
Forgetting in Managing Rules and Ontologies∗

Thomas Eiter, Giovambattista Ianni,
Roman Schindlauer, Hans Tompits

Institut für Informationssysteme 184/3,
Technische Universität Wien,

Favoritenstrasse 9-11,
A-1040 Vienna, Austria

{eiter, ianni, roman, tompits}@kr.tuwien.ac.at

Kewen Wang
School of Information and

Communication Technology,
Griffith University,

Brisbane, QLD 4111, Australia
k.wang@cit.gu.edu.au

Abstract

The language of HEX-programs under the answer-set se-
mantics is designed for interoperating with heterogeneous
sources via external atoms and for meta-reasoning via
higher-order literals in the context of the Semantic Web. As
an important technique in managing knowledge bases, the
notion of forgetting has received increasing interest in the
knowledge-representation area. In this paper, we introduce
a semantics-based theory of forgetting for HEX-programs
and, in turn, for a class of OWL/RDF ontologies which al-
lows to fully employ semantic information in managing on-
tologies like editing, merging, aligning, and redundancy re-
moval.

1 Introduction

An ontology is a formal representation of concepts and
relationships between them, making global interoperability
possible. Managing ontologies is a central task for many
Semantic-Web applications. However, it is often acknowl-
edged that the Ontology Layer of the Semantic Web [1] is
insufficient in its reasoning abilities. In particular, more and
more ontologies are available on the Web and they are often
very large in size and heterogeneous in location.

This phenomenon brings up a good deal of challenges
to researchers in the Semantic Web. For example, when
an ontology design is involved, we have to consider some
issues like how to tailor an ontology or how to merge on-
tologies. Recently, these and related issues of managing
ontologies have received considerable interests [12, 17, 18,

∗This work was partially supported by the Austrian Science Funds
(FWF) projects P17212 and 18019, the European Commission project
REWERSE (IST-2003-506779) and the Australia Research Council (ARC)
Discovery Project 0666107.

9, 10, 7]. Related issues include ontology editing, ontology
segmentation, ontology merging, ontology aligning, ontol-
ogy reusing, ontology update, and ontology redundancy re-
moval. To some extent, all of these issues can be reduced
to the problem of extracting relevant segments out of large
ontologies for the purpose of effective management of on-
tologies so that the tractability for both humans and com-
puters is enhanced. Such segments are not mere fragments
of ontologies, but stand alone as ontologies in their own
right. The intuition here is similar to views in databases: an
existing ontology is tailored to a smaller ontology so that
an optimal ontology is produced for specific applications.
Although this problem has been identified and a number of
approaches are proposed, like, e.g., [8, 20], a general frame-
work for tailoring ontologies in a purely semantic way is
still missing.

On the other hand, the notion of forgetting [4, 15, 14] is
a promising technique for adequately handling a range of
classical tasks such as query answering, planning, decision-
making, reasoning about actions, or knowledge update and
revision. The idea of forgetting consists, informally, in
the intelligent and “painless” removal of information from
a given knowledge base. In other words, one may select
some literals, predicates, or concepts, for being discarded
(or forgotten) in a given knowledge base. However, the in-
formation selected for elimination is usually logically con-
nected with other portions of the same knowledge base. It
is thus important to preserve, to the best extent, soundness
and completeness of the information entailed after removal.

While a literature on forgetting in logic programming
exists (see, e.g., [22, 4]), and although forgetting takes rele-
vance also in ontology-description formalism such as OWL,
an explicit notion of forgetting has not been given yet for
this class of languages. In this respect, the relationship be-
tween a notion of forgetting in ontologies and of forgetting
in rule-based formalisms has not satisfactorily been investi-
gated yet, and is thus matter of new research.

The problem of forgetting in ontologies can indeed be
solved by exploiting the connection between ontology-
description formalisms and logic programming. That is,
given a sound notion of forgetting for logic programming,
a knowledge base L, formulated under a generic semantics
(e.g. RDFS, OWL, etc.) can be transposed to an equiva-
lent logic program PL, formulated under a different (and
usually, nonmonotonic) semantics. Then, logic program-
ming forgetting techniques are applied to PL and a modi-
fied program, forget(PL, l), is obtained and translated back
to a knowledge base L′, where l is the information to be dis-
carded, which can be either a propositional atom, a concept,
or a predicate.

Nonetheless, in order to fulfill the above approach, sev-
eral issues, some of which already tackled in the literature,
have to be solved and accommodated:

• A systematic way for translating L to PL must be
given. Attempts in this direction are several: for in-
stance, Grosof et al. [11] translate a fragment of OWL-
DL to Horn logic, whereas Swift [21] and Motik, Volz,
and Maedche [16] port significant fragments of de-
scription logics to positive disjunctive logic programs.

• The pre-existing forgetting semantics [22, 4] mainly
concentrates on discarding propositional information
from ground programs. However, often PL might
be a non-ground program and l a non-propositional
value (such as a predicate whose entire extension must
be discarded). Also, many ontology description lan-
guages (such as RDF and RDFS) include the possibil-
ity of exchanging the notion of class with the notion of
individual, in order to enable meta-reasoning. In such
a setting, PL is better mapped to a higher-order logic
program.

