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Abstract
We describe how Event-Condition-Action (ECA) rules can
be combined with Process Algebras like CCS as specifica-
tion of the action component to obtain a powerful, declara-
tive formalism that also covers intuitively procedural tasks
in an appropriate way. Since both formalisms have a con-
cise formal semantics, verification and other kinds of rea-
soning about such specifications are possible. Using a rule
markup with cleanly distinguished rule components allows
for such a compositional approach. The approach is cur-
rently under implementation in a General ECA Framework
for the Web and the Semantic Web.

1 Introduction
Event-Condition-Action (ECA) rules are a popular
paradigm in Event Processing: “ON event IF condition DO
action” has a clear declarative semantics and induces an
immediate operational realization, as e.g. provided on the
low level by SQL triggers. Usually, the event part is either
an atomic event or given by some formalism for specifying
composite events (often derived from event algebras. The
condition is in most cases expressed by a database query
language. The action part is often given as a program
(e.g., in PL/SQL) in a procedural, non-declarative way.

For the latter, the use of Process Algebras provides a
mechanism to provide also a declarative specification. Fur-
thermore, since process algebras allow not only for ex-
ecuting a piece of program code, but also the definition
of more complex processes, including the definition of in-
dependent, communicating processes, the resulting model
is also more expressive than current formalisms and lan-
guages for active rules.

Moreover, the combination on the semantical level of a
rule ontology with a process ontology makes such rules full
citizens of the Semantic Web. In addition to just executing
such rules, they are embedded in a semantic-level model of
behavior that allows for exchanging rules and components.
Reasoning about them is also supported since verification
of process algebra specifications is well-understood.

In [12] and [11] we described the global architecture
and the general markup principles of a General Framework
for Behavior in the Semantic Web that is based on the idea

of ECA rules over heterogeneous event, condition, and ac-
tion formalisms. The current paper provides the details of
the action component according to this framework.

Structure of the paper. The paper is structured as fol-
lows: Section 2 gives an overview of the ECA frame-
work for the (Semantic) Web where our proposal is em-
bedded, and motivates the proposed extensions. We give
an overview of CCS in Section 3 which provides the al-
gebraic structure of the action component. While in the
basic formalism of CCS, all atomic items are considered
to be actions, we show in Section 4 that in the Semantic
Web setting, some of these “actions” actually correspond to
events or conditions/queries wrt. the underlying domains.
We give the markup of the action component that then con-
sists straightforwardly of the CCS term markup and the
atomic items in Section 5. Section 6 then describes how
the action component is processed by the services in the
Framework. Section 7 concludes the paper.

2 Overview: The ECA Framework

The ECA Framework aims at adding behavior to the Web
and to the Semantic Web in form of ECA rules acting in an
environment of autonomous nodes of different types:

• Application nodes: they carry out the real “businesses”,
e.g., airlines, train companies, or universities. In the
Semantic Web, applications in the same domain should
use an agreed domain ontology, e.g. a traveling ontolo-
gies could be shared by airlines and train companies.

• Language nodes: they support generic specification
languages such as nodes that execute ECA rules, or that
implement certain composite event specification for-
malisms, query languages, or the CCS-style language
presented in this paper.

• Infrastructure nodes: they provide infrastructure as me-
diators between language nodes and domain nodes. In-
fratruture nodes include the domain brokers that imple-
ment a portal functionality for a given domain based on
its ontology, and Language and Service Registries that
serve for finding language or domain nodes.



2.1 Domain Ontologies
Application nodes provide functionality in certain do-
mains. Every domain ontology – e.g. for banking or trav-
eling – defines static notions (classes, relationships) and
dynamic notions such as events and actions as shown in
Figure 1.
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Figure 1: Components of Ontologies

Usually, a domain is supported by many domain nodes.
Additionally, domain brokers act as mediators for a do-
main.

2.2 ECA Rules
The core of the approach is a model and architecture for
ECA rules that use heterogeneous actual event, query, and
action languages. The condition component is divided into
queries (that can be expressed in different languages) and
a test component:

ON event AND additional knowledge, IF condition
THEN DO something.

