
Efficient Evaluation of n-ary Conjunctive Queries
over Trees and Graphs∗

François Bry Tim Furche Benedikt Linse Andreas Schroeder
Institute for Informatics, University of Munich
Oettingenstraße 67, 80538 Munich, Germany

(firstname.lastname)@ifi.lmu.de

ABSTRACT
N -ary conjunctive queries, i.e., queries with any number of
answer variables, are the formal core of many Web query
languages including XSLT, XQuery, SPARQL, and Xcerpt.
Despite a considerable body of research on the optimiza-
tion of such queries over tree-shaped XML data, little atten-
tion has been paid so far to efficient access to graph-shaped
XML, RDF, or Topic Maps. We propose the first evalu-
ation technique for n-ary conjunctive queries that applies
to both tree- and graph-shaped data and retains the same
complexity as the best known approaches that are restricted
to tree-shaped data only. Furthermore, the approach treats
tree and graph-shaped queries uniformly without sacrificing
evaluation complexity on the restricted query class. The
core of the evaluation technique is based on dynamic pro-
gramming using a memoization data structure, called “me-
moization matrix”. It can be populated and consumed in
different ways. For each of population and consumption, we
propose two resp. three algorithms each having their own
advantages. The complexity of the algorithms is compared
analytically and experimentally.

Categories and Subject Descriptors: E.1[Data]: Data
Structures—Graphs and networks; H.2.4[Information Sys-
tems]: Database Management—system, query processing

Keywords: query evaluation and optimization, conjunctive
queries, memoization, semi-structured data, XML, RDF

1. INTRODUCTION
Semi-structured data in the form of XML or RDF nowa-

days dominates data representation and exchange on the
Web. Accessing such Web data, often from multiple sources
and in different formats, is more and more an essential part
of many applications, e.g., for bibliography or asset man-
agement, news aggregation, and information classification.

∗This research has been funded by the European Commis-
sion and by the Swiss Federal Office for Education and Sci-
ence within the 6th Framework Programme project REW-
ERSE number 506779 (cf. http://rewerse.net/).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’06, November 10, 2006, Arlington, Virginia USA.
Copyright 2006 ACM 1-59593-524-X/06/0011 ...$5.00.

Web query languages such as XSLT, XQuery, SPARQL, or
Xcerpt [12] provide convenient means to access such data.

Efficient evaluation of queries over XML data has received
considerable attention in recent years [1, 6] including exten-
sive studies of complexity of query evaluation for XPath [6],
XQuery [9], and general conjunctive queries over trees [7].

However, these techniques and results have considered
XML data as tree-shaped. For many applications, a graph
view of XML is preferable, e.g., when links after XML’s
ID/IDREF mechanism are considered first class elements
of the data model. Furthermore, other semi-structured Web
data formats such as RDF or Topic Maps are evidently graph
shaped. Therefore, we propose in this article a novel evalua-
tion algorithm that exhibits on tree data the same worst-case
complexity as the best known approaches for tree data, but
operates with similar complexity also on graph data.

We formalize queries over semi-structured data, tree- or
graph-shaped, as n-ary conjunctive queries over unary and
binary relations. Conjunctive queries over tree data form a
common formal basis for the query core of a large set of XML
query languages such as XPath [6], and thus XQuery; con-
junctive queries over graph data for RDF query languages
such as SPARQL and general semi-structured query lan-
guages such as Lorel and Xcerpt [12].

Compared to full semi-structured query languages, the
main restrictions of n-ary conjunctive queries are twofold:
(1) They disallow result construction: The result of an n-ary
conjunctive query is just a set of tuples of bindings for the n
result variables, each tuple representing one match, whereas
full semi-structured query languages allow additional con-
struction including grouping and aggregation on these re-
sults. (2) They are composition-free in the sense of [9], i.e.,
the query can only access the original input data, but no
intermediary results can be constructed or queried, prevent-
ing in particular the use of views, rules, or functions. The
second restriction is less easy to overcome and dropping it
makes the query evaluation far more expensive, cf. [9].

An extension of our results that drops the first restriction
is straightforward and covers composition-free core XQuery
without negation as defined in [9]. Indeed, the algorithms
presented in this paper reaffirm the complexity results from
[9] on tree data and extend them to graph data.

For the evaluation of n-ary conjunctive queries, we present
two algorithms both based on a compact data structure,
called “memoization matrix”, for memorizing intermediary
results during the evaluation of an n-ary query. The two
algorithms differ only in the way the memoization matrix
is filled: The first algorithm uses a bottom-up strategy for
filling matrix cells starting with variables in leaf nodes of

© ACM 2006. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
WIDM 2006, ACM 1-59593-524-X/06/0011.

tree query graph query

tree data O(q · v2) O(vq)
graph data O(q · v · e) O(vq)

Table 1: Overview of Combined Time Complexity
(q: number of query variables; e, v number of edges,
vertices resp., in the data)

the query. The second algorithm performs a recursive de-
scent over the query tree populating the matrix top-down
from root to leaf query nodes. More involved population
strategies are conceivable (e.g., a mix of the two presented
algorithms or a path-wise population inspired by [11]).

Both algorithms can be applied in the same manner to
tree and graph data, only the computation of the structural
relations is affected by the type of data. Unsurprisingly,
the shape of the query has a more pronounced effect on the
complexity and performance of the evaluation algorithms:
Where for path and tree queries the complexity of the eval-
uation algorithms is polynomial, graph queries require expo-
nential time for evaluation. This is in line with complexity
results in [6, 7] that show that evaluation of graph queries
even over tree data is already NP-complete.

