdk1~{p3} is a kinase

cycA-cdk2~{p2} is a kinase

cycE-cdk2~{p2} is a kinase

cdk2~{p2}-cycE~{p1} is a kinase

cycD-cdk46~{p3} is a kinase

cdk46~{p3}-cycD~{p1} is a kinase

cycA-cdk1~{p3} is a kinase

cycB-cdk1~{p3} is a kinase

cycA-cdk2~{p2} is a kinase

cycD-cdk46~{p3} is a kinase

cdk46~{p3}-cycD~{p1} is a kinase



Plk1 is a kinase

pCAF is a kinase

p300 is a kinase

HDAC1 is a phosphatase

It is worth noticing that in these results no compound is both a kinase and a
phosphatase. The cdc25 A and C are the only phosphatases found in the whole
map with HDAC1). The type inference also tells us that the cyclin-dependant
kinases have a kinase function when in complex with a cyclin. Finally the acety-
lases pCAF, p300 and the deacetylase HDAC1 are detected but identified to kinases
and phosphatases respectively, since the BIOCHAM syntax does not distinguish
between phosphorylation and acetylation.

4 A Type System for Activation and Inhibitory Influences

4.1 Abstract Domain of Influences

Influence networks for activation and inhibition have been introduced for the
analysis of gene expression in the setting of gene regulatory networks [12]. Such
influence networks are in fact an abstraction of complex reaction networks, and
can be applied as such to protein interaction networks. However the distinc-
tion between the influence network and the reaction network is crucial to the
application of Thomas’s conditions of multistationarity and oscillations [12, 13]
to protein interaction network, and there has been some confusion between the
two kinds of networks [14]. Here we precisely define influence networks as an
abstraction of (or a type system for) reaction networks.

Definition 5. The abstract domain of influences is the powerset of the binary
relations of activation and inhibition between compounds DI = P({A activates
B | A,B ∈M} ∪ {A inhibits B | A,B ∈M}).

The influence abstraction α : DR → DI is the function
α(x) = {A inhibits B | ∃(ei for Si ⇒ S′i) ∈ x,

li(A) > 0 and ri(B)− li(B) < 0}
∪{A activates B | ∃(eiforSi ⇒ S′i) ∈ x,

li(A) > 0 and ri(B)− li(B) > 0}

In particular, we have the following influences for elementary reactions of
complexation, modification, synthesis and degradation:
α({A + B => C}) = { A inhibits B, A inhibits A, B inhibits A,

B inhibits B, A activates C, B activates C}
α({A = [C] => B}) = { C inhibits A, A inhibits A, A activates B, C activates B}
α({A = [B] => }) = { B inhibits A, A inhibits A}
α({ = [B] => A}) = { B activates A}

The inhibition loops on the reactants are justified by the negative sign in
the Jacobian matrix of the differential semantics of such reactions. It is worth
noting however that they are often omitted in the influence graphs considered in
the literature, as well as with some other influences, according to functionality,
kinetic and non-linearity considerations.



4.2 Evaluation Results

MAPK model. Let us first consider the MAPK signalling model of [9]. Fig. 1
depicts the reaction graph as a bipartite graph with round boxes for molecules
and rectangular boxes for rules. Fig. 2 depicts the inferred influence graph, where
activation (resp. inhibition) is materialized by plain (resp. dashed) arrows. The
graph layouts of the figures have been computed in BIOCHAM by the Graphviz
suite1.

p53-Mdm2 model. In the p53-Mdm2 model of [15], the protein Mdm2 is
localized explicitly in two possible locations: the nucleus and in the cytoplasm,
and transport rules are considered. Fig. 4 depicts the reaction graph of the model.

Fig. 3 depicts the inferred influence graph. Note that Mdm2 in the nucleus
has both an activation and an inhibitory effect on p53 u. This corresponds to
different influences in different regions of the phase space.

