
Matteo Baldoni and Ulle Endriss (eds.)

Declarative Agent Languages
and Technologies

Fourth International Workshop, DALT 2006
Hakodate, Japan, May 8th, 2006
Workshop Notes

DALT 2006 Home Page:
http://staff.science.uva.nl/~ulle/DALT-2006/

Preface

The workshop on Declarative Agent Languages and Technologies (DALT), in its
fourth edition this year, is a well-established forum for researchers interested in
sharing their experiences in combining declarative and formal approaches with
engineering and technology aspects of agents and multiagent systems. Building
complex agent systems calls for models and technologies that ensure predictabil-
ity, allow for the verification of properties, and guarantee flexibility. Developing
technologies that can satisfy these requirements still poses an important and
difficult challenge. Here, declarative approaches have the potential of offering
solutions that satisfy the needs for both specifying and developing multiagent
systems. Moreover, they are gaining more and more attention in important ap-
plication areas such as the semantic web, web services, security, and electronic
contracting.

DALT 2006 is being held as a satellite workshop of AAMAS 2006, the 5th
International Joint Conference on Autonomous Agents and Multiagent Systems,
in Hakodate, Japan. Following the success of DALT 2003 in Melbourne (LNAI
2990), DALT 2004 in New York (LNAI 3476), and DALT 2005 in Utrecht (LNAI
3904), DALT will again aim at providing a discussion forum to both (i) support
the transfer of declarative paradigms and techniques to the broader community
of agent researchers and practitioners, and (ii) to bring the issue of designing
complex agent systems to the attention of researchers working on declarative
languages and technologies.

This volume containts the twelve papers that have been selected by the Pro-
gramme Committee for presentation at the workshop. Each paper received at
least three reviews in order to supply the authors with a rich feedback that could
stimulate the research as well as foster the discussion. In addition to these presen-
tations, Munindar P. Singh from North Carolina State University will be giving
an invited talk on a declarative approach to instantiating business protocols.

We would like to thank all authors for their contributions, the members of the
Steering Committee for the precious suggestions and support, and the members
of the Programme Committee for the excellent work during the reviewing phase.

March 19th, 2006

Matteo Baldoni
Ulle Endriss

VI

Workshop Organisers

Matteo Baldoni University of Torino, Italy
Ulle Endriss University of Amsterdam, The Netherlands

Programme Committee

Marco Alberti University of Ferrara, Italy
Natasha Alechina University of Nottingham, UK
Grigoris Antoniou University of Crete, Greece
Matteo Baldoni University of Torino, Italy, Co-chair
Cristina Baroglio University of Torino, Italy
Rafael Bordini University of Durham, UK
Keith Clark Imperial College London, UK
Ulle Endriss University of Amsterdam, The Netherlands, Co-chair
Benjamin Hirsch Technical University Berlin, Germany
Shinichi Honiden National Institute of Informatics, Japan
John Lloyd Australian National University, Australia
Viviana Mascardi University of Genova, Italy
John-Jules Ch. Meyer Utrecht University, The Netherlands
Enrico Pontelli New Mexico State University, USA
Birna van Riemsdijk University of Utrecht, The Netherlands
Chiaki Sakama Wakayama University, Japan
Wamberto Vasconcelos University of Aberdeen, UK
Christopher Walton University of Edinburgh, UK
Michael Winikoff RMIT University, Melbourne, Australia

Steering Committee

João Leite New University of Lisbon, Portugal
Andrea Omicini University of Bologna-Cesena, Italy
Leon Sterling University of Melbourne, Australia
Paolo Torroni University of Bologna, Italy
Pınar Yolum Bogazici University, Turkey

Additional Reviewers

Giovanni Casella
Valentina Cord̀ı
John Knottenbelt

Sponsoring Institutions

Matteo Baldoni has partially been funded by the European Commission and by
the Swiss Federal Office for Education and Science within the 6th Framework
Programme project REWERSE number 506779 (cf. http://rewerse.net).

Table of Contents

Automating Belief Revision for AgentSpeak . 1
Natasha Alechina, Rafael H. Bordini, Jomi Hübner F., Mark Jago,
Brian Logan

A Foundational Ontology of Organizations and Roles 17
Guido Boella, Leendert van der Torre

When Agents Communicate Hypotheses in Critical Situations 33
Gauvain Bourgne, Nicolas Maudet, Suzanne Pinson

A Fibred Tableau Calculus for BDI Logics . 49
Vineet Padmanabhan, Guido Governatori

Programming Declarative Goals Using Plan Patterns 65
Jomi F. Hübner, Rafael H. Bordini, Michael Wooldridge

JADL – an Agent Description Language for Smart Agents 82
Thomas Konnerth, Benjamin Hirsch, Sahin Albayrak