This article is organized along its contributions:
1: A memoization technique for the compact representa-
tion of intermediary and final results of an n-ary conjunctive
query is introduced in Section 3.
2: We introduce two algorithms for populating this matrix,
one bottom-up in Section 4.1, one top-down in Section 4.2,
and compare these algorithms w.r.t. to complexity.
3: We introduce two algorithms for matrix consumption
(Section 5), one for tree queries, and one for graph queries
that enforces the remaining non-hierarchical relations that
have not been considered during matrix population.
4: Careful complexity analysis of the algorithms in Sec-
tions 4 and Section 5 is complemented by an introspective
experimental evaluation (Section 7) that confirms the com-
plexity results and shows that the algorithms are compet-
itive. This result applies over all three classes of queries
considered, viz. n-ary path, tree, and graph queries. A sum-
mary of the complexity results is given in Table 1.

2. PRELIMINARIES

2.1 Graph Data Model
From the perspective of the used data model, many Web

representation formats such as XML, RDF, and Topic Maps
have a lot of commonalities: the data is semi-structured,
tree- or graph-shaped, and sometimes ordered, sometimes
not (XML elements vs. XML attributes, RDF sequence con-
tainers vs. bag containers). In this article, we choose finite
unranked labeled ordered simple directed graphs as
common data model for Web data. Precisely, a query is eval-
uated over a data graph D over a label alphabet ΣL and a
value alphabet ΣV . A data graph is represented as a 5-tuple

D = (N, E, R,L,V),

where N is the set of nodes, E ⊂ N× ×N the set of edges,
R ⊂ N the set of root vertices, L : N → ΣL the labeling
function, and V : N → ΣV the value assignment function.

D is an ordered graph. Since the order is relative to the
parent and a single node can be child of several parents, the

‘Cicero’

bib

conference

paper

paper posters

title author

‘Wax Tablets’

pc name

member

‘Cicero’

‘Storage Media’

member

‘Hirtius’

1

1 2 3 4

1 3
1 1 2

d1

d2

d3

d4 d7

d8

d9

paper

2

d5
1

author

d6

d11

d12

d14

d13

author

1

d10

Figure 1: Data—Ordered Simple Directed Graph
(order indicated by numbers on edges)

conference

paper name

member

v2

Child+ Child

Child+

Root

Child+

v1
author

v3

v4

v5

ValEqual

conference

paper name

member

v2

Child+ Child

Child+

Root

Child+

v1
author

v3

v4

v5

Ident

Figure 2: Exemplary Query Graphs (left: Q1 with
value join, right: Q2 with identity join)

order is associated with the edge rather than with the child
node. Since the graphs are also simple, each child has a
unique position in the order of its siblings.

Two labeling functions are provided, viz. L and V. The
first associates conventional node labels with each node, the
second “content” values. The difference is made to be able to
distinguish the cost of comparing two labels vs. two content
values. Furthermore, L is assumed to be total, whereas V
may be undefined for some nodes in the graph. In Fig. 1, an
exemplary data graph is shown. Labels are denoted to the
left of the node, “content” values in boxes under the nodes.
A root node is indicated by an incoming arrow.

The definition allows multiple root nodes, e.g., if there are
several connected components in the graph. In the following,
we assume without loss of generality that a data graph has a
single root and is connected. This ensures that |E| ≥ |N |−1,
and thus O(|E| + |N |) = O(|E|).

2.2 Conjunctive Queries
Conjunctive queries are a convenient and relevant formal-

ization of the query core of many XML and RDF query
languages such as XSLT, XQuery, SPARQL, and Xcerpt.

Query syntax. A conjunctive query consists of a query head
and a query body. The query body is a conjunction of atoms,
and each atom is a relation over query variables. The do-
main of the query variables are the nodes N of the data
graph D the query is evaluated over. The query head is a
list of answer variables, bindings for which form an answer.
All answer variables must occur also in the body.

In this article, only binary and unary relations are con-
sidered in conjunctive queries (though Section 6 briefly dis-
cusses an extension for handling order relations on graph
data that uses ternary relations).

Query Relations. Three types of relations may occur in
conjunctive queries: unary “property” relations that restrict
bindings to nodes with a certain property, binary “struc-
tural” relations that require pairs of nodes in the queried

! q(v1, . . . , vn) ← atom1, . . . , atomm "D
= πv1,...,vn(! atom1 "q

D ∩ . . . ∩ ! atomm "q
D)

! unary(x) "q
D = {t ∈ Nq : t[x] ∈ ! unary "D}

! binary(x, x′) "q
D = {t ∈ Nq : (t[x], t[x′]) ∈ ! binary "D}

!root "D = R
! labelσ "D = {n ∈ N : L(n) = σ}
!child "D = {(n, n′) ∈ N2 : ∃i ∈ : (n, i, n′) ∈ E}#
child+

$
D

=
S

i>0(!child "D)i

!child∗ "D =
S

i≥0(!child "D)i

! ident "D = {(d, d) ∈ N2}
!valequal "D = {(d, d′) ∈ N2 : V(d) = V(d′)}

Table 2: Semantics of n-ary Conjunctive Queries

data graph to be in a certain structural relation, and binary
“join” relations that compare nodes.

The proposed algorithms and complexity considerations
apply to arbitrary property, structural, and join relations
as long as for given nodes, each property relation can be
checked in constant time, each structural relation in O(|E|),
and each join relation in at most O(j(|E|)) for some poly-
nomial j. Additionally, the enumeration of the structurally
related nodes for a given node n must be possible in O(|E|).

