
dlvhex: A Tool for Semantic-Web Reasoning under the
Answer-Set Semantics!

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9–11, A-1040 Vienna, Austria

{eiter,ianni,roman,tompits}@kr.tuwien.ac.at

Abstract. We briefly report about the development status of dlvhex, a reason-
ing engine for HEX-programs, which are nonmonotonic logic programs featur-
ing both higher-order atoms as well as external ones. Higher-order features are
widely acknowledged as useful for various tasks and are essential in the context
of meta-reasoning. Furthermore, the possibility to exchange knowledge with ex-
ternal sources in a fully declarative framework such as answer-set programming
(ASP) is particularly important in view of applications in the Semantic-Web area.
Through external atoms, HEX-programs can deal with external knowledge and
reasoners of various nature, such as RDF datasets or description-logic bases.

1 Introduction

Nonmonotonic semantics is often requested by Semantic-Web designers in cases where
the reasoning capabilities of the Ontology Layer of the Semantic Web turn out to be too
limiting, since they are based on monotonic logics. The widely acknowledged answer-
set semantics of nonmonotonic logic programs [5], which is arguably the most im-
portant instance of the answer-set programming (ASP) paradigm, is a natural host for
giving nonmonotonic semantics to the Rules, Logic, and Proof Layers of the Semantic
Web.

However, for important issues such as meta-reasoning in the context of the Seman-
tic Web, no adequate answer-set engines have been made available so far. Motivated
by this fact and the observation that, furthermore, interoperability with other software
is an important issue (not only in this context), in previous work [3], the answer-set
semantics has been extended to HEX programs, which are higher-order logic programs
(which accommodate meta-reasoning through higher-order atoms) with external atoms
for software interoperability. Intuitively, a higher-order atom allows to quantify values
over predicate names, and to freely exchange predicate symbols with constant symbols,
like in the rule C (X) ← subClassOf (D,C), D(X). An external atom facilitates the
assignment of a truth value of an atom through an external source of computation. For
instance, the rule t(Sub, Pred,Obj) ← &RDF [uri](Sub, Pred,Obj) computes the
predicate t taking values from the predicate &RDF . The latter predicate extracts RDF
! This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-

N04, and by the European Commission through the REWERSE IST Network of Excellence
(IST-2003-506779).

33

© Copyright 2006 for the individual papers by the individual authors. Copying permitted

for private and scientific purposes. Re-publication of material in this volume requires

permission of the copyright owners.

statements from the set of URIs specified by the extension of the predicate uri ; this task
is delegated to an external computational source (e.g., an external deduction system, an
execution library, etc.). External atoms allow for a bidirectional flow of information
to and from external sources of computation such as description-logic reasoners. By
means of HEX-programs, powerful meta-reasoning becomes available in a decidable
setting, e.g., not only for Semantic-Web applications, but also for meta-interpretation
techniques in ASP itself, or for defining policy languages.

Other logic-based formalisms, like TRIPLE [10] or F-Logic [8], feature also higher-
order predicates for meta-reasoning in Semantic-Web applications. Our formalism is
fully declarative and offers the possibility of nondeterministic predicate definitions with
higher complexity in a decidable setting. This proved already useful for a range of ap-
plications with inherent nondeterminism, such as ontology merging (cf. [11]) or match-
making, and thus provides a rich basis for integrating these areas with meta-reasoning.

2 HEX-Programs

2.1 Syntax

HEX-programs are built on mutually disjoint sets C, X , and G of constant names, vari-
able names, and external predicate names, respectively. Unless stated otherwise, ele-
ments from X (resp., C) are written with first letter in upper case (resp., lower case),
and elements from G are prefixed with “ & ”. Constant names serve both as individual
and predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms and n ≥ 0 is its arity. Intuitively, Y0 is
the predicate name; we thus also use the familiar notation Y0(Y1, . . . , Yn). The atom is
ordinary, if Y0 is a constant. For example, (x, rdf :type, c) and node(X) are ordinary
atoms, while D(a, b) is a higher-order atom. An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output
list, respectively), and &g is an external predicate name.

It is possible to specify molecules of atoms in F-Logic-like syntax. For instance,
gi [father → X, Z → iu] is a shortcut for the conjunction father(gi, X), Z(gi, iu).

HEX-programs are sets of rules of the form

α1 ∨ · · · ∨ αk ← β1, . . . ,βn,not βn+1, . . . ,not βm, (2)

where m, k ≥ 0, α1, . . . ,αk are higher-order atoms, and β1, . . . ,βm are either higher-
order atoms or external atoms. The operator “not” is negation as failure (or default
negation).

2.2 Semantics

The semantics of HEX-programs is given by generalizing the answer-set semantics [3].
The Herbrand base of a program P , denoted HBP , is the set of all possible ground ver-
sions of atoms and external atoms occurring in P obtained by replacing variables with

34

constants from C. An interpretation relative to P is any subset I ⊆ HBP containing
only atoms.

