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Abstract

As we face the real possibility of modelling programs that are capable of non-
deterministic self-evolution, we are confronted with the problem of having several
different possible futures for a single such program. It is desirable that such a
system be somehow able to look ahead, prospectively, into such possible futures, in
order to determine the best courses of evolution from its own present, and then to
prefer amongst them. This is the objective of the ACORDA, a prospective logic
programming system. We start from a real-life working example of differential
medical diagnosis illustrating the benefits of addressing these concerns, and follow
with a brief description of the concepts and research results supporting ACORDA,
and on to their implementation. Then we proceed to fully specify the implemented
system and how we addressed each of the enounced challenges. Next, we take on
the proffered example, as codified into the system, and describe the behaviour of
ACORDA as we carefully detail the resulting steps involved. Finally, we elaborate
upon several considerations regarding the current limitations of the system, and
conclude with the examination of possibilities for future work.

1 Introduction

Part of the Artificial Intelligence community has struggled, for some time now, to make
viable the proposition of turning logic into an effective programming language, allow-
ing it to be used as a system and application specification language which is not only
executable, but on top of which one can demonstrate properties and proofs of correct-
ness that validate the very self-describing programs which are produced. At the same
time, AI has developed logic beyond the confines of monotonic cumulativity and into
the non-monotonic realms that are typical of the real world of incomplete, contradic-
tory, arguable, revised, distributed and evolving knowledge. Over the years, enormous
amount of work and results have been achieved on separate topics in logic program-
ming (LP) language semantics, belief revision, preferences, and evolving programs with
updates[DP07, PP05, ABLP02].

As we now have the real possibility of modelling programs that are capable of non-
deterministic self-evolution, through self-updating, we are confronted with the problem
of having several different possible futures for a single starting program. It is desir-
able that such a system be able to somehow look ahead into such possible futures to
determine the best paths of evolution from its present, at any moment. This involves



a notion of simulation, in which the program is capable of conjuring up hypothetical
what-if scenarios and formulating abductive explanations for both external and internal
observations. Since we have multiple possible scenarios to choose from, we need some
form of preference specification, which can be either a priori or a posteriori. A priori
preferences are embedded in the program’s own knowledge representation theory and
can be used to produce the most relevant hypothetical abductions for a given state
and observations, in order to conjecture possible future states. A posteriori preferences
represent choice mechanisms, which enable the program to commit to one of the hy-
pothetical scenarios engendered by the relevant abductive theories. These mechanisms
may trigger additional simulations in order to posit which new information to acquire,
so more informed choices can be enacted, in particular by restricting and committing
to some of the abductive explanations along the way.

A large class of higher-order problems and system specifications exist which would
benefit greatly from this strategy for evolving knowledge representation, especially in
domains closer to the human level of reasoning such as expert systems for medical
diagnosis, and systems for enhanced proactive behavioural control.

1.1 Iterated Differential Diagnosis

In medicine, differential diagnosis is the systematic method physicians use to identify
the disease causing a patient’s symptoms. Before a medical condition can be treated
it must first be correctly diagnosed. The physician begins by observing the patient’s
symptoms, taking into consideration the patient’s personal and family medical history
and performing additional examinations if current information is lacking. Then the
physician lists the most likely causes. The physician asks questions and performs tests
to eliminate possibilities until he or she is satisfied that the single most likely cause
has been identified. The term differential diagnosis also refers to medical information
specially organized to aid in diagnosis, particularly a list of the most common causes of
a given symptom, annotated with advice on how to narrow down the list.

This listing of the most likely causes is clearly an abduction process, supported by
initial observations. Encoding this process in logic programming would result in a set of
literals and rules representing both the expected causes and the knowledge representa-
tion theory leading up to them. This set could be subsequently refined through a method
of prospection with a priori and a posteriori preferences, like the one described above.
This prospective process can result in the decision to perform additional observations
on the external environment, and be iterated.

In this case, the external observations correspond to the disease’s signs and other
examinations performed by the physician during the process of diagnosis. The abduc-
tive explanations correspond to the possible causes (e.g. medical conditions or simply
bad habits) responsible for the symptoms. A priori preferences and expectations are
necessarily determined according to the patient’s symptoms and they can be updated
during the course of the prospection mechanism. An appropriate knowledge representa-
tion theory can be derived from current medical knowledge about the causes of a given
disease.

Being such a good example of abduction, we provide next a practical example of
iterated differential diagnosis, based upon real medical knowledge from the field of den-



tistry, in order to better illustrate the kinds of problems involved. Further on we shall
proffer an encoding of the problem on our system, along with results from an interactive
diagnosis session.

1.1.1 Differential Diagnosis in Dentistry: A Use Case

A patient shows up at the dentist with signs of pain upon teeth percussion. The expected
causes for the observed signs are:

• Periapical lesion (endodontic or periodontal source)

• Horizontal Fracture of the root and/or crown

• Vertical Fracture of the root and/or crown

Several additional examinations can be conducted to determine the exact cause, namely:

• X-Ray for determination of radiolucency or fracture traces

• X-Ray for determination of periapical lesion source

• Check for tooth mobility

• Measurement of gingival pockets

Aside from presenting multiple hypotheses for diagnosis, the knowledge exhibited
by the practitioner must necessarily evolve in time, as he or she performs relevant
examinations which will attempt to disqualify all but one of the possible explanations.
Current examinations depend on knowledge acquired in the past, which, in turn, will
end up influencing the observations and inferences which will be drawn in the future.
Developing a system that is capable of modelling the evolution of a program in order to
draw such inferences is a demanding but obviously useful challenge.