The relevant atomic events and atomic actions are usually
events and actions from the domain ontologies. Events are
raised by application nodes (e.g. Lufthansa), and commu-
nicated by infrastructure nodes like domain brokers. Rules
can react on atomic events, or on composite ones (defined
e.g. by an event algebra). Detection of composite events
is done by dedicated services. The ECA engine regis-
ters relevant event patterns there, and upon detection of
such an event, the service reports it to the ECA engine.
The ECA engine then evaluates additional queries against
the Semantic Web for obtaining further information and
then evaluates the condition. Finally, it executes the action
component. Analogous to the event component, the action
component of a rule can be an atomic action (e.g., an action
of the domain ontology, sending a message, or also raising
an event), or a composite action. In our approach, we pro-
pose to specify composite actions by a process algebra.

For dealing with heterogeneous languages, the approach
is parametric in the used component languages. Users reg-
ister rules where they use component languages of their
choice at an ECA service in the Web that implements the
high-level control.

The markup of the rules in the proposed ECA-ML lan-
guage [11] indicates the “language borders” between the
ECA level and the nested components by their namespaces;
as indicated below in an example using a SNOOP [5]-style
language as event algebra (implemented as a prototype).
Figure 2 (from [11]) illustrates the structure of the rules
and the corresponding types of languages.

<eca:rule xmlns:eca=“http://.../eca/2006/eca-ml”>

<eca:event xmlns:snoopy=
“http://www.semwebtech.org/eca/2006/snoopy”>

<snoopy:sequence>

nested expression in the event language markup
</snoopy:sequence>

</eca:event>

<eca:query xmlns:ql1=“uri of query language ql1”>

nested expression in ql1 markup
</eca:query>

:
<eca:query xmlns:qln=“uri of query language qln”>

nested expression in qln markup
</eca:query>

<eca:test xmlns:cl=“uri of condition language”>

test expression over obtained information
</eca:test>

<eca:action xmlns:ccs=“http://.../eca/2006/ccs”>

nested expression in CCS as described below
</eca:action>

</eca:rule>

While the semantics of the ECA rules provides the infra-
structure and global semantics, the components are han-
dled by specific services that implement the respective lan-
guages. The services are identified via the language name-
spaces.

2.3 Services for Component Languages
The components are specified as nested subexpressions of
the form

<eca:component xmlns:lang=“embedded-lang-ns-uri”>

embedded fragment in embedded language’s
markup and namespace

</eca:component>

in arbitrary formalisms or languages. For processing the
components, a language processor node for the indicated
specification language is determined (by querying a Lan-
guage and Service Registry infrastructure node) and the
task is submitted to this node.

2.4 Communication Markup
For dealing with heterogeneous languages, the approach
does only minimally constrain the component languages:
Information flow between the ECA engine and the Event,
Query, Test, and Action components is provided by log-
ical variables in the style of deductive rules, production
rules etc. Thus, e.g., languages following a functional style
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Figure 2: ECA Rule Components and Corresponding Languages (from [11])

(such as XPath/XQuery), a logic style (such as Datalog or
SPARQL [17]), or both (F-Logic [10]) can be used as query
languages. The semantics of the event part (that is actually
a “query” against an event stream that is evaluated incre-
mentally) is –from that point of view– very similar, and the
action part takes variable bindings as input.

Given this semantics, the ECA rule combines the eval-
uation of the components as follows in the style of produc-
tion rules (cf. Figure 3):

action(X1, . . . , Xk)← event(X1, . . . , Xn),
query(X1, . . . , Xn, . . . Xk), test(X1, . . . , Xk) .

The evaluation of the event component (i.e., the successful
detection of a (composite) event) binds variables to values
that are then extended in the query component, possibly
constrained in the test component, and propagated to the
action component.