We say that an interpretation I ⊆ HBP is a model of an atom a ∈ HBP iff a∈ I .
Furthermore, I is a model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm)
iff f&g(I, y1 . . ., yn, x1, . . . , xm) = 1, where f&g is an (n+m+1)-ary Boolean function
associated with &g, called oracle function, assigning each element of HBP × Cn+m

either 0 or 1 (i.e., false or true, respectively).
This definition of satisfaction, together with a modified notion of a reduct as de-

fined by Faber et al. [4], enables us to define a conservative extension of the answer-set
semantics for HEX-programs. For more details, cf. [3].

Note that the answer-set semantics may yield multiple models (i.e., answer sets) in
general. Therefore, for query answering, brave and cautious reasoning (truth in some
resp. all models) is considered in practice, depending on the application.

2.3 Usability of HEX-Programs
An interesting application scenario, where several features of HEX-programs come into
play, is ontology alignment. Merging knowledge from different sources in the context
of the Semantic Web is a crucial task [2] that can be supported by HEX-programs in
various ways:

Importing external theories. This can be achieved as in the following manner:

triple(X, Y, Z)← &RDF [uri](X, Y, Z),
triple(X, Y, Z)← &RDF [uri2](X, Y, Z),
proposition(P)← triple(P, rdf :type, rdf :Statement).

Searching in the space of assertions. In order to choose nondeterministically which
propositions have to be included in the merged theory and which not, statements
like the following can be used:

pick(P) ∨ drop(P)← proposition(P).

Translating and manipulating reified assertions. E.g., it is possible to choose how
to put RDF triples (possibly including OWL assertions) in an easier manipulable
and readable format, and to make selected propositions true such as in the following
way:

(X, Y, Z)← pick(P), triple(P, rdf :subject , X), triple(P, rdf :predicate, Y),
triple(P, rdf :object , Z),

C(X)← (X, rdf :type, C).

Defining ontology semantics. The semantics of the ontology language at hand can be
defined in terms of entailment rules and constraints expressed in the language itself
or in terms of external knowledge, like in

D(X)← subClassof (D,C), C(X) and ← &inconsistent [pick],

where the external predicate &inconsistent takes a set of assertions as input and
establishes through an external reasoner whether the underlying theory is inconsis-
tent.

35

Performing default and closed-world reasoning. Assuming that a generic external
atom &DL[C](X) is available for querying the concept C in a given description
logics base, the closed-world assumption (CWA) can be stated as

C ′(X)← not &DL[C](X), concept(C), cwa(C,C ′),

where concept(C) is a predicate which holds for all concepts and cwa(C,C ′)
states that C ′ is the CWA of C, i.e., each individual not explicitly found in C
should be in C ′.
Inconsistency of the CWA can be checked by pushing back inferred values to the
external knowledge base:

set false(C,X)← cwa(C,C ′), C ′(X),
inconsistent ← &DL1 [set false](b),

where &DL1 [N](X) effects a check whether a knowledge base, augmented with
all negated facts ¬c(a) such N(c, a) holds, entails the empty concept⊥ (entailment
of ⊥(b), for any constant b, is tantamount to inconsistency).

3 Implementation

The evaluation principle of dlvhex is to split the program according to its dependency
graph into components and alternately call an answer-set solver (DLV [9]) and the
external atom functions for the respective subprograms. The framework takes care of
traversing the tree of components in the right order and combining their resulting mod-
els. Composing the initial dependency graph from a nonground program is not a trivial
task, since higher-order atoms as well as the input list of an external atom have to
be considered. To this end, we defined a novel notion of atom dependency, which ex-
tends the traditional understanding of dependencies within a logic program. This leads
to novel types of stratification which help splitting a HEX-program and choosing the
suitable model generation strategies.

Further methods of increasing the efficiency of computation include a general clas-
sification of external atoms regarding their functional properties. For instance, their
evaluation functions may be monotonic or linear (in the sense of a linear function) with
respect to a given input. Formalizing such knowledge allows for an intelligent caching
algorithm and thus for a reduction of interactions with the external computation source.
Latest developments also include a directive to syntactically handle namespaces and
an algorithm for traversing the component graph for disjunctive programs, eventually
implementing the full HEX-program semantics.

To keep the development and usage of external atoms as flexible as possible, we
decided to embed them into plug-ins, i.e., libraries that define and provide one or more
external atoms. Such plug-ins are implemented as shared libraries, which link dynam-
ically to the main application at runtime. A lean, object-oriented interface reduces the
effort of developing custom plug-ins to a minimum.

Currently, dlvhex provides the following extension to pure HEX-reasoning: (i) pars-
ing both templates as well as frame syntax by using DLT [7] as a preparser; (ii) in ad-
dition to strict constraints, accepting weak constraints for optimization problems; and
(iii) returning the result in XML syntax according to the RuleML specification [1].