We use the property relation root, which is satisfied only
by the root nodes of the queried data graph, as well as label
relations labelσ for all σ ∈ ΣL (i.e., for all possible labels)
that restrict to nodes v where L(v) = σ.

As structural relations only child and its closures child+

and child∗ are considered. An extension to regular path
expressions (or conditional axes [10]) is straightforward, as a
regular path expression can be checked with data complexity
O(|E|) for two given nodes. In Section 6, an extension with
(ternary) sibling-order relations is briefly outlined.

The join relations used are ident and valequal. ident
is the identity relation, valequal is defined over the value
labeling function V. Queries with structural relations that
form a graph can be rewritten to queries with structural
relations in tree shape containing additional ident edges.

Fig. 2 shows the query graphs for two conjunctive queries.
This representation of graphs is used throughout this paper:
Labels and values, as well as root nodes are represented as
in data graphs, but edges are annotated with structural or
join relations. Answer variables are marked by the variable
name and a node filled with black.

Query semantics. Let D be the data graph the query Q is
evaluated over and q the number of variables occurring in Q,
then Table 2 gives the precise semantics of n-ary conjunctive
queries over graphs as used in this article. The semantics is
defined based on sets of valuations for query variables. A
valuation t for n variables is an n-ary tuple with one column
for each of the variables. We use t[v] to denote the binding
of variable v in the valuation t.

Query classes. We distinguish graph, tree, and path que-
ries. Tree queries are queries whose graphs are tree shaped.
Path queries are queries whose graphs are in fact single
paths. We introduce the class of structural tree queries,
queries where the query restricted to unary and structural
relations is a tree. There may be additional arbitrary join
relations, so that the complete graph is no tree. The query
graphs from Fig. 2 are structural tree queries, but no tree
queries in the strict sense due to the non-tree join relations.

Graph-shaped conjunctive queries may have multiple root
or source variables, i.e., variables that occur only as source

in structural relations, but not as sink. Let SoureVars(Q)
be the set of such variables in the query Q. As for data
graphs, we assume in the following w.l.o.g. that there is
exactly one such variable in each query, i.e., that all query
graphs are rooted. We use FreeVars(Q) to reference the
answer variables in Q. We write a ∈ Q and Q\{a1, . . . , an}
to test for the occurrence of an atom a in Q, resp. to remove
a set of atoms a1, . . . , an from Q. For brevity, we use if
unambiguous in the context also Q\{v1, . . . , vn} to indicate
the conjunctive query Q′ that contains all atoms from Q
except those involving variables v1, . . . , vn.

Note that (rooted) graph queries can be transformed into
structural tree queries by replacing non-tree structural rela-
tions with identity joins: First, compute a spanning tree,
considering the structural relation edges only. For each
non-tree edge representing a structural relation rel between
variables x and y, take a fresh variable y′. Replace the edge
representing rel(x, y) by the tree edge rel(x, y′), and add
ident(y, y′) to the query Q. The size of the query increases
by the number of non-tree edges, which is linear in the size
of Q and quadratic in the number of variables in the query.

Irrespective of the nature of a rooted query graph Q, we
denote a spanning tree of Q with T (Q).

3. MEMOIZATION MATRIX
At the core of the proposed evaluation technique stands

the “memoization matrix”. It is a compact data structure
holding intermediary results of the evaluation of an n-ary
conjunctive query, inspired by a more limited and even on
tree data exponential data structure from [13]. It assigns
query nodes q with nodes n ∈ N and one sub-matrix, con-
taining for each child node q′ of q the compatible bindings
n′ ∈ N under the binding n for q.

Definition 1. Memoization matrix.
Given a query Q with variables Vars(Q) and spanning tree
T (Q), and a data graph D with nodes N , a memoization ma-
trix for the evaluation of Q over D is a recursive data struc-
ture representing all possible bindings of query variables in
Q to nodes from D. Let SourceVars(Q) be the variables in Q
that are only occurring as sources in structural relations in
Q. Then the memoization matrix for Q over D is a relation
containing for each qs ∈ SourceVars(Q) and each possible
binding n ∈ N for qs that satisfies all property relations on
qs one triple (qs, n, M ′) with M ′ a subset of the memoizat-
ion sub-matrix for Q\SourceVars(Q) such that for each tuple
(q′, n′, M ′′) ∈ M ′ and each atom rel(qs, q

′) ∈ T (Q), it holds
that (n, n′) ∈ !rel "D.

Intuitively, the bindings for source variables in a sub-
matrix M ′ must be structurally compatible with the binding
of the source variable in the corresponding tuple of M .

Notice that only relations in the spanning tree of Q, T (Q),
are considered. This can lead to assigning structural rela-
tions to non-tree edges, which is unfavorable if no index
exists that guarantees practical verification time. In such a
case, a transformation from graph query to structural tree
query is performed as discussed above.

Though the memoization matrix ensures that related bind-
ings for different variables are consistent w.r.t. structural
and property relations it does not ensure that related bind-
ings are consistent w.r.t. join relations. This is to exploit the
tree property of structural relations that does obviously not
hold for join relations in structural tree queries: where join
relations can relate arbitrary variables in the query, struc-
tural relations over variables form a tree, thus making a local

Variable Node Sub-Matrix

v5 d2 Variable Node Sub-Matrix

v4 d3

v3 d12

v2 d14

v4 d5 Variable Node Sub-Matrix

Variable Node Sub-Matrix

v1 d6

v1 d7

v4 d9
v1 d10

v3 d13

⎧
⎨
⎩

⎧
⎨
⎩

Variable Node Sub-Matrix

Figure 3: Memoization Matrix (on Data of Fig. 1)

evaluation of structural relations possible: A full-match can
be computed from local matches that consider parent and
child variables in the structural tree query in isolation.

