
The need of capability requirements inside choreographies
and interaction protocols

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, and Claudio Schifanella

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)

{baldoni,baroglio,mrt,patti,schi}@di.unito.it

ABSTRACT
A typical problem of research in the area of Service-Oriented
Systems is the composition of a set of services for executing
a complex task. In this paper we face an instance of this
problem in which a set of parties (be they peers, agents or
systems) have to interact according to a given choreography.
In particular, we mean to exploit the role definitions con-
tained in the choreography for realizing interaction policies
that can be executed by the involved parties. In this case it
is necessary that the choreography captures not only the in-
teractive behavior of the system as a whole but that the role
definitions contain also a set of requirements of capabilities
that the parties should exhibit, where by the term “capabil-
ity” we mean the skill of doing something or of making some
condition become true. Such capabilities have the twofold
aim of connecting the interactive behavior to be shown by
the role-player to its internal state and of making the policy
executable.

1. INTRODUCTION
In various application contexts there is a growing need of be-
ing able to compose sets of heterogeneous and independent
entities with the general aim of executing a task, whose com-
plexity cannot be handled by a single component. In this
framework, it is mandatory to find a flexible way for gluing
components, a highly complex problem which encompasses
various skills (describing the goal to be achieved, describing
the solution in terms of involved entities and of their interac-
tions, identifying within the pool of available entities those
which can solve subproblems, etc.), pursued by different sci-
entific disciplines. One solution which is being explored both
in the web services research area and in the multi-agent sys-
tems (MAS) research area is to compose entities based on
“dialogue”. In the case of web services, ad hoc languages
(e.g. WS-BPEL [19]), have been proposed for building exe-
cutable composite services based on a description of the flow
of information, in terms of the messages that are exchanged

by the composed services. On the other hand, the problem
of aggregating communicating agents into (open) societies
is well-known, and a lot of attention has been devoted to
the issues of defining interaction policies, verifying the in-
teroperability of agents based on dialogue, and checking the
conformance of policies w.r.t. a global communication pro-
tocol [11].

As observed recently [25, 5], the MAS and WS research ar-
eas show convergences in the approach by which systems of
agents, on a side, and composite services, on the other, are
designed, implemented and verified. In both cases it is in
fact possible to distinguish two levels: a global and abstract
view of the system as a whole, which is independent from
the specific agents/peers which will take part to the inter-
action (the design of the system), and the implementation
of the system in which the specific entities that will interact
are identified. In the case of MASs [14] the design level often
corresponds to a shared interaction protocol. In a services
oriented scenario this level corresponds to a general chore-
ography of the system, in which a set of roles are captured
together with their interactions by means of ad hoc repre-
sentation languages (e.g. WS-CDL). On the other hand, the
interactive behavior of a specific party/peer involved in the
interaction is to be given in some executable language (e.g.
WS-BPEL).

In this proposal, we will consider choreographies as shared
knowledge among the parties. We will, then, refer to chore-
ographies as to public and non-executable specifications. The
same assumption cannot be made for what concerns the in-
teractive behavior of specific parties (be they service ori-
ented entities, peers or agents). The actual behavior of a
peer will, then, be considered as being private (i.e. non-
inspectable from outside). Nevertheless, if we are interested
in coordinating the interaction of a set of parties as speci-
fied by a given choreography, we need to associate specific
parties to roles. A realistic scenario is that in which an en-
tity might just publish the fact that it acts according to the
role “seller” of a public choreography. For interacting with
that entity it will, then, be necessary to play another role of
the specified choreography (e.g. “customer”). For playing
a role described in a choreography a peer must own a pol-
icy that is conformant to that role. In this scenario the so
called conformance checking of a policy w.r.t. choreography
guarantees that the peer owning the policy can interoperate
with peers playing the other roles in the choreography.



Let us focus on the case when a peer does not have any
conformant policy for playing a certain role described in a
choreography specification, but it would like to take part
to an interaction ruled by the choreography. A possible
solution is to define a method for generating, in an auto-
matic way, a conformant policy from the role specification.
The role specification, in fact, contains all the necessary in-
formation about what sending/receving to/from which peer
at which moment. As a first approximation, we can, then,
think of translating the role as expressed in the specification
language in a policy (at least into a policy skeleton) given
in an executable language. This is, however, not sufficient.
In fact, it is necessary to bind the interactive (observable)
behavior that is encoded by the role specification with the
internal (unobservable) behavior that the peer must anyway
have and with its internal state. For instance, the peer must
have some means for retrieving or building the information
that it sends. This might be done in several ways, e.g. by
querying a local data base or by querying another peer. The
way in which this operation is performed is not relevant,
the important point is to be sure that in principle the peer
can execute it. For completing the construction of the pol-
icy, it is necessary to have a means for checking whether
the peer can actually play the policy, in other words, if it
has the required capabilities. This can only be done if we
have a specification of which capabilities are required in the
choreography itself. The capability verification can be ac-
complished role by role by the specific party willing to take
part to the interaction.