1.2 Prospective Logic Programming

This problem is already at hand, since there are working implementations of a logic
programming language which was specifically designed to model such program evolu-
tions. EVOLP [ABLP02] is a non-deterministic LP language, having a well-defined
semantics that accounts for self-updates, and we intend to use it to model autonomous
agents capable of evolving by making proactive commitments concerning their imagined
prospective futures. Such futures can also be prospections of actions, either from the
outside environment or originating in the agent itself. This implies the existence of
partial internal and external models, which can already be modelled and codified with
logic programming.

It is important to distinguish this mechanism of prospection from your average plan-
ning problem, in which we search a state space for the means to achieve a certain goal.
In planning, this search space is inherently fixed and implicit, by means of the set of
possible actions that we can use to search for the goal. In future preference, we are
precisely establishing that search space, defining our horizon of search, which isn’t a
priori known and can even change dynamically with the very process of searching. It



intends to be a pre-selection prior to planning, but essentially distinct from planning
itself.

A full-blown theory of preferences[AP00] has also been developed in LP along with
EVOLP, as well as an abduction theory [APS04] and several different working seman-
tics for just such non-monotonic reasoning, such as the Stable Models [GL88] and Well-
Founded Semantics [vGRS91]. All of these have thoroughly tested working implementa-
tions. The problem is then how to effectively combine these diverse ingredients in order
to avail ourselves of the wherewithal to solve the problems described above. We are now
ready to begin addressing such general issues with the tools already at hand, unifying
several different research results into powerful implementations of systems exhibiting
promising new computational properties. This is the main objective of the ACORDA
system1.

First, we provide a brief description of the concepts and previous research results
supporting ACORDA, and their implementations2. Then we proceed to fully specify
the implemented system and how we have addressed each of the enounced challenges.
Next, we take on the real-life working example of differential medical diagnosis, showing
how it can be codified into the system, and describing the behaviour of ACORDA, as
we carefully detail the resulting steps. Finally, we elaborate upon several considerations
regarding the current limitations of the system and conclude examining possibilities for
future work.

2 Logic Programming Framework

2.1 XSB-XASP Interface

The Prolog language has been for quite some time one of the most accepted means to
codify and execute logic programs, and as such has become a useful tool for research
and application development in logic programming. Several stable implementations
have been developed and refined over the years, with plenty of working solutions to
pragmatic issues ranging from efficiency and portability to explorations of language
extensions. The XSB Prolog system is one of the most sophisticated, powerful, efficient
and versatile among these implementations, with a focus on execution efficiency and
interaction with external systems, implementing program evaluation following the Well-
Founded Semantics (WFS) for normal logic programs.

Two of its hallmark characteristics make it a particularly useful system on top of
which to implement ACORDA, and many of its supporting subsystems. First of all, the
tabling mechanism [Swi99], in which the results of particular queries are stored for later
reuse, can provide not only an enormous decrease in time complexity, but also allow for
solutions to well-known problems in the LP community, such as query loop detection.

Secondly, its aiming for external systems interaction eventually resulted in the devel-
opment of an interface to Smodels [NS97], one of the most successful implementations of
the Stable Models semantics over generalized logic programs, also known as the Answer

1ACORDA means literally “wake-up” in Portuguese. The ACORDA system project page is tem-
porarily set up at: http://articaserv.ath.cx/

2Working implementations of Dynamic Logic Programming, EVOLP and Updates plus Preferences
using DLP available online at: http://centria.di.fct.unl.pt/∼jja/updates



Set semantics. The SM semantics has become the cornerstone for the definition of some
of the most important results in logic programming of the past decade, providing an in-
crease in logic program declarativity and a new paradigm for program evaluation. Many
of the ACORDA subsystems are defined on top of the Stable Models (SM) semantics,
and as such, this integration proves extremely useful, and even accounts for new and
desirable computational properties that neither of the systems could provide on its own.

The XASP interface [CSW] (standing for XSB Answer Set Programming) provides
two distinct methods of accessing Smodels3. The first one is for using Smodels to obtain
the stable models of the so-called residual program, the one that results from a query
evaluated in XSB using tabling. This residual program is represented by delay lists, that
is, the set of undefined literals for which the program could not find a complete proof,
due to mutual dependencies or loops over default negation for that set of literals, which
are detected by the XSB tabling mechanism. This method allows us to obtain any two-
valued semantics in completion to the three-valued semantics the XSB system provides.
The second method is to build up a clause store, adding rules and facts to compose
a generalized logic program that is then parsed and sent to Smodels for evaluation,
thereafter providing access to the computed stable models back to the XSB system.

This kind of integration allows one to maintain the relevance property for queries over
our programs, something that the Stable Models semantics does not originally enjoy.
In Stable Models, by the very definition of the semantics, it is necessary to compute
all the models for the whole program. In our system, we sidestep this issue, using
XASP to compute the relevant residual program on demand, usually after some degree
of transformation. Only the resulting program is then sent to Smodels for computation
of possible futures. We believe that such system integrations are crucial in order to
extend the applicability of the more refined and declarative semantics that have been
developed in the field of AI.

2.2 Evolving Logic Programs

Modelling the dynamics of knowledge changing over time has been an important chal-
lenge for LP. Accounting for the specification of a program’s own evolution is essential
for a wide variety of modern applications, and necessary if one is to model the dynamics
of real world knowledge. Several efforts were conducted in lieu of developing a unified
language that could be both expressive and simple, following the spirit of declarative
programming that is characteristic of LP. The language EVOLP [ABLP02] is one of the
most powerful results from this research area with working implementations.