The ECA engine processes the rule components by sub-
mitting the component together with the actual variable
bindings in the below format to an appropriate service:

<log:variable-bindings xmlns:log=“http://.../2006/logic”>

<log:tuple>

<log:variable name=“X”>value</log:variable>

<log:variable name=“Y”>value</log:variable>

<log:variable name=“Z”>value</log:variable>

</log:tuple>

<log:tuple>

<log:variable name=“X”>value</log:variable>

<log:variable name=“Y”>value</log:variable>

<log:variable name=“Z”>value</log:variable>

</log:tuple>

:
</log:variable-bindings>

Apart from [12] and [11] that describe the global architec-
ture and the general markup principles, a detailed descrip-
tion of the ECA level can be found in [2]. In this paper, we
focus on the action component.

3 The Action Component
3.1 Choice of Formalism
The basic and pure form of ECA rules just supports a sim-
ple kind of action specifications, given as a set or sequence
of actions that is to be executed.

For more sophisticated tasks and a more intuitive spec-
ification, we propose to use a process algebra (e.g., CCS
[13]) in the action component. With this, the action com-
ponent can be used to specify e.g., the following concepts:

1. a sequence of actions to be executed (as in simple ECA
rules),

2. a process that includes “receiving” actions (which are
actually events in the standard terminology of ECA
rules),

3. guarded (i.e., conditional) execution alternatives,
4. the start of a fixpoint (i.e., iteration or event infinitely

running process), and
5. a family of communicating, concurrent processes.

The above patterns can be employed as follows for speci-
fying behavior: (2) above can e.g. be used to define a nego-
tiation strategy that communicates with a counterpart. (3)
can include different reactions to the answers of the coun-
terpart, (4) extends the behavior even to try again. Note
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Figure 3: Use of Variables in an ECA Rule

that in these cases, only one side of the communication is
specified, whereas the behavior of the counterpart is de-
fined by other rules (with an other owner). (5) can be used
to specify even more complex behavior as a reaction as
known from the agent community.

These tasks can also be expressed by (sets of) simple
ECA rules, but this leads to a much less intuitive, and hard-
to-understand specification. The composition of the ECA
and process algebra concepts (and ontologies) provides a
comprehensive framework for describing behavior in the
Semantic Web.

3.2 The CCS Process Algebra
Process Algebras describe the semantics of processes in an
algebraic way, i.e., by a set of elementary processes (carrier
set) and a set of constructors. The semantics can either be
given as denotational semantics, i.e., by specifying the de-
notation of every element of the algebra (e.g., CSP – Com-
municating Sequential Processes, [9]), or as an operational
semantics by specifying the behavior of every element of
the algebra (e.g., CCS – Calculus of Communicating Sys-
tems, [13, 14]). Processes defined by Process Algebras can
e.g. be used for the specification of communication, i.e.,
for basic protocols, or for defining the behavior of interact-
ing (Semantic) Web Services (note that process algebras
provide concepts for defining infinite processes), or in the
action part of ECA rules.

Basic Process Algebra (BPA). A simple algebra that
uses only the combinators x+y and x · y for processes (al-
ternative and sequential communication) is known as BPA,
defining essentially the processes that can be characterized
in Dynamic Logic [8] and Hennessy-Milner-Logic [15].

In many cases of the ECA Framework, BPA is sufficient
for specifying the action component.

Calculus of Communicating Systems (CCS). CCS ex-
tends BPA by more expressive operators. The carrier set
of a CCS [13] algebra is given by a set A of action names
from which processes are built by using several connec-
tives. Every element of the algebra is called a process. By
carrying out an action, a process changes into another pro-
cess. Considering the modeling as an Labelled Transition
System, a process can be regarded as a state or a configu-
ration, which allows to use Model Checking for verifying
properties of CCS specifications. Action names become
labels and the transition relation is given by the rules spec-
ifying the execution of actions.

A CCS algebra with a carrier set A is defined as follows,
using a set of process variables:

1. With X a process variable, X is a process expression.
2. Every a ∈ A is a process expression.
3. With a ∈ A and P a process expression, a : P is a

process expression (prefixing; sequential composition).
4. With P and Q process expressions, P ×Q is a process

expression (parallel composition).
5. With I a set of indices, Pi : i ∈ I process expressions,∑

i∈I Pi (binary notation: P1+P2) is a process expres-
sion (alternative composition).