• Also it is unclear in which cases forget(PL, l) can be
mapped back to a valid knowledge base L′.

In the present paper, we aim at answering some of the
questions above.

The logic programming language of choice is HEX, as
defined in previous work [3]. This is a rule-based, fully
declarative formalism which allows both for higher-order
atoms and external atoms, under a well-defined generaliza-
tion of the answer-set semantics [6].

Intuitively, a higher-order atom allows to quantify val-
ues over predicate names and to freely exchange predicate
symbols with constant symbols, like in the rule C (X) ←
subClassOf (D, C), D(X). An external atom facilitates
the assignment of a truth value of an atom through an
external source of computation. For instance, the rule
t(Sub,Pred ,Obj) ← &rdf [uri](Sub,Pred ,Obj) com-
putes the predicate t taking values from the predicate &rdf .
The latter extracts RDF statements from the set of URIs

specified by the extension of the predicate uri ; this task
is delegated to an external computational source (e.g., an
external deduction system, an execution library, etc.). Ex-
ternal atoms allow for a bidirectional flow of informa-
tion to and from external sources of computation such as
description-logic reasoners. By means of HEX-programs,
powerful meta-reasoning becomes available in a decidable
setting, e.g., not only for Semantic-Web applications, but
also for meta-interpretation techniques in answer-set pro-
gramming (ASP) itself, or for defining policy languages.

The contributions in this paper can be summarized as
follows:

1. We introduce the notion of semantic forgetting for
HEX-programs. Forgetting in logic programs has been
previously considered by Eiter and Wang [4], who de-
fined forgetting of a given literal l in the context of
propositional disjunctive logic programs. This notion
is extended in order to deal with external and higher-
order atoms, as well as with positive non-ground pro-
grams.

2. We develop an algorithm for forgetting which is useful
in the setting of ontology management. The basic idea
of this algorithm is that certain rules that are locally
redundant may become relevant afterwards and thus
they are kept in the program.

3. We show how semantic forgetting of ontologies can be
performed using an equivalent logic program, whose
modified versions (after forgetting) are translated back
to ontologies. In particular, that fragment of OWL-
DL is taken into account which can be translated to
description-logic programs [11]. The approach can be
currently generalized to all those ontology languages
for which a sound and complete mapping to positive
logic programs is known.

Our approach is illustrated on some example application.
For this, we use an ontology “Person-Relationship” in the
paper, which can be scaled as large as one wishes.

The rest of the paper is organized as follows. Section 2
briefly recalls syntax and semantics of HEX-programs. Sec-
tion 3 introduces the notion of semantic forgetting for HEX-
programs and a novel algorithm for computing forgetting.
As well, forgetting for non-ground positive programs is de-
fined. Section 4, then, discusses a method for forgetting
OWL/RDF-ontologies in terms of a transformation tech-
nique. Finally, Section 5 wraps up the paper with some
concluding remarks.

2 HEX-Programs

2.1 Syntax

HEX programs are built on mutually disjoint sets C, X ,
and G of constant names, variable names, and external
predicate names, respectively. Unless stated otherwise, el-
ements from X (resp., C) are written with first letter in up-
per case (resp., lower case), and elements from G are pre-
fixed with “ & .” Constant names serve both as individual
and predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-
order atom (or atom) is a tuple (Y0, Y1, . . . , Yn), where
Y0, . . . , Yn are terms and n ≥ 0 is its arity. Intuitively,
Y0 is the predicate name; we thus also use the familiar no-
tation Y0(Y1, . . . , Yn). The atom is ordinary, if Y0 is a con-
stant. For example, (x, rdf :type, c) and node(X) are ordi-
nary atoms, while D(a, b) is a higher-order atom. An exter-
nal atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms
(called input list and output list, respectively), and &g is an
external predicate name.

It is possible to specify molecules of atoms similar as in
F-Logic [13]. For instance, gi [father → X, Z → iu] is a
shortcut for the conjunction father(gi,X), Z(gi, iu).

A HEX-program1 is a set of rules of the form

α1 ∨ · · · ∨αk ← β1, . . . , βn,not βn+1, . . . ,not βm, (2)

where m, k ≥ 0, α1, . . . , αk are higher-order atoms, and
β1, . . . , βm are either higher-order atoms or external atoms.
The operator “not” is negation as failure (or default nega-
tion). For a rule r as in (2), we define head(r) = α
and body(r) = body+(r) ∪ body−(r), where body+(r) =
{β1, . . . , βn} and body−(r) = {βn+1, . . . , βm}. If r con-
tains only ordinary atoms, then r is ordinary. Furthermore,
r is quasi-negative if n = 0. A HEX-program is quasi-
negative if it contains only quasi-negative rules. An ordi-
nary rule is positive iff m = n, i.e., if it contains no nega-
tion as failure. A program is positive iff all rules in it are
positive.

We mention that higher-order features in logic programs
have also been considered, e.g., by Chen, Kifer, and War-
ren [2] and Ross [19].

