
Forgetting in Managing Rules and Ontologies!

Thomas Eiter1, Giovambattista Ianni1, Roman Schindlauer1, Hans Tompits1, and
Kewen Wang1,2

1 Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstrasse 9-11, A-1040 Vienna, Austria

{eiter,ianni,roman,tompits,kewen}@kr.tuwien.ac.at
2 School of Information and Communication Technology, Griffith University,

Brisbane, QLD 4111, Australia

Abstract. The language of HEX-programs under the answer-set semantics is de-
signed for interoperating with heterogeneous sources via external atoms and for
meta-reasoning via higher-order literals in the context of the Semantic Web. As
an important technique in managing knowledge bases, the notion of forgetting
has received increasing interest in the knowledge-representation area. In this pa-
per, we introduce a semantics-based theory of forgetting for HEX-programs and,
in turn, for a class of OWL/RDF ontologies which allows to fully employ se-
mantic information in managing ontologies like editing, merging, aligning, and
redundancy removal.

1 Introduction

An ontology is a formal representation of concepts and relationships between them,
making global interoperability possible. Managing ontologies is a central task for many
Semantic-Web applications. However, it is often acknowledged that the Ontology Layer
of the Semantic Web [1] is insufficient in its reasoning abilities. In particular, more and
more ontologies are available on the Web and they are often very large in size and
heterogeneous in location.

This phenomenon brings up a good deal of challenges to researchers in the Seman-
tic Web. For example, when an ontology design is involved, we have to consider some
issues like how to tailor an ontology or how to merge ontologies. Recently, these and re-
lated issues of managing ontologies have received considerable interests [12, 17, 18, 9,
10, 7]. Related issues include ontology editing, ontology segmentation, ontology merg-
ing, ontology aligning, ontology reusing, ontology update, and ontology redundancy
removal. To some extent, all of these issues can be reduced to the problem of extracting
relevant segments out of large ontologies for the purpose of effective management of
ontologies so that the tractability for both humans and computers is enhanced. Such
segments are not mere fragments of ontologies, but stand alone as ontologies in their
own right. The intuition here is similar to views in databases: an existing ontology is

! This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-
N04, and by the European Commission through the IST Networks of Excellence REWERSE
(IST-2003-506779).

1

© Copyright 2006 for the individual papers by the individual authors. Copying permitted  

for private and scientific purposes. Re-publication of material in this volume requires  

permission of the copyright owners.



tailored to a smaller ontology so that an optimal ontology is produced for specific ap-
plications. Although this problem has been identified and a number of approaches are
proposed, like, e.g., [8, 20], a general framework for tailoring ontologies in a purely
semantic way is still missing.

On the other hand, the notion of forgetting [4, 15, 14] is a promising technique
for adequately handling a range of classical tasks such as query answering, planning,
decision-making, reasoning about actions, or knowledge update and revision. The idea
of forgetting consists, informally, in the intelligent and “painless” removal of infor-
mation from a given knowledge base. In other words, one may select some literals,
predicates, or concepts, for being discarded (or forgotten) in a given knowledge base.
However, the information selected for elimination is usually logically connected with
other portions of the same knowledge base. It is thus important to preserve, to the best
extent, soundness and completeness of the information entailed after removal.

This is similar in nature to the aforementioned problem in the design and engineer-
ing of Web-based ontology languages. Consider a scenario from [8]: Suppose we start
to design an ontology about various pets (like cats or dogs, but not lions or tigers). As
currently there are numerous ontologies on the Web, suppose we searched the Web and
found a large ontology on various animals including cats, dogs, tigers and lions. It may
not be appropriate to adopt and use the whole ontology. For example, we may wish to
discard (or “forget”) tigers and lions from it.

While a literature on forgetting in logic programming exists (see, e.g., [22, 4]),
and although forgetting takes relevance also in ontology-description formalism such
as OWL, an explicit notion of forgetting has not been given yet for this class of lan-
guages. In this respect, the relationship between a notion of forgetting in ontologies and
of forgetting in rule-based formalisms has not satisfactorily been investigated yet, and
is thus matter of new research.

The problem of forgetting in ontologies can indeed be solved by exploiting the
connection between ontology-description formalisms and logic programming. That is,
given a sound notion of forgetting for logic programming, a knowledge base L, for-
mulated under a generic semantics (e.g. RDFS, OWL, etc.) can be transposed to an
equivalent logic program PL, formulated under a different (and usually, nonmonotonic)
semantics. Then, logic programming forgetting techniques are applied to PL and a mod-
ified program, forget(PL, l), is obtained and translated back to a knowledge base L′,
where l is the information to be discarded, which can be either a propositional atom, a
concept, or a predicate.

Nonetheless, in order to fulfill the above approach, several issues, some of which
already tackled in the literature, have to be solved and accommodated:

– A systematic way for translating L to PL must be given. Attempts in this direction
are several: for instance, Grosof et al. [11] translate a fragment of OWL-DL to
Horn logic, whereas Swift [21] and Motik, Volz, and Maedche [16] port significant
fragments of description logics to positive disjunctive logic programs.