To avoid multiple computations of matches, the memoizat-
ion matrix shares tuples where possible: Each tuple (q, n, M)
exists only once and is referenced if the same tuple may oc-
cur in different sub-matrices. Notice, that sharing of tuples
only occurs between sub-matrices at the same level (i.e., sub-
matrices of the same common super-matrix). The following
sections show how this property can be ensured during the
construction of the memoization matrix.

It is assumed that the matrix is clustered by variables
allowing linear access to all entries relating to a variable.

Fig. 3 shows the memoization matrix for the evaluation
of query Q1 from Fig. 2 over the sample data (Fig. 1).

The algorithms for matrix population discussed in the fol-
lowing section guarantee that populating the matrix for a n-
ary conjunctive query Q over a data graph D takes at most
O(q · v · e) time, where q = |Vars(Q)| denotes the number of
variables in Q, v = |N | the number of nodes, and e = |E|
the number of edges in the data graph D. Note that in
the special case of tree shaped data, e = v − 1, so that the
complexity becomes O(q · v2). The size of the memoizat-
ion matrix can be demonstrated as O(q · v2) independently
from the used algorithm, just by assuming sharing of sub-
matrices.

Lemma 1. The size of the memoization matrix M for a
query Q and a data graph D with nodes N is bounded by
(2q − 1) · v2.

Proof. By structural induction over T (Q).
Query leaves: It holds that q = 1, and the number of bind-
ings for a single variable is bounded by v. The size of the
memoization matrix is q · v ≤ (2q − 1) · v2.
Inner query nodes: Let the inner query node i have c chil-
dren. It holds that the sum of nodes of all child queries is
equal to q − 1 =

Pc
j=1 qj (*). There are again at most

v bindings of i. As tuples are shared, there is at most one
tuple for each such binding. The size of the sub-matrix con-
tained in the tuple itself is bounded by c · v, as each child
has at most v bindings. The size of all tuples for the in-
ner node i (i.e. of the complete sub-matrix of i) is hence
c · v2. The overall matrix size is, using the induction hy-

pothesis,
Pc

j=1(2qi−1) ·v2 + c ·v2 (*)
= (2(q−1)− c+ c) ·v2 ≤

(2q − 1) · v2.
Based on the populated matrix, the algorithms discussed

in Section 5 traverse the matrix, enforce the remaining (non-

hierarchical) relations, if there are any, and create the output
according to the query semantics introduced above.

4. MATRIX POPULATION
The compact memoization matrix introduced in the last

section can be produced bottom-up (Match↑, Section 4.1)
or top-down (Match↓, Section 4.2), that is, starting with
the root variable and the root data node or with the leaf
variables and all data nodes. While both algorithms have
the same worst case complexity, experimental evaluation in
Section 7 shows that an in-memory implementation of the
bottom-up algorithm has an experimental runtime close to
the worst case complexity, while the top-down approach dis-
plays far better runtime behavior in realistic cases.

4.1 Bottom-Up Approach
The bottom-up approach (Match↑) is a bulk-processing

approach often employed in secondary-storage databases. It
starts by matching the leaf variables of T (Q) with all nodes
of D, and uses these results to successively fill the domains
of variables that have a common structural relation with
these leaf variables. This process is repeated iteratively until
either a variable domain becomes empty, indicating that the
query has no matches, or the root variable of Q is reached,
indicating that all matches of the query are found.

Algorithm 1 Match↑(Q, D)

1: VQ ← vars(Q); N ← nodes(D) ; ρ ← ∅
2: root ∈ SourceVars(Q)
3: while ρ(root) = ∅ do
4: take x ∈ VQ : ρ(x) = ∅ ∧

∀rel(x, x′) ∈ T (Q) : ρ(x′) /= ∅
5: M ← ∅
6: for all n ∈ N do
7: if ∃rel(x) ∈ Q : n /∈ !rel "D then
8: continue n
9: MS ← ∅

10: for all rel(x, x′) ∈ T (Q) do
11: MR ← ∅
12: for all (x′, n′, M ′) ∈ ρ(x′) do
13: if (n, n′) ∈ !rel "D then
14: MR ← MR ∪ {(x′, n′, M ′)}
15: if MR = ∅ then
16: continue n
17: MS ← MS ∪MR

18: M ← M ∪ {(x, n, MS)}
19: ρ(x) ← M
20: if ρ(x) = ∅ then
21: return ∅
22: return ρ(root)

The algorithm uses a helper data structure ρ to associate
variables with sets of tuples representing bindings for these
variables. ρ is initially empty and populated step by step
in the outer while loop: Starting with the leaf nodes, the
algorithm generates the set of tuples ρ(x) (l. 3 and 19) for
each variable x, until either no match is found for a variable
and thus the query fails (returns an empty set) (l. 20–21) or
the root node has been processed (l. 3) and the memoization
matrix for the root node is returned (l. 22).

Notice, that the algorithm does not specify the details
of row sharing between matrices at the same level. It is
assumed that in l. 14 and l. 18 pointers to M ′, resp. M are
used instead of copies.