2.2 Semantics

The semantics of HEX-programs [3] is defined by gener-
alizing the answer-set semantics [6]. The Herbrand base

1In contrast to the original definition in [3], here we consider only HEX-
programs without disjunctions in rule heads.

of a program P , denoted HBP , is the set of all possi-
ble ground versions of atoms and external atoms occur-
ring in P obtained by replacing variables with constants
from C. The grounding of a rule r, grnd(r), is defined
accordingly, and the grounding of program P is given by
grnd(P) =

⋃
r∈P grnd(r). Unless specified otherwise, C,

X , and G are implicitly given by P .
Any subset I ⊆ HBP containing only atoms is called an

interpretation relative to P . We say that an interpretation I
is a model of an atom a ∈ HBP iff a∈ I . Furthermore,
I is a model of a ground external atom a = &g [y1, . . . ,
yn](x1, . . . , xm) iff

f&g(I, y1, . . . , yn, x1, . . . , xm)= 1,

where f&g is an (n+m+1)-ary Boolean function associated
with &g, called oracle function, assigning each element of
2HBP ×Cn+m either 0 or 1. We write I |= a to express that
I is a model of a. For a disjunction D = α1 ∨ · · · ∨ αk,
I |= D iff I |= αi for some i (1 ≤ i ≤ k).

Let r be a ground rule. We define (i) I |= body(r) iff
I |= a for all a∈ body+(r) and I 6|= a for all a∈ body−(r),
and (ii) I |= r iff I |=head(r) whenever I |= body(r). We
say that I is a model of a HEX-program P , denoted I |=P ,
iff I |= r for all r∈ grnd(P).

The Faber-Leone-Pfeifer reduct [5] (or FLP-reduct, for
short) of P with respect to I ⊆HBP , denoted fP I , is the
set of all r ∈ grnd(P) such that I |= body(r). I ⊆HBP

is an answer set of P iff I is a minimal model of fP I . By
AS(P) we denote the set of all answer sets of P .

A HEX-program is consistent if it has at least one answer
set. We call two HEX-programs, P and Q, equivalent, sym-
bolically P ≡ Q, iff AS(P) = AS(Q).

In practice, it is useful to differentiate between two kinds
of input attributes for external atoms. For an external pred-
icate &g (exploited, say, in an atom &g[p](X)), a term ap-
pearing in an attribute position of type predicate (in this
case, p) means that the outcomes of f&g are dependent from
the current interpretation I , for what the extension of the
predicate named p in I is concerned. An input attribute
of type constant does not imply a dependency of f&g from
some portion of I . An external predicate whose input at-
tributes are all of type constant does not depend from the
current interpretation.

Example 1 The external predicate &rdf introduced before
is implemented with a single input argument of type predi-
cate, because its associated function finds the RDF-URIs in
the extension of the predicate uri :

tr(S, P,O)← &rdf [uri](S, P, O),
uri(“file://foaf .rdf ”)← .

Should the input argument be of type constant, an equiva-

lent program would be:

tr(S, P,O)← &rdf [“file://foaf .rdf ”](S, P, O)

or

tr(S, P, O)← &rdf [X](S, P, O), uri(X),
uri(“file://foaf .rdf ”)← .

2

3 Forgetting in HEX-Programs

As we have explained in Section 1, the technique of for-
getting is useful in managing ontologies. So it is natural
and interesting to generalize forgetting to HEX-programs.
In fact, since HEX-programs have higher-order syntax but
first-order semantics, it allows us to adapt the notion of for-
getting to HEX-programs. In this section, we introduce the
notion of forgetting for HEX-programs. The intuition be-
hind the forgetting of an atom l in a HEX-program is to
obtain a HEX-program which is equivalent to the original
HEX-program if we ignore the existence of l.

In the next subsection, we assume that HEX-programs are
ground and consistent. When a HEX-program with variables
is given, it is a shorthand for its ground version. As we will
see in Section 4, forgetting in an RDF ontology is defined
in terms of forgetting in the corresponding logic program,
which is a non-ground positive program. So, in Subsec-
tion 3.2, forgetting in non-grounded positive programs is
considered.

3.1 Forgetting in Ground HEX-Programs

We call a set X ′ an l-subset of a set X , denoted X ′ ⊆l

X , if X ′ \ {l} ⊆ X \ {l}. Similarly, a set X ′ is a strict l-
subset of X , denoted X ′ ⊂l X , if X ′ \ {l} ⊂ X \ {l}. Two
sets X and X ′ of literals are l-equivalent, denoted X ∼l

X ′, if (X \X ′) ∪ (X ′ \X) ⊆ {l}.

Definition 1 Let P be a consistent HEX-program, let l be a
(ground) atom in P , and let X be a set of atoms.

1. For a collection S of sets of atoms, X ∈ S is l-minimal
in S if there is no X ′ ∈ S such that X ′ ⊂l X .

2. An answer set X of a HEX-program P is an l-answer
set if X is l-minimal in AS(P).

Example 2 Let P = {p ← not q; q ← not p; s ←
p; s ← q}. It is easy to see that P has two answer sets, viz.
X = {p, s} and X ′ = {q, s}. Then, X is a p-answer set but
X ′ is not. 2

Having defined the notion of minimality about forgetting
an atom, we are now in a position to define the result of
forgetting about an atom in a HEX-program.