36

The following external atoms are available in dlvhex:

The RDF plug-in. The RDF plug-in provides a single external atom, the &rdf -atom,
which enables the user to import RDF-triples from any RDF knowledge base. It
takes a single constant as input, which denotes the RDF-source (a file path or Web
address). The &rdf -atom interfaces the Raptor RDF library.

The description-logic plug-in. To query description-logic knowledge bases, we de-
veloped the description-logic plug-in, which includes four external atoms, allow-
ing for extending a description-logic knowledge base before submitting a query, by
means of the atoms’ input parameters:

– the &dlC atom, which queries a concept (specified by an input parameter of
the atom) and retrieves its individuals,

– the &dlR atom, which queries an object property and retrieves its individual
pairs,

– the &dlDR atom, which queries a datatype property and retrieves its pairs, and
– the &dlConsistent atom, which tests the (possibly extended) description-logic

knowledge base for consistency.
The description-logic plug-in can access OWL ontologies, i.e., description-logic
knowledge bases in the language SHOIN (D), utilizing the RACER reasoning
engine [6].

The string plug-in. For simple string manipulation routines, we provide the string
plug-in. It currently consists of five atoms:

– the &concat atom, which lets the user specify two constant strings in the input
list and returns their concatenation as a single output value,

– the &strstr atom, which tests two strings for substring inclusion,
– the &split atom, which splits a string along a given delimiter and retrieves a

specific part,
– the &cmp atom, which lexicographically compares two strings, and
– the &sha1sum atom, which calculates a SHA1 160-bit checksum for a given

string.
The policy plug-in. The policy plug-in was created to satisfy the needs of optimiza-

tion problems that cannot be tackled using conventional methods such as weak or
weight constraints in an intuitive way. In the area of policy specification, answer-set
programming is used to generate a search space of valid combinations of creden-
tials, which then need to be ranked based on the specific selection of credentials
in each solution. For instance, credentials might have various levels of sensitivity
regarding their publication in a business transaction, and the overall goal is to find
a set of credentials with minimum overall sensitivity. As soon as this overall value
is composed in a more complicated way than just the sum of all single sensitivity
values, the &policy-atom provided by the policy plug-in offers a natural solution.
It takes a single predicate as input and returns a numerical value, which is com-
puted according to the predicate’s extension and a custom function, implemented
by the program designer. Using this value in a single weight constraint facilitates
the compact formulation of such an optimization task.
The following code fragment illustrates this technique. We assume that the guess-
ing part of the program creates various combinations of ground facts for credential .

37

Each credential has a sensitivity value, all of which are fed into the external atom by
the extension of selected for each guessed model. The weak constraint (3) causes
the optimization strategy of dlvhex to single out the model that has the least numer-
ical value for modelWeight :

selected(C, V)← credential(C), hasSens(C, V),
modelWeight(X)← &policy [selected](X),

⇐ modelWeight(X) [X : 1]. (3)

Eventually, it is up to the author of the external atom how to compute this value
within the evaluation function of the &policy-atom. We offer a template for this
plug-in, where only the actual function for the computation of the cost value needs
to be inserted.

On http://www.kr.tuwien.ac.at/research/dlvhex/, we provide a
Web-interface to evaluate HEX-programs online, along with a more detailed documen-
tation of all available external atoms. Currently, dlvhex and the presented plug-ins are
publicly available as source packages. Moreover, we also supply a tool kit for devel-
oping custom plug-ins, embedded in the GNU autotools environment, which takes care
for the low-level, system-specific build process and lets the plug-in author concentrate
his or her efforts on the implementation of the plug-in’s actual core functionality.

References
1. H. Boley, S. Tabet, and G. Wagner. Design Rationale for RuleML: A Markup Language for

Semantic Web Rules. In Proc. SWWS 2001, pages 381–401, 2001.
2. D. Calvanese, G. D. Giacomo, and M. Lenzerini. A Framework for Ontology Integration. In

Proc. SWWS 2001, pages 303–316, 2001.
3. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order

Reasoning and External Evaluations in Answer Set Programming. In Proc. IJCAI 2005.
Morgan Kaufmann, 2005.

4. W. Faber, N. Leone, and G. Pfeifer. Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In Proc. JELIA 2004, pages 200–212, 2004.

5. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

6. V. Haarslev and R. Möller. RACER System Description. In Proc. IJCAR 2001, pages 701–
705, 2001.

7. G. Ianni, G. Ielpa, A. Pietramala, M. C. Santoro, and F. Calimeri. Enhancing Answer Set
Programming with Templates. In Proc. NMR 2004, pages 233–239, 2004.

8. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages. Journal of the ACM, 42(4):741–843, 1995.

9. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic. To appear.

10. M. Sintek and S. Decker. TRIPLE - A Query, Inference, and Transformation Language for
the Semantic Web. In Proc. ISWC 2002, pages 364–378, 2002.

11. K. Wang, G. Antoniou, R. W. Topor, and A. Sattar. Merging and Aligning Ontologies in
dl-Programs. In Proc. RuleML 2005 pages 160–171, 2005.

38