This paper aims at introducing the concept of capability in
the global/local system/entity specifications, in such a way
that capabilities can be accounted for during the processes
that are applied for dynamically building and possibly cus-
tomizing policies. Section 2 defines the setting of the work.
Moreover, a first example of protocol (the well-known FIPA
Contract Net protocol), that is enriched with capabilities, is
reported. Section 3 introduces our notion of capability test,
making a comparison with systems in which this notion is
implicit. The use of reasoning techniques that can be associ-
ated with the capability test for performing a customization
of the policy being constructed is also discussed. In Sec-
tion 4 a possible extension of WS-CDL [26] with capability
requirements is sketched. Conclusions follow.

2. CHOREOGRAPHIES, INTERACTION PRO-
TOCOLS AND CAPABILITIES

In the introduction we have sketched a scenario in which
a system of interacting parties is described by a choreog-
raphy at an abstract level, in which specific peers do not
yet appear. A choreography is a schema, a set of rules ac-
cording to which interaction should occur. In this context
the problem of verifying whether a party’s interaction pol-
icy respects a given role specification is extremely relevant.
This problem is known as conformance test [1, 13, 3]. The
conformance test can be a means for guaranteeing a priori
the interoperability of a set of peers, each playing one of the
roles described by a given choreography [3, 5, 10].

In this work we will focus on the case in which a peer is in-
terested in playing a role in an interaction ruled by a chore-
ography, but it does not have a conformant policy. In order
for this to happen, it is necessary that the peer adopts a

new interaction policy. If this scenario were set in an agent-
framework, one might think of enriching the set of behaviors
of the agent, which failed the conformance test, by asking
other agents to supply a correct interaction policy. This
solution has been proposed from time to time in the lit-
erature; recently it was adopted in Coo-BDI architectures
[2]. CooBDI extends the BDI (Belief, Desire, Intention)
model in such a way that agents are enabled to cooperate
through a mechanism, which allows them to exchange plans
and which is used whenever it is not possible to find a plan,
for pursuing a goal of interest, by just exploiting the local
agent’s knowledge. The ideas behind the CooBDI theory
have been implemented by means of WS technologies, lead-
ing to CooWS agents [8]. Another recent work in this line
of research is [24]. Here, in the setting of the DALI lan-
guage, agents can cooperate by exchanging sets of rule that
can either define a procedure, or constitute a module for
coping with some situation, or be just a segment of a knowl-
edge base. Moreover, agents have reasoning techniques that
enable them to evaluate how useful the new information is.
Unfortunately, these techniques cannot be directly imported
in the context of Service-oriented Computing. The reason
is that, while in agent systems it is not a problem to find
out during the interaction that an agent does not own all
the necessary actions, when we compose entities in a ser-
vice oriented scenario it is fundamental that the analogous
knowledge is available before the interaction among the peers
takes place.

Going back to the situation in which a peer failed the confor-
mance test, one might think of using the protocol definition
for supplying the entity with a new policy that is obtained
directly from the definition of the role that the peer would
like to play. A policy skeleton could be directly synthesized
in a semi-automatic way from the protocol description. A
similar approach has been adopted, in the past, for synthe-
sizing agent behaviors from UML specifications in [17]. In
this perspective, a problem arises: protocols only concern
communication patterns, i.e. the interactions of a peer with
others, abstracting from all references to the internal state
of the player and from all actions/instructions that do not
concern communication. Nevertheless, in our framework we
are interested in a policy that the peer will execute and, for
permitting the execution, it is necessary to express to some
extent also this kind of information. The conclusion is that
if we wish to use protocols as a basis for policy skeletons,
we need to specify some more information, i.e. actions that
allow us the access to the peer’s internal state. Throughout
this work we will refer to such actions as capability require-
ments.

The term “capability” has recently been used by Padgham et
al. [20] (the work is inspired by JACK [9] and it is extended
in [21]), in the BDI framework, for identifying the “ability to
react rationally towards achieving a particular goal”. More
specifically, an agent has the capability to achieve a goal if
its plan library contains at least one plan for reaching the
goal. The authors incorporate this notion in the BDI frame-
work so as to constrain an agent’s goals and intentions to be
compatible with its capabilities. This notion of capability is
orthogonal w.r.t. what proposed in our work. In fact, we
propose to associate to a choreography (or protocol) specifi-
cation, aimed at representing an interaction schema among a



set of yet unspecified peers, a set of requirements of capabili-
ties. Such requirements specify “actions” that peers, willing
to play specific roles in the interaction schema, should ex-
hibit. In order for a peer to play a role, some verification
must be performed for deciding if it matches the require-
ments.

