
Reasoning about Web Services
in a Temporal Action Logic ?

Alberto Martelli1 and Laura Giordano2

1Dipartimento di Informatica, Università di Torino, Torino
email: mrt@di.unito.it

2Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria
email: laura@mfn.unipmn.it

Abstract. The paper presents an approach to reasoning about Web
services in a temporal action theory. Web services are described by spec-
ifying their interaction protocols in an action theory based on a dynamic,
linear-time, temporal logic. The proposed framework is based on a social
approach to agent communication, where the effects of communicative
actions allow changes in the social state, and interaction protocols are
defined in terms of the creation and fulfillment of commitments and
permissions among the agents. We show how to introduce epistemic op-
erators in the action theory to deal with incomplete information, and we
address the problem of verifying properties of Web services, as well as
the problem of reasoning about the composition of Web services.

1 Introduction

Autonomous agents can communicate, cooperate and negotiate using commonly
agreed communication languages and protocols. One of the central issues in the
field concerns the specification of conversation policies (or interaction protocols),
which govern the communication between software agents in an agent commu-
nication language [4].

To allow for the flexibility needed in agent communication [10, 14] new ap-
proaches have been proposed, which overcome the limitations of the traditional
transition net approach, in which the specification of interaction protocols is
done by making use of finite state machines. A particularly promising approach
to agent communication, first proposed by Singh [21, 22], is the social approach
[5, 11, 14]. In the social approach, communicative actions affect the “social state”
of the system, rather than the internal (mental) states of the agents. The so-
cial state records social facts, like the permissions and the commitments of the
agents.

In this paper, we adopt a social approach in the specification of the interac-
tions among Web services and, in particular, we address the problem of service
verification and that of service composition [15, 18, 23]. In our proposal, Web

? This research has been partially supported by the project MIUR PRIN 2005 “Spec-
ification and verification of agent interaction protocols”

services are described by specifying their interaction protocols in an action the-
ory based on a dynamic, linear-time, temporal logic. Such logic has been used
in [7, 9] to provide the specification of interaction protocols among agents and
to allow the verification of protocol properties as well as the verification of the
compliance of a set of services with a protocol. The Web service domain is well
suited for this kind of formalization. The proposed framework provides a simple
formalization of the communicative actions in terms of their effects and precon-
ditions and the specification of an interaction protocol by means of temporal
constraints.

To accommodate the needs of the application domain, in which information
is inherently incomplete, in the Section 2, we extend the action theory defined in
[9] to deal with incomplete information. More precisely, we introduce epistemic
modalities in the language to distinguish what is known about the social state
from what is unknown. In this context, the communicative actions by means of
which the services interact can be regarded as knowledge-producing actions, and
are similar to sensing actions in the context of planning. In order to deal with the
frame problem, we introduce a completion construction on the epistemic domain
description, which defines suitable successor state axioms.

In Section 3, we show how a Web service can be specified by modeling its
interaction protocol in a social approach. We consider, as an example, a service
for purchasing a good, whose interaction protocol has the following structure:
the customer sends a request to the service, the service replies with an offer or
by saying that the service is not available, and finally, if the customer receives
the offer, he/she may accept or refuse it. Communicative actions, such as offer
or accept, are modeled in terms of their effects on the social state (action laws).
The protocol is specified by putting constraints on the executability of actions
(precondition laws) and by temporal constraints specifying the fulfillment of
commitments.

In Section 4, we show that several kinds of verification (both runtime and
static verification) can be done on the services and the related verification prob-
lems can be modeled as satisfiability and validity problems in the logic. We
make use of an automata-based approach to solve these problems and, in partic-
ular, we work on the Büchi automaton which can be extracted from the logical
specification of the protocol.

In Section 5, we then consider the problem of composing Web services, by
referring to an example consisting of two services for purchasing and for shipping
goods. We define the service composition problem as a planning problem, whose
solution requires building a conditional plan and allowing it to interact with the
two services. The plan can be obtained from the Büchi automaton derived from
the logical specification of the protocol. We address the problem of proving the
correctness of a given service implementation with respect to the specification
of the component services.

2 The action theory

In this section, we describe the action theory that is used in the specification of
the services. We first introduce the temporal logic on which our action theory is
based. Then we introduce epistemic modalities and domain descriptions.

2.1 Dynamic Linear-Time Temporal Logic

We briefly define the syntax and semantics of DLTL as introduced in [12]. In
such a linear-time, temporal logic the next state modality is indexed by actions.
Moreover, (and this is the extension to LTL) the until operator is indexed by
programs in Propositional Dynamic Logic (PDL).

Let Σ be a finite non-empty alphabet. The members of Σ are actions. Let
Σ∗ and Σω be the set of finite and infinite words on Σ, where ω = {0, 1, 2, . . .}.
Let Σ∞ =Σ∗∪Σω. We denote by σ, σ′ the words over Σω and by τ, τ ′ the words
over Σ∗. Moreover, we denote by ≤ the usual prefix ordering over Σ∗ and, for
u ∈ Σ∞, we denote by prf(u) the set of finite prefixes of u.

We define the set of programs (regular expressions) Prg(Σ) generated by Σ
as follows:

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗

where a ∈ Σ and π1, π2, π range over Prg(Σ). A set of finite words is associated
with each program by the usual mapping [[]] : Prg(Σ) → 2Σ∗

.
Let P = {p1, p2, . . .} be a countable set of atomic propositions containing >

and ⊥. We define:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ).
A model of DLTL(Σ) is a pair M = (σ, V) where σ ∈ Σω and V : prf (σ) →

2P is a valuation function. Given a model M = (σ, V), a finite word τ ∈ prf (σ)
and a formula α, the satisfiability of a formula α at τ in M , written M, τ |= α, is
defined as follows (we omit the standard definition for the boolean connectives):

– M, τ |= p iff p ∈ V (τ);
– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf (σ) and M, ττ ′ |=

β. Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′1, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a model M = (σ, V) and a finite word
τ ∈ prf (σ) such that M, τ |= α.