Definition 2 Let P be a consistent HEX-program and let
l be a (ground) atom. A HEX-program P ′ is a result of
forgetting about l in P , if P ′ represents l-answer sets of P ,
i.e., such that the following conditions are satisfied:

1. At(P ′) ⊆ At(P) − {l}, where, for any program Q,
At(Q) denotes the set of atoms occurring in Q.

2. For any set X ′ of atoms with l /∈X ′, X ′ is an answer
set of P ′ iff there is an l-answer set X of P such that
X ′ ∼l X .

Note that the first condition implies that l does not appear
in P ′.

For a consistent HEX-program P and an atom l, some
program P ′ as in Definition 2 always exists. However,
different such programs P ′ might exist. It follows from
the above definition that they are all equivalent under the
answer-set semantics.

Proposition 1 Let P be a HEX-program and l an atom in
P . If P ′ and P ′′ are two results of forgetting about l in P ,
then P ′ ≡ P ′′.

We use forget(P, l) to denote a possible result of forgetting
about l in P .

Since an atom that does not appear in the head of a rule
in a HEX-program is automatically assumed to be false in
the process of forgetting for ordinary programs, all external
atoms would be removed from the program. In particular,
the result of forgetting depends on the truth value of the
oracle function for external atoms. For example, if we for-
get about p from HEX-program P = {p ←; q ← &g},
then we may obtain two results of forgetting: if the external
atom &g is evaluated to be 1, then forget(P, p) = {q ←};
if &g is evaluated to be 0, then forget(P, p) = {}. How-
ever, we would like to obtain a result of forgetting that
is independent of the oracle function. In this example,
forget(P, p) = {q ← &g}. This is very important for
many applications since we may not know the oracle func-
tion when the forgetting is carried out. For this reason, the
native algorithm for forgetting [4] is not helpful for HEX-
programs. Thus, we introduce a new algorithm, which is
inspired by Algorithm 4 in the system LPForget.2

Preparatory for describing the algorithm, below we in-
troduce some program transformations for HEX-programs,
which are generalizations of respective ones for ordinary
programs [4].

In the following, let P and P ′ be HEX-programs.

2See http://www.cit.gu.edu.au/˜kewen/LPForget/.

Elimination of Tautologies: P ′ is obtained from P by
elimination of tautologies iff there is a rule r in P such
that some atom in head(r) appears in body+(r) and
P ′ = P − {r}.

Elimination of Head Redundancy: P ′ is obtained from
P by elimination of head redundancy iff there is a
rule r in P such that some atom in head(r) appears
in body+(r) and P ′ = (P − {r}) ∪ {← body(r)}.

Positive Reduction: P ′ is obtained from P by positive re-
duction iff there is a rule r in P such that body−(r)
contains some non-external atom c which does not oc-
cur in the head of any rule in P and P ′ is obtained from
P by removing not c from r.

Note that an external atom will be not be removed by
the positive reduction.

Negative Reduction: P ′ is obtained from P by negative
reduction iff there are two rules r and r′ : b′ ← in P
such that b′ ∈ body−(r) and P ′ = P − {r}.

Elimination of Implications: Let r and r′ be two distinct
rules in a logic program. We say that r′ is an impli-
cation of r if head(r) = head(r′) and body(r) ⊂
body(r′). Then, P ′ is obtained from P by elimina-
tion of implications iff there are two distinct rules r
and r′ of P such that r′ is an implication of r and
P ′ = P − {r′}.

Elimination of Contradictions P ′ is obtained from P by
elimination of contradictions if there is a rule r in P
such that body+(r)∩body−(r) 6= ∅ and P ′ = P \{r}.

Unfolding: For two rules r and r′ such that head(r′) ∈
body+(r), the unfolding of r with r′, symbolically
unfold(r, r′), is the rule head(r) ← (body(r) −
{head(r′)}), body(r′). Then, P ′ is obtained from P
by unfolding if there is a rule r such that

P ′ = (P − {r}) ∪ {unfold(r, r′) | r′ ∈ P,
head(r′) ∈ body+(r)}.

A special case of unfolding is when there is no rule
r′ such that r′ is resolved with r. In this case, P ′ =
P − {r}.

We use T to denote the set of program transformations
introduced above.

Lemma 1 By using program transformations from T , ev-
ery HEX-program can be transformed into a quasi-negative
program such that no atom appears in both head and body
of a rule.