In this perspective, our notion of capability resembles more
closely (sometimes unnamed) concepts, that emerge in a
more or less explicit way in various frameworks/languages,
in which there is a need for defining interfaces. One example
is Jade [15], the well-known platform for developing multi-
agent systems. In this framework policies are supplied as
partial implementations with “holes” that the programmer
must fill with code when creating agents. Such holes are rep-
resented by methods whose body is not defined. The task
of the programmer is to implement the specified methods,
whose name and signature is, however, fixed in the partial
policy. Another example is powerJava [6, 7], an extension
of the Java language that accounts for roles and institu-
tions. Without getting into the depths of the language, a
role in powerJava represents an interlocutor in the interac-
tion schema. A role definition contains only the implemen-
tation of the interaction schema and leaves to the role-player
the task of implementing the internal actions. Such calls to
the player’s internal actions are named “requirements” and
are represented as method prototypes.

Checking whether a peer has the capability corresponding
to a requirement is, in a way, a complementary test w.r.t.
checking conformance. With a rough approximation, when
I check conformance I abstract away from the behavior that
does not concern the communication described by the pro-
tocol of interest, focussing on the interaction with a set of
other peers that are involved, whereas checking capabilities
means to check whether it is possible to tie the description
of a policy to the execution environment defined by the peer.

2.1 An example: the contract net protocol
For better explaining our ideas, we will consider as a chore-
ography the well-known FIPA ContractNet Protocol [12],
pinpointing the capabilities that are required to a peer which
would like to play the role of Participant. Figure 1 reports
a UML version of the protocol (dotted rectangles represent
capabilities).

ContractNet is used in electronic commerce and in robotics
for allowing entities, which are unable to do some task, to
have it done. The protocol captures a pattern of interaction,
in which the initiator sends a call-for-proposal to a set of
participants. Each participant can either accept (and send
a proposal) or refuse. The initiator collects all the proposals
and selects one of them. Figure 1 describes the interactions
between the Initiator and one of the Participants. In this
example we can detect three different capabilities, one for
the role of Initiator and two for the Participant. Starting
from an instance of the concept Task, the Participant must
be able to evaluate it by performing the evaluateTask capa-
bility, returning an instance of the concept Proposal. More-
over, if its proposal is accepted by the Initiator, it must
be able to execute the task by using the capability execute-
Task, returning an instance of concept Result. On the other
side, the Initiator must have the capability evaluateProposal

Figure 1: The FIPA ContractNet Protocol, repre-
sented by means of UML sequence diagrams, and
enriched with capability specifications.

that chooses a proposal among those received from the par-
ticipants. In order to play the role of Participant a peer
will, then, need to have the capabilities evaluateTask and
executeTask, whereas it needs to have the capability evalu-
ateProposal if it means to play the role of Initiator. As it
emerges from the example, a capability identifies an action
(in a broad sense) that might require some inputs and might
return a result. This is analogous to defining a method or a
function or a web service.

So, it can be meaningful to specify a capability by its name, a
description of its inputs and a description of its outputs (see
fig 1). However this is not the only possible representation,
for instance if we interpret them as actions, it would make
sense to represent also their preconditions and effects (or
goals).

3. CHECKING CAPABILITIES
In a conformance test we exploit a schema of interaction,
the choreography or the protocol, given a priori. The idea
that we mean to explore for checking capabilities is to do
something analogous for what concerns the internal behav-
ior. In particular, we propose to exploit a description of the
required capabilities (see the previous section), which act
as connecting points between the external, communicative
behavior of the peer and its internal behavior.

The capability test obviously depends on the way in which
the policy is developed and therefore it depends on the
adopted language. In Jade [15] there is no real capability
test because policies already supply empty methods corre-
sponding to the capabilities, the programmer can just re-
define them. In powerJava the check is performed by the
compiler, which verifies the implementation of a given inter-
face representing the requirements. For further details see
[6], in which the same example concerning the ContractNet
protocol is described.

In the scenario that we have outlined in the previous sec-
tion, the capability test is done a priori w.r.t. all the capa-
bilities required by the role specification, however, the way
in which the test is implemented is not predefined and can



be executed by means of different matching techniques. We
could use a simple signature matching, like in classical pro-
gramming languages and in powerJava, as well more flex-
ible forms of matching. We consider particularly promis-
ing to adopt semantic matchmaking techniques proposed
for matching web service descriptions with queries, based
on ontologies of concepts. In fact semantic matchmaking
supports the matching of capabilities with different names,
though connected by an ontology, and with different num-
bers (and descriptions) of input/output parameters. For
instance, let us consider the evaluateProposal capability as-
sociated to the role Initiator of the ContractNet protocol
(see Figure 1). This capability has an input parameter (a
proposal) and is supposed to return a boolean value, stat-
ing whether the proposal has been accepted or refused. A
first example of flexible, semantics-based matchmaking con-
sists in allowing a peer to play the part of Initiator even
though it does not have a capability of name evaluatePro-
posal. Let us suppose that evaluateProposal is a concept in a
shared ontology. Then, if the peer has a capability evaluate,
with same signature of evaluateProposal, and evaluate is a
concept in the shared ontology, that is more general than
evaluateProposal, we might be eager to consider the capa-
bility as matching with the description associated to the role
specification.