– The pre-existing forgetting semantics [22, 4] mainly concentrates on discarding
propositional information from ground programs. However, often PL might be a
non-ground program and l a non-propositional value (such as a predicate whose
entire extension must be discarded). Also, many ontology description languages

2



(such as RDF and RDFS) include the possibility of exchanging the notion of class
with the notion of individual, in order to enable meta-reasoning. In such a setting,
PL is better mapped to a higher-order logic program.

– Also it is unclear in which cases forget(PL, l) can be mapped back to a valid knowl-
edge base L′.

In the present paper, we aim at answering some of the questions above.
The logic programming language of choice is HEX, as defined in previous work [3].

This is a rule-based, fully declarative formalism which allows both for higher-order
atoms and external atoms, under a well-defined generalization of the answer-set seman-
tics [6].

Intuitively, a higher-order atom allows to quantify values over predicate names and
to freely exchange predicate symbols with constant symbols, like in the rule

C (X) ← subClassOf (D,C), D(X).

An external atom facilitates the assignment of a truth value of an atom through an
external source of computation. For instance, the rule

t(Sub,Pred ,Obj )← &rdf [uri ](Sub,Pred ,Obj )

computes the predicate t taking values from the predicate &rdf . The latter extracts RDF
statements from the set of URIs specified by the extension of the predicate uri ; this task
is delegated to an external computational source (e.g., an external deduction system, an
execution library, etc.). External atoms allow for a bidirectional flow of information
to and from external sources of computation such as description-logic reasoners. By
means of HEX-programs, powerful meta-reasoning becomes available in a decidable
setting, e.g., not only for Semantic-Web applications, but also for meta-interpretation
techniques in answer-set programming (ASP) itself, or for defining policy languages.

The contributions in this paper can be summarized as follows:

1. We introduce the notion of semantic forgetting for HEX-programs. Forgetting in
logic programs has been previously considered by Eiter and Wang [4], who de-
fined forgetting of a given literal l in the context of propositional disjunctive logic
programs. This notion is extended in order to deal with external and higher-order
atoms, as well as with positive non-ground programs.

2. We develop an algorithm for forgetting which is useful in the setting of ontology
management. The basic idea of this algorithm is that certain rules that are locally
redundant may become relevant afterwards and thus they are kept in the program.

3. We show how semantic forgetting of ontologies can be performed using an equiv-
alent logic program, whose modified versions (after forgetting) are translated back
to ontologies. In particular, that fragment of OWL-DL is taken into account which
can be translated to description-logic programs [11]. The approach can be currently
generalized to all those ontology languages for which a sound and complete map-
ping to positive logic programs is known.

Our approach is illustrated on some example application. For this, we use an ontol-
ogy “Person-Relationship” in the paper, which can be scaled as large as one wishes.

3



The rest of the paper is organized as follows. Section 2 briefly recalls syntax and
semantics of HEX-programs. Section 3 introduces the notion of semantic forgetting for
HEX-programs and a novel algorithm for computing forgetting. As well, forgetting for
non-ground positive programs is defined. Section 4, then, discusses a method for for-
getting OWL/RDF-ontologies in terms of a transformation technique. Finally, Section 5
wraps up the paper with some concluding remarks.

2 HEX-Programs

2.1 Syntax

HEX programs are built on mutually disjoint sets C, X , and G of constant names, vari-
able names, and external predicate names, respectively. Unless stated otherwise, ele-
ments from X (resp., C) are written with first letter in upper case (resp., lower case),
and elements from G are prefixed with “ & .” Constant names serve both as individual
and predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms and n ≥ 0 is its arity. Intuitively, Y0 is
the predicate name; we thus also use the familiar notation Y0(Y1, . . . , Yn). The atom is
ordinary, if Y0 is a constant. For example, (x, rdf :type, c) and node(X) are ordinary
atoms, while D(a, b) is a higher-order atom. An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output
list, respectively), and &g is an external predicate name.

It is possible to specify molecules of atoms similar as in F-Logic [13]. For instance,
gi [father → X, Z → iu] is a shortcut for the conjunction father(gi, X), Z(gi, iu).

A HEX-program1 is a set of rules of the form

α ← β1, . . . ,βn,not βn+1, . . . ,not βm, (2)

where m ≥ 0, α is a higher-order atom, and β1, . . . ,βm are either higher-order atoms
or external atoms. The operator “not” is negation as failure (or default negation). For
a rule r as in (2), we define head(r) = α and body(r) = body+(r) ∪ body−(r),
where body+(r) = {β1, . . . ,βn} and body−(r) = {βn+1, . . . ,βm}. If r contains only
ordinary atoms, then r is ordinary. Furthermore, r is quasi-negative if n = 0. A HEX-
program is quasi-negative if it contains only quasi-negative rules. An ordinary rule is
positive iff m = n, i.e., if it contains no negation as failure. A program is positive iff all
rules in it are positive.

We mention that higher-order features in logic programs have also been considered,
e.g., by Chen, Kifer, and Warren [2] and Ross [19].

1 In contrast to the original definition in [3], here we consider only HEX-programs without dis-
junctions in rule heads.