The formula αUπβ is true at τ if “α until β” is true on a finite stretch of
behavior which is in the linear-time behavior of the program π. The derived
modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ >Uπα and [π]α ≡
¬〈π〉¬α. Furthermore, if we let Σ = {a1, . . . , an}, the U , © (next), 3 and 2

operators of LTL can be defined as follows: ©α ≡
∨

a∈Σ〈a〉α (i.e., α holds in the

1 We define τ ≤ τ ′ iff ∃τ ′′ such that ττ ′′ = τ ′. Moreover, τ < τ ′ iff τ ≤ τ ′ and τ 6= τ ′.

state obtained by executing any action in Σ) , αUβ ≡ αUΣ∗
β, 3α ≡ >Uα,

2α ≡ ¬3¬α, where, in UΣ∗
, Σ is taken to be a shorthand for the program

a1 + . . . + an. Hence both LTL(Σ) and PDL are fragments of DLTL(Σ).
As shown in [12], DLTL(Σ) is strictly more expressive than LTL(Σ) and the

satisfiability and validity problems for DLTL are PSPACE complete problems.

2.2 Epistemic modalities

In the following, we need to describe the effects of communicative actions on
the social state of the agents. In particular, we want to represent the fact that
each agent can see only part of the social state as it is only aware of some of the
communicative actions in the conversation (namely those it is involved in as a
sender or as a receiver). For this reason, we introduce knowledge operators to
describe the knowledge of each agent as well as the knowledge shared by groups
of agents. More precisely, we introduce a modal operator Ki to represent the
knowledge of agent i and the modal operator KA, where A is a set of agents,
to represent the knowledge shared by agents in A. Groups of agents acquire
knowledge about social facts when they interact by exchanging communicative
actions. The modal operators Ki and KA are both of type KD. They are normal
modalities ruled by the axiom schema Kϕ → ¬K¬ϕ (seriality). Though the usual
modal logic used to represent belief operators is KD45, in this formalization we
do not add the positive and negative introspection axioms to belief modality K,
because, following the solution proposed in [1], we restrict epistemic modalities
to be used in front of literals. In particular, epistemic modalities neither can
occur nested nor can be applied to a boolean combination of literals.

The relations between the modalities Ki and KA are ruled by the following
interaction axiom schema: KAϕ → Kiϕ, where i ∈ A, meaning that what is
knowledge of a group of agents is also knowledge of each single agent in the group.
As usual, for each modality Ki (respectively, KA) we introduce the modality Mi

(resp. MA), which is defined as the dual of Ki, i.e. Miϕ is ¬Ki¬ϕ.

2.3 Domain descriptions

The social state of the protocol, which describes the stage of execution of the
protocol from the point of view of the different agents, is described by a set of
atomic properties called fluents, whose epistemic value in a state may change
with the execution of communicative actions.

Let P be a set of atomic propositions, the fluent names. A fluent literal l is
a fluent name f or its negation ¬f . An epistemic fluent literal is a modal atom
Kl or its negation ¬Kl, where l is a fluent literal and K is an epistemic operator
Ki or KA. We will denote by Lit the set of all epistemic literals.

An epistemic state (or, simply, a state) is defined as a complete and consistent
set of epistemic fluent literals, and it provides, for each agent i (respectively for
each group of agents A) a three-valued interpretation in which each literal l is true
when Kil holds, false when Ki¬l holds, and undefined when both ¬Kil and ¬Ki¬l
hold. Observe that, given the property of seriality, consistency guarantees that

a state cannot contain both Kf and K¬f , for some epistemic modality K and
fluent f . In fact, from Kf it follows by seriality that ¬K¬f , which is inconsistent
with K¬f .

In the following we extend the action theory defined in [9] to accommodate
epistemic literals. A domain description D is defined as a tuple (Π, C), where Π
is a set of (epistemic) action laws and causal laws, and C is a set of constraints.

The action laws in Π have the form:

2(Kl1 ∧ . . . ∧ Kln → [a]Kl) (1)
2(Ml1 ∧ . . . ∧Mln → [a]Ml) (2)

with a ∈ Σ, and K is a knowledge modality. The meaning of (1) is that executing
action a in a state where l1, . . . , ln are known (to be true) causes l to become
known, i.e. it causes the effect Kl to hold. As an example the law 2(Kfragile →
[drop]Kbroken) means that, after executing the action of dropping a glass the
glass is known to be broken, if the action is executed in a state in which the
glass is known to be fragile. (2) is necessary in order to deal with ignorance
about preconditions of the action a. It means that the execution of a may affect
the beliefs about l, when executed in a state in which the preconditions are
considered to be possible. When the preconditions of a are unknown, this law
allows to conclude that the effects of a are unknown as well. 2(Mfragile →
[drop]Mbroken) means that, after executing the action of dropping a glass, the
glass may be broken, if the action is executed in a state in which the glass may
be fragile (i.e. K¬fragile does not hold).

The causal laws in Π have the form:

2((Kl1 ∧ . . . ∧ Kln ∧©(Kln+1 ∧ . . . ∧ Klm) →©Kl) (3)
2((Ml1 ∧ . . . ∧Mln ∧©(Mln+1 ∧ . . . ∧Mlm) →©Ml) (4)

The meaning of (3) is that if l1, . . . , ln are known in a state and ln+1, . . . , lm
are known in the next state, then l is also known in the next state. Such laws
are intended to expresses “causal” dependencies among fluents. The meaning of
causal law (4) can be defined accordingly.