6. With I a set of indices, X1, . . . , Xk process variables,
and P1, . . . , Pk process expressions, fixj

~X ~P is a pro-
cess expression (definition of a communicating system
of processes). The fix operator binds the process vari-
ables Xi, and fixj is the jth one of the k processes
which are defined by this expression.

Process expressions not containing any free process vari-
ables are processes.

The (operational) semantics of a CCS algebra is given by



transition rules [13]:

a : P a→ P ,
Pi

a→ P
∑

i∈I Pi
a→ P

(for i ∈ I)

P a→ P ′ Q b→ Q′

P ×Q ab→ P ′ ×Q′

,
Pi{fix ~X ~P/ ~X} a→ P ′

fixi
~X ~P a→ P ′

Additionally, asynchronous CCS allows for delays:

∂P := fix X(1 : X + P ) , X not free in P , and
P1|P2 := P × ∂Q + ∂P ×Q
a.P := a : ∂P .

with the corresponding transition rules

∂P 1→ ∂P ,
P a→ P ′

∂P a→ P ′

P a→ P ′

P |Q a→ P ′|Q
,

Q a→ Q′

P |Q a→ P |Q′

P a→ P ′ Q b→ Q′

P |Q ab→ P ′|Q′

The possibility of Delay is especially important when
“waiting” for something to occur, e.g., for synchronization.

4 The Atomic Actions
Usually, CCS is presented with symbolic atomic action
names a1, a2 etc. For the application in the ECA Frame-
work, the atomic actions are taken from those of the appli-
cation domains, e.g. “travel:delay-flight(’LH123’,’30 min’)”
when flight LH123 has to be delayed by 30 min. Such
atomic actions are then executed by the appropriate node
of the Web (depending on the context, here: the Lufthansa
Web node). Furthermore, the carrier set of the process al-
gebra expression is extended with several kinds of pseudo-
actions as follows:

“Inverse” Communication Actions. For modeling
communication, actions a1, a2 in CCS etc. come with
an “inverse” ā1, ā2, that correspond as input/output or
sending/receiving, that can be executed together as an
internal transition (i.e., which is not visible to the outside,
often denoted by τ ):

P a→ P ′ Q ā→ Q′

P ×Q τ→ P ′ ×Q′

In terms of the ontology of behavior defined by the ECA
Framework, these “inverse” actions correspond more to
“events” than actions. Note that in CCS, such specifica-
tions often use the delay (∂)-operator for waiting for sny-
chronization. We will integrate them in the following as
events.

Actions with Parameters. Actions are usually parame-
terized, e.g. “book flight no N on date”. Communication
between the rule components is provided by variable bind-
ings. Accordingly, the specification of the action compo-
nent uses variables as parameters to the actions.

Example 1
• A money transfer (from the point of the view of the

bank) is already a simple process:
transfer(Am,Acc1, Acc2) :=
debit(Acc1, Am) : deposit(Acc2, Am) .

• a standing order (i.e., a banking order that has to be
executed regularly) is defined as a fixpoint process,
involving an event The following process transfers a
given amount from one account to another every first
of a month (where “first of month is a temporal event):
fix X.(first of month : debit(Acc1, Am) :

deposit(Acc2, Am) : ∂ X)

• A more detailed view could e.g. check if the balance
will stay positive, and if not, notify the account holder:
fix X.(first of month : send query(Acc1 ≥ Am?) :

((∂ : rec msg(yes) :
debit(Acc1, Am) : deposit(Acc2, Am)) +

(∂ : rec msg(no) : send msg($owner,...))) : ∂ X)

(using messaging for queries and message receipt
events for answers).

In this example, the fact that it is the first of a month is
communicated explicitly by sending (issued e.g. by a timer
process) and receiving actions.

Another way would be to express the same as a complete
ECA rule “if the event first of month occurs, then do ...”
instead of a fixpoint process.