EVOLP generalizes LP in order to provide a general formulation of logic program
updating, by permitting rules to indicate assertive conclusions having the form of pro-
gram rules. Such assertions, whenever they belong to a model of the program P, can be
employed to generate an updated version of P. This process can then be iterated on the
basis of the new program. When the program semantics affords several program models,
branching evolution will occur and several evolution sequences are possible. The ability
of EVOLP to nest rule assertions within assertions allows rule updates to be themselves
updated over time, conditional on each evolution strand. The ability to include assertive

3The XSB Logic Programming system and Smodels are freely available at:
http://xsb.sourceforge.net and http://www.tcs.hut.fi/Software/smodels



literals in rule bodies allows for looking ahead on program changes and acting on that
knowledge before the changes actually take place.

2.2.1 Self-evolving Logic Programs

The approach used to define EVOLP aimed for minimality in regard to classic logic
programs. The objective was to identify the necessary conditions allowing the new
capabilities of evolution and updating, and then minimally adding constructs to LP
in order to account for them. Since we are envisaging updates to logic programs, it
is necessary to provide a means to state that, under some conditions, some rule is to
be added to the program. However, to allow for the non-monotonicity of rules, it is
also necessary to provide some sort of negation in rule heads, so as to let instances of
older rules be supervened by more recent rules updating them. Under these minimal
conditions it is possible to express any kind of logic program evolution and, as such,
EVOLP aimed to satisfy both.

The negation in rule heads is provided by the very definition of generalized LPs, while
the statement of updates can be specified by augmenting this language with the reserved
predicate assert/1, whether as the rule head or in its body. The sole argument of this
predicate is itself a full blown rule in order to account for the possibility of arbitrary
nesting. The formal inductive definition of the EVOLP language can be presented thus:

Definition 1[ABLP02]. Let L be any propositional language (not containing the pred-
icate assert/1). The extended language Lassert is defined inductively as follows:

1. All propositional atoms in L are propositional atoms in Lassert.

2. If each of L0, . . . , Ln is a literal in Lassert (i.e. a propositional atom A or its
default negation not A), then L0 ← L1, . . . , Ln is a generalized logic program rule
over Lassert.

3. If R is a rule over Lassert then assert(R) is a propositional atom of Lassert.

4. Nothing else is a propositional atom in Lassert.

An evolving logic program over a language L is a (possibly infinite) set of generalized
logic program rules over Lassert.

It should be noted that the basic syntax provides no explicit retract construct because
in fact it has no need of one. Retraction of rules can be encoded in EVOLP simply by
allowing for default negation to appear in rule heads.

The semantics of such self-evolving logic programs is provided by a set of evolution
stable models, each of which is a sequence of interpretations or states. Each evolu-
tion stable model describes some possible self-evolution of one initial program after a
given number n of evolution steps. Each self-evolution is represented by a sequence of
programs, each program corresponding to a state.

These sequences of programs are treated as in Dynamic Logic Programs [ALP+00],
where the most recent rules are put in force, and previous rule instances are valid by
inertia insofar as possible, as long as they do not conflict with more recent ones.



2.3 Preferential Theory Revision

The application of preferential reasoning over logic programs in the form of prefer-
ences between rules has been successfully attempted, including combinations of such
rule preferences with program updates[AP00], and the updating of preferences them-
selves. However, a crucial ingredient had been missing, that of considering the possible
abductive extensions to a theory, as expressed by means of a logic program and the
integration in it of preferences over such extensions.

Abduction plays a crucial role in belief revision and diagnosis, and also in the de-
velopment of hypotheses to explain some set of observations, a common consequence
of working under the scientific method. Such abductive extensions to a theory can be
expressed by sets of abducibles, over which we should be able to express conditional pri-
ority relations. Abducibles may be thought of as the hypothetical solutions or possible
explanations that are available for conditional proof of a given query.

This ability of construing plausible extensions to one’s theory is also vital for logic
program evolution, so that the program is capable of self-revision and theorizing, pro-
viding new and powerful ways on which it can guide the evolution of its knowledge base,
by revising incorrect or incomplete behaviour.

Such preferential theory revision has been approached in [DP05, DP07] and will be
presented next as part of the logic programming framework of the ACORDA prospective
system.

2.3.1 Language

Let L be a first order language. A domain literal in L is a domain atom A or its default
negation not A, the latter expressing that the atom is false by default (CWA). A domain
rule in L is a rule of the form:

A← L1, . . . , Lt (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain literals. The following convention is
used. Given a rule r of the form L0 ← L1, . . . , Lt, we write H(r) to indicate L0 and B(r)
to indicate the conjunction L1, . . . , Lt. We write B+(r) to indicate the conjunction of
all positive literals in B(r), and B−(r) to indicate the conjunction of all negated literals
in B(r). When t = 0 we write the rule r simply as L0. Let A ⊆ L be a set of domain
atoms, the abducibles.

2.3.2 Preferring Abducibles

To express preference criteria among abducibles, we introduce the language L∗. A
relevance atom is one of the form a / b, where a and b are abducibles. a / b means that
the abducible a is more relevant than the abducible b. A relevance rule is one of the
form:

a / b← L1, . . . , Lt (t ≥ 0)

where a/ b is a relevance atom and every Li(1 ≤ i ≤ t) is a domain literal or a relevance
literal. Let L∗ be a language consisting of domain rules and relevance rules.



The original definition of abductive stable models given in [DP07] considered logic
programs already infused with preferences between rules. The framework considered in
this work does not assume this, and as such the transformation of programs over L∗ is
slightly different, as it considers only generalized LPs.

The following definition provides us with the syntactical transformation from the
language L∗ to normal logic programs, with the abducibles being codified as simultane-
ous even-loops that guarantee mutual exclusion, i.e. that only one abducible is present
in each model. Relevance rules are also codified so as to defeat the abducibles which
are less preferred when the body of the rule is satisfied.