The constraints in C are, in general, arbitrary temporal formulas of DLTL.
Constraints put restrictions on the possible correct behaviors of a protocol. The
kind of constraints we will use in the specification of a protocol include the
observations on the value of epistemic fluent literals in the initial state and
the precondition laws. The initial state Init is a (possibly incomplete) set of
epistemic literals, which is made complete by adding ¬Kl to Init when Kl 6∈ Init.

The precondition laws have the form:

2(α → [a]⊥),

with a ∈ Σ and α an arbitrary non-temporal formula containing a boolean
combination of epistemic literals. The meaning is that the execution of an action
a is not possible if α holds (i.e. there is no resulting state following the execution

of a if α holds). Observe that, when there is no precondition law for an action,
the action is executable in all states.

In order to deal with the frame problem, we extend the solution proposed
in [9] to the epistemic case. We define a completion construction which, given
a domain description, introduces frame axioms for all frame fluents in the style
of the successor state axioms introduced by Reiter [20] in the situation calculus.
The completion construction is applied only to the action laws and causal laws
in Π and not to the constraints. The value of each epistemic fluent persists from
a state to the next one unless its change is caused by the execution of an action
as an immediate effect (of an action law) or an indirect effect (of the causal
laws). We call Comp(Π) the completion of a set of laws Π.

Let Π be a set of action laws and causal laws. Π may contain action laws of
the form:

2(Kαi → [a]Kf) 2(Kβj → [a]K¬f),
2(Mαi → [a]Mf) 2(Mβj → [a]M¬f),

as well as causal laws of the form

2((Kα ∧©Kβ) →©Kl),
2((Mα ∧©Mβ) →©Ml),

where a ∈ Σ and, as a shorthand,Kα,Kβ,Kαi,Kβj are conjunctions of epistemic
fluents of the form Kl1 ∧ . . .∧Kln and Mα,Mβ,Mαi,Mβj are conjunctions of
epistemic literals of the form Ml1 ∧ . . . ∧Mln.

Observe that, given the definition of the next operator © (namely, ©α ≡∨
a∈Σ〈a〉α), the first causal law above can be written as follows:

2((Kα ∧
∨

a∈Σ〈a〉Kβ) →
∨

a∈Σ〈a〉Kl),

Observe also that, when a given action a is executed in a state (i.e. in a world
of a model), this is the only action executed in it, since models of DLTL are
linear (and each models describes a single run on the protocol). Hence, from the
formula above it follows:

(*) 2((Kα ∧ 〈a〉Kβ) → 〈a〉Kl).

Moreover, as the axioms 〈a〉φ → [a]φ and 〈a〉>∧ [a]φ → 〈a〉φ hold in DLTL (see
[12]), from (*) we can get:

(**) 2(〈a〉> → ((Kα ∧ [a]Kβ) → [a]Kl)).

This formula has a structure very similar to action laws. We call these formulas
normalized causal laws. A similar transformation can be applied to the second
causal law, giving: 2(〈a〉> → ((Mα ∧ [a]Mβ) → [a]Ml)).

The action laws and causal laws for a fluent f in Π can then have the following
forms:

2(〈a〉> → (Kαi ∧ [a]Kγi → [a]Kf)) 2(〈a〉> → (Kβj ∧ [a]Kδj → [a]K¬f))
2(〈a〉> → (Mαi ∧ [a]Mγi → [a]Mf)) 2(〈a〉> → (Mβj ∧ [a]Mδj → [a]M¬f))

We define the completion of Π as the set of formulas Comp(Π) containing,
for all actions a and fluents f , the following axioms:

2(〈a〉> → ([a]Kf ↔ (
∨

i(Kαi ∧ [a]Kγi)) ∨ (Kf ∧
∧

j(K¬βj ∨ ¬[a]Mδj))))
2(〈a〉> → ([a]K¬f ↔ (

∨
j(Kβj ∧ [a]Kδj)) ∨ (K¬f ∧

∧
i(K¬αi ∨ ¬[a]Mγi)))).

These laws say that a fluent Kf (K¬f) holds either as (direct or indirect)
effect of the execution of some action a, or by persistency, since Kf (K¬f) held
in the state before the occurrence of a and its negation is not a result of a.
Observe that the two frame axioms above also determine the values in a state
for [a]Mf and for [a]M¬f .

Observe that, as a difference with [9], in a domain description we do not
distinguish between frame and non-frame fluents and in the following we assume
that all epistemic fluents are frame, that is, they are fluents to which the law of
inertia applies. The kind of non-determinism that we allow here is on the choice
of the actions to be executed, which can be represented by the choice construct
of regular programs.

3 Web service specification

In this section, we describe how the interface of a Web service can be defined by
specifying its interaction protocol. In the social approach [22, 24] an interaction
protocol is specified by describing the effects of communicative actions on the
social state, and by specifying the permissions and the commitments that arise
as a result of the current conversation state. These effects, including the creation
of new commitments, can be expressed by means of action laws.

The action theory introduced above will be used for modeling communica-
tive actions and for describing the social behavior of agents in a multi-agent
system. In defining protocols, communicative actions will be denoted by ac-
tion name(s,r), where s is the sender and r is the receiver. In particular, two
special actions are introduced for each protocol Pn

begin Pn(s, r) and end Pn(s, r),

which are supposed to start and to finish each run of the protocol. For each
protocol, we introduce a special fluent Pn (where Pn is the “protocol name”)
which has to be true during the whole execution of the protocol: Pn is made true
by the action begin Pn(s, r) and it is made false by the action end Pn(s, r).