Theorem 1 (Complexity of Match↑). Let v = |N |,
q = |vars(Q)|, and e = |E|. Then, Match↑ has O(q · v · e)
combined time and O(q · v2) combined space complexity.

Proof. There are q variables, so that the outer loop (l. 3)
is bound by q. The loop over all nodes (l. 6) is bound by
v. The verification of the property relations takes constant
time, as there is a fixed number of such relations in the lan-
guage and each test (such as a label test) is assumed to be
constant (l. 7–8). Since T (Q) is a spanning tree there are
q − 1 structural relations that need to be tested in the it-
eration starting at l. 10. As each binary relation is visited
only once (when the source variable of that relation is pro-
cessed), the loop (l. 11–17) is executed (q−1)·v times. Since
there are at most v bindings for each variable, the iteration
in l. 12 is bound by v. As verifying (n, n′) ∈ !rel "D is
in O(e) for structural relations (cf. Section 2), the overall
time complexity is in O(q · v2 · e). However, we can assume
that the structural relations are precomputed in an index
structure which provides constant verification time for the
structural relation at a space cost of O(v2) and time cost
O(v · e) per structural relation. This is an acceptable trade-
off as there are usually only a small number of structural
relations and as the memoization matrix already requires
space in O(q · v2). Under this assumption, the overall com-
bined time complexity becomes O(q ·v ·e). The overall space
complexity is dominated by the size of the memoization ma-
trix O(q ·v2), as the precomputed relations are in O(v2) and
the size of ρ is in O(q).

Even though the bottom-up approach has a nice upper
bound of computational complexity, it needs further refine-
ments to be usable in practice as the experimental evalu-
ation in Section 7 demonstrates. To obtain a practically
useful performance, bottom-up algorithms need efficient in-
dex structures on structural relations occurring in the query.
A further performance increase might be obtained by eval-
uating groups of structural and property relations at once
using holistic tree queries, cf. [1]. The benefits of the lat-
ter approach are not clear for n-ary graph queries, where
most query variables are either answer variables or involved
in non-structural joins, preventing large groups of relations
to be evaluated at once. Further investigation of the use of
such holistic schemes for n-ary conjunctive graph queries is
required, but out of the scope of this paper.

4.2 Top-Down Approach
For an in-memory evaluation of n-ary conjunctive queries

without indices, the top-down approach matching the query
from the root to the leafs and restricting the number of
candidate nodes primarily based on query structure presents
a feasible and often superior alternative. Furthermore, the
top-down algorithm does not need any adjacency index to
guarantee a runtime in O(q · v · e). However, iteration over
structural relations must be guaranteed in O(e) time (cf.
l. 11). This assumption holds for any structural relation
occurring in XPath, XSLT, XQuery, SPARQL, or Xcerpt.

Like the bottom-up algorithm, the top-down algorithm
needs an additional helper structure ρ. However, in this case
it associates tuples of query variable and data node to entire
sub-matrices. Constant access is assumed for this structure
by basing it on a two-dimensional array. It is assumed that
ρ = ∅ at the first call of the algorithm. Furthermore, an
explicit “no match” indicator ⊥ is used to mark combina-
tions of nodes and variables that were checked and did not
match. This must be distinguished from the case where the

combination has not yet been computed and the case where
there is no sub-matrix for the combination (i.e., the variable
is a leaf in the query).

Algorithm 2 Match↓(x, n)

1: if ρ(x, n) = ⊥ then
2: return ∅
3: if ρ(x, n) defined then
4: return {(x, n, ρ(x, n))}
5: if ∃rel(x) ∈ Q : n /∈ !rel "D then
6: ρ(x, n) ← ⊥
7: return ∅
8: MS ← ∅
9: for all rel(x, x′) ∈ T (Q) do

10: MR ← ∅
11: for all n′ ∈ N : (n, n′) ∈ !rel "D do
12: MR ← MR ∪Match(x′, n′)
13: if MR = ∅ then
14: ρ(x, n) ← ⊥
15: return ∅
16: MS ← MS ∪MR

17: ρ(x, n) ← MS

18: return {(x, n, MS)}

The top-down algorithm performs a recursive descent over
the query structure. It has two parameters, a query x and
a data node n, and computes the memoization matrix for
these two nodes. For each pair, a matching is computed
at most once. If called with the root of the query Q and
the root of the data graph D, the result is the memoization
matrix for the evaluation of Q over D.

Theorem 2 (Complexity of Match↓). Let v = |N |,
q = |vars(Q)|, and e = |E|. Then, Match↓ is in O(q · v · e)
combined time complexity.

Proof. The use of matrix memoization (l.1–3, 14, 17)
guarantees that Match↓ is executed at most once for each
combination of variable and data node (x, d). Testing unary
predicates takes constant time. As each of the q−1 relations
is visited at most once, the loop over all binary relations
(l. 9) is performed at most (q − 1) · v times. Enumerating
all values of any structural relation is in O(e), and thus set
initialization of the inner loop (l. 11) takes time in O(e).
Since there are at most v elements in the range of any struc-
tural relation and the loop body (l. 12) takes constant time
(memoization in ρ amortizes the recursive call), Match↓ is
in O(q · v · e) combined time complexity.

As section 7 shows, the algorithm Match↓ is a competitive
algorithm with linear time complexity in many real world
scenarios, even without any index structures. Streaming
schemes [2] and similar techniques could be used to refine
the algorithm further and speedup the average runtime, but
are beyond the scope of this paper.