Algorithm 1 (Computing a result of forgetting)
Input: HEX-program P and an atom l in P .
Output: Program forget(P, l) as a result of forgetting l
from P .
Method:
Step 1. Positive Splitting: Initially take Q as the set of all
rules in which l appears. For every rule r in P such that
either head(r) or some literal of body−(r) appears in Q,
add r to Q. Repeat this process until no new rule can be
added. The resulting program is still denoted Q.
Step 2. Fully apply on Q the program transformations T
and then obtain a quasi-negative program Q′. During this
process, we keep record of the set RU(Q, l) of all rules
removed by unfolding but containing no appearance of l.
Step 3. Suppose that Q′ has n rules with head l:

rj : l ← not lj1, ...,not ljmj
,

where n ≥ 0, j = 1, . . . , n and mj ≥ 0 for all j.
If n = 0, then let Q′′ denote the program obtained from Q′

by removing all appearances of not l.
If n = 1 and m1 = 0, then l ← is the only rule in Q′ having
head l. In this case, remove every rule in Q′ whose body
contains not l. Let Q′′ be the resulting program.
For n ≥ 1 and m1 > 0, let D1, . . . , Ds be all possible
conjunctions (l1k1 , · · · , lnkn), where 0 ≤ k1 ≤ m1, ...,
0 ≤ kn ≤ mn. Replace each occurrence of not l in Q′ by
all possible Di. Let Q′′ be the result.
Step 4. Output Q′′ ∪ RU(Q, l) ∪ Q̄ as forget(P, l), where
Q̄ = P \Q.

Figure 1. Algorithm 1 for computing a result
of forgetting.

The algorithm for computing the result of forgetting, re-
ferred to as Algorithm 1, is depicted in Figure 1. This
algorithm can be easily implemented using the system
LPForget. Note that the current form of Algorithm 1 is in-
complete with respect to the semantic forgetting for some
special cases while it is intuitive and can be seen an ideal
approximation to the semantic forgetting. A complete algo-
rithm is obtained by replacing Step 3 with Step 3 of Algo-
rithm 2 given by Eiter and Wang [4].

Example 3 Suppose that L is a knowledge base on the Web
consisting of various axioms about persons and their rela-
tionships. In particular, L contains assertions depicted in
Figure 2.

Let P now be the following HEX-program, where &dlC
and &dlR are external atoms that query the extensions of a
specified concept resp. role from a single description logic

Male v Person parentOf (Bob,Emma)
Female v Person sameProject(Bob,Dennis)
> v ∀knows−.Person spouseOf v knows
> v ∀knows.Person spouseOf ≡ spouseOf −

friendOf v knows worksWith ≡ worksWith−

childOf v knows worksWith+ v worksWith
siblingOf ≡ siblingOf − worksWith v knows
siblingOf + v siblingOf parentOf ≡ childOf −

siblingOf v knows parentOf v ancestorOf
parentOf (Alice,Bob) ancestorOf v knows
parentOf (Alice,Carl) ancestorOf + v ancestorOf

sameProject v worksWith

Figure 2. Example ontology L.

ontology:3

sibling(X,Y)← &dlR[siblingOf](X, Y);

sibling(X,Y)← &dlR[childOf](X, Z),
&dlR[childOf](Y, Z);

inEurope(Y)← sibling(“Bob”, Y),
not inAmerica(Y);

inAmerica(Y)← sibling(“Bob”, Y),
not inEurope(Y).

To apply forgetting, we first have to obtain the ground pro-
gram grnd(P). In order to keep the example readable, we
omit those ground rules whose bodies are not satisfied by L:

sibling(“Bob”, “Carl”)← &dlR[childOf](“Bob”,
“Alice”),
&dlR[childOf](“Carl”,
“Alice”);

sibling(“Carl”, “Bob”)← &dlR[childOf](“Carl”,
“Alice”),
&dlR[childOf](“Bob”,
“Alice”);

inEurope(“Carl”)← sibling(“Bob”, “Carl”),
not inAmerica(“Carl”);

inAmerica(“Carl”)← sibling(“Bob”, “Carl”),
not inEurope(“Carl”).

Thus, grnd(P) has two answer sets, viz.

X1 = {inEurope(“Carl”), sibling(“Bob”, “Carl”),
sibling(“Carl”, “Bob”)} and

X2 = {inAmerica(“Carl”), sibling(“Bob”, “Carl”),
sibling(“Carl”, “Bob”)}.

3For the sake of readability, we use a simplified version of the actual
and implemented dl-atoms for HEX-programs here.

If we allow to forget about sibling(“Carl”, “Bob”) in
grnd(P), then the result of forgetting is obtained from
grnd(P) by removing the second rule. 2

The above definitions of forgetting about an atom l can
be extended to forgetting about a set F of atoms. Specifi-
cally, we can similarly define X1 ⊆F X2, X1 ∼F X2, and
F -answer sets of a HEX-program. In fact, the properties of
forgetting about a single atom can be generalized to the case
of forgetting about a set. Moreover, the result of forgetting
about a set F can be obtained by forgetting each atom one
by one in F .

Proposition 2 Let P be a consistent HEX-program and
F = {l1, . . . , lm} a set of atoms. Then, forget(P, F) ≡
forget(. . . (forget(forget(P, l1), l2), . . .), lm).

Since higher-order atoms and external atoms can be treated
as ordinary atoms in the process of forgetting, we can prove
the above result similarly to the proof of Proposition 6 given
by Eiter and Wang [4].

For HEX-programs, the notion of ordinary forgetting
may not be sufficient for some applications in managing
ontologies. In some cases, we need to forget a predicate.
This can be easily accomplished by forgetting the set of all
atoms with the same predicate.

Due to the presence of higher-order terms, we may need
also to forget some other atoms when we want to forget a
specific atom. This is illustrated in the following example.