4



2.2 Semantics

The semantics of HEX-programs [3] is defined by generalizing the answer-set seman-
tics [6]. The Herbrand base of a program P , denoted HBP , is the set of all possible
ground versions of atoms and external atoms occurring in P obtained by replacing vari-
ables with constants from C. The grounding of a rule r, grnd(r), is defined accordingly,
and the grounding of program P is given by grnd(P ) =

⋃
r∈P grnd(r). Unless speci-

fied otherwise, C, X , and G are implicitly given by P .
An interpretation relative to P is any subset I ⊆ HBP containing only atoms.

We say that an interpretation I is a model of an atom a ∈ HBP iff a∈ I . Further-
more, I is a model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm) iff
f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, where f&g is an (n+m+1)-ary Boolean function
associated with &g, called oracle function, assigning each element of 2HBP × Cn+m

either 0 or 1. We write I |= a to express that I is a model of a.
Let r be a ground rule. We define (i) I |= body(r) iff I |= a for all a∈ body+(r) and

I (|= a for all a∈ body−(r), and (ii) I |= r iff I |=head(r) whenever I |= body(r). We
say that I is a model of a HEX-program P , denoted I |=P , iff I |= r for all r∈ grnd(P ).

The Faber-Leone-Pfeifer reduct [5] (or short FLP-reduct) of P with respect to
I ⊆HBP , denoted fP I , is the set of all r ∈ grnd(P ) such that I |= body(r). I ⊆HBP

is an answer set of P iff I is a minimal model of fP I . By AS(P ) we denote the set of
all answer sets of P .

A HEX-program is consistent if it has at least one answer set. We call two HEX-
programs, P and Q, equivalent, symbolically P ≡ Q, iff AS(P ) = AS(Q).

In practice, it is useful to differentiate between two kinds of input attributes for
external atoms. For an external predicate &g (exploited, say, in an atom &g[p](X)), a
term appearing in an attribute position of type predicate (in this case, p) means that the
outcomes of f&g are dependent from the current interpretation I , for what the extension
of the predicate named p in I is concerned. An input attribute of type constant does not
imply a dependency of f&g from some portion of I . An external predicate whose input
attributes are all of type constant does not depend from the current interpretation.

Example 2.1. The external predicate &rdf introduced before is implemented with a
single input argument of type predicate, because its associated function finds the RDF-
URIs in the extension of the predicate uri :

tr(S, P,O)← &rdf [uri](S, P,O),
uri(“file://foaf .rdf ”)← .

Should the input argument be of type constant, an equivalent program would be:

tr(S, P,O)← &rdf [“file://foaf .rdf ”](S, P,O)

or
tr(S, P,O)← &rdf [X](S, P,O), uri(X),

uri(“file://foaf .rdf ”)← .

*+

5



3 Forgetting in HEX-Programs

As we have explained in Section 1, the technique of forgetting is useful in managing
ontologies. So it is natural and interesting to generalize forgetting to HEX-programs. In
fact, since HEX-programs have higher-order syntax but first-order semantics, it allows
us to adapt the notion of forgetting to HEX-programs. In this section, we introduce the
notion of forgetting for HEX-programs. The intuition behind the forgetting of an atom
l in a HEX-program is to obtain a HEX-program which is equivalent to the original
HEX-program if we ignore the existence of l.

In the next subsection, we assume that HEX-programs are ground and consistent.
When a HEX-program with variables is given, it is a shorthand for its ground version. As
we will see in Section 4, forgetting in an RDF ontology is defined in terms of forgetting
in the corresponding logic program, which is a non-ground positive program. So, in
Subsection 3.2, forgetting in non-grounded positive programs is considered.

3.1 Forgetting in Ground HEX-Programs

We call a set X ′ an l-subset of a set X , denoted X ′ ⊆l X , if X ′ \ {l} ⊆ X \ {l}.
Similarly, a set X ′ is a strict l-subset of X , denoted X ′ ⊂l X , if X ′\{l} ⊂ X\{l}. Two
sets X and X ′ of literals are l-equivalent, denoted X ∼l X ′, if (X \X ′)∪ (X ′ \X) ⊆
{l}.

Definition 3.1. Let P be a consistent HEX-program, let l be a (ground) atom in P , and
let X be a set of atoms.

1. For a collection S of sets of atoms, X ∈ S is l-minimal in S if there is no X ′ ∈ S
such that X ′ ⊂l X .

2. An answer set X of a HEX-program P is an l-answer set if X is l-minimal in
AS(P ).

Example 3.1. Let P = {p ← not q; q ← not p; s ← p; s ← q}. It is easy to see that
P has two answer sets, viz. X = {p, s} and X ′ = {q, s}. Then, X is a p-answer set but
X ′ is not. *+

Having defined the notion of minimality about forgetting an atom, we are now in a
position to define the result of forgetting about an atom in a HEX-program.

Definition 3.2. Let P be a consistent HEX-program and let l be a (ground) atom. A
HEX-program P ′ is a result of forgetting about l in P , if P ′ represents l-answer sets of
P , i.e., such that the following conditions are satisfied:

1. At(P ′) ⊆ At(P )−{l}, where, for any program Q, At(Q) denotes the set of atoms
occurring in Q.

2. For any set X ′ of atoms with l /∈X ′, X ′ is an answer set of P ′ iff there is an l-
answer set X of P such that X ′ ∼l X .