Example 2 Consider the following scenario: if a student
fails twice in an exam, he is not allowed to continue his
studies. If the second failure is in a written exam, it is
required that another oral assessment takes place for de-
ciding upon final passing or failure.

This can be formalized as an ECA rule that reacts upon
an event failed($Subject,$StudNo) and then in a further
query checks whether this is the second failure of $StudNo
in $Subject, and whether the exam was a written one. The
action component of the rule should then specify the pro-
cess of (organizing) the additional assessment: as an ac-
tion, the responsible lecturer will be asked for a date and
time (send a mail), that will be entered by him into the sys-
tem (in CCS: a “receiving” communication action; in our
approach: an event),
The action component is thus as follows:

ask appointment($Lecturer, $Subject, $StudNo) :
∂ propose appointment($Lecturer, $Subject, $DateTime) :
find room($DateTime, $Room) :
inform($StudNo, $Subject, $DateTime, $Room) :
inform($Lecturer, $Subject, $DateTime, $Room)



In this example,
propose appointment($Lecturer, $Subject, $DateTime) is
an event – for this, it is allowed to be delayed (∂). In con-
trast, all other items are actions that are actually executed
by the process as soon as possible.

Note that entering the grade and further consequences
are not covered by this action. Instead, it is appropriate to
have a separate rule that reacts (again) on entering grades
and, if the grade was established by such an additional
assessment, take appropriate actions.

Conditions. In CCS and related concepts, such as CSP
[9] and ACP [3], there is no explicit notion of states, the
properties of a state are given by the (sequences of) actions
which can be executed. When representing a stateful pro-
cess, queries and values are represented e.g., as “read that
A > 0”, or by explicit messages (as the account balance
in Example 1). We omit the “read”, and allow queries and
conditions as regular components of a process:

• “executing” a query means to evaluate the query, extend
the variable bindings, and continue.

• “executing” a condition means to evaluate it, and
to continue for all variable bindings that evaluate to
“true”. Note that for a conditional alternative ((c :
a1)+(¬c : a2)), all variable bindings that satisfy c will
be continued in the first branch, and the others are con-
tinued with the second branch.

Example 3 (Processes with Conditions)
• Consider again the scenario from Example 2, but now

only one room is suitable for such assessments. Here,
the process in the action part must iterate asking the
lecturer for an alternative date/time until the room is
available. This is done by combining CCS’s fixpoint
operator with a conditional alternative:
fixX.(ask appointment($Lecturer,$Subj,$StudNo) :

∂ propose appointment($Lecturer,$Subj,$DateTime) :
(available(room,$DateTime) +
(not available(room,$DateTime) : X))) :

inform($StudNo,$Subj,$DateTime) :
inform($Lecturer,$Subj,$DateTime)

• The account check in Example 1 can also be expressed
by a conditional alternative:
fixX.(first of month :

((Acc1 ≥ Am? : debit(Acc1, Am) : deposit(Acc2, Am)) +
(Acc1 < Am? : send msg($owner,...))) : ∂ X)

Figure 4 shows the relationship between the generic pro-
cess algebra language and the contributions of the domain
languages and the event and test component languages.

5 The Language Markup
Thus, in our approach, processes are built over

• actions,
• events, and
• conditions

by using the CCS connectives. The language markup has
the usual form of a tree structure over the CCS composers
in the ccs namespace. The leaves are contributed by (i)
atomic actions of the underlying domains, (ii) events and
conditions/tests. The latter are not necessarily atomic, but
are seen as black-boxes from the CCS point of view, con-
taining markup from appropriate languages as used in the
ECA event and test components (and handled by the re-
spective services).

5.1 Atomic and Leaf Items
As discussed above, the atomic items can be atomic ac-
tions, or embedded events or test subexpressions. In ac-
cordance with ECA-ML [11], the latter are embedded into
ccs:event and ccs:test elements. The language identifica-
tion is done again via the namespaces.