The use of social commitments has long been recognized as a “key notion” to
allow coordination and communication in multi-agent systems [13]. Among the
most significant proposals to use commitments in the specification of protocols
(or more generally, in agent communication) are those by Singh [22], Guerin and
Pitt [11], Colombetti [5].

In order to handle commitments and their behavior during runs of a protocol
Pn, we introduce two special fluents. One represents base-level commitments and
has the form C(Pn, i, j, α) meaning that in the protocol Pn agent i is commit-
ted to agent j to bring about α, where α is an arbitrary non-temporal formula

not containing commitment fluents. The second commitment fluent models con-
ditional commitments and has the form CC(Pn, i, j, β, α) meaning that in the
protocol Pn the agent i is committed to agent j to bring about α, if the condition
β is brought about.

Commitments are created as effects of the execution of communicative actions
in the protocol and they are “discharged” when they have been fulfilled. A
commitment C(Pn, i, j, α), created at a given state of a run, is regarded to be
fulfilled in a run if there is a later state in the run in which α holds.

We introduce the following causal laws for automatically discharging fulfilled
commitments2:

(i) 2(©α →©Ki,j(¬C(Pn, i, j, α)))
(ii)2((Ki,j(CC(Pn, i, j, β, α)) ∧©β) →©Ki,j(C(Pn, i, j, α)))
(iii)2((Ki,j(CC(Pn, i, j, β, α)) ∧©β) →©Ki,j(¬CC(Pn, i, j, β, α)))

A commitment to bring about α is considered fulfilled and is discharged (i) as
soon as α holds. A conditional commitment CC(Pn, i, j, β, α) becomes a base-
level commitment C(Pn, i, j, α) when β has been brought about (ii) and the
conditional commitment is discharged (iii).

We can express the condition that a commitment C(Pn, i, j, α) has to be
fulfilled before the “run” of the protocol is finished by the following fulfillment
constraint:

2(Ki,j(C(Pn, i, j, α)) → Pn U α)

We will call Comi the set of constraints of this kind for all commitments of
agent i. Comi states that agent i will fulfill all the commitments of which it is
the debtor.

At each stage of the protocol only some of the messages can be sent by
the participants, depending on the social state of the conversation. Permissions
allow to determine which messages are allowed at a certain stage of the protocol.
The permissions to execute communicative actions in each state are determined
by social facts. We represent them by precondition laws. Preconditions on the
execution of action a can be expressed as: 2(α → [a]⊥) meaning that action a
cannot be executed in a state if α holds in that state. We call Permi (permissions
of agent i) the set of all the precondition laws of the protocol pertaining to the
actions of which agent i is the sender.

Let us consider as an example a service for purchasing a good.

Example 1. There are two roles: A customer, denoted by C, and a producer,
denoted by P . The communicative action of the protocol are: request(C,P),
meaning that the customer sends a request for a product, offer(P ,C) and
not avail(P,C), the producer sends an offer or says that the product is not avail-
able, accept(C,P) and refuse(C,P), the customer accepts or refuses the offer.
Furthermore, as pointed out before, there will be the actions begin Pu(C,P)
and end Pu(C,P) to start and finish the protocol.

2 We omit the three similar rules with K replaced by M

As mentioned before, the social state will contain only epistemic fluents. We
denote the social knowledge by KC,P , to mean that the knowledge is shared by
C and P .

The social state will contain the following fluents, which describe the protocol
in an abstract way: requested, the product has been requested, offered , the
product is available and an offer has been sent (we assume that ¬offered means
that the product is not available), accepted, the offer has been accepted. The
fluent Pu means that the protocol is being executed.

Furthermore, we introduce some base-level commitments (to simplify the
notation, in the following we will use Kw

C,P (f) as a shorthand of the formula
KC,P (f) ∨ KC,P (¬f)):

C(Pu, C, P,KC,P (requested))
C(Pu, P, C,Kw

C,P (offered))
C(Pu, C, P,Kw

C,P (accepted))

We also need the following conditional commitments:

CC(Pu, P, C,KC,P (requested),Kw
C,P (offered))

CC(Pu, C, P,KC,P (offered),Kw
C ,P (accepted))

For instance, the first conditional commitment says that the producer is com-
mitted to send an offer, or to say that the product is not available, if a request
for the product has been made.

We can now give the action rules for the action of the protocol. We assume
all fluents to be undefined in the initial state (i.e., for each fluent f , for each
epistemic modality K, ¬Kf and ¬K¬f hold in the initial state), except for
fluent Pu which will be known to be false. The execution of begin Pu(C,P) and
end Pu(C,P) will have the following effects:

2[begin Pu(C,P)]KC,P (Pu) ∧
KC,P (C(Pu, C, P,KC,P (requested))) ∧
KC,P (CC(Pu, P,C,KC,P (requested),Kw

C,P (offered))) ∧
KC ,P (CC (Pu,C ,P ,KC ,P (offered),Kw

C ,P (accepted)))
2[end Pu(C,P)]KC,P (¬Pu)

After starting the protocol, the customer is committed to make a request, and
the conditional commitments are created.

The action laws for the remaining actions are the following:

2[request(C,P)]KC,P (requested)
2[offer(P ,C)]KC ,P (offered) 2[accept(C,P)]KC,P (accepted)
2[not avail(P,C)]KC,P (¬offered) 2[refuse(C,P)]KC,P (¬accepted)

We can now give the preconditions for the actions of the protocol.