6



Note that the first condition implies that l does not appear in P ′. We use forget(P, l) to
denote a possible result of forgetting about l in P .

Since an atom that does not appear in the head of a rule in a HEX-program is au-
tomatically assumed to be false in the process of forgetting for ordinary programs, all
external atoms would be removed from the program. For this reason, the native algo-
rithm for forgetting [4] is not helpful for HEX-programs. Thus, we introduce a new
algorithm, which is inspired by Algorithm 4 in the system LPForget.2

Preparatory for describing the algorithm, below we introduce some program trans-
formations for HEX-programs, which are generalizations of respective ones for ordinary
programs [4].

In the following, let P and P ′ be HEX-programs.

Elimination of Tautologies: P ′ is obtained from P by elimination of tautologies iff
there is a rule r in P such that head(r) ∈ body+(r) and P ′ = P − {r}.

Elimination of Head Redundancy: P ′ is obtained from P by elimination of head re-
dundancy iff there is a rule r in P such that head(r) ∈ body−(r) and P ′ =
(P − {r}) ∪ {← body(r)}.

Positive Reduction: P ′ is obtained from P by positive reduction iff there is a rule r in
P such that body−(r) contains some c which does not occur in the head of any rule
in P and P ′ is obtained from P by removing not c from r.

Negative Reduction: P ′ is obtained from P by negative reduction iff there are two
rules r and r′ : b′ ← in P such that b′ ∈ body−(r) and P ′ = P − {r}.

Elimination of Implications: Let r and r′ be two distinct rules in a logic program. We
say that r′ is an implication of r if head(r) = head(r′) and body(r) ⊂ body(r′).
Then, P ′ is obtained from P by elimination of implications iff there are two distinct
rules r and r′ of P such that r′ is an implication of r and P ′ = P − {r′}.

Unfolding: For two rules r and r′ with head(r′) ∈ body+(r), the unfolding of r with
r′, denoted unfold(r, r′), is the rule head(r) ← (body(r)−{head(r′)}), body(r′).
Then, P ′ is obtained from P by unfolding if there is a rule r such that

P ′ = (P − {r}) ∪ {unfold(r, r′) | r′ ∈ P, head(r′) ∈ body+(r)}.

A special case of unfolding is when there is no rule r′ such that r′ is resolved with
r. In this case, P ′ = P − {r}.

We use T to denote the set of program transformations introduced above.

Lemma 3.1. Using program transformations in T , every HEX-program can be trans-
formed into a quasi-negative program such that no atom appears in both head and body
of a rule.

The algorithm for computing the result of forgetting, referred to as Algorithm 1,
is depicted in Figure 1. This algorithm can be easily implemented using the system
LPForget. Note that the current form of Algorithm 1 is incomplete with respect to
the semantic forgetting for some special cases while it is intuitive and can be seen an

2 See http://www.cit.gu.edu.au/∼kewen/LPForget/.

7



Algorithm 1 (Computing a result of forgetting)
Input: HEX-program P and an atom l in P .
Output: Program forget(P, l) as a result of forgetting l from P .
Method:
Step 1. Positive Splitting: Initially take Q as the set of all rules in which l appears. For every rule
r in P such that either head(r) or some literal of body−(r) appears in Q, add r to Q. Repeat this
process until no new rule can be added. The resulting program is still denoted Q.
Step 2. Fully apply on Q the program transformations T and then obtain a quasi-negative program
Q′. During this process, we keep record of the set RU(Q, l) of all rules removed by unfolding
but containing no appearance of l.
Step 3. Suppose that Q′ has n rules with head l:

rj : l ← not lj1, ...,not ljmj ,

where n ≥ 0, j = 1, . . . , n and mj ≥ 0 for all j.
If n = 0, then let Q′′ denote the program obtained from Q′ by removing all appearances of not l.
If n = 1 and m1 = 0, then l ← is the only rule in Q′ having head l. In this case, remove every
rule in Q′ whose body contains not l. Let Q′′ be the resulting program.
For n ≥ 1 and m1 > 0, let D1, . . . , Ds be all possible conjunctions (l1k1 , · · · , lnkn), where
0 ≤ k1 ≤ m1, ..., 0 ≤ kn ≤ mn. Replace each occurrence of not l in Q′ by all possible Di. Let
Q′′ be the result.
Step 4. Output Q′′ ∪RU(Q, l) ∪ Q̄ as forget(P, l), where Q̄ = P \ Q.

Fig. 1. Algorithm 1 for computing a result of forgetting.

ideal approximation to the semantic forgetting. A complete algorithm is obtained by
replacing Step 3 with Step 3 of Algorithm 2 given by Eiter and Wang [4].

For a consistent HEX-program P and an atom l, some program P ′ as in Defini-
tion 3.2 always exists. However, different such programs P ′ might exist. It follows
from the above definition that they are all equivalent under the answer-set semantics.

Proposition 3.1. Let P be a HEX-program and l an atom in P . If P ′ and P ′′ are two
results of forgetting about l in P , then P ′ ≡ P ′′.