Fig. 5 depicts the core influence graph considered for the logical analysis of
this model [16]. In the core influence graph, some influence are neglected, as
expected, however some inhibitions, such the inhibitory effect of p53 on Mdm2
in the nucleus, are considered while they do not appear in the inferred influence
graph. The reason for these omissions is the way the reaction model is writ-
ten. Some inhibitory effects are indeed expressed in the kinetic expression by
subtraction of, or division by, the molecular concentration of some compounds
that do not appear in the rule itself. Those inhibitions are thus missed by the
type inference algorithm. An example of such a rule is the following one for the
inhibition of Mdm2 by p53:

macro(p53tot,[p53]+[p53~{u}]+[p53~{uu}]).
(kph*[Mdm2::c]/(Jph+p53tot),MA(kdeph)) for Mdm2::c <=> Mdm2~{p}::c.

Obviously, we cannot expect to infer such inhibitory effects from the ki-
netic expressions with all generality, however the model being written that way
without fully decomposing all influences by reaction rules, a refinement of the
abstraction function taking into account the kinetic expression is worth investi-
gating. As an alternative, one could extend the syntax of reaction rules in order
to indicate the inhibitors of the reaction, in a somewhat symmetric fashion to
catalysts.

Kohn’s Map. On Kohn’s map, the type inference of activation and inhibi-
tion influences takes less than one second CPU time (on a PC 1,7GHz) for the
complete model, showing again the efficiency of the type inference algorithm.

5 A Type System for Location Topologies

To date, models of biochemical systems generally abstract from space consider-
ations. Models taking into account cell compartments and transport phenomena
1 http://www.graphviz.org/



are thus much less common. Nevertheless, with the advent of systems biology
computational tools, more and more models are refined with space considera-
tions and transport delays, e.g. [15]. In SBML [2] level 1 version 1, locations
have been introduced as purely symbolic compartments without topology. We
show in this section how the topology can be inferred from the reaction rules,
and checked in different models.

5.1 Abstract Domain of Location Topologies

Definition 6. Abstract domain of neighborhood relation DN is a relation on
pairs of molecules M×M.

Definition 7. α : DR → DN is defined by the union of its definition on single
rules:

α(E for A1 + · · ·+An => B1 + · · ·+Bm) = All Ai and all Bj are pairwise
neighbors, and for all Ck such that [Ck] appears in E, Ck is a neighbor of all Ai

and all Bj.

5.2 Evaluation Results

Models from biomodels.net. We have taken models from the literature through
the biomodels.net database. Of the 50 models in the current version (dated
January 2006) only 13 have more than one compartment, and only 7 of those
use the outside attribute of SBML to provide more topological insight.

The neighboring relation is inferred in these models imported in BIOCHAM,
and then checked consistent with the provided outside relation.

For instance for calcium oscillations, we tried both the Marhl et al. model of
[17] and the Borghans et al. model of [18].

In the first case (model BIOMD0000000039.xml), three locations are defined:
the cytosol, the endoplasmic reticulum and a mitochondria, from the reactions
the inferred topology is that the cytosol is neighbor of the two other locations.
This correspond exactly to the information obtained from the outside annota-
tions (the cytosol being marked as the outside of the two other locations).

In the second case (models BIOMD0000000043.xml to BIOMD0000000045.xml)
we focused on the last model (two-pool) since it is the only one with 4 different
locations: the extracellular space, the cytosol and two internal vesiculae. The
location inference produces a topology where the cytosol is neighbor of all other
locations. Once again this is correct w.r.t. the outside information provided in
the SBML file: both vesiculae have the cytosol as outside location and the cytosol
itself has the extracellular space as outside location.

These considerations show that there is some mismatch between the SBML
reaction models and the choice of expressing outside vs neighborhood properties
of locations. In the perspective of type checking and type inference, neighbor-
hood relations should be preferred as they can be checked, or inferred from
the reaction model, whereas the outside relation contain more information that,
while helpful for the modeler as meta-data, cannot be handled automatically
without abstracting it first in neighbors properties.



P53/Mdm2. The first example comes from [15]: a model of the p53/Mdm2
interaction with two locations where the transport between cytoplasm and nu-
cleus is necessary to explain some time delays observed in the mutual repression
of these proteins.

biocham: load_biocham(’EXAMPLES/locations/p53Mdm2.bc’).