Semantic matchmaking has been thoroughly studied and
formalized also in the Semantic Web community, in particu-
lar in the context of the DAML-S [22] and WSMO initiatives
[16]. In [22] a form of semantic matchmaking concerning the
input and output parameters is proposed. The ontological
reasoning is applied to the parameters of a semantic web ser-
vice, which are compared to a query. The limit of this tech-
nique is that it is not possible to perform the search on the
basis of a goal to achieve. A different approach is taken in
the WSMO initiative [16], where services are described based
on their preconditions, assumptions, effects and postcondi-
tions. Preconditions concern the structure of the request,
assumptions are properties that must hold in the current
state, as well as effects will hold in the final state, while
postconditions concern the structure of the answer. These
four sets of elements are part of the “capability” construct
used in WSMO for representing a web service. Moreover,
each service has its own choreography and orchestration, al-
though these terms are used in a different way w.r.t. our
work. In fact, both refer to subjective views, the former
recalls a state chart while the latter is a sequence of if-then
rules specifying the interaction with other services. On the
other hand, users can express goals as desired postcondi-
tions. Various matching techniques are formalized, which
enable the search for a service that can satisfy a given goal;
all of them presuppose that the goal and the service descrip-
tions are ontology-based and that such ontologies, if differ-
ent, can be aligned by an ontology mediator. Going back
to our focus concerning capability matching, in the WSMO
framework it would be possible to represent a “capability
requirement”, associated with a choreography, as a WSMO
goal, to implement the “capabilities” of the specific peer as
WSMO capabilities, and then apply the existing matching
techniques for deciding whether a requirement is satisfied by
at least one of the capabilities of the peer.

In order to ground our proposal to the reality of Service

Goal1 Goal1

C4C3

C1

No Goal1

C1
C2

Figure 2: Execution traces for a policy: two traces
allow to reach a final state in which goal1 is true but
exploiting different capabilities.

Oriented Architectures, in Section4, we will discuss an ex-
tension of WS-CDL with capability requirements. Our idea
is to express such requirements in a general way, in order to
enable the use of different matching techniques, which can
require different annotations. Thus, we propose an extension
of WS-CDL, called WS-CDL+C, where capability require-
ments can be expressed by input and output parameters as
well as by preconditions and goals, by means of semantic
annotations. For performing the capability test on this ex-
tension, it will be possible to exploit one of the techniques
for the semantic matchmaking like the ones cited above.

3.1 Reasoning on capabilities
In the previous sections we discussed the simple case when
the capability test is performed w.r.t all the capabilities re-
quired by the role specification. In this case, based on some
description of the required capabilities for a playing the role,
we perform the matching among all required and actual ser-
vice capabilities, thus we can say that the test allows to im-
plement policies that perfectly fit the role, by envisioning all
the execution paths foreseen by the role. This is, however,
just a starting point. Further customization of the capabil-
ity test w.r.t. some characteristic or goal of the peer that
intend to play a given role can be achieved by combining the
test with a reasoning phase on capabilities. For instance, by
reasoning on capabilities from the point of view of the party
candidate for playing the role, it would be possible to find
out policies that implement the role but do not envision all
the execution paths and thus do not require the entire list
of capabilities associated to the role to be implemented.

Let us take the abstraction of a policy implementing a role
w.r.t. all the capabilities required as a procedure with dif-
ferent execution traces. Each execution trace corresponds to
a branch in the policy. It is likely that only a subset of the
capabilities associated to a role will be used along a given
branch. As an example, Figure 2 shows three alternative
execution traces for a given policy, which contain references
to different capabilities: one trace exploits capabilities C1
and C3, the second one exploits C1 and C4, the third one
contains only C2.

We can think of a simplification of the capability test in
which only the execution traces concerning the specific call,



that the peer would like to enact, are considered. This set
will tell us which capabilities are actually necessary in our
execution context (i.e. given the specified input parameter
values). In this perspective, it is not compulsory that the
party has all the capabilities associated to the role but it will
be sufficient that it has those used in this set of execution
traces. Consider Figure 2 and suppose that for some given
input values, only the first execution trace (starting from
left) might become actually executable. This trace relies
on capabilities C1 and C3 only: it will be sufficient that
the peer owns such capabilities for making the policy call
executable.