Example 3.2. Suppose that L is a knowledge base on the Web consisting of various ax-
ioms about persons and their relationships. In particular, L contains assertions depicted
in Figure 2.

Let P now be the following HEX-program, where &dlC and &dlR are external
atoms that query the extensions of a specified concept resp. role from a single descrip-
tion logic ontology:3

sibling(X, Y )← &dlR[siblingOf ](X, Y );
sibling(X, Y )← &dlR[childOf ](X, Z),&dlR[childOf ](Y, Z);
inEurope(Y )← sibling(“Bob”, Y ),not inAmerica(Y );

inAmerica(Y )← sibling(“Bob”, Y ),not inEurope(Y ).

3 For the sake of readability, we use a simplified version of the actual and implemented dl-atoms
for HEX-programs here.

8



Male % Person
Female % Person
& % ∀knows−.Person
& % ∀knows.Person
friendOf % knows
childOf % knows
siblingOf ≡ siblingOf −

siblingOf + % siblingOf
siblingOf % knows

parentOf (Alice,Bob)
parentOf (Alice,Carl)
parentOf (Bob,Emma)
sameProject(Bob,Dennis)

spouseOf % knows
spouseOf ≡ spouseOf −

worksWith ≡ worksWith−

worksWith+ % worksWith
worksWith % knows
parentOf ≡ childOf −

parentOf % ancestorOf
ancestorOf % knows
ancestorOf + % ancestorOf
sameProject % worksWith

Fig. 2. Example ontology L.

To apply forgetting, we first have to obtain the ground program grnd(P ). In order to
keep the example readable, we omit those ground rules whose bodies are not satisfied
by L:

sibling(“Bob”, “Carl”)← &dlR[childOf ](“Bob”, “Alice”),
&dlR[childOf ](“Carl”, “Alice”);

sibling(“Carl”, “Bob”)← &dlR[childOf ](“Carl”, “Alice”),
&dlR[childOf ](“Bob”, “Alice”);

inEurope(“Carl”)← sibling(“Bob”, “Carl”),not inAmerica(“Carl”);
inAmerica(“Carl”)← sibling(“Bob”, “Carl”),not inEurope(“Carl”).

Thus, grnd(P ) has two answer sets, viz.

X1 = {sibling(“Bob”, “Carl”), sibling(“Carl”, “Bob”), inEurope(“Carl”)} and
X2 = {sibling(“Bob”, “Carl”), sibling(“Carl”, “Bob”), inAmerica(“Carl”)}.

If we allow to forget about sibling(“Carl”, “Bob”) in grnd(P ), then the result of for-
getting is obtained from grnd(P ) by removing the first rule. *+

The above definitions of forgetting about an atom l can be extended to forgetting
about a set F of atoms. Specifically, we can similarly define X1 ⊆F X2, X1 ∼F X2,
and F -answer sets of a HEX-program. In fact, the properties of forgetting about a single
atom can be generalized to the case of forgetting about a set. Moreover, the result of
forgetting about a set F can be obtained by forgetting each atom one by one in F .

Proposition 3.2. Let P be a consistent HEX-program and F = {l1, . . . , lm} a set of
atoms. Then, forget(P, F ) ≡ forget(. . . (forget(forget(P, l1), l2), . . .), lm).

Since higher-order atoms and external atoms can be treated as ordinary atoms in the
process of forgetting, we can prove the above result similarly to the proof of Proposi-
tion 6 given by Eiter and Wang [4].

9



For HEX-programs, the notion of ordinary forgetting may not be sufficient for some
applications in managing ontologies. In some cases, we need to forget a predicate. This
can be easily accomplished by forgetting the set of all atoms with the same predicate.

Due to the presence of higher-order terms, we may need also to forget some other
atoms when we want to forget a specific atom. This is illustrated in the following ex-
ample.

Example 3.3. Suppose we want to forget the predicate “brotherOf ” in the following
program:

subRelation(brotherOf , siblingOf )←
brotherOf (john, al)←
siblingOf (john, joe)←
siblingOf (al ,mick)←

R(X, Y )← subRelation(P ,R),P(X ,Y )

Here, we should also forget subRelation(brotherOf , siblingOf ). *+

For the above discussion, it is natural to define the following variant of forgetting,
which is more intuitive for most applications.

Definition 3.3. Let P be a HEX-program and l an atom in P . Denote by sup(l) the
set of all atoms in P that contain the predicate name of l. Then the result of enforced
forgetting about l in P , written Forget(P, l), is defined as forget(P, sup(l)).

In Example 3.3, Forget(P, brotherOf ), given by

forget(P, {brotherOf (john, al), subRelation(brotherOf , siblingOf )}),

is the following program:

siblingOf (john, al)← ;
siblingOf (john, joe)← ;
siblingOf (al ,mick)← .

3.2 Forgetting in Non-Ground Positive Programs

As we will see in Section 4, the logic program PL translated from an OWL/RDF on-
tology is non-ground in general and thus forgetting as defined by Eiter and Wang [4]
cannot be directly applied here. However, since PL has a special form and, in partic-
ular, has no negation as failure, we are able to lift the notion of forgetting for ground
programs to this kind of non-ground programs.