Example 4 Suppose we want to forget brotherOf in the
following program:

subRelation(brotherOf , siblingOf) ← ;
brotherOf (john, al) ← ;
siblingOf (john, joe) ← ;
siblingOf (al ,mick) ← ;

R(X, Y) ← subRelation(P ,R),P(X ,Y).

Here, also subRelation(brotherOf , siblingOf) should be
forgotten. 2

For the above discussion, it is natural to define the fol-
lowing variant of forgetting, which is more intuitive for
most applications.

Definition 3 Let P be a HEX-program and l an atom in
P . Denote by sup(l) the set of all atoms in P that con-
tain the predicate name of l. Then the result of enforced
forgetting about l in P , written Forget(P, l), is defined as
forget(P, sup(l)).

In Example 4, Forget(P, brotherOf), given by

forget(P, {brotherOf (john, al),
subRelation(brotherOf , siblingOf)}),

Algorithm 2 (Computing forgetting for non-ground pos-
itive logic programs)
Input: Positive logic program P and a predicate R.
Output: Program forget(P,R) as the result of forgetting R
from P .
Method:

1. Fully apply weak unfolding on P .

2. Remove all rules containing R.

3. Output the resulting program as forget(P,R).

Figure 3. Computing the result of forgetting
for non-ground positive programs.

is the following program:

{siblingOf (john, al) ← ; siblingOf (john, joe) ← ;
siblingOf (al ,mick) ←}.

3.2 Forgetting for Non-Ground Positive
Programs

As we will see in Section 4, the logic program PL trans-
lated from an OWL/RDF ontology is non-ground in general
and thus forgetting as defined by Eiter and Wang [4] cannot
be directly applied here. However, since PL has a special
form and, in particular, has no negation as failure, we are
able to lift the notion of forgetting for ground programs to
this kind of non-ground programs.

To this end, we first need to define weak unfolding for
logic programs.

Let r : a ← b, B and r′ : b′ ← B′ be normal rules,
where a, b, b′ are atoms, and B, B′ are conjunctions of lit-
erals. Note that no higher-order atoms occur here. When
necessary, we can rename the variables of r′ such that r and
r′ have no common variables. If the head b′ of r′ and b have
a most general unifier (mgu) θ, then the rule (a ← B, B′)θ
is called a resolvent of r with r′.

Weak Unfolding. A logic program P ′ is obtained from P
by weak unfolding iff there are two rules r and r′ in
P such that r′′ is a resolvent of r with r′ and P ′ =
P ∪ {r′′}.

For a positive logic program the result of forgetting can
be easily obtained by Algorithm 2 depicted in Figure 3.

The following result shows that this lifting algorithm for
forgetting is sound with respect to semantic forgetting for
ground programs.

L // PL

²²
L′ forget(PL, l)oo

Figure 4. Forgetting in ontologies via a logic
program.

Theorem 1 Let P be a non-ground positive program and
R a predicate in P .

For any extensional database E (i.e., a set of facts), we
have forget(P, R) ∪E ≡ forget(grnd(P ∪E), const(R)),
where const(R) = {R(a) | a is a constant in P ∪ E}.

Algorithm 2 may be refined by applying Step 1 only to a
subset of the rules and facts P which is relevant to R, while
the rest of the program remains untouched. In this way, the
cost of computing forgetting can be reduced radically.

For P and R in Algorithm 2, let Q initially be the set of
all rules in which R appears. Then, add each rule r from P
to Q such that head(r) appears in Q, and repeat this process
until no new rules can be added. Let the resulting program
be denoted by QP,R. Intuitively, Q̄ consists of rules that
are irrelevant to R. For forgetting in a positive program,
it is done by a series of unfolding and then removing some
rules relevant to R. So, rules in Q̄ are essentially unchanged
during the process of forgetting.

Theorem 2 Let P be a non-ground positive program P and
let R be a predicate in P . For any extensional database E,
it holds that forget(P,R)∪E ≡ forget(QP,R, R)∪ Q̄∪E,
where Q̄ = P \QP,R.

It should be noted that although the process of forget-
ting for non-ground programs is realized by the removal of
certain rules, it has a semantic justification as Theorem 2
shows.

4 Forgetting in OWL/RDF-Ontologies

To apply forgetting purely to an ontology expressed in
OWL or RDFS, we reuse the techniques defined for forget-
ting in logic programs. Figure 4 shows the general princi-
ple of this approach. First, an ontology L is translated into
a rule representation PL, taking the specific ontology se-
mantics into account. Then, for any atom l in PL, we can
compute forget(PL, l). Finally, we translate the result back
into an ontology.

The translation of description-logic axioms into a logic
program is shown in Table 1. This translation covers most
of the expressiveness of OWL Lite and corresponds to the

translation given by Grosof et al. [11], mapping some sub-
set of a description logic to positive equality-free datalog
programs. Note that some description-logic constructs have
no direct representation in logic-programming rules, such
as cardinality constraints. Also, existential and universal
quantification is restricted to the left-hand side resp. right-
hand side of a subclass axiom. In general, a transformation
from a set of rules back to ontology statements requires the
rules in forget(PL, l) to be in a form according to Table 1.