Atomic Actions. Atomic actions belong to some do-
main namespace, thus the element is in general the ac-
tion in XML markup “itself” (including variables as
{$varname}):

<domain-ns:action-name attributes>

contents
</domain-ns:action-name>

As an example consider an atomic action that books a given
flight (flight code bound to variable $flight) at a given date
(bound to variable $date):

<travel:book-flight code=“{$flight}” date=“{$date}”/>

Embedded Events. Embedded events are also leaves,
contained in ccs:event elements (with the same semantics
as eca:event elements on the ECA level):

<ccs:event xmlns:el=“ev-uri”>

event expression in appropriate markup
</ccs:event>

Arbitrary event languages and formalisms that are sup-
ported by some service are allowed. Note that composite
events integrate smoothly since they are considered to oc-
cur with the final detection of the composite event.

Embedded Conditions. Embedded tests are handled ex-
actly in the same way:

<ccs:test xmlns:cl=“cl-uri”>

test expression in appropriate markup
</ccs:test>
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Embedded Opaque Items. Opaque actions (i.e., pro-
gram code, mainly for queries, tests and also for actions)
can be embedded as leaf elements:

<ccs:opaque {url=“node-url”|language=“name”}>

program code fragment
</ccs:opaque>

For such fragments, either an URL where the action has
been sent to (as HTTP GET) is given, or a the language is
indicated (then the fragment must contain the addressing
of the target node itself).

5.2 CCS Algebra
Following a straightforward principle for term markup, the
CCS operators are represented by XML elements (with pa-
rameters as attributes) according to the following nearly-
DTD specification:

<!ENTITY % operand "(delay | sequence |
alternative | concurrent | fixpoint |
atomic-action | event | query | test |
opaque)">

<!ELEMENT delay EMPTY>
<!ELEMENT sequence

(%operand;, %operand;+)>
<!ATTLIST sequence mode "async">

<!ELEMENT alternative
(%operand;, %operand;+)>

<!ELEMENT concurrent
(%operand;, %operand;+)>

<!ELEMENT fixpoint (%operand;+)>
<!ATTLIST fixpoint

variables #REQUIRED NMTOKENS
index #REQUIRED NMTOKEN
localvars #IMPLIED NMTOKENS>

<!ELEMENT atomic-action ANY>
<!ELEMENT event ANY>
<!ELEMENT query ANY>

<!ELEMENT test ANY>
<!ELEMENT action ANY>
<!ATTLIST event,test,action

xmlns:%name; #REQUIRED %URI;>
<!ELEMENT opaque ANY>
<!ATTLIST opaque

language #IMPLIED CDATA
url #IMPLED CDATA>

<!ATTLIST all-elements group-by "">

The semantics of the elements is described below.

• The content of all the “simple” operators consists of at
least two subelements of the ccs namespace.

• <ccs:delay/> indicates a delay (for waiting, in case that
synchronous context is used),

• <ccs:seq mode=“mode”>contents</ccs:seq> indicates
a sequence. mode can be sync or async corresponding
to synchronous CCS (with “:” as standard combinator)
or asynchronous CCS (with “.” as standard combina-
tor); default is mode=“async”.

• <ccs:alt>contents</ccs:alt> stands for “
∑

” and “+”
(alternatives),

• <ccs:concurrent mode=“mode”>contents</ccs:concurrent>

represents “×” and “|” (parallel),
• The <ccs:event xmlns:lang=“uri”>, <ccs:query

xmlns:lang=“uri”>, <ccs:test xmlns:lang=“uri”>,
and <ccs:action xmlns:lang=“uri”> elements allow
for embedded events, queries, tests, or actions (the
latter even allow for embedding an action/process
specification in another language).

Handling of “new” Variables in Fixpoint Processes.
For integration with the ECA Framework that uses logi-
cal variables (that can be bound only once), variables that
are bound during the evaluation of the fixpoint part must
be considered to be local to the current iteration, and only
the final result is then bound to the actual logical variable:



• <ccs:fixpoint variables=“var1 . . . varn” index=“j”
localvars=“list of variables”>

contents</ccs:fixpoint>

provides the markup for fixpoint constructs. The var i are
the process variables, j is the index of the one of the pro-
cesses that is chosen, and the variables distinguished to be
local can be bound in each iteration; after reaching the fix-
point they keep the value of the last iteration.