To this end, we first need to define weak unfolding for logic programs.
Let r : a ← b, B and r′ : b′ ← B′ be normal rules, where a, b, b′ are atoms,

and B, B′ are conjunctions of literals. Note that no higher-order atoms occur here.
When necessary, we can rename the variables of r′ such that r and r′ have no common
variables. If the head b′ of r′ and b have a most general unifier (mgu) θ, then the rule
(a ← B,B′)θ is called a resolvent of r with r′.

10



Algorithm 2 (Computing forgetting for non-ground positive logic programs)
Input: Positive logic program P and a predicate R.
Output: Program forget(P, R) as the result of forgetting R from P .
Method:

1. Fully apply weak unfolding on P .
2. Remove all rules containing R.
3. Output the resulting program as forget(P, R).

Fig. 3. Computing forgetting for non-ground programs without negation as failure.

Weak Unfolding. A logic program P ′ is obtained from P by weak unfolding iff there
are two rules r and r′ in P such that r′′ is a resolvent of r with r′ and P ′ = P∪{r′′}.

For a positive logic program the result of forgetting can be easily obtained by Algo-
rithm 2 depicted in Figure 3.

The following result shows that this lifting algorithm for forgetting is sound with
respect to semantic forgetting for ground programs.

Theorem 3.1. Let P be a non-ground positive program and R a predicate in P .
For any extensional database E (i.e., a set of facts), we have

forget(P,R) ∪ E ≡ forget(grnd(P ∪ E), const(R)),

where const(R) = {R(a) | a is a constant in P ∪ E}.

Proof. (Sketch) First, we observe the following two properties:

(α) If r′′ is an instance of unfold(r, r′) in P ∪E, then r′′ = unfold(r̄, r̄′), where r̄ and
r̄′ are instances of r and r′, respectively.

(β) If r′′ = unfold(r̄, r̄′), for r̄ and r̄′ in grnd(P ∪ E), then r′′ is an instance of
unfold(r, r′) in P ∪ E, where r̄ and r̄′ are instances of r and r′, respectively.

Let Q1 = forget(P,R)∪E and Q2 = forget(grnd(P ∪E), const(R)). Since P is
positive, AS(grnd(Q1)) and AS(Q2) are singletons.

Let TQ be the consequence operator of a positive program Q. Then, the unique
answer set of Q is its least Herbrand model

⋃
k≥0 TQ ↑ k.

The unique element of AS(grnd(Q1)) is ∪k≥0Tgrnd(Q1) ↑ k, and the unique ele-
ment of AS(Q2) is

⋃
k≥0 TQ2 ↑ k. Using Properties (α) and (β), we can easily show

that Tgrnd(Q1) ↑ k=TQ2 ↑ k, by induction on k ≥ 0. So, AS(grnd(Q1))=AS(Q2). *+

Algorithm 2 may be refined by applying Step 1 only to a subset of the rules and
facts P which is relevant to R, while the rest of the program remains untouched. In this
way, the cost of computing forgetting can be reduced radically.

For P and R in Algorithm 2, let Q initially be the set of all rules in which R
appears. Then, add each rule r from P to Q such that head(r) appears in Q, and repeat

11



L !! PL

""
L′ forget(PL, l)##

Fig. 4. Forgetting in ontologies via a logic program.

this process until no new rules can be added. Let the resulting program be denoted by
QP,R. Intuitively, Q̄ consists of rules that are irrelevant to R. For forgetting in a positive
program, it is done by a series of unfolding and then removing some rules relevant to
R. So, rules in Q̄ are essentially unchanged during the process of forgetting.

Theorem 3.2. Let P be a non-ground positive program P and let R be a predicate in
P . For any extensional database E, it holds that

forget(P,R) ∪ E ≡ forget(QP,R, R) ∪ Q̄ ∪ E,

where Q̄ = P \ QP,R.

It should be noted that although the process of forgetting for non-ground programs
is realized by the removal of certain rules, it has a semantic justification as Theorem 3.2
shows.

4 Forgetting in OWL/RDF-Ontologies

To apply forgetting purely to an ontology expressed in OWL or RDFS, we reuse the
techniques defined for forgetting in logic programs. Figure 4 shows the general prin-
ciple of this approach. First, an ontology L is translated into a rule representation PL,
taking the specific ontology semantics into account. Then, for any atom l in PL, we can
compute forget(PL, l). Finally, we translate the result back into an ontology.

The translation of description-logic axioms into a logic program is shown in Ta-
bles 1 and 2. This translation covers most of the expressiveness of OWL Lite and corre-
sponds to the translation given by Grosof et al. [11], mapping some subset of a descrip-
tion logic to positive equality-free datalog programs. Note that some description-logic
constructs have no direct representation in logic-programming rules, such as cardinal-
ity constraints. Also, existential and universal quantification is restricted to the left-hand
side resp. right-hand side of a subclass axiom. In general, a transformation from a set
of rules back to ontology statements requires the rules in forget(PL, l) to be in a form
according to Tables 1 and 2.

Example 4.1. Consider again the ontology L in Figure 2. The translation of L into a
logic program according to PL is depicted in Figure 5. Suppose we do not want to
keep the concepts worksWith , then we can use Theorem 3.1 to simplify the process of
forgetting.