Example 5 Consider again the ontology L in Figure 2. The
translation of L into a logic program according to PL is de-
picted in Figure 5. Suppose we do not want to keep the con-
cepts worksWith , then we can use Theorem 1 to simplify
the process of forgetting.

Take Q as a subprogram of PL:

sameProject(“Bob”, “Dennis”) ← ;

worksWith(X, Y)← worksWith(Y,X);

worksWith(X, Z)← worksWith(X, Y),
worksWith(Y,Z);

knows(X, Y)← worksWith(X, Y);

worksWith(X, Y)← sameProject(X, Y).

We can apply Algorithm 2 on the logic program Q by for-
getting worksWith . First, fully apply weak unfolding on Q
and obtain Q′:

sameProject(“Bob”, “Dennis”) ← ;

worksWith(X,Y)← worksWith(Y, X);

worksWith(X, Z)← worksWith(X, Y),
worksWith(Y,Z);

knows(X, Y)← worksWith(X, Y);

worksWith(X, Y)← sameProject(X, Y);

knows(X, Y)← sameProject(X, Y);

worksWith(“Bob”, “Dennis”) ←;

knows(“Bob”, “Dennis”) ←.

Thus, the result of forgetting about worksWith is the
program forget(Q,worksWith) ∪ Q̄, where Q̄ = PL \ Q
and forget(Q,worksWith) is as follows:

{sameProject(“Bob”, “Dennis”) ← ;
knows(X, Y) ← sameProject(X,Y);
knows(“Bob”, “Dennis”) ←}.

Translating this fragment back into the original descrip-
tion logic results in the following statements:

sameProject(“Bob”, “Dennis”);
sameProject v knows; knows(“Bob”, “Dennis”).

The property worksWith does not occur in the modified
description-logic knowledge base any more, while the sub-
property relation between sameProject and knows is pre-
served. 2

Combining the approaches to forgetting of Sections 3
and 4, we are now able to forget any set of ordinary atoms,
higher-order atoms, whole external atoms, and parts of ex-
ternal atoms in a HEX-program.

5 Related Work and Concluding Remarks

The notion of forgetting for HEX-programs introduced
in this paper generalizes a respective notion for ordinary
logic programs defined in previous work [4]. Forgetting for
HEX-programs provides a means to handle forgetting at the
user-view level, since HEX-programs are tailored to access
sources like OWL/RDF ontologies at the extensional level
through external atoms, but does not go back to changes
in these sources, as is done in the view-update problem
of databases, for instance. However, such ontologies have
been cast to a class of logic programs which constitute a
small fragment of HEX-programs, and thus semantic for-
getting for OWL/RDF may be facilitated through this map-
ping, as we have shown. Our work therefore provides a
uniform basis for a framework for extracting ontology seg-
ments from a custom ontology, which is exploited at the
user level. This approach is in an active area of semantic in-
tegration in ontologies (see [17] for a survey). However, the
emphasis of our work is on conflict resolving in semantic
integration of ontologies rather than on ontology mapping.

Forgetting for OWL/RDF ontologies can be used for var-
ious tasks in ontology management including the following:

• Ontology segmentation: This approach is to obtain
segments from a custom ontology, thus having the
same purpose as forgetting. Seidenberg and Rec-
tor [20] present a series of strategies for extracting on-
tology segments. However, it lacks a general semantic
justification.

• Ontology merging: Given two ontologies O1 and O2,
they could first be preprocessed by techniques in ontol-
ogy mapping and then be merged into one ontology. In
many cases, conflicts may be present in the process of
merging. If the conflict is caused by some concept C,
a natural approach is to forget C from one of these two
ontologies or from both. Grau, Parsia, and Sirin [8]
propose to use so-called “E-connections” for merging
ontologies. In this approach, merging ontologies is de-
fined in terms of link properties. However, it is difficult
to find related link properties.

Similar to other approaches to semantic integration, it is
a hard issue to determine the set of concepts which should

Statement DL syntax Rule representation
subClassOf D v C C(X) ← D(X).

subPropertyOf P v Q Q(X, Y) ← P (X, Y).

domain > v ∀P−.C C(X) ← P (X, Y).

range > v ∀P .C C(Y) ← P (X, Y).

class-instance a : C C(a) ← .

property-instance 〈a, b〉 : P P (a, b) ← .

class-equivalence D ≡ C D(X) ← C(X);
C(X) ← D(X).

property-equivalence P ≡ Q P (X, Y) ← Q(X, Y);
Q(X, Y) ← P (X, Y).

inverseOf P ≡ Q− P (X, Y) ← Q(Y, X);
Q(X, Y) ← P (Y, X).

transitiveProperty P+ v P P (X, Y) ← P (X, Z), P (Z, Y).

Constructor DL syntax Rule representation
conjunction C1 u C2 v D D(X) ← C1(X), C2(X).

C v D1 uD2 D1(X) ← C(X);
D2(X) ← C(X).

disjunction C1 t C2 v D D(X) ← C1(X);
D(X) ← C2(X).

existential restriction ∃P.C v D D(X) ← P (X, Y), C(Y).

universal restriction D v ∀P.C C(Y) ← P (X, Y), D(X).