Such kind of reasoning could be done by describing the ideal
complete policy for an entity aiming at implementing a given
role in a declarative language that supports a-priori reason-
ing on the policy executions. In fact, if a declarative rep-
resentation of the complete policy were given, e.g. see [4],
it would be possible to perform a rational inspection of the
policy, in which the execution is simulated. By reasoning
we could select the execution traces that allow the peer to
complete the interaction for the inputs of the given call. Fi-
nally we could collect the capabilities used in these traces
only (C1, C3, and C4 but not C2) and restrict the capability
test to that subset of capabilities.

Another possible customization task consists on reasoning
about those execution traces that, after the execution, make
a certain condition become true in the peer internal state.
For instance, with reference to Figure 2, two out of the three
possible executions lead to a final situation in which goal1
holds. As a simple example of this case, let us suppose that
a peer that wishes to play the role of “customer” with the
general goal of purchasing an item of interest from a seller
of interest, has a second goal, i.e. to avoid the use of credit
cards. This goal can actually be seen as a constraint on the
possible interactions. If the policy implementing the com-
plete role allows three alternatives forms of payment (by
credit card, by bank transfer and by check), the candidate
customer is likely to desire to continue the interaction be-
cause some of the alternatives allow reaching the goal of
purchasing the item of interest without using credit cards.
It can, then, customize the policy by deleting the undesired
path. If some of the capabilities are to be used only along
the discarded execution path, it is not necessary for the can-
didate customer to have it.

Nevertheless a natural question arises: if I remove some of
the possible execution paths of a policy, will it still be con-
formant to the specification? To answer to this question we
can rely on our conformance test. In the specific case of
the example, the answer would be positive. It would not be
positive if we had a candidate seller that, besides having the
general goal of selling items, has the second requirement of
not allowing a specific form of payment (e.g. by bank trans-
fer) and deletes the undesired path from the policy. Indeed,
a customer that conforms to the shared choreography might
require this form of payment, which is foreseen by the speci-
fication, but the candidate seller would not be able to handle
this case leading to a deadlock.

It is also possible to generalize this approach and selecting
the set of the execution traces that can possibly be engaged

by a given entity by using the information about the actual
capabilities of the services. In fact, having the possibility
of inspecting the possible evolutions of an ideal policy im-
plementing the complete role, one could single out those
execution traces that require the subset of capabilities that
the peer actually can execute. In this way, the policy can
be customized w.r.t. the characteristic of the peer, guaran-
teeing the success under determined circumstances.

Last but not least, the set of capabilities of a peer could be
not completely predefined but depending on the context and
on privacy or security policies defined by the user. There-
fore, I might have a capability which I do not want to use
in that circumstance. Also this kind of reasoning can be in-
tegrated in the capability test. In this perspective, it would
be interesting to explore the use of the notion of opportunity
proposed by Padmanabhan et al. [21] in connection with
the concept of capability (but with the meaning proposed
in [20], see Section 1).

4. EXTENDING WS-CDL WITH CAPABIL-
ITY REQUIREMENTS

The most important formalism used to represent interac-
tion protocols in the WS domain is WS-CDL (Web Services
Choreography Description Language) [26]: an XML-based
language that describes peer-to-peer collaborations of het-
erogeneous entities from a global point of view. In this sec-
tion, we propose a first step toward the extension to the
WS-CDL definition where requirement of capabilities are
added in order to enable the automatic synthesis of poli-
cies described in the previous sections. We will call this ex-
tension WS-CDL+C. Capability requirements are expressed
in a general way, in order to enable the of both semantic
matchmaking algorithms and reasoning about actions tech-
niques. In particular, we introduce semantic annotations
for input and output parameters, that can be exploited by
semantic matchmaking like the one described in [22] for per-
forming the capability checking. Moreover we introduce
annotations for goals and preconditions of the capability.
Goals could be used by a WSMO-like matchmaker, as sug-
gested in section 2. Alternatively, they could be interpreted
as effects and, together with preconditions, they could be
used by a reasoner for performing the kind of reasoning
sketched in Section 3.1. The schema that defines this ex-
tension is here omitted for sake of brevity, but can be found
at http://www.di.unito.it/~ alice/WSCDL Cap v1.1/.

In this scenario an operation executed by a peer often cor-
responds to an invocation of a web service, in a way that
is analogous to a procedure call. Coherently, we can think
of representing the concept of capability in the WS-CDL+C
as a new tag element -the tag capability (see for instance
Figure 3)- which is characterized by its name, its input and
output parameters, its preconditions and goals. Each pa-
rameter refers to a variable defined inside the choreography
document. The notation variable="tns:task" used in Fig-
ure 3 is a reference to a variable, according to the definition
of WS-CDL. In this manner the variables used in the ele-
ments of such description can be used in the whole WS-CDL
document in standard ways (like Interaction, Workunit and
Assign activities). In particular variables can be used in
guard conditions of Workunits inside a Choice activities in
order to choose alternative paths (see below for an exam-



1 <silentAction roleType="tns:Participant">

2 <capability name="evaluateTask">

3 <input>

4 <parameter variable="tns:task"/>

5 </input>

6 <output>

7 <parameter variable="tns:proposal"/>

8 </output>

9 <precondition>

10 ?tns:task [name hasValue ?taskName]

memberOf ont#taskConcept

11 </precondition>

12 <goal>

13 ?tns:proposal [cost hasValue ?cost, time

hasValue ?time] memberOf

ont#proposalConcept

14 </goal>

15 </capability>

16 </silentAction>

Figure 3: Representing a capability in the extended
WS-CDL.

ple). Notice that each variable refers also to a concept in a
defined ontology.