2(¬KC,P (¬Pu) → [begin Pu(C,P)]⊥)
2((¬KC,P (Pu) ∨ KC,P (requested)) → [request(C,P)]⊥)
2((¬KC,P (Pu)∨¬KC,P (requested)∨Kw

C,P (offered)) → [offer(P ,C)]⊥)
2((¬KC,P (Pu)∨¬KC,P (requested)∨Kw

C,P (offered)) → [not avail(P ,C)]⊥)
2((¬KC,P (Pu)∨¬KC,P (offered)∨Kw

C ,P (accepted)) → [accept(C ,P)]⊥)
2((¬KC,P (Pu)∨¬KC,P (offered)∨Kw

C ,P (accepted)) → [refuse(C ,P)]⊥)
2(¬KC,P (Pu) → [end Pu(C,P)]⊥)

For instance, action request(C,P) cannot be executed if it is not known that
the protocol has been started or if it is known that the request has already been
achieved (to avoid repeating the action).

A protocol is specified by giving a domain description, defined as follows:

Definition 1. A domain description D is a pair (Π, C) where

– Π is the set of the action and causal laws containing:
• the laws describing the effects of each communicative actions on the so-

cial state;
• the causal laws defining the commitment rules.

– C = Init ∧
∧

i(Permi ∧ Comi) is the conjunction of the constraints on the
initial state of the protocol and the permissions Permi and the commitment
constraints Comi of all the agents i.

Given a domain description D, we denote by Comp(D), the completed do-
main description, the set of formulas: (Comp(Π) ∧ Init ∧

∧
i(Permi ∧ Comi)).

Definition 2. Given the specification of a protocol by a domain description D,
the runs of the system according the protocol are exactly the models of Comp(D).

Note that protocol “runs” are always finite, while the logic DLTL is character-
ized by infinite models. To take this into account, we assume that each domain
description of a protocol will be suitably extended with an action noop which
does nothing and which can be executed only after termination of the protocol,
so as to allow a computation to go on forever after termination of the protocol.

For instance in our example we have the following runs:

begin Pu(C,P); request(C,P); offer(P ,C); accept(C ,P); end Pu(C ,P)
begin Pu(C,P); request(C,P); offer(P ,C); refuse(C ,P); end Pu(C ,P)
begin Pu(C,P); request(C,P);not avail(P,C); end Pu(C,P)

4 Reasoning about Web services

Once the interface of a service has been defined by specifying its protocol, several
kinds of verification can be performed on it as, for instance, the verification of
service compliance with the protocol at runtime, the verification of properties
of the protocol and the verification that a given implemented service, whose
behavior is known, is compliant with the protocol.

The verification that the interaction protocol has the property ϕ amounts to
show that the formula

(Comp(Π) ∧ Init ∧
∧
i

(Permi ∧ Comi)) → ϕ, (5)

is valid, i.e. that all the admitted runs have the property ϕ.
Verifying that a set of services are compliant with a given interaction protocol

at runtime, given the history τ = a1, . . . , an describing the interactions of the
services (namely, the sequence of communicative messages they have exchanged),
amounts to checking if there is a run of the protocol containing that sequence of
communications. This can be done by verifying that the formula

(Comp(Π) ∧ Init ∧
∧
i

(Permi ∧ Comi))∧ < a1; a2; . . . ; an > >

(where i ranges on all the services involved in the protocol) is satisfiable.
In the logic DLTL, a rigid protocol like the purchase protocol of Example 1

can be easily represented by means of a regular program, such as the following
regular program πPu:

begin Pu(C,P); request(C,P);
((offer(P ,C);

(accept(C ,P) + refuse(C ,P)) +
not avail(P ,C));

end Pu(C ,P)

The correctness of this formulation of the protocol with respect to the formu-
lation given in Example 1 can be verified by proving that all runs of πPu satisfy
the permissions and commitments of the participants, i.e. that the following
formula is valid

(Comp(Π) ∧ Init ∧ 〈πPu〉>) →
∧
i

(Permi ∧ Comi) (6)

where 〈πPu〉> constrains each model to begin with an execution of πPu.
Further examples of property verification will be given in the next section.
Verification and satisfiability problems can be solved by extending the stan-

dard approach for verification of linear-time, temporal logic, based on the use
of Büchi automata. We recall that a Büchi automaton has the same structure
as a traditional finite state automaton, with the difference that it accepts in-
finite words. More precisely a Büchi automaton over an alphabet Σ is a tuple
B = (Q,→, Qin, F) where:

• Q is a finite nonempty set of states;
• →⊆ Q×Σ ×Q is a transition relation;
• Qin ⊆ Q is the set of initial states;
• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf (σ) → Q such that:

• ρ(ε) ∈ Qin

• ρ(τ) a→ ρ(τa) for each τa ∈ prf (σ)

The run ρ is accepting iff inf(ρ)∩F 6= ∅, where inf(ρ) ⊆ Q is given by q ∈ inf (ρ)
iff ρ(τ) = q for infinitely many τ ∈ prf (σ).

As described in [12], the satisfiability problem for DLTL can be solved in
deterministic exponential time, as for LTL, by constructing for each formula α ∈
DLTL(Σ) a Büchi automaton Bα such that the language of ω-words accepted
by Bα is non-empty if and only if α is satisfiable.

A more efficient approach for constructing a Büchi automaton from a DLTL
formula making use of a tableau-based algorithm has been proposed in [6]. Given
a formula ϕ, the algorithm builds a graph G(ϕ) whose nodes are labelled by sets
of formulas. States and transitions of the Büchi automaton correspond to nodes
and arcs of the graph. As for LTL, the number of states of the automaton is, in
the worst case, exponential in the size of the input formula, but in practice it is
much smaller.