Take Q as a subprogram of PL:

12



Table 1. Mapping of ontology statements to rules.

Statement DL syntax Rule representation
subClassOf D % C C(X) ← D(X).
subPropertyOf P % Q Q(X, Y ) ← P (X, Y ).
domain & % ∀P−.C C(X) ← P (X, Y ).
range & % ∀P .C C(Y ) ← P (X, Y ).
class-instance a : C C(a) ← .
property-instance 〈a, b〉 : P P (a, b) ← .
class-equivalence D ≡ C D(X) ← C(X);

C(X) ← D(X).
property-equivalence P ≡ Q P (X, Y ) ← Q(X, Y );

Q(X, Y ) ← P (X, Y ).
inverseOf P ≡ Q− P (X, Y ) ← Q(Y, X);

Q(X, Y ) ← P (Y, X).
transitiveProperty P+ % P P (X, Y ) ← P (X, Z), P (Z, Y ).

Table 2. Mapping of ontology class constructors to rules.

Constructor DL syntax Rule representation
conjunction C1 + C2 % D D(X) ← C1(X), C2(X).

C % D1 +D2 D1(X) ← C(X);
D2(X) ← C(X).

disjunction C1 , C2 % D D(X) ← C1(X);
D(X) ← C2(X).

existential restriction ∃P.C % D D(X) ← P (X, Y ), C(Y ).
universal restriction D % ∀P.C C(Y ) ← P (X, Y ), D(X).

sameProject(“Bob”, “Dennis”)← ;
worksWith(X, Y )← worksWith(Y, X);
worksWith(X, Z)← worksWith(X, Y ),worksWith(Y, Z);

knows(X, Y )← worksWith(X, Y );
worksWith(X, Y )← sameProject(X, Y ).

We can apply Algorithm 2 on the logic program Q by forgetting worksWith . First,
fully apply weak unfolding on Q and obtain Q′:

sameProject(“Bob”, “Dennis”)← ;
worksWith(X, Y )← worksWith(Y, X);
worksWith(X, Z)← worksWith(X, Y ),worksWith(Y, Z);

knows(X, Y )← worksWith(X, Y );
worksWith(X, Y )← sameProject(X, Y );

knows(X, Y )← sameProject(X, Y );
worksWith(“Bob”, “Dennis”)← ;

knows(“Bob”, “Dennis”)← .

13



parentOf (“Alice”, “Carl”) ← .
female(“Alice”) ← .

sameProject(“Bob”, “Dennis”) ← .
male(“Bob”) ← .

parentOf (“Carl”, “Emma”) ← .
person(“Carl”) ← .

person(“Dennis”) ← .
knows(X, Y ) ← childOf (X, Y ).

childOf (X, Y ) ← parentOf (Y, X).
male(X) ← father(X).

person(X) ← female(X).
friendOf (X, Y ) ← friendOf (Y, X).

knows(X, Y ) ← ancestorOf (X, Y ).
ancestorOf (X, Z) ← ancestorOf (X, Y ),

ancestorOf (Y, Z).
knows(X, Y ) ← friendOf (X, Y ).

person(X) ← knows(X, Y ).
person(Y ) ← knows(X, Y ).
person(X) ← male(X).
female(X) ← mother(X).

ancestorOf (X, Y ) ← parentOf (X, Y ).
parentOf (X, Y ) ← childOf (Y, X).
siblingOf (X, Y ) ← siblingOf (Y, X).

knows(X, Y ) ← siblingOf (X, Y ).
spouseOf (X, Y ) ← spouseOf (Y, X).

knows(X, Y ) ← spouseOf (X, Y ).
worksWith(X, Y ) ← worksWith(Y, X).
worksWith(X, Z) ← worksWith(X, Y ),

worksWith(Y, Z).
knows(X, Y ) ← worksWith(X, Y ).

worksWith(X, Y ) ← sameProject(X, Y ).

Fig. 5. Translation of L into a logic program PL.

Thus, the result of forgetting about worksWith is the program

forget(Q,worksWith) ∪ Q̄,

where Q̄ = PL \ Q and forget(Q,worksWith) is as follows:

sameProject(“Bob”, “Dennis”)← ;
knows(X, Y )← sameProject(X, Y );

knows(“Bob”, “Dennis”)← .

Translating this fragment back into the original description logic results in the fol-
lowing statements:

sameProject(“Bob”, “Dennis”);
sameProject 0 knows;
knows(“Bob”, “Dennis”).

The property worksWith does not occur in the modified description-logic knowl-
edge base any more, while the subproperty relation between sameProject and knows
is preserved. *+

Combining the approaches to forgetting of Sections 3 and 4, we are now able to
forget any set of ordinary atoms, higher-order atoms, whole external atoms, and parts
of external atoms in a HEX-program.