Example 4 (Variables in Fixpoint Processes) Consider
again Example 3(2). There, each iteration of the fixpoint
process searching for a date where the room is avail-
able binds $DateTime. The actual semantics is easy to
understand and implement: just keep the last value.

Grouping. For each subexpression, it can be specified if
it is executed for the whole set, or separately for each tuple,
or some grouping (in the same way as grouping in SQL) is
applied. Clearly, subactions can only have finer granularity
than the outer expressions). For specifying grouping, each
action element has an optional attribute

group-by=“variable list”

that indicates grouping. E.g., given variables X, Y, Z,
group-by=“X Y” means to execute the subexpression sep-
arately for all sets that have X and Y in common. Default is
default is group-by=“” which means to have one group with
all tuples. For convenience, group-by=“-separately” mans
to process every tuple separately, and group-by=“-bulk” also
means to have one group with all tuples.

5.3 Example
Consider a rule that does the following: if a flight is first
delayed and then cancelled (note: use of a join variable),
make a reservation for each passenger at the airport hotel,
and send each business class passenger an SMS.

<eca:rule xmlns:eca=“http://.../eca/2006/eca-ml”>

<eca:event xmlns:snoopy=“http://.../eca/2006/snoopy”>

<snoopy:sequence>

<travel:delayed-flight flight=“{$flight}”/>
<travel:canceled-flight flight=“{$flight}”/>

</snoopy:sequence>

</eca:event>

<eca:query>

<eca:opaque language=“xpath” variable=“$passenger”>

//flights/flight[code=$flight]/passenger
</eca:opaque>

</eca:query>

<eca:query>

<eca:opaque language=“xpath” variable=“$name”>

string($passenger/name)
</eca:opaque>

</eca:query>

<eca:action xmlns:ccs=“http://.../eca/2006/ccs”>

<ccs:par>

<ccs:atomic-action>

<travel:reserve-room hotel=“hotel uri” name=“$name”/>
</ccs:atomic-action>

<ccs:sequence>

<ccs:test >

<eca:opaque language=“xpath”>

$passenger/@class=“business”
</eca:opaque>

<ccs:test>
<ccs:query>

<eca:opaque language=“xpath” variable=“$phone”>

string($passenger/phone)
</eca:opaque>

</ccs:query>

<ccs:atomic-action>

<comm:send-sms to= “$phone”>

“we are very sorry ... and booked a room in ... for you”
</comm:send-sms>

</ccs:atomic-action>

</ccs:sequence>

</ccs:par>

</eca:action>

</eca:rule>

• after the event part, $flight is bound to the flight number,
• after the queries, for each passenger there is a tuple of

bindings $flight, $passenger, $name where $passen-
ger holds the XML record of that passenger and $name
holds the name.

• The action component does two things in parallel: re-
serve rooms, and for each tuple (i.e., for each passen-
ger) check if it is a business class passenger (test), if
yes, get his phone number (query) and send an SMS.

6 Processing

The actual processing of the action component with its em-
bedded expression also makes use of the ECA-ML infra-
structure as shown in Figure 5:

• Actions are executed “immediately” by submitting
them to the domain nodes (if specified by an URL) or to
a domain broker (responsible for the domain, forward-
ing them to appropriate domain nodes),

• Events, or, more exactly, event patterns to be detected
are submitted to an appropriate event detection service
in the same way as <eca:event> components of ECA
rules.

• queries and tests are evaluated by appropriate language
processors. A standard language for tests consists of
boolean connectives and XPath/XQuery-built-in predi-
cates can be evaluated locally.