Table 1. Mapping of ontology statements and class constructors to rules.

parentOf (“Alice”, “Carl”)← .
female(“Alice”)← .

sameProject(“Bob”, “Dennis”)← .
male(“Bob”)← .

parentOf (“Carl”, “Emma”)← .
person(“Carl”)← .

person(“Dennis”)← .
knows(X, Y)← childOf (X, Y).

childOf (X, Y)← parentOf (Y, X).
male(X)← father(X).

person(X)← female(X).
friendOf (X, Y)← friendOf (Y, X).

knows(X, Y)← ancestorOf (X, Y).
ancestorOf (X, Z)← ancestorOf (X, Y),

ancestorOf (Y, Z).
knows(X, Y)← friendOf (X, Y).

person(X)← knows(X, Y).
person(Y)← knows(X, Y).
person(X)← male(X).
female(X)← mother(X).

ancestorOf (X, Y)← parentOf (X, Y).
parentOf (X, Y)← childOf (Y, X).
siblingOf (X, Y)← siblingOf (Y, X).

knows(X, Y)← siblingOf (X, Y).
spouseOf (X, Y)← spouseOf (Y, X).

knows(X, Y)← spouseOf (X, Y).
worksWith(X, Y)← worksWith(Y, X).
worksWith(X, Z)← worksWith(X, Y),

worksWith(Y, Z).
knows(X, Y)← worksWith(X, Y).

worksWith(X, Y)← sameProject(X, Y).

Figure 5. Translation of L into a logic program P L.

be forgotten if they are not explicitly specified by the user.
This issue could be solved by employing heuristics and
techniques from machine learning. Exploring this is left for
future work.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, 284(5):34–43, 2001.

[2] W. Chen, M. Kifer, and D. Warren. HILOG: A Founda-
tion for Higher-Order Logic Programming. Journal of Logic
Programming, 15(3):187–230, 1993.

[3] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uni-
form Integration of Higher-Order Reasoning and External
Evaluations in Answer Set Programming. In Proc. IJCAI
2005, pages 90–96, 2005.

[4] T. Eiter and K. Wang. Forgetting and Conflict Resolving in
Disjunctive Logic Programming. In Proc. AAAI 2006, pages
238–243, 2006.

[5] W. Faber, N. Leone, and G. Pfeifer. Recursive Aggregates
in Disjunctive Logic Programs: Semantics and Complexity.
In Proc. JELIA 2004, pages 200–212, 2004.

[6] M. Gelfond and V. Lifschitz. Classical Negation in Logic
Programs and Disjunctive Databases. New Generation Com-
puting, 9:365–385, 1991.

[7] S. Ghilardi, C. Lutz, and F. Wolter. Did I Damage My On-
tology? A Case for Conservative Extensions in Description
Logics. In Proc. KR 2006, pages 187–197, 2006.

[8] B. Grau, B. Parsia, and E. Sirin. Combining OWL On-
tologies using E-Connections. Journal of Web Semantics,
4(1):40-59, 2005.

[9] B. C. Grau, I. Horrocks, O. Kutz, and U. Sattler. Will my
Ontologies Fit Together? In Proc. DL 2006, 2006.

[10] B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modular-
ity and Web Ontologies. In Proc. KR 2006, pages 198–209,
2006.

[11] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Descrip-
tion Logic Programs: Combining Logic Programs with De-
scription Logics. In Proc. WWW 2003, pages 48–57, 2003.

[12] Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: the
State of the Art. The Knowledge Engineering Review, 18:1–
31, 2003.

[13] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of
Object-Oriented and Frame-Based Languages. Journal of
the ACM, 42(4):741–843, 1995.

[14] J. Lang, P. Liberatore, and P. Marquis. Propositional In-
dependence: Formula-Variable Independence and Forget-
ting. Journal of Artificial Intelligence Research, 18:391–
443, 2003.

[15] F. Lin and R. Reiter. Forget it. In Proc. AAAI Fall Sympo-
sium on Relevance, pages 154–159, 1994.

[16] B. Motik, R. Volz, and A. Maedche. Optimizing Query An-
swering in Description Logics using Disjunctive Deductive
Databases. In Proc. KRDB 2003, 2003.

[17] N. Noy. Semantic Integration: A Survey of Ontology-Based
Approaches. SIGMOD Record, 33(4):65–70, 2004.

[18] N. Noy and H. Stuckenschmidt. Ontology Alignment: An
Annotated Bibliography. In Semantic Interoperability and
Integration, 2005.

[19] K. A. Ross. On Negation in HiLog. Journal of Logic Pro-
gramming, 18(1):27–53, 1994.

[20] J. Seidenberg and A. Rector. Web Ontology Segmenta-
tion: Analysis, Classification and Use. In Proc. WWW 2006,
pages 13-22, 2006.

[21] T. Swift. Deduction in Ontologies via ASP. In Proc.
LPNMR-7, LNCS 2923, pages 275–288, 2004.

[22] K. Wang, A. Sattar, and K. Su. A Theory of Forgetting in
Logic Programming. In Proc. AAAI 2005, pages 682–687,
2005.