A capability represents an operation (a call not a declara-
tion) that must be performed by a role and which is non-
observable by the other roles; this kind of activity is de-
scribed in WS-CDL by SilentAction elements. The presence
of silent actions is due to the fact that WS-CDL derives from
the well-known pi-calculus by Milner et al. [18], in which
silent actions represent the non-observable (or private) be-
havior of a process . We can, therefore, think of modifying
the WS-CDL definition by adding capabilities as child ele-
ments of this kind of activity 1. Returning to Figure 3, as an
instance, it defines the capability evaluateTask for the role
Participant of the Contract Net protocol. More precisely,
evaluateTask is defined within a silent action and its defini-
tion comprises its name plus a list of inputs and outputs,
plus preconditions and goals. The tags capability, input,
output, precondition and goal are defined in WS-CDL+C. It
is relevant to observe that each variable in this description
refers to a variable that has been defined in the choreogra-
phy.

Choreographies not only list the set of capabilities that a
peer should have but they also identify the points of the
interaction at which such capabilities are to be used. In
particular, the values returned by a call to a capability (as
a value of an output parameter) can be used for controlling
the execution of the interaction. Figure 4 shows, for exam-
ple, a piece of a choreography code for the role Participant,
containing a choice operator. The choice operator allows
two alternative executions: one leading to an inform speech
act, the other leading to a failure speech act. The selection
of which message will actually be sent is done on the basis
of the outcome, previously associated to the variable rst, of
the capability executeTask. Only when such variable has a

1Since in WS-CDL there is not the concept of observable
action, capability requirements can describe only silent ac-
tions

1 <choice>

2 <workunit name="informResultWorkUnit"

3 guard="cdl:getVariable(’tns:rst’, ’’, ’’,

’tns:Participant’) != ’failure’ ">

4 <interaction name="informResultInteraction">

5 ...

6 </interaction>

7 </workunit>

8 <interaction name="failureExecuteInteraction">

9 ...

10 </interaction>

11 </choice>

Figure 4: Example of how variables in capability
requirements can be used in a choice operator of a
choreography.

non-null value the inform will be sent. The guard condition
at line 3 in Figure 4 amounts to determine whether the task
that the Participant has executed has failed.

To complete the example we sketch in Figure 5 a part of the
ContractNet protocol as it is represented in our proposal of
extension for WS-CDL. In this example we can detect three
different capabilities, one for the role of Initiator and two
for the role Participant. Starting from an instance of the
type Task, the Participant must be able to evaluate it by
performing the evaluateTask capability (lines 5-10), return-
ing an instance of type Proposal. Moreover, it must be able
to execute the received task (if its proposal is accepted by
the Initiator) by using the capability executeTask (lines 31-
36), returning an instance of type Result. On the other side,
the Initiator must have the capability evaluateProposal, for
choosing a proposal out of those sent by the participants
(lines 18-23).

As discussed before, we can start from a representation of
this kind for performing the capability test and checking if
a party can play a given role Afterwards it will be possible
to synthesize the policy skeleton, possibly customized w.r.t.
the capabilities and the goals of the party that is going to
play the role. To this aim, a translation algorithm for turn-
ing the XML-based specification into an equivalent schema
in the execution language of interest is needed.

5. CONCLUSIONS
This work presents a preliminary study aimed at allowing
the use of public choreography specifications for automat-
ically synthesizing executable interaction policies for peers
that would like to take part to an interaction but that do
not own an appropriate policy themselves. To this purpose
it is necessary to link the abstract, communicative behav-
ior, expressed at the protocol level, with the internal state
of the role player by means of actions that might be non-
communicative in nature (capabilities). It is important, in
an open framework like the web, to be able to take a deci-
sion about the possibility of taking part to a choreography
before the interaction begins. This is the reason why we
have proposed the introduction of the notion of capability
at the level of choreography specification. A capability is
the specification of an action in terms of its name, its input,
output parameters, preconditions and goals. Given such a