The tasks for processing embedded <ccs:event>,
<ccs:query>, <ccs:test>, and <ccs:action> elements



with embedded fragments of other languages are closely
related to each other (and actually the same as for
<eca:event>, <eca:query>, <eca:test>, and <eca:action>

elements on the ECA level). Such elements are of the form
<ccsns:event xmlns:lang=“embedded-lang-ns”>

embedded fragment in embedded language’s markup
</ccsns:event>

For processing the components, a language processor node
for the indicated specification language is determined (by
querying a Language and Service Registry infrastructure
node) and the task is submitted to this node. As described
in Section 2.4, the communication in the framework is
standardized to use the format of variable bindings. The
actual process of determining an appropriate service and
organizing the communication is performed by a Generic
Request Handler that has been implemented in [2]. Thus,
the implementation of the CCS engine is only concerned
with the actual CCS operators.

7 Conclusion
In this work, we presented the combination of a general
ECA architecture with CCS as a specification formalism
for processes. We have shown that both paradigms can be
intertwined to profit from each other by using well-defined
mechanisms for language identification and communica-
tion. The resulting framework provides a concise logical
semantics (with which also the specification of the event
component by event algebras fits).

7.1 ECA Rules vs. CCS
In general, it is possible to decompose a CCS description
completely into ECA rules with atomic actions (or with
restricting the action component to BPA process specifica-
tions), or to express ECA rules as a special form of CCS
processes over the above-mentioned atomic items. The ad-
vantage of supporting both formalisms in the framework
lies in the appropriateness of modeling: there is behavior
that is preferably and inherently formalized as ECA rules,
and there is behavior that is preferably formalized in CCS.
Providing both formalisms thus eases the specification, and
with this also the understandability and maintenance of be-
havior:

“If something happens (event) in a certain situation
(condition), then proceed according to a given pol-
icy (action, as CCS process).”

Having ECA rules and processes allows to model both re-
active and continuous behavior in an appropriate way.

7.2 Ontology and Reasoning
The framework with its clean distinction between the no-
tions of events, the static parts of a the domains, and actions
also provides an ontology of behavior. Using the ontol-
ogy, behavior cannot only be described and implemented

on the level of syntax and operational semantics (as ECA,
event algebras and process algebras do naturally), but also
on a formal semantic level that allows to reason about it
across the used formalisms. The formalisms implemented
now are to be understood as samples, and multiple other
formalisms with different abstraction level, expressiveness
and complexity can be integrated with the ontology. At
the end, our aim is to develop a rule editor that allows to
specify rules and processes using the ontology notions, and
automatically maps them onto appropriate formalisms for
events and actions.

7.3 Related Work
So far, reasoning and verification, e.g., by model checking,
have only be applied to individual formalisms. Mainly,
the combination of static and dynamic aspects falls short
in such approaches. Logic-based approaches that use for-
malizations far from “events” and “processes” have been
discussed e.g. for the use of modal temporal logic for ex-
ecutable process specifications in [7], [6] (using full first-
order past temporal logic, with ∃ and ∀ quantifiers), [16]
(replacing the quantifiers by a functional assignment [X ←
t]ϕ(X) that binds a variable X) or, with a Transaction
Logic [4] that proposes a specialized logic with temporal
connectives. Transaction Logic is a comprehensive rule-
based formalism that does not have a strict ECA distinc-
tion, but follows the Logic Programming style. In Trans-
action Logic, in contrast to modal logic where states are
given as first-order structures, states are given as abstract
theories over a signature L – i.e., it allows for embedding
other formalisms here, that can e.g. be first-order theories,
or, “now”, OWL-based worlds. An overview of related for-
malisms can be found in [1].

7.4 Current State and Further Work
The approach is currently under implementation. The ECA
module with the GRH are completed, together with a ref-
erence implementation of a SNOOP [5] -based event de-
tection module. The current step completes the functional-
ity of the component languages, including the above CCS
service, and provides sample application nodes and basic
infrastructure nodes like domain brokers.

The next steps will be concerned with completing the
implementation and carrying out a larger case study in an
application, investigating optimizations based on a cross-
component algebraic theory, formalizing the behavior on-
tology in OWL and developing reasoning procedures.
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