Definition 2[DP05, DP07]. Let Q be a program over L∗ with set of abducibles AQ =
{a1, . . . , am}. The program P = Σ(Q) with abducibles AP = {abduce} is obtained as
follows:

1. P contains all the domain rules in Q

2. for every ai ∈ AQ, P contains the domain rule:
confirm(ai)← expect(ai), not expect not(ai)

3. for every ai ∈ AQ, P contains the domain rule:
ai ← abduce, not a1, . . . , not ai−1, not ai+1, . . . , not am,

confirm(ai), not neg ai

4. for every relevance rule r in Q, P contains a set of domain rules obtained from r
by replacing every relevance atom x / y in r with the following domain rule:

negy ← L0, . . . , Ln, B+
x , By, not negx

3 ACORDA Architecture and Implementation

The basis for the ACORDA architecture is a working implementation of EVOLP on
which we can evaluate for truth literals following both a three-valued or a two-valued
logic. Since we aim for autonomous abduction processes that are triggered by constraints
or observations, from within the knowledge state of an agent, we need a means to express
how this triggering is accomplished. In our system, we resort to the notion of observable
in order to model and specify this kind of behaviour.

An observable is a quaternary relation amongst the observer, i.e. that which is
performing the observation; the observed, that which is the target of the observation;
the result of the observation itself; and the truth value associated with the observation.
This relation is valid both to express program based self-triggering of internal queries,
as well as observations requested from an exterior oracle to the program, and from the
program directly to the environment. For example, the observable

observable(prog,prog,Query,true)

represents an observation in which the observer is the program, that which is observed
is also the program, the observation is the specified Query and the positive truth value
means the observation must be proven true. In this case, we expect that such an



observable, by becoming active, triggers the self-evaluation of Query in the current
knowledge state, in the process resorting to any relevant and expected abducibles that
can account for the observation.

As a consequence of the fact that only one of the relevant abducibles can effectively
be chosen, corresponding to some possible world model, we may have several differ-
ent results for explaining such self-observations. These results represent the possible
knowledge futures that the program can infer from the current knowledge state towards
explaining a given hypothetical observation, and also the choices that the program can
make in order to evolve towards a new state where the observation holds. To make
the correct choice, we implement a priori and a posteriori prospective systems of pref-
erences. After this prospection takes place, the system is updated with the relevant
literals that explain the observation, and the transition to the next knowledge state is
then complete. This iterative process can be repeated for as long as we like, producing
autonomous evolution of the program, interleaved with external updates that can reach
the system independently, in between every such iteration. For simplicity, we presently
assume that external updates do not reach the system during each abductive process.
The steps in an ACORDA evolution loop are detailed below, and we proceed to explain
them in detail in the following sections.

1. Determine the active program-to-program generated observations for the current
state and their respective queries.

2. Determine the expected abducibles which are confirmed relevant to support the
active observations and which do not violate the integrity constraints.

3. Compute the abductive stable models generated by virtue of those confirmed ab-
ducibles, considering the currently active a priori preferences amongst them.

4. If necessary, activate a posteriori choice mechanisms to possibly defeat some of
the resulting abductive stable models.

5. Update the current knowledge state with the chosen abducible that can effectively
satisfy the activated observations and integrity constraints.

3.1 Active Program-to-Program Generated Observations

The active self-observations for a given state are obtained from a special kind of clause
which indicates that certain program-to-program observations should be made, in ex-
clusion of all others. These on observable/4 clauses follow the same structure of the
observable/4 clauses, but they do not represent the observations themselves. They
point rather to the self-observations that the ACORDA system should perform in the
next step of evolution. In order to ease codification in the ACORDA system, we consider
additional observable/3 and on observable/3 clauses, which default the truth value to
true.

Those on observable/4 clauses whose body holds true in the Well-Founded Model
(WFM), the three-valued logic model derived from the current knowledge state, will
trigger an internal observation expressed by their conclusion. The reason why we opt
for this skeptical semantics in this step is that we do not wish to allow just any kind of



abduction to determine such activated observations. Since we codify abduction using
even-loops over default negation, we would risk having those even-loops generate several
possible models for active observations if we considered the Stable Models semantics.
With the Well-Founded Semantics, we guarantee that a single model of active observa-
tions exists, composed of those literals which can be proven true in the WFM, with any
literals supported by abductions being marked as undefined. A much more expensive
alternative, of course, would be to find those observations true in the intersection of all
abductive Stable Models.

Also, in a knowledge base of considerable dimension, the number of active program-
to-program observations for a given knowledge state can be huge. Typically, we want to
give attention to only a subset of the observations that are active. There are multiple
ways in which this subset could be determined, either by using utility functions, addi-
tional preference relations or priorities, or just any other means of determining the most
important observables. In our system, we leave this function to be determined by the
user, since it will hinge much on the kind of application being developed. By default,
the system attends to all the observations that are active.

3.2 Expected and Confirmed Abducibles

Each active program-to-program observation will be launched as part of a conjunctive
query, which the system will attempt to satisfy by relying on any expected abducibles
which become confirmed by not otherwise being defeated, along with enforcing satis-
faction of integrity constraints. Since only a single abducible can currently be derived
from the even loops expressing alternative abductions, it follows that this abducible
must be able to satisfy the conjunction of active observations and attending integrity
constraints in order for evolution to succeed. This notion can of course be extended to
support abducible sets, and in that case one may want to consider the minimal sets of
abducibles that satisfy the conjunction. One way to allow for sets is to attach a single
abducible to each desired alternative set. This is currently outside the scope and essence
of the project, but will be considered in future developments, as mentioned in section 5.