5. MATRIX CONSUMPTION
The consumption of a memoization matrix for the evalua-

tion of a query Q over a data graph D creates the extensional
representation of the result. That is to say, the compact in-
memory result representation in the memoization matrix is
expanded to a set of valuations, i.e., a set of tuples asso-
ciating answer variables with matching data nodes. This
is comparable to the transformation of a non-first-normal-
form relation into a flat relation, except for the fact that

the nested matrices consists of bindings for several relations
and must be hence decomposed into partitions before the
flattening takes place, and that a sub-matrix tuple can be
referenced by several matrices.

In contrast to matrix population, the algorithms for ma-
trix consumption, though still agnostic to the shape of the
data, have to treat tree and graph queries differently. This
is necessary, because graph queries contain binary relations
that are not verified by the matrix population algorithms.
Since there are no such remaining relations in tree queries,
the matrix consumption algorithm is a simple flattening of
the nested memoization matrix to produce the output. Since
the output size is larger than every intermediate result when
evaluating tree queries, the time and space complexity of the
consuming algorithm is bound by the result size. For graph
shaped queries, however, this is not the case: an intermedi-
ate result of exponential size can be created and only then
be reduced through remaining binary relations not in query
spanning tree. Thus, the matrix consumption for graph que-
ries has exponential combined time complexity. To illustrate
this, consider the queries from Fig. 2: The memoization ma-
trix only enforces the structural relations, but does not con-
sider valequal and ident. These relations may reduce the
result size considerably if they are applied.

As stated above, the consumption algorithm OutputT for
tree queries is a simple flattening of the (nested) memoizat-
ion matrix to a set of tuples of variable bindings. During the
flattening dynamic programming is used to avoid duplicate
construction, thus space and time complexity are bound by
the result size. For space reasons, the full algorithm is omit-
ted and only complexity results are given.

Proposition 1 (Complexity of OutputT). The al-
gorithm OutputT has O(|V ars(Q)|·|N |2+|Q(D)|) time com-
plexity where |Q(D)| denotes the result size.

In the following section, we take a closer look at the matrix
consumption algorithm for graph queries outlining briefly
the benefits and drawbacks of a nested loop join for sec-
ondary storage processing (Section 5.2).

5.1 Matrix Consumption for Graph Queries
The matrix method applies to graph-shaped queries in the

following way: First, a spanning tree T (Q) over the struc-
tural relations of Q is computed offline. Second, Match↓
or Match↑ is applied to create the memoization matrix of
the query problem. Finally, this memoization matrix is con-
sumed with a new output algorithm, OutputG.

The new algorithm must verify whether the produced val-
uations satisfy all relations that are not in the spanning tree
T (Q). To put it another way, the non-tree relations impose
additional selection conditions on the produced valuations.
These additional selection conditions can be distributed over
Cartesian products the consumption algorithm for tree que-
ries performs and combined into joins—with possibly non-
atomic conditions, if more than one relation must be verified
in one Cartesian product.

Since join order optimization is out of the scope of this
paper, the output algorithm abstracts from these topics by
assuming the existence of a join and projection specification
for each variable, and of a function that applies these join
specification to a set of valuations. The join and projection
specification is created by a query planner; Fig. 4 shows an
example of a join and projection specification.

The new algorithm however exhibits exponential worst
case runtime in that it may perform at worst q−3 Cartesian

Child

Child+

Root

Child+

z

x w

v

y

Child

s

r

πw

w

×

!r(y,z)
y z

πx

x

×

!s(x,w)
s w

Figure 4: Join and Projection Specification

products without any selection based on non-tree edges (q
being again q = |V ars(Q)|). In this case, the size and time
complexity are both in O(|N |q), as the output algorithm
keeps the set of valuations in memory.

Furthermore, the cost of value-based joins that are as-
sessed with a cost function j(|N |) must be considered. The
worst case estimation is as follows: as every variable can be
involved in a join, there are at most q − 1 value-based joins
(as equality is transitive, a query with more than q−1 joins
can be transformed into an equivalent query with q−1 joins).
Furthermore, every tuple of an exponential sized intermedi-
ate result is joined with each value-based join. As each join
divides the result size by at least |N |, the overall runtime can
be approximated as O(

Pq
i=2 j(|N |)·|N |i) = O(j(|N |)·|N |q).

Proposition 2 (Complexity of OutputG). The al-
gorithm OutputG has O(j(|N |) · |N |q) time complexity and
O(|N |q) space complexity.

5.2 Incremental Matrix Consumption
The previous two algorithms are tailored to provide an

in-memory representation of all answers of a query and are
thus both in time and space complexity bound by the out-
put size. An in-memory representation of the answers is
useful to perform further processing based on the answers,
e.g., for structural grouping, aggregation, or ordering. How-
ever, in many cases an incremental output of the answers
is preferable, in particular if further processing can also be
realized in an incremental manner. Incremental answer gen-
eration can be realized using the algorithm OutputNLJ , a
slightly modified incremental nested loop join over the me-
moization matrix. The algorithm uses the structure of the
matrix instead of join attributes, but is otherwise – leaving
aside partitioning issues – a standard nested loop join and
therefore omitted here for space reasons.

Proposition 3 (Complexity of OutputNLJ).
The algorithm OutputNLJ has time complexity O(|N |q) and
space complexity O(q · n2) on tree queries, and on graph
queries O(j(|N |) · |N |q) time and O(q ·n2) space complexity.