1 <sequence>
2 <interaction name="callForProposalInteraction"> ...
3 </interaction>
4 <silentAction roleType="Participant">
5 <capability name="evaluateTask">
6 <input> ... </input>
7 <output> ... </output>
8 <precondition> ... </precondition>
9 <goal> ... </goal>
10 </capability>
11 </silentAction>
12 <choice>
13 <workunit name="proposeWorkUnit" guard=... >
14 <sequence>
15 <interaction name="proposeInteraction">
16 </interaction>
17 <silentAction roleType="Initiator">
18 <capability name="evaluateProposal">
19 <input> ... </input>
20 <output> ... </output>
21 <precondition> ... </precondition>
22 <goal> ... </goal>
23 </capability>
24 </silentAction>
25 <choice>
26 <workunit name="acceptProposalWorkUnit" guard=...>
27 <sequence>
28 <interaction name="proposeInteraction">
29 </interaction>
30 <silentAction roleType="Initiator">
31 <capability name="executeTask">
32 <input> ... </input>
33 <output> ... </output>
34 <precondition> ... </precondition>
35 <goal> ... </goal>
36 </capability>
37 </silentAction>
38 <choice>
39 <workunit name="informResultWorkUnit"
40 guard=... >
41 <interaction

name="informResultInteraction">
42 </interaction>
43 </workunit>
44 <interaction

name="failureExecuteInteraction">
45 </interaction>
46 </choice>
47 </sequence>
48 </workunit>
49 <interaction name="rejectProposalInteraction">
50 </interaction>
51 </choice>
52 </sequence>
53 </workunit>
54 <interaction name="evaluateTaskRefuseInteraction">
55 </interaction>
56 </choice>
57 </sequence>

Figure 5: A representation of the FIPA ContractNet
Protocol in the extended WS-CDL.

description it is possible to apply semantic matching tech-
niques in order to decide whether a peer has the capabilities
required for playing a role of interest. In particular, we have
discussed the use of semantic matchmaking techniques, such
as those developed in the WSMO and DAML-S initiatives
[22, 16], for matching web service descriptions to queries.

We have shown how, given a declarative representation of
the an ideal policy implementing a role it is possible to ap-
ply further reasoning techniques for customizing the policy
to the specific characteristic or goals of the entity that will
act as a player. Reasoning techniques for accomplishing this
customization task are under investigation. In particular,
the techniques that we have already used in previous work
concerning the personalization of the interaction with a web
service [4] seem promising. In that work, in fact, we ex-
ploited a kind of reasoning known as procedural planning,
relying on a logic framework. Procedural planning explores
the space of the possible execution traces of a procedure,
extracting those paths at whose end a goal condition of in-
terest holds. It is noticeable that in presence of a sensing
action, i.e. an action that queries for external input, all of
the possible answers are to be kept (they must all lead to
the goal) and none can be cut off. In other words, it is pos-
sible to cut only paths that correspond to some action that
are under the responsibility of the agent playing the policy.
The waiting for an incoming message is exactly a query for
an external input, as such the case of the candidate seller
that does not allow a legal form of payment cannot occur.

Our work is close in spirit to [23], where the idea of keep-
ing separate procedural and ontological descriptions of ser-
vices and to link them through semantic annotations is in-
troduced. In fact WS-CDL+C can be seen as procedu-
ral description of the interaction enriched with capabilities
requirements, while semantic annotations of capability re-
quirements enable the use of ontological reasoning for the
capability test phase. Presently, we are working at more
thorough formalization of the proposal that will be followed
by the implementation of a system that turns a role in the
proposed extension of WS-CDL into a executable composite
service, e.g. a BPEL service. BPEL is just a possibility, any
programming language by means of which it is possible to
develop web services could be used.

6. ACKNOWLEDGMENTS
This research has partially been funded by the European
Commission and by the Swiss Federal Office for Education
and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net), and by
MIUR PRIN 2005 “Specification and verification of agent
interaction protocols” national project.

7. REFERENCES
[1] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and

P. Torroni. Specification and verification of agent
interactions using social integrity constraints. In Proc.
of the Workshop on Logic and Communication in
Multi-Agent Systems, LCMAS 2003, volume 85(2) of
ENTCS. Elsevier, 2003.

[2] D. Ancona and V. Mascardi. Coo-BDI: Extending the
BDI Model with Cooperativity. In J. A. Leite,



A. Omicini, L. Sterling, and P. Torroni, editors, Proc.
of the 1st Declarative Agent Languages and
Technologies Workshop (DALT’03), Revised Selected
and Invited Papers, pages 109–134. Springer-Verlag,
2004. LNAI 2990.

[3] M. Baldoni, C. Baroglio, A. Martelli, and Patti.
Verification of protocol conformance and agent
interoperability. In F. Toni and P. Torroni, editors,
Post-Proc. of 6th Int. Workshop on Computational
Logic in Multi-Agent Systems, CLIMA VI, volume
3900 of LNCS State-of-the-Art Survey, pages 265–283.
Springer, 2006.