Each abducible needs first to be expected (i.e. made available) by a model of the
current knowledge state. Next it needs to be confirmed in that model before it can
be used to satisfy or explain any kind of prospective observation. This is achieved
via the expect/1 and expect not/1 clauses, which indicate conditions under which an
expectable abducible is indeed expected and confirmed for an observation given the
current knowledge state. A relevant expected and confirmed abducible must be present
in the current derivation tree for the conjunction of all observations, satisfy at least
one expect/1 clause and none of its expect not/1 clauses. It must also be coded over
an even-loop using the system’s general abduce/1 clause, detailed below along with the
general confirm/1 clause encoding the requisite properties of an expected and confirmed
abducible.

confirm(X) <- expect(X), not expect_not(X), abduce(X).
abduce(X) <- not abduce_not(X).

abduce_not(X) <- abduce(X).

The latter two clauses are defined for every abducible by instantiating its variable
to it, so as to produce an even-loop with the abduce not/1 clause, and guarantee that



the confirmed abducibles come up undefined in the WFM of the program, and hence
in the residual program computed by the XSB Prolog-based EVOLP meta-interpreter
as explained in section 2.1. This residual program is a set of cyclic strongly connected
graphs of the interdependencies among the undefined atoms in the Well-Founded Model
of a program, without the presence of any true or false literals, for these have already
been partially evaluated[DMS].

3.3 Computation of the Abductive Stable Models

Determination of relevant abducibles can be performed by examination of the residual
program for ground literals which are arguments to confirm/1 clauses. Currently we
need to assume ground literals since we will be producing a program transformation
over the residual program based on the set of confirmed abducibles, which will be sent
directly to Smodels for computation of the hypothetical confirmed abducibles’ generated
scenarios. Smodels needs all literals to be instantiated, or have an associated domain
for instantiation. This limitation is present in many other state-of-the-art logic pro-
gramming systems and its solution is not the main point of this work. Nevertheless, it
is worth considering that XSB’s unification algorithm can ground some of the variables
automatically during the top-down derivation of observations hinging on abducibles.

Once the set of relevant confirmed abducibles is determined from the program’s
current knowledge state, all that remains before applying the preference transformation
described in section 2.3 is to determine the active a priori preferences that are relevant
for that set. This is merely a query for all preference literals whose heads indicate a
preference between two abducibles that belong to the set, and whose body is true in the
Well-Founded Model of the current knowledge state.

The XASP package[CSW] allows the programmer to collect rules in an XSB clause
store. When the programmer has determined that enough clauses have been added to
the store to form a semantically complete sub-program, the program is then committed.
This means that information in the clauses is copied to Smodels, codified using Smodels
data structures so that stable models of those clauses can be computed and examined.

When both the relevant abducibles and the active preferences are determined, the
transformation is applied, and every resulting clause is sent to the XASP store, which
is reset beforehand in preparation for the stable models computation. The transformed
residual program is then committed to Smodels and we make use of the XASP interface
to obtain back the literals corresponding to abducibles from all the resulting stable mod-
els of the transformed program. These models form the Abductive Stable Models of the
current knowledge state given the active observations and available relevant abducibles.

3.4 A Posteriori Choice Mechanisms

If everything goes well and only a single model emerges from computation of the ab-
ductive stable models, the ACORDA cycle terminates, and the resulting abducible is
updated into the next state of the knowledge base. In most cases, however, we cannot
guarantee the emergence of a single model, since the active preferences may not be suf-
ficient to defeat enough abducibles. In these situations, the ACORDA system has to
resort on additional information for making further choices, but supported on what?



A given abducible can be defeated in any one of two cases: either by satisfaction of an
expect not/1 clause for that abducible, or by satisfaction of a preference rule that prefers
another abducible instead. However, the current knowledge state may be insufficient
to satisfy any of these cases for all abducibles except one, or else a single model would
have already been abduced. It is then necessary that the system obtain the answers
it needs from somewhere else, namely from making experiments on the environment or
from querying an outside entity.

An agent or program that is completely isolated from its environment is limited in
the kinds of reasoning it can produce. If we are to model agents which can face up
proactively to the problems of the real world, they need to have the ability to probe
the outside environment in order to make experiments which permit it to enact a more
informed choice. We next consider the mechanism by means of which the program can
pose questions to external systems, be they other agents, actuators, sensors or other
procedures. Each of these serves the purpose of an oracle, which the program can probe
with observations of its own. These observations are of the form

observable(prog,Oracle,Query,Value)

representing that the program is performing the observation Query on the specified
Oracle. These clauses can normally only be satisfied if the system has activated oracle
probing, and if the conditions are met for using the prescribed oracle. In some situations,
not all oracles may be available for the agent to query.

ACORDA consequently activates its a posteriori choice mechanisms, which consist
in attempting to satisfy additional self-observations of the top-down conjunctive query
taking into account the possible satisfaction of more expect not/1 clauses or preference
rules. Each such observation is an ACORDA cycle in its own right, counting on enabled
oracles’ activation to perform external queries if necessary. Any such observation can
spawn even more observations, as long as there are clauses to inspect and oracles to
interrogate. Information gleaned from the oracles can produce numerous side-effects,
besides the possible defeat of previous abducibles, namely: supporting new abductions;
activating preference relations previously unaccounted for; or even lending support by
themselves to the satisfaction of the original query.

The results from performed experiments are currently tabled, to allow for reuse of the
retrieved information for the current knowledge state. We assume the environment does
not change while the ACORDA system is performing its abductive reasoning. There are
many situations in which this assumption would be unacceptable but, once again, these
fall outside the immediate scope of the project. They are discussed as current system
limitations in section 5.

Eventually, the ACORDA system will have defeated enough models that it can
guarantee a single one will emerge with the additional information gathered, or that
it has exhausted every means to make the choice. In any case, it will commit to the
literals gathered from the observations, querying the user for the final choice, if indeed
it fails to produce a single course of evolution by itself.