Agreeing on Defeasible Commitments . 98
Ioan Alfred Letia, Adrian Groza

Using Dynamic Logic Programming to Obtain Agents with Declarative
Goals – preliminary report . 114
Vivek Nigam, João Leite

A Collaborative Framework to realize Virtual Enterprises using 3APL . . . 130
Gobinath Narayanasamy, Joe Cecil, Tran Cao Son

A Modelling Framework for Generic Agent Interaction Protocols 146
José Ghislain Quenum, Samir Aknine, Jean-Pierre Briot, Shinichi
Honide

Plan Generation and Plan Execution in Agent Programming 162
M. Birna van Riemsdijk, Mehdi Dastani

A Functional Program for Agents, Actions, and Deontic Specifications . . . 176
Adam Zachary Wyner

Author Index . 194

VIII

Automating Belief Revision for AgentSpeak

Natasha Alechina1, Rafael H. Bordini2, Jomi F. Ḧubner3,
Mark Jago1, and Brian Logan1

1 School of Computer Science
University of Nottingham

Nottingham, UK
{nza,mtw,bsl }@cs.nott.ac.uk

2 University of Durham
Dept. of Computer Science

Durham, UK
r.bordini@durham.ac.uk

3 Univ. Regional de Blumenau
Dept. Sistemas e Computação

Blumenau, SC, Brazil
jomi@inf.furb.br

Abstract. The AgentSpeak agent-oriented programming language has recently
been extended with various new features, such as speech-act based communica-
tion, internal belief additions, and support for reasoning with ontological knowl-
edge, which imply the need for belief revision within an AgentSpeak agent. In this
paper, we show how a polynomial-time belief-revision algorithm can be incorpo-
rated into theJasonAgentSpeak interpreter by making use ofJason’s language
constructs and customisation features. This is one of the first attempts to include
automatic belief revision within an interpreter for a practical agent programming
language.

1 Introduction

After almost a decade of work on abstract programming languages for multi-agent sys-
tems, practical multi-agent platforms based on these languages are now beginning to
emerge. One example of a well-known agent language that has evolved to the point
of being sufficiently practical for widespread use is AgentSpeak, and in particular its
implementation inJason [7]. A number of extensions to AgentSpeak have been re-
ported in the literature and incorporated intoJason. Some of these new features, such
as speech-act based communication, internal belief additions, and support for reasoning
with ontological knowledge, have led to a greater need forbelief revisionas part of an
agent’s reasoning cycle. However, in common with other mature agent-oriented pro-
gramming languages [5],Jasondoes not currently provide automatic support for belief
revision. The current implementation provides a simple form of beliefupdate, which
can be customised for particular applications. However, the problem of belief-base con-
sistency has, so far, remained the responsibility of the programmer.

1

The lack of support for belief revision in practical agent programming languages
is understandable, given that known belief revision algorithms have high computa-
tional complexity bounds. However recent work by Alechina et al. [2] has changed
this picture. By making simplifying assumptions, which nevertheless are quite realistic
for agent-oriented programming languages, they were able to produce a polynomial-
time belief-revision algorithm, which is also theoretically well-motived, in the sense of
producing revisions that conform to a generally accepted set of postulates characteris-
ing rational belief revision. In this paper, we show how this work can be incorporated
into theJasonAgentSpeak interpreter by making use ofJason’s language constructs
and customisation features. This is one of the first attempts to include automatic belief
revision within an interpreter for a practical agent programming language. Some initial
considerations on belief revision in anabstractprogramming language appeared, for
example, in [23]. In an approach similar to ours, [10] sketch how theGo! program-
ming language can be extended with a consistency maintenance system which can be
used by an agent whose beliefs are constrained by a formal ontology to decide which
beliefs to remove in order to restore consistency.

The remainder of the paper is organised as follows. In Sections 2 and 3 we give a
brief overview of AgentSpeak programming and its implementation inJason. In Sec-
tion 4, we state our desiderata for belief revision in AgentSpeak, and in Section 5 we
summarise the main points of the algorithm first introduced in [2]. We then discuss the
integration of the belief revision algorithm intoJason in Section 6, while Section 7
gives a simple example which illustrates the importance of belief revision in practical
programming of multi-agent systems. Finally, we discuss conclusions and future work.

2 AgentSpeak

The AgentSpeak(L) programming language was introduced in [21]. It is based on logic
programming and provides an elegant abstract framework for programming BDI agents.
The BDI architecture is, in turn, the predominant approach to the implementation of
intelligentor rational agents [26], and a number of commercial applications have been
developed using this approach.