The advantage of OutputNLP is its low space complexity
which is essentially bound by the size of the memoization
matrix. However, this advantage is paid for by an exponen-
tial time complexity in almost all cases. Furthermore, it is
reached in many practical cases

6. ORDER RELATIONS ON GRAPH DATA
In the previous sections, graph shaped data is considered

equivalent in querying aspects to tree shaped data. Al-
though the worst case complexity of the matrix population

algorithms is the same in both cases, the order of two sibling
nodes is context dependant in graphs, cf. Section 2.1.

For the support of ordered queries in graph data, a ternary
relation next and its transitive, reflective closures next+,
next∗ are introduced. The semantic of next is defined as
!next "D = {(c, c′) : ∃(p, i, c), (p, i′, c′) ∈ E. i + 1 = i′} with
the closure relations defined as usually. In fact, once the
matrix consuming algorithms support join conditions, the
handling of the ternary order relations is simple: it can be
handled as additional join condition in the join and projec-
tion specification of each node.

Besides this very rudimentary exploit of order relations as
join conditions in the output algorithm, it is possible to take
advantage of them in the matrix population algorithms, if
the edge position of the data model is accessible. Assuming
that Next∗(x, y, y′) must hold and that I is the set of posi-
tions of all y bindings and I ′ of y′ respectively, it must obvi-
ously hold that ∀i ∈ I.i ≤ max(I ′) and ∀i′ ∈ I ′.min(I) ≤ i′.
When populating the bindings of y′, the minimum position
of bindings of y is known, so that the above condition can
be imposed on all bindings of y′.

7. EXPERIMENTAL EVALUATION
The experimental evaluation is based on both synthetic

and on real data. The set of structural relations is extended
by the additional relations attribute and value in order to
support attribute queries. The tests have been executed on
an AMD Athlon 2400XP machine with 1GB main memory.
The algorithms are implemented in Java executed on JVM
version 1.5. All tests show the processing time without data
parsing. Each measurement is averaged over 500 runs.

Synthetic data is used to confirm the complexity of the
presented algorithms. The real data scenarios stem from
the University of Washington XMLData repository1, and
demonstrate the competitiveness of the algorithms.

The first experiment confirms on synthetic data how es-
sential the memoization of intermediary results is, not only
for the complexity but also for the experimental query eval-
uation time. The Match↓ algorithm without memoization
of variable domains (i.e., the helper structure ρ) exhibits an
exponential growth of time consumption in the size of the
query (cf. Fig. 5), because several common sub-matrices are
built repeatedly. In contrast, Fig. 6 depicts the effect of in-
creasing arity in a worst-case scenario, where the query is
unrestrictive, i.e., a binding for one answer variable is related
to all bindings of another one.

Fig. 7 shows a comparison between the two approaches for
matrix population discussed in this article. A path query
consisting of four variables and child∗ (descendant) rela-
tions only, but without label restrictions, is used. This query
exhibits worst case complexity for the top-down algorithm
Match↓, as the match context is never restricted by a previ-
ous context. As expected, the plot shows a quadratic run-
time growth in the data size for the top-down algorithm and
the bottom-up algorithm with child∗ index. Without this
index, the bottom-up approach exhibits a cubic runtime.

At least the top-down algorithm performs quite well even
in its basic form discussed here in real query scenarios. Fig. 8
shows how the runtime of the top-down algorithm scales
with the data size for path, tree and graph shaped queries.
These queries are executed over the MONDIAL2 database of

1http://www.cs.washington.edu/research/xmldatasets/
2http://www.dbis.informatik.uni-goettingen.de/Mondial/

geographical information. The plot shows additionally that
already for path queries the bottom-up algorithm exhibits
polynomial runtime; the naive bottom-up approach has an
average runtime that is very close to its worst-case. On
the other hand, the Match↓ exhibits a linear runtime in all
queries, even in the graph query experiment.

The final test on increasing fragments of a large XML doc-
ument, the Nasa dataset from the above mentioned repos-
itory, shows that the runtime of Match↓ scales nicely with
the data size and is very competitive even in the basic form
implemented for this experiment.

8. EXTENSIONS AND OUTLOOK
Though the experimental evaluation shows that even the

basic form of the proposed algorithm performs quite nicely,
there are quite a number of extensions and further optimiza-
tions likely to give interesting results: First of all, there are
extensions of the top-down matching algorithm to a com-
plete unification algorithm, as needed in Xcerpt [12]. This
algorithm must handle negated and optional query parts as
in general tree patterns [3].

Arc consistency, as used in constraint solving algorithms,
can be used to reduce the size of the matrix structure. First
experiments have shown, however, that verification of arc
consistency does not always improve evaluation time.

Partial unnesting of matrices can be used to remove ex-
istentially quantified variables eagerly at matrix population
time: a link to and from an existentially quantified variable
binding is replaced by a direct link. By this, the space com-
plexity of path queries can be reduced from O(|V ars(Q)| ·
|N |2) to O(n · |N |2), n being the arity of the query. Fur-
thermore, it has been shown (e.g., [8] and [5]), that que-
ries over graph data remain tractable for the class of queries
with bounded (hyper-) tree-width rather than just over tree-
shaped queries. How to extend the presented algorithms to
that larger class, remains an open issue. One step in this
direction is the support of more expressive structural rela-
tions, e.g., conditional axis [10] that allow collapsing entire
paths both for population and consumption of the matrix.

Finally, we plan to investigate a combination of bottom-
up and top-down matching techniques, in order to combine
the benefits of both a sophisticated bottom-up approach,
i.e., early pruning in the case of selective query leaves, and
the contextual narrowing of a top-down approach.