The finalizing committing update can, of course, trigger additional observations and
turn the attention of the system to other matters, but always in a well-founded manner,
so that the agent is capable of autonomous reasoning justified by its initial program



and self-guided evolution. We believe that the ACORDA system is an interesting ex-
periment on new forms of combined reasoning that deal with new emerging problems
already beginning to present themselves. Moreover, even though an experimental sys-
tem, it’s already able to solve empirically concrete real-world problems of some degree
of complexity with classical LP declarative programming style, as the next section will
demonstrate.

4 Modelling Prospective Logic Programs

We will now resume the issue of codifying the example of differential diagnosis in den-
tistry presented in section 1.1.1 using the ACORDA system. The results obtained
during an interactive diagnosis section are then detailed, along with annotations on the
workings of the system.

The scenario can be intuitively modelled using the provided syntax for prospective
logic programs on the ACORDA system, resulting in the initial program exhibited
below. It should be noted that, as a matter of coding syntax, the relevance operator /
is represented by the atom <|.

==== Initial Signs ====

on_observable(prog,prog,percussion_pain_cause) <- percussion_pain. (A)

==== First Phase of Differential Diagnosis ====

percussion_pain_cause <- periapical_lesion.
percussion_pain_cause <- vertical_fracture.
percussion_pain_cause <- horizontal_fracture.

periapical_lesion <- confirm(periapical_lesion).
expect(periapical_lesion) <- profound_caries.
expect(periapical_lesion) <- % expected in the context of an observation:

on_observable(prog,prog,percussion_pain_cause). (B)
expect_not(periapical_lesion) <- fracture_traces, not radiolucency.

vertical_fracture <- confirm(vertical_fracture).
expect(vertical_fracture) <- on_observable(prog,prog,percussion_pain_cause).
expect_not(vertical_fracture) <- radiolucency, not fracture_traces.

horizontal_fracture <- confirm(horizontal_fracture).
expect(horizontal_fracture) <- on_observable(prog,prog,percussion_pain_cause).
expect_not(horizontal_fracture) <- radiolucency, not fracture_traces.

periapical_lesion <| horizontal_fracture <-
profound_caries, not percussion_pain.

periapical_lesion <| vertical_fracture <-
profound_caries, not percussion_pain.

horizontal_fracture <| vertical_fracture <- low_mobility.
vertical_fracture <| horizontal_fracture <- high_mobility.



==== Second Phase of Differential Diagnosis ====

on_observable(prog,prog,periapical_lesion_source) <- (C)
periapical_lesion.

periapical_lesion_source <- endodontic_lesion.
periapical_lesion_source <- periodontal_lesion.

endodontic_lesion <- confirm(endodontic_lesion).
expect(endodontic_lesion) <-

on_observable(prog,prog,periapical_lesion_source).
expect(endodontic_lesion) <- devitalization.
expect(endodontic_lesion) <- not gingival_pockets.
expect_not(endodontic_lesion) <- (D)

gingival_pockets, not devitalization.

periodontal_lesion <- confirm(periodontal_lesion).
expect(periodontal_lesion) <-

on_observable(prog,prog,periapical_lesion_source).
expect(periodontal_lesion) <- devitalization.
expect(periodontal_lesion) <- gingival_pockets.
expect_not(periodontal_lesion) <- neg_gingival_pockets.

periodontal_lesion <| endodontic_lesion <- gingival_pockets.

==== Available Experiments ====

radiolucency <- observable(prog,xray,radiolucency).
fracture_traces <- observable(prog,xray,fracture_traces). (E)
high_mobility <- observable(prog,mobility_check,high_mobility).
low_mobility <- observable(prog,mobility_check,low_mobility).
gingival_pockets <- observable(prog,pockets_check,gingival_pockets).
neg_gingival_pockets <-

observable(prog,pockets_check,gingival_pockets,false).
devitalization <- observable(prog,periapical_xray,devitalization).

==== Available Oracles ====

observable(prog,xray,Q,S) <- oracle,prolog((oracleQuery(xray(Q),T),S = T)).
observable(prog,mobility_check,Q,S) <-

oracle,prolog((oracleQuery(mobility_check(Q),T),S = T)).
observable(prog,pockets_check,Q,S) <-

oracle,prolog((oracleQuery(pockets_check(Q),T),S = T)).
observable(prog,periapical_xray,Q,S) <-

oracle,prolog((oracleQuery(periapical_xray(Q),T),S = T)).

4.1 Interactive Session Results with ACORDA

After the initial program is loaded into the ACORDA evolving knowledge base, we
provide the patient’s signs (i.e. percussion_pain) as an external update to the system.



Running a cycle of introspection over the ACORDA system produces the reasoning steps
detailed below. The question marks are used to indicate queries to an external oracle,
followed by the answer instances given by it.

1. About to launch new introspection on selected active observables:
[on_observable(prog,prog,percussion_pain_cause)]

2. Relevant abducibles for current introspection:
[horizontal_fracture,periapical_lesion,vertical_fracture]

3. Partial models remaining after a priori preferences:
[[horizontal_fracture],[periapical_lesion],[vertical_fracture]]

4. About to launch new introspection on selected active observables:
[on_observable(prog,prog,percussion_pain_cause)]

5. Confirm observation: xray(fracture_traces)
(true, false or unknown)? false.

6. Confirm observation: xray(radiolucency)
(true, false or unknown)? true.

7. Relevant abducibles for current introspection:
[periapical_lesion]

8. Partial models remaining after a priori preferences:
[[periapical_lesion]]

The event percussion_pain triggers the active observable percussion_pain_cause
(cf. rule A) which is a program-to-program generated observation, that is, it will cause
a top-down query to be launched to attempt satisfaction of the observable. The system
goes down the derivation tree for percussion_pain_cause, encountering even-loops
over default negation for each relevant abducible in the query, i.e. the literals that are
output in 2. In this case, the expectations are triggered only in the context of the
currently active observation (cf. rule B).