Since the nodes of the graph G(ϕ) are labeled by sets of formulas, what we
actually obtain by the construction is a labeled Büchi automaton, which can be
defined by adding to the above definition a labeling function L : S → 2Lit, where
Lit is the set of all epistemic literals3. It is easy to obtain from an accepting run
of the automaton a set of models of the given formula, by completing the label
of each state in all consistent ways.

The validity of a formula α can be verified by constructing the Büchi au-
tomaton B¬α for ¬α: if the language accepted by B¬α is empty, then α is valid,
whereas any infinite word accepted by B¬α provides a counterexample to the
validity of α.

For instance, given a completed domain description

(Comp(Π) ∧ Init ∧
∧

i(Permi ∧ Comi))

specifying a protocol, we can construct the corresponding labeled Büchi automa-
ton, such that all runs accepted by the automaton represent runs of the protocol.
In [9], we show how to take advantage of the structure of the problems considered
in this paper to optimize the construction of the Büchi automaton.

5 Composing Web services

Assume now that we have a service Sh for shipping goods, and that the customer
wants to reason about the composition of the producer service of the previous
section and of this service. For simplicity we assume that the protocol of the
shipping service is the same as that of producer service. To distinguish the two
protocols we will add the suffix Pu or Sh to their actions and fluents, while the
role of the shipper will be denoted by S.
3 Note that epistemic literals are considered as atomic propositions.

The domain description DPS of the composed service can be obtained by
taking the union of the sets of formulas specifying the two protocols: DPS =
DPu∪DSh. Since we want to reason from the side of the customer, we will replace
the epistemic operators KP,C and KS,C with KC , representing the knowledge
of the customer. Thus the runs of the composed service PS are given by the
interleaving of all runs of the two protocols.

The aim of the customer is to extract from the domain description of PS a
plan allowing it to interact with the two services. The goal of the plan will be
specified by means of a set of constraints Constr which will take into account
the properties of the composed service. For instance, the customer cannot re-
quest an offer to the shipping service if it has not received an offer from the
producer. This can be easily expressed by adding a new precondition to the
action request Sh(C,S):

2(¬KC(offered Pu) → [request Sh(C ,S)]⊥)

Other constraints cannot be easily expressed by means of preconditions, since
they involve more “global” properties of a run. For instance we expect that the
customer cannot accept only one of the offers of the two services. This property
can be expressed by the following formula

3〈accept Pu(C,P)〉 ↔ 3〈accept Sh(C,S)〉

stating that the customer must accept both offers or none of them.
Then, the specification of the interaction protocol of the composed service

is given by DPS ∪ Constr, from which the customer will extract the plan. To
do this, however, we must first discuss an important aspect of the protocol, i.e.
nondeterminism.

We assume that, if a protocol contains a point of choice among different
communicative actions, the sender of these actions can choose freely which one to
execute, and, on the other hand, the receiver cannot make any assumption about
which of the actions it will receive. Therefore, from the viewpoint of the receiver,
that point of choice is a point of nondeterminism to care about. For instance,
the customer cannot know whether the service Pu will reply with offer Pu or
not avail Pu after receiving the request. Therefore the customer cannot simply
reason on a single choice of action, but he will have to consider all possible
choices of the two services, thus obtaining alternative runs, corresponding to a
conditional plan. An example of conditional plan is the following4

begin Pu; request Pu;
(offer Pu; begin Sh; request Sh;

(offer Sh; accept Pu; accept Sh; end Pu; end Sh +
not avail Sh; refuse Pu; end Pu; end Sh)) +

(not avail Pu; end Pu).

This plan is represented as a regular program, where, in particular, “+” is the
choice operator.
4 We omit sender and receiver of communicative actions.

Since we are using a linear-time, temporal logic, the constraints in Con-
str can only express properties dealing with a single run. For instance, the
run begin Pu; request Pu; offer Pu; accept Pu; begin Sh; request Sh; offer Sh;
accept Sh; end Pu; end Sh is correct with respect to the above constraints, since
both offers are accepted. However, assume that the customer chooses to execute
this plan, and, after executing action request Sh, the shipping service replies
with not avail Sh. At this point there is no other way of continuing the execu-
tion, since the customer has already accepted the offer by the producer, while it
should have refused it.

The first step for obtaining a conditional plan consists in building the Büchi
automaton obtained from the domain description DPS and the constraints Con-
str. During the construction of the automaton, we will mark as AND states
those states whose outgoing arcs are labeled with actions whose sender is one
of the services, such as offer Pu or not avail Pu5. The plan can be obtained by
searching the automaton with a forward-chaining algorithm which considers all
AND states as branching points of the plan.

In this example, and in many similar cases, the size of the Büchi automaton
obtained from the specification of the protocol is small enough to be directly
manageable. In this case we might adopt a different approach to the construction
of a conditional plan, consisting of “pruning” once and for all the automaton by
removing all arcs which do not lead to an accepting state, and all AND states
for which there is some outgoing arc not leading to an accepting state. In this
way we are guaranteed that, if there is a run σ1; offer Sh;σ2 , where σ1 and σ2

are sequences of actions, there must also be a run σ1;not avail Sh;σ3, for some
sequence of actions σ3. Therefore the customer can execute the first part σ1 of
the run, being sure that it will be able to continue with run σ3 if the shipping
service replies with not avail Sh. In other words, the customer will be able to act
by first extracting a linear plan, and begin executing it. If, at some step, one of
the services executes an action different from the one contained in the plan, the
customer can build a new plan originating from the current state, and restart
executing it.