5 Related Work and Concluding Remarks

The notion of forgetting for HEX-programs introduced in this paper generalizes a re-
spective notion for ordinary logic programs defined in previous work [4]. Forgetting for
HEX-programs provides a means to handle forgetting at the user-view level, since HEX-
programs are tailored to access sources like OWL/RDF ontologies at the extensional

14



level through external atoms, but does not go back to changes in these sources, as is
done in the view-update problem of databases, for instance. However, such ontologies
have been cast to a class of logic programs which constitute a small fragment of HEX-
programs, and thus semantic forgetting for OWL/RDF may be facilitated through this
mapping, as we have shown. Our work therefore provides a uniform basis for a frame-
work for extracting ontology segments from a custom ontology, which is exploited at
the user level. This approach is in an active area of semantic integration in ontologies
(see [17] for a survey). However, the emphasis of our work is on conflict resolving in
semantic integration of ontologies rather than on ontology mapping.

Forgetting for OWL/RDF ontologies can be used for various tasks in ontology man-
agement including the following:

– Ontology segmentation: This approach is to obtain segments from a custom ontol-
ogy, thus having the same purpose as forgetting. Seidenberg and Rector [20] present
a series of strategies for extracting ontology segments. However, it lacks a general
semantic justification.

– Ontology merging: Given two ontologies O1 and O2, they could first be prepro-
cessed by techniques in ontology mapping and then be merged into one ontology.
In many cases, conflicts may be present in the process of merging. If the conflict
is caused by some concept C, a natural approach is to forget C from one of these
two ontologies or from both. Grau, Parsia, and Sirin [8] propose to use so-called
“E-connections” for merging ontologies. In this approach, merging ontologies is
defined in terms of link properties. However, it is difficult to find related link prop-
erties.

Similar to other approaches to semantic integration, it is a hard issue to determine
the set of concepts which should be forgotten if they are not explicitly specified by the
user. This issue could be solved by employing heuristics and techniques from machine
learning. Exploring this is left for future work.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001.

2. W. Chen, M. Kifer, and D. Warren. HILOG: A Foundation for Higher-Order Logic Program-
ming. Journal of Logic Programming, 15(3):187–230, 1993.

3. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005), pages 90–
96. Morgan Kaufmann, 2005.

4. T. Eiter and K. Wang. Forgetting and Conflict Resolving in Disjunctive Logic Program-
ming. In Proceedings of the Twenty-First National Conference on Artificial Intelligence
(AAAI 2006). AAAI Press, 2006.

5. W. Faber, N. Leone, and G. Pfeifer. Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In Proceedings of the Ninth European Conference on Logics in
Artificial Intelligence (JELIA 2004), pages 200–212, 2004.

6. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

15



7. S. Ghilardi, C. Lutz, and F. Wolter. Did I Damage My Ontology? A Case for Conservative
Extensions in Description Logics. In Proceedings of the Tenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2006), pages 187–197. AAAI
Press, 2006.

8. B. Grau, B. Parsia, and E. Sirin. Combining OWL Ontologies using E-Connections. Journal
of Web Semantics, 4(1), 2005.

9. B. C. Grau, I. Horrocks, O. Kutz, and U. Sattler. Will my Ontologies Fit Together? In
Proceedings of the 2006 International Workshop on Description Logics (DL 2006), 2006.

10. B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and Web Ontologies. In Pro-
ceedings of the Tenth International Conference on Principles of Knowledge Representation
and Reasoning (KR 2006), pages 198–208. AAAI Press, 2006.

11. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logics. In Proceedings of the Twelfth International World
Wide Web Conference (WWW 2003), pages 48–57, 2003.

12. Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: the State of the Art. The Knowledge
Engineering Review, 18:1–31, 2003.

13. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages. Journal of the ACM, 42(4):741–843, 1995.

14. J. Lang, P. Liberatore, and P. Marquis. Propositional Independence: Formula-Variable Inde-
pendence and Forgetting. Journal of Artificial Intelligence Research, 18:391–443, 2003.

15. F. Lin and R. Reiter. Forget it. In Proceedings of the AAAI Fall Symposium on Relevance,
pages 154–159. New Orleans, 1994.

16. B. Motik, R. Volz, and A. Maedche. Optimizing Query Answering in Description Logics
using Disjunctive Deductive Databases. In Proceedings of the Tenth International Workshop
on Knowledge Representation meets Databases (KRDB 2003), 2003. http://CEUR-WS.
org/Vol79/.

17. N. Noy. Semantic Integration: A Survey of Ontology-Based Approaches. SIGMOD Record,
33(4):65–70, 2004.

18. N. Noy and H. Stuckenschmidt. Ontology Alignment: An Annotated Bibliography. In Se-
mantic Interoperability and Integration, 2005.

19. K. A. Ross. On Negation in HiLog. Journal of Logic Programming, 18(1):27–53, 1994.
20. J. Seidenberg and A. Rector. Web Ontology Segmentation: Analysis, Classification and Use.

In Proceedings of the Fifteenth International World Wide Web Conference (WWW 2006),
2006.

21. T. Swift. Deduction in Ontologies via ASP. In Proceedings of the Seventh International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-7), volume 2923
of LNCS, pages 275–288, 2004.

22. K. Wang, A. Sattar, and K. Su. A Theory of Forgetting in Logic Programming. In Pro-
ceedings of the Twentieth National Conference on Artificial Intelligence (AAAI 2005), pages
682–687. AAAI Press, 2005.

16