...

biocham: show_neighborhood.

c and n are neighbors

In this precise case, the model as published does not systematically use the
volume ratio in the kinetics. The transcription and type-checking of the model
showed that if one wanted to keep the background degradation rate of Mdm2
(without DNA damage) independent of the location, one obtains different ki-
netics than those of the published model. In this case a formal transcription in
BIOCHAM (or SBML) provided a supplementary model-validation step.

Delta and Notch Model. The next example is adapted from [19]. The Delta
and Notch proteins are crucial to the cell fate in several different organisms.
A population of neighboring cells (here we chose a square grid) is represented
through locations and the model allows to observe the salt-and-pepper coloring
(corresponding to high Delta-low Notch/low Delta-high Notch) typical of the
Delta-Notch lateral inhibition based differentiation. The signaling pathways are
simplified to the extreme to take into account only the direct effect of Delta and
Notch expression on the local and neighboring cells. This example would thus
not provide a good basis for the abstraction of section 4.

Depending on the abstraction chosen we obtain figure 6 and 7. In the first
case the abstraction used is not the one given in section 5.1 but

Definition 8. α : DR → DN is defined by the union of its definition on single
rules:

α(E for A1 + · · ·+An => B1 + · · ·+Bm) = All Ai, all Bj, and all Ck such
that [Ck] appears in E, are pairwise neighbors.

This was indeed a reasonable candidate for an abstraction, but proved too
coarse on some examples since co-modifiers are often put in the kinetic expression
of a single rule for simplification purposes.

6 Conclusion

We have shown that the framework of abstract interpretation applies to the
formalization of some abstractions commonly used in systems biology, and to the
implementation of linear-time type checking as well as type inference algorithms.

In the three type systems studied in this paper, for protein functions, acti-
vation and inhibitory influences, and location topologies respectively, the anal-
yses are based on static information gained directly from the syntax of reaction



rules, without considering their formal semantics, nor their precise dynamics. It
is worth noting that this situation also occurs in program analysis where the
syntax of programs may capture a sufficient part of the semantics for many
analyses. Here, it is remarkable that such simple analyses already provide useful
information on biological models, independently from their dynamics for which
different definitions are considered (discrete, continuous, stochastic, etc.) [7].

The formal definition of the influence graph as an abstraction of the reaction
model eliminates some confusion that exists in the use of Thomas’s conditions
[12, 13] for the analysis of reaction models [14]. Such a formalization shows also
that the influence graphs usually considered in the literature are further abstrac-
tions obtained by forgetting some influences, based on non-linearity considera-
tions [20]. Some inhibitions may also be missing in the inferred influences when
they are hidden in the kinetic expressions of the reactions and do not appear ex-
plicitly in the reactants. This suggests either to refine the abstraction function to
take into account the kinetic expression when possible, or to extend the syntax of
reactions in order to make explicit such inhibitory effects, in a symmetric fashion
to catalysts for activations. In SBML there is actually an unique symmetrical
notion of Modifiers which is not sufficient to infer the influence graph.

Similarly, the inference of protein functions and of location neighborhood
have shown that the static analysis of reaction models by type inference provides
both accurate and useful information. They also provide some guidelines for the
extensions of biochemical reaction languages, like for instance in SBML consid-
ering neighborhood rather than outside properties, and introducing a syntax for
the modification of compounds, and in BIOCHAM differentiating phosphoryla-
tion from other forms of modifications like acetylation.
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Fig. 1. Reaction graph of the MAPK model



Fig. 2. Inferred influence graph of the MAPK model



Fig. 3. Inferred influence graph of the p53-Mdm2 model

Fig. 4. Original reaction graph considered in [15] for the p53-Mdm2 model.

Fig. 5. Core influence graph.



Fig. 6. Delta-Notch square cell grid inferred in a 6x6 model, with modifiers, reactants
and products as pairwise neighbors

Fig. 7. Delta-Notch square cell grid inferred in a 6x6 model, without modifier-modifier
neighborhood