9. RELATED WORK
As previously mentioned, the complexity of conjunctive

queries and monadic queries over trees is studied thoroughly
in [7]. A restriction of the bottom-up algorithm discussed
in this article to conjunctive tree queries is similar to the
evaluation algorithm of [11] and has the same complexity.

Matching conjunctive queries over trees and graphs can be
seen as a constraint solving problem. It is well established
that tree shaped constraint problems (i.e., tree queries) can
be solved in O(q · v2) [4], though this result assumes O(1)
verification time for all relations. However, the implication
from arc to global constraint consistency used in this result,
does not hold for graph-shaped constraint problems.

In [7] it is shown that there are special cases where arc
consistency is at least sufficient to retrieve one single consis-
tent solution: if all binary constraints have the X-property
(read: X-underbar) over an order <, arc-consistency is suffi-
cient to guarantee that the minimal solution (in terms of the

 0.01

 0.1

 1

 10

 100

 1000

 10000

0 5 10 15 20 25 30 35 40

tim
e

(m
se

c,
 lo

ga
rit

hm
ic)

query size (variables)

without memoization
with memoization

Figure 5: Effect of Memoization over Query Size
(data synthetic, uniform, deeply nested; bindings for query vari-
ables overlap considerably)

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10

tim
e

(m
se

c,
 lo

ga
rit

hm
ic)

arity of query (variables)

top-down

Figure 6: Worst-Case Effect of Query Arity (data and
query as before)

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 50 100 150 200 250

tim
e

(m
se

c)

data size (elements)

bottom-up without indices
bottom-up with indices

Figure 7: Comparison Top-Down and Bottom-Up
(data synthetic, size increased by adding in depth; query small,
containing many descendants)

 0

 200

 400

 600

 800

 1000

 1200

0 100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

m
s
e

c
)

data size (kB)

path query, top-down
path query, bottom-up

tree query, top-down
graph query, top-down

Figure 8: Query Classes over Real-life Data (Mondial;
queries simple, but with arity > 1)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

0 5 10 15 20 25

tim
e

(m
se

c)

data size (MB)

top-down

Figure 9: Top-Down over Large, Real-life Nasa Data
(binary tree query)

same ordering <) is consistent. It follows that the evaluation
of n-ary graph queries with X-relations is only exponential
in the number of answer variables. It can further be derived
that the general problem is NP-complete and thus an algo-
rithm as proposed here with worst case exponential runtime
in the number of variables is the best achievable.

Another field of important related work are structural in-
dexing techniques [1, 2]. Indexes are an orthogonal aspect
to the matrix method that can be used to improve the run-
time of the presented algorithms. Considering entire paths
or trees at once through physical operators such as twig
joins [1] is a promising and recently widely researched tech-
nique for tree data. On such data, their application to the
discussed algorithms is straightforward.

10. CONCLUSION
The memoization matrix is a compact recursive data struc-
ture that holds the solution sets to such queries. In case of
tree queries, it contains the exact solutions to the queries,
whereas in case of graph queries intermediary results: the
solutions to the query represented by a spanning tree chosen
for the population of the matrix. Based on this data struc-
ture, we show (1) that the shape of the data has little or
no effect on the query complexity for the chosen relations;
(2) that a unified algorithm for both tree- and graph-shaped
semi-structured queries is feasible and competitive, both in
worst-case complexity and in experimental performance.

11. REFERENCES
[1] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig

Joins: Optimal XML Pattern Matching. In Proc. ACM
SIGMOD, 2002.

[2] T. Chen, J. Lu, and T. W. Ling. On Boosting Holism in
XML Twig Pattern Matching using Structural Indexing
Techniques. In Proc. ACM SIGMOD, 2005.

[3] Z. Chen, H. V. Jagadish, L. V. Lakshmanan, and
S. Paparizos. From Tree Patterns to Generalized Tree
Patterns: On Efficient Evaluation of XQuery. In Proc.
Int’l. Conf. on Very Large Databases, 2003.

[4] R. Dechter and J. Pearl. Network-based heuristics for
constraint-satisfaction problems. Int. J. on Artificial
Intelligence, 34(1), 1987.

[5] J. Flum, M. Frick, and M. Grohe. Query Evaluation via
Tree-Decompositions. J. of the ACM, 2002.

[6] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The
Complexity of XPath Query Evaluation and XML Typing.
J. of the ACM, 2005.

[7] G. Gottlob, C. Koch, and K. Schulz. Conjunctive Queries
over Trees. In Proc. ACM PODS, 2004.

[8] G. Gottlob, N. Leone, and F. Scarcello. Hypertree
Decompositions and Tractable Queries. In Proc. ACM
PODS, 1999.

[9] C. Koch. On the Complexity of Nonrecursive XQuery and
Functional Query Languages on Complex Values. In Proc.
ACM PODS, 2005.

[10] M. Marx. Conditional XPath, the First Order Complete
XPath Dialect. In Proc. ACM PODS, 2004.

[11] H. Meuss and K. U. Schulz. Complete Answer Aggregates
for Treelike Databases: A Novel Approach to Combine
Querying and Navigation. ACM Trans. on Information
Sys., 19(2), 2001.

[12] S. Schaffert and F. Bry. Querying the Web Reconsidered:
A Practical Introduction to Xcerpt. In Proc. Extreme
Markup Languages, 2004.

[13] S. Schaffert. Xcerpt: A Rule-Based Query and
Transformation Language for the Web. PhD Thesis,
Institute for Informatics, University of Munich, 2004.