Afterwards, ACORDA launches queries for the a priori preferences which concern
the relevant abducibles, which can themselves be dependent on abductive or observable
loops. These abducibles and preferences determine the transformation specified in sec-
tion 2.3. For the computed residual program and the set of abducibles in 2, we show
part of the performed transformation, which is then placed in the XASP clause store:

percussion_pain_cause <- horizontal_fracture.
percussion_pain_cause <- periapical_lesion.
percussion_pain_cause <- vertical_fracture.
confirm(horizontal_fracture) <- not expect_not(horizontal_fracture).
confirm(periapical_lesion) <- not expect_not(periapical_lesion).
confirm(vertical_fracture) <- not expect_not(vertical_fracture).
expect_not(horizontal_fracture) <- radiolucency,not fracture_traces.
expect_not(periapical_lesion) <- fracture_traces,not radiolucency.
expect_not(vertical_fracture) <- radiolucency,not fracture_traces.

horizontal_fracture <-
abduce, confirm(horizontal_fracture), not periapical_lesion,
not vertical_fracture, not neg_horizontal_fracture.



false <- abduce, horizontal_fracture, neg_horizontal_fracture.

periapical_lesion <-
abduce, confirm(periapical_lesion), not horizontal_fracture,
not vertical_fracture, not neg_periapical_lesion.

false <- abduce, periapical_lesion, neg_periapical_lesion.

vertical_fracture <-
abduce, confirm(vertical_fracture), not horizontal_fracture,
not periapical_lesion, not neg_vertical_fracture.

false <- abduce,vertical_fracture,neg_vertical_fracture.

The ’false’ literal is equivalently used here to model integrity constraints in our program,
instead of the usual empty head that is adopted in Smodels’ implementation. The
potential observations which can satisfy some of the literals in the residual programs,
namely the expect not/1 clauses are codified over even-loops, but are ommitted for
clarity, since in the first phase of the system no external observations are allowed.

After the clauses are stored, the stable models of the processed residual program are
computed, resulting in at least a model for each abducible that could not be defeated
by contextual preference rules. In this case no active preferences hold and no obser-
vations are allowed, so the resulting stable models correspond to all the confirmed ab-
ducibles: periapical_lesion, horizontal_fracture and vertical_fracture. Since
the system was not able to abduce just one model from a priori preferences, the choice
mechanisms are activated and a new prospective search is launched for ways to defeat
some of the models, as described in section 3.

However, the current knowledge state is insufficient to enact any kind of choice,
so the system is forced to probe the external environment for additional information.
This means that the oracle mechanisms are activated, and for the new observations
the system decrees that experiments can now be performed. A new top-down query is
launched, and as the derivation tree is traversed for new confirmation of relevant ab-
ducibles, opportunities to perform experiments are encountered. This is the case for the
satisfaction of expect_not(periapical_lesion) which depends on fracture_traces
and not radiolucency.

In an attempt to satisfy fracture_traces, ACORDA encounters an observable
clause (cf. rule E). This clause depends on fracture traces being found on X-Ray imag-
ing, so it probes the environment for just such an exam. No fracture traces are found,
so periapical lesion can be confirmed under support from the oracle experiment. How-
ever, the subsequent experiment for radiolucency reveals positive results which can
guarantee defeat of the other two abducibles, meaning that periapical_lesion is now
the only expected and confirmed abducible. ACORDA can now successfully commit to
a single diagnosis.

As mentioned above, in the cases where the system cannot guarantee a single abduc-
tive stable model after exhausting all the introspections, it queries the user to perform
the final choice over the list of surviving abducibles. This behaviour could be refined,
however, by launching separate simulations assuming each of the remaining solutions,
and performing extra levels of prospective lookahead for additional ways to defeat fur-
ther models. This addition is considered in the future work mentioned in section 5.



After the abduction of periapical lesion as the most likely cause for the sign of
percussion pain on the patient’s tooth, the attention of the system turns to satisfy a
new observation for the source of such lesion. As such, a new cycle of introspection on
top of these results can produce a more detailed diagnosis, as depicted below:

1. About to launch new introspection on selected active observables:
[on_observable(prog,prog,periapical_lesion_source)]

2. Relevant abducibles for current introspection:
[endodontic_lesion,periodontal_lesion]

3. Partial models remaining after a priori preferences:
[[endodontic_lesion],[periodontal_lesion]]

4. About to launch new introspection on selected active observables:
[on_observable(prog,prog,periapical_lesion_source)]

5. Confirm observation: pockets_check(gingival_pockets)
(true, false or unknown)? true.

6. Confirm observation: periapical_xray(devitalization)
(true, false or unknown)? true.

7. Relevant abducibles for current introspection:
[endodontic_lesion,periodontal_lesion]

8. Partial models remaining after a priori preferences:
[[periodontal_lesion]]

This time, the commitment to the abduction of periapical_lesion triggers the
activation of program-to-program observable periapical_lesion_source (cf. rule C).
The relevant expected abducibles that satisfy this observation are endodontic_lesion
and periodontal_lesion, both being confirmed under the current knowledge state.
Again, no active preferences hold a priori, that is, there are no preference rules relevant
to the current abducibles which do not depend on any external observations. As a result,
the Stable Models of the transformed partial residual program correspond once again
to all relevant abducibles.