In the construction of the conditional plan, we have taken into account only
the nondeterministic actions of the two services. However there are some choices
regarding the actions of the customer, such as accept Pu or refuse Pu, that
cannot be made at planning time. These nondeterministic choices can also be
considered in a conditional plan. In our example we might have the following
conditional plan πPS

begin Pu; request Pu;
((offer Pu; begin Sh; request Sh;

(offer Sh;
(accept Pu; accept Sh; end Pu; end Sh +
refuse Pu; refuse Sh; end Pu; end Sh) +

not avail Sh; refuse Pu; end Pu; end Sh)) +
5 For simplicity we assume that there is no state whose outgoing arcs are labeled with

actions sent and received by the same agent.

(not avail Pu; end Pu))

Note that, in the case of nondeterministic actions of the customer, we are
not imposing all choices to be present in the conditional plan, as we did for the
actions of the other participants, because some choices might not be possible due
to the constraints. For instance, after accept Pu the customer must necessarily
execute accept Sh.

A different problem, which can be tackled in our formalism when the condi-
tional plan πPS is given, is that of verifying its correctness with respect to the
protocols of the composed services. This requires to verify that, in every run
of the conditional plan all the permissions and commitments of the component
services are satisfied, and can be done by proving that the formula∧

k

(Comp(Πk) ∧ Init ∧ 〈πPS〉> →
∧
k,j

(Permk
j ∧ Comk

j))

is valid, where k ranges over the different services and, for each k, j ranges over
all the participants of service k. In a similar way, it can be verified that the plan
πPS satisfies the constraints Constr defined above, by showing the validity of
the formula: ∧

k

(Comp(Πk) ∧ Init ∧ 〈πPS〉> → Constr).

Up to now the kind of reasoning performed on composed protocols has taken
into account only the “public” actions, i.e. the communicative actions of the
component protocols. However, in general, the customer should be able to use
“private” actions to reason about the information received from the services and
to decide what action to execute. Since the information sent by the services will
be available only at runtime, such an action should be considered as a nonde-
terministic action at planning time. We might easily extend our approach to
this case by extending the specification of the composed services with “private”
actions and fluents of the customer.

The approach described in this section can be applied to the more general
problem of building a new service that manages all interactions between the
customer and the two services, so that the customer interacts only with the new
service through a suitable protocol [19]. Given the protocol Cu specifying the
interactions between the customer and the new service, the new service can be
obtained by putting together the three protocols Cu, Pu and Sh, and by adding
suitable constraints similar to the ones given above. For instance we may state
that the offers of each of the two services can be accepted if and only if the
customer accepts them:

(3〈accept Pu〉 ↔ 3〈accept Cu〉) ∧ (3〈accept Sh〉 ↔ 3〈accept Cu〉)

We can then proceed as before by building the Büchi automaton from the
composed protocol and extracting from it a conditional plan, as for instance:

begin Cu; request Cu;
begin Pu; request Pu;

((offer Pu; begin Sh; request Sh;
((offer Sh; offer Cu;

(accept Cu; accept Pu; accept Sh; end Pu; end Sh; end Cu +
refuse Cu; refuse Pu; refuse Sh; end Pu; end Sh; end Cu)) +

not avail Sh; not avail Cu; refuse Pu; end Pu; end Sh; end Cu)) +
not avail Pu; not avail Cu; end Pu; end Cu)

This plan can be considered as a specification of the (abstract) behavior of
the new service.

6 Conclusions and related work

In this paper we have presented an approach for the specification and verification
of interaction protocols in a temporal logic (DLTL). Our approach provides a
unified framework for describing different aspects of multi-agent systems. Pro-
grams can be expressed as regular expressions, (communicative) actions can be
specified by means of action and precondition laws, social facts can be speci-
fied by means of commitments whose dynamics are ruled by causal laws, and
temporal properties can be expressed by means of temporal formulas. To deal
with incomplete information, we have introduced epistemic modalities in the
language, to distinguish what is known about the social state from what is un-
known. In this framework, various verification problems can be formalized as
satisfiability and validity problems in DLTL, and they can be solved by devel-
oping automata-based techniques.

Our proposal is based on a social approach to agent communication, which
allows a high level specification of the protocol and does not require a rigid spec-
ification of the correct action sequences. For this reason, the approach appears
to be well suited to reason about composition of Web services. In [8] we have
addressed the problem of combining two protocols to define a new more special-
ized protocol. Here we have shown that service composition can be modeled by
taking the formulas giving the domain descriptions of the services, by adding
suitable temporal constraints to them, and translating the set of formulas into
a Büchi automaton from which a (conditional) plan can be obtained.

The proposal of representing states as sets of epistemic fluent literals is based
on [1], which presents a modal approach for reasoning about dynamic domains
in a logic programming setting. A similar “knowledge-based” approach has been
used to define the PKS planner, allowing to plan under conditions of incom-
plete knowledge and sensing [16]. PKS generalizes the STRIPS approach, by
representing a state as a set of databases that model the agent’s knowledge.

The problem of the automated composition of Web services by planning in
asynchronous domains is addressed in [19], and extended to the “knowledge
level” in [18]. Web services are described in standard process modeling and
execution languages, like bpel4ws, and then automatically translated into a
planning domain that models the interactions among services at the knowledge

level. The planning technique [19] consists of the following steps. The first step
constructs a parallel state transition system that combines the given services in
a planning domain. The next step consists of formalizing the requirements for
the composite service as a goal in a specific language which allows to express
extended goals [3]. Finally the planner generates a plan that is translated into
a state transition system and into a concrete bpel4ws process. The planning
problem is solved by making use of the state-of-the-art planner MBP.