[4] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti.
Reasoning about interaction protocols for customizing
web service selection and composition. J. of Logic and
Algebraic Programming, special issue on Web Services
and Formal Methods, 2006. To appear.

[5] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and
C. Schifanella. Verifying the conformance of web
services to global interaction protocols: a first step. In
M. Bravetti and G. Zavattaro, editors, Proc. of 2nd
Int. Workshop on Web Services and Formal Methods,
WS-FM 2005, volume 3670 of LNCS, pages 257–271.
Springer, Versailles, France, September, 2005.

[6] M. Baldoni, G. Boella, and L. van der Torre. Bridging
Agent Theory and Object Orientation: Importing
Social Roles in Object Oriented Languages. In R. H.
Bordini, M. Dastani, J. Dix, and A. Seghrouchni,
editors, Post-Proc. of the International Workshop on
Programming Multi-Agent Systems, ProMAS 2005,
volume 3862 of Lecture Notes in Computer Science
(LNCS), pages 57–75. Springer, 2006.

[7] M. Baldoni, G. Boella, and L. van der Torre.
powerjava: Ontologically Founded Roles in Object
Oriented Programming Languages. In D. Ancona and
M. Viroli, editors, Proc. of 21st ACM Symposium on
Applied Computing, SAC 2006, Special Track on
Object-Oriented Programming Languages and Systems
(OOPS 2006), Dijon, France, April 2006. ACM.

[8] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta.
CooWS: Adaptive BDI agents meet service-oriented
computing. In Proceedings of the Int. Conference on
WWW/Internet, pages 205–209, 2005.

[9] P. Busetta, N. Howden, R. Ronquist, and A. Hodgson.
Structuring bdi agents in functional clusters. In Proc.
of the 6th Int. Workshop on Agent Theories,
Architectures, and Languages (ATAL99), 1999.

[10] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and
G. Zavattaro. Choreography and orchestration: a
synergic approach for system design. In Proc. of 4th
International Conference on Service Oriented
Computing (ICSOC 2005), 2005.

[11] F. Dignum, editor. Advances in agent communication
languages, volume 2922 of LNAI. Springer-Verlag,
2004.

[12] F. for Intelligent Physical Agents.
http://www.fipa.org.

[13] F. Guerin and J. Pitt. Verification and Compliance
Testing. In H. Huget, editor, Communication in
Multiagent Systems, volume 2650 of LNAI, pages
98–112. Springer, 2003.

[14] M. P. Huget and J. Koning. Interaction Protocol
Engineering. In H. Huget, editor, Communication in
Multiagent Systems, volume 2650 of LNAI, pages
179–193. Springer, 2003.

[15] Jade. http://jade.cselt.it/.

[16] U. Keller, R. L. A. Polleres, I. Toma, M. Kifer, and
D. Fensel. D5.1 v0.1 wsmo web service discovery.
Technical report, WSML deliverable, 2004.

[17] M. Martelli and V. Mascardi. From UML diagrams to
Jess rules: Integrating OO and rule-based languages
to specify, implement and execute agents. In
F. Buccafurri, editor, Proceedings of the 8th
APPIA-GULP-PRODE Joint Conference on
Declarative Programming (AGP’03), pages 275–286,
2003.

[18] R. Milner. Communicating and Mobile Systems: the
Pi-Calculus. Cambridge University Press, 1999.

[19] OASIS. Business process execution language for web
services.

[20] L. Padgham and P. Lambrix. Agent capabilities:
Extending BDI theory. In AAAI/IAAI, pages 68–73,
2000.

[21] V. Padmanabhan, G. Governatori, and A. Sattar.
Actions made explicit in bdi. In Advances in Artificial
Intelligence, number 2256 in LNCS, pages 390–401.
Springer, 2001.

[22] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara.
Semantic matching of web services capabilities. In
First International Semantic Web Conference, 2002.

[23] M. Pistore, L. Spalazzi, and P. Traverso. A minimalist
approach to semantic annotations for web processes
compositions. In ESWC, pages 620–634, 2006.

[24] A. T. S. Costantini. Learning by knowledge exchange
in logical agents. In F. Corradini, F. De Paoli,
E. Merelli, and A. Omicini, editors, Proc. of WOA
2005: Dagli oggetti agli agenti, simulazione e analisi
formale di sistemi complessi, Camerino, Italy,
november 2005. Pitagora Editrice Bologna.

[25] W. M. P. van der Aalst, M. Dumas, A. H. M.
ter Hofstede, N. Russell, H. M. W. Verbeek, and
P. Wohed. Life after BPEL? In Proc. of WS-FM’05,
volume 3670 of LNCS, pages 35–50. Springer, 2005.
Invited speaker.

[26] WS-CDL. http://www.w3.org/tr/ws-cdl-10/.