The choice mechanisms are activated and the top goal is relaunched in an attempt to
acquire additional information, activating the oracles for external environment probing.
The attempt to defeat endodontic_lesion calls for a gingival pockets measurement (cf.
rule D), which reveals the existence of pockets in the vicinity of the patient’s tooth. On
the other hand, a periapical X-Ray is needed to confirm that no endodontic therapy was
performed on that tooth. This experiment, however, reveals just that, and so ACORDA
is unable to defeat the endodontic_lesion abducible using this expect not/1 clause.

Attempting to defeat periodontal_lesion by means of expect not/1 clauses proves
impossible as well, due once again to the ambiguous results from the experiments. Both
abducibles are again confirmed. However, a preference for periodontal_lesion is in
place, given the existence of gingival pockets, so a unique Stable Model emerges, yielding
the final diagnosis of periodontal_lesion.

The system could now be extended to handle different treatment hypotheses accord-
ing to the result of the diagnosis. It would just be a matter of adding new triggers
for additional observations that would represent the adequate treatment. Abducibles in
this case would be the expected treatments and the preference model could be extended
to include the patient’s own preferences.



5 Conclusions and Future Work

The ACORDA project is still in its early beginnings, but even now it addresses several
new pragmatic problems involving self-modifying logic programs by combining some of
the best results from research and development of logic-based systems in the last decade.
Preferential reasoning techniques are applied and the stable models semantics is used
in an effective way by means of the XASP package. The relevance property enjoyed
by top-down querying in XSB Prolog is crucial in preparation for our use of Smodels,
and so we can expect to handle problems with a large rule-base, as we do not need to
compute whole models, and none of those with irrelevant abducibles, in order to derive
the relevant abductive stable models specific to the problem at hand.

This is one of the main problems which abduction over stable models has been
facing, in that it always has to consider all the abducibles in a program and then
progressively defeat all those that are irrelevant for the problem at hand. This is not
so in the ACORDA system, since we begin by a top-down derivation that immediately
constrains the set of abducibles that are relevant to the agent’s observations and meta-
goals. However, the encoding of abducibles as even-loops over default negation provides
a declarative way in which to describe the abductive process, and the computation of
stable models of the residual program is a natural way to obtain all the possible 2-valued
models, considering also the a priori preferences, themselves coded as even loops over
default negation.

Since virtually every element that is necessary to the process of abduction is encoded
in the system’s knowledge base, it automatically becomes a possible target of revision,
meaning that the agent can update itself in order to change its preferences, and even the
abductive rules, supervening old rules and adding new ones at will. Only the process
of simulation in itself needs to remain separate, but that is just a practical consequence
of the well-known self-reference problem. A program that simulates another program’s
future cannot be inside that very program. The process must be executed by an external
system that is not included in the model that it is trying to simulate.

There are currently several avenues of improvement of the ACORDA system, or-
thogonal to several fields of active research in logic programming. To begin with, the
stable models semantics may not be sufficient to model program evolution, since it does
not guarantee the existence of models. Once we consider non-deterministic evolution of
an agent, especially if it is expected to retrieve new rules from the environment or to
compose old rules to form new ones or learn them, we cannot guarantee that odd-loops
over default negation will not be part of the program somewhere in the future. If that
happens, evolution is immediately halted, as stable models does not provide any model
in that case.

It can be argued that inserting an odd-loop over default negation is simply a case
of bad programming, and as such, it should never appear at all. However, if our agent
makes a mistake, we want at least to give it an opportunity to revise that mistake,
and not kill its evolution altogether. Fortunately, recent research on logic programming
semantics has produced the Revised Stable Models [PP05] semantics, which elegantly
solves this problem and brings a whole new host of desirable properties to the original
SM semantics. Working implementations have already been developed and they will
soon be integrated into the ACORDA system.



The abductive process and the system of a priori preferences can be improved as
well, in order to allow for the abduction of a set of abducibles. It will be necessary
to specify new ways in which we can express preferences over these sets, but work is
already well underway in this regard. Abduction of multiple literals is, however, already
possible in the current system, by making single abducibles themselves stand for sets of
“abducible” literals. One just needs to carefully model all the relevant combinations of
literals that one would be inclined to expect.

The integration of action prospections is also a must to tackle even more complex
problems and applications, in order to deal with pre- and post-conditions. Namely, the
pre-conditions of an action must be evaluated before the update for the action actually
takes place, but the post-conditions must also be taken in consideration during the
simulation and before the real action is executed. Also, we would like to extend the
mechanism to an arbitrarily long sequence of actions, which would require an extensible
amount of lookahead into the future.

In fact, there is a wide variety of problems for which we would like to be able to
arbitrarily extend the future lookahead that is possible within the ACORDA system.
One of the most important challenges in future developments is devising a way to do
this that will also allow the specification of the degree of self-control over the amount
of lookahead that the agent performs.

The need for a finer time stamping of events is also growing, since it would permit
generalization of the validity of experiments. Instead of using tabling to hold the results
of experiments, we would like to specify a time interval during which those results are
assumed valid. This would be the first step in which the system could be extended
to handle environment changes during simulation, and could even be used to model
reactions of the system to such changes, or to introduce timeouts on the abductive
process, if it proves to be taking too long.

Preferences over observables will also be desirable, since not every observation costs
the same for the agent. Performing an X-Ray costs more than checking for tooth mobility
or gingival pockets, and these differences should be modelled directly in the system. It
would also be interesting to study more general ways of selecting the most interesting
internal observations for ACORDA to pay attention to at each evolution step.

We have just started exploration of a territory that is vast in possibilities and, as
such, we come out bearing more questions than answers. Even if we have a working sys-
tem for such autonomous preferential reasoning and self-updating, the more interesting
possibilities are still farther ahead, as we attempt to broach more and more of the goal
of completely automated artificial reasoning, adumbrating its combinations.
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