The approach to Web service composition presented in this paper has analo-
gies with the one presented in [18], particularly with respect to the sequence of
steps performed to build the plan. However, the approach of [18] is based on
a planning technique derived from model checking for branching-time temporal
logic CTL [17], while our approach is based on the dynamic, linear-time, tempo-
ral logic DLTL, and on the translation of DLTL formulas into Büchi automata.

In [2] the problem of automatic service composition is addressed assuming
that a set of available services (whose behavior is represented by finite state
transition systems) is given together with a possibly incomplete specification of
the sequences of actions that the client would like to realize. The problem of
checking the existence of a composition is reduced to the problem of checking
the satisfiability of a PDL formula. This provides an EXPTIME complexity up-
per bound. In contrast to [2], in our approach client requirements are specified
by providing a set of conditions that the target service must satisfy. The com-
position problem considered in [2] is a generalization of the verification problem
we have addressed at the end of section 5 for the case when the protocol of the
target service is underspecified and the component e-services that will provide
the services required by the client are not known. The extension of our approach
to deal with underspecified specifications of the target service will be the subject
of further investigation.

References

1. M. Baldoni, L. Giordano, A. Martelli, and Viviana Patti. Reasoning about complex
actions with incomplete knowledge: a modal approach. In Proc. ICTCS’01- LNCS
2202, 405–425, 2001.

2. D. Berardi, G. De Giacomo, M. Lenzerini, M. Mecella and D Calvanese. Syntesis
of Underspecified Composite e-Services based on Automated Reasoning. In Proc.
ICSOC’04, 105–114, 2004.

3. U.Dal Lago, M.Pistore, P.Traverso: Planning with a Language for Extended Goals.
AAAI 2002, 447-454, 2002.

4. F.Dignum and M.Greaves, “Issues in Agent Communication:An Introduction”. In
F.Dignum and M.Greaves (Eds.), Issues in Agent Communication, LNAI 1916, 1-16,
1999.

5. N. Fornara and M. Colombetti. Defining Interaction Protocols using a Commitment-
based Agent Communication Language. Proc. AAMAS’03, Melbourne, 520–527,
2003.

6. L. Giordano and A. Martelli. Tableau-based Automata Construction for Dynamic
Linear Time Temporal Logic. Annals of Mathematics and Artificial Intelligence, to
appear, Springer, 2006.

7. L. Giordano, A. Martelli, and C. Schwind. Verifying Communicating Agents by
Model Checking in a Temporal Action Logic. Proc. Logics in Artificial Intelligence,
9th European Conference, JELIA 2004, Lisbon, Portugal, Springer LNAI 3229, 57-69,
2004.

8. L. Giordano, A. Martelli, and C. Schwind. Specialization of Interaction Protocols
in a Temporal Action Logic. LCMAS05 (3rd Int. Workshop on Logic and Commu-
nication in Multi- Agent Systems), ENTCS 157, 4, 1-138, 2006.

9. L. Giordano, A. Martelli and C. Schwind. Specifying and Verifying Interaction
Protocols in a Temporal Action Logic Journal of Applied Logic (Special issue on
Logic Based Agent Verification), Elsevier, to appear 2006.

10. M. Greaves, H. Holmback and J. Bradshaw. What Is a Conversation Policy?. Issues
in Agent Communication,LNCS 1916 Springer, 118-131, 2000.

11. F. Guerin and J. Pitt. Verification and Compliance Testing. Communications in
Multiagent Systems, Springer LNAI 2650, 98–112, 2003.

12. J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time Temporal Logic. in
Annals of Pure and Applied logic, vol.96, n.1-3, 187–207, 1999

13. N.R. Jennings. Commitments and Conventions: the foundation of coordination in
multi-agent systems. In The knowledge engineering review, 8(3),233–250, 1993.

14. N. Maudet and B. Chaib-draa. Commitment-based and dialogue-game based pro-
tocols: new trends in agent communication languages. The Knowledge Engineering
Review, 17(2):157-179, June 2002.

15. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Composi-
tion of Web Services. In Proceedings of the Eleventh International World Wide Web
Conference (WWW-11), 77–88, May 2002.

16. R. Petrick and F. Bacchus. A knowledge-based approach to planning with incom-
plete information and sensing. In Proceedings of the International Conference on
Artificial Intelligence Planning (AIPS), 212-222, 2002.

17. M.Pistore and P.Traverso. Planning as Model Checking for Extended Goals in
Non-deterministic Domains. Proc. IJCAI’01, Seattle, 479-484, 2001.

18. M. Pistore, A. Marconi, P. Bertoli and P. Traverso. Automated Composition of Web
Services by Planning at the Knowledge Level. Proc. International Joint Conference
on Artificial Intelligence (IJCAI), 1252–1259, 2005.

19. M. Pistore, P. Traverso and P. Bertoli. Automated Composition of Web Services
by Planning in Asynchronous Domains. ICAPS 2005. 2–11, 2005.

20. R. Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, V. Lifs-
chitz, ed., 359–380, Academic Press, 1991.

21. M. P. Singh. Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12), 40–47, 1998.

22. M. P. Singh. A social semantics for Agent Communication Languages. In Issues
in Agent Communication, Springer LNCS 1916, 31–45, 2000.

23. B. Srivastava and J. Koehler. Web Service Composition - Current Solutions and
Open Problems, In ICAPS 2003 Workshop on Planning for Web Services, 28 - 35,
Trento, Italy, June 2003.

24. P. Yolum and M.P. Singh. Flexible Protocol Specification and Execution: Applying
Event Calculus Planning using Commitments. In AAMAS’02, 527–534, Bologna,
Italy, 2002.