An AgentSpeak agent is defined by a set ofbeliefsgiving the initial state of the
agent’sbelief base, which is a set of ground (first-order) atomic formulæ, and a set of
plans which form itsplan library. An AgentSpeak plan has aheadwhich consists of a
triggering event (specifying the events for which that plan isrelevant), and a conjunction
of belief literals representing acontext. The conjunction of literals in the context must
be a logical consequence of that agent’s current beliefs if the plan is to be considered
applicablewhen the triggering event happens (only applicable plans can be chosen for
execution). A plan also has abody, which is a sequence of basic actions or (sub)goals
that the agent has to achieve (or test) when the plan is triggered.Basic actionsrepresent
the atomic operations the agent can perform so as to change the environment. Such
actions are also written as atomic formulæ, but using a set ofaction symbolsrather than
predicate symbols. AgentSpeak distinguishes two types ofgoals: achievement goals
and test goals. Achievement goals are formed by an atomic formulæ prefixed with the
‘ ! ’ operator, while test goals are prefixed with the ‘?’ operator. Anachievement goal

2

states that the agent wants to achieve a state of the world where the associated atomic
formulæ is true. Atest goalstates that the agent wants to test whether the associated
atomic formulæ is (or can be unified with) one of its beliefs.

An AgentSpeak agent is areactive planning system. Plans are triggered by thead-
dition (‘+’) or deletion(‘ - ’) of beliefs due to perception of the environment, or to the
addition or deletion of goals as a result of the execution of plans triggered by previous
events.

A simple example of an AgentSpeak program for a Mars robot is given in Figure 1.
The robot is instructed to be especially attentive to “green patches” on rocks it observes
while roving on Mars. The AgentSpeak program consists of three plans. The first plan
says that whenever the robot perceives a green patch on a certain rock (a belief addition),
it should try and examine that particular rock. However this plan can only be used (i.e.,
it is only applicable) if the robot’s batteries are not too low. To examine the rock, the
robot must retrieve, from its belief base, the coordinates it has associated with that rock
(this is the reason for the test goal in the beginning of the plan’s body), then achieve the
goal of traversing to those coordinates and, once there, examining the rock. Recall that
each of these achievement goals will trigger the execution of some other plan.

+green patch(Rock) :
not battery charge(low) <-

?location(Rock,Coordinates) ;
!traverse(Coordinates) ;
!examine(Rock) .

+!traverse(Coords) :
safe path(Coords) <-

move towards(Coords) .

+!traverse(Coords) :
not safe path(Coords) <-

...

Fig. 1. Examples of AgentSpeak Plans for a Mars Rover

The two other plans (note the last one is only an excerpt) provide alternative courses
of action that the rover should take to achieve a goal of traversing towards some given
coordinates. Which course of action is selected depends on its beliefs about the envi-
ronment at the time the goal-addition event is handled. If the rover believes that there
is a safe path in the direction to be traversed, then all it has to do is to take the action of
moving towards those coordinates (this is a basic action which allows the rover to effect
changes in its environment, in this case physically moving itself). The alternative plan
(not shown here) provides an alternative means for the agent to reach the rock when the
direct path is unsafe.

3

3 Jason

TheJasoninterpreter implements the operational semantics of AgentSpeak as given in,
e.g., [8].Jason4 is written in Java, and its IDE supports the development and execution
of distributed multi-agent systems [6]. Some of the features ofJasonare:

– speech-act based inter-agent communication (and annotation of beliefs with infor-
mation sources);

– annotations on plan labels, which can be used by elaborate (e.g., decision-theoretic)
selection functions;

– the possibility to run a multi-agent system distributed over a network (using SACI
or some other middleware);

– fully customisable (in Java) selection functions, trust functions, and overall agent
architecture (perception, belief-revision, inter-agent communication, and acting);

– straightforward extensibility (and use of legacy code) by means of user-defined
“internal actions”;

– clear notion ofmulti-agent environments, which can be implemented in Java (this
can be a simulation of a real environment, e.g., for testing purposes before the
system is actually deployed).

3.1 Extensions to AgentSpeak

Recent work appearing in the literature has made important additions to AgentSpeak,
which have also been (or are in the process of being) implemented inJason. Below we
briefly discuss some of these features, focusing on those that have particular implica-
tions for belief revision.

Belief additions One of the earliest extensions of the AgentSpeak language is one of
the most important from the point of view of belief revision. From the initial work on
AgentSpeak, experience showed that it was often the case that the execution of some
plans could be greatly facilitated by allowing a plan instance being executed to add
derived beliefs to the agent’s belief base. A formula such as+bl in the body of a plan,
has the effect of adding the belief literalbl to the belief base. Together with the ability
to exchange plans with other agents (see below), such derived beliefs can result in the
agent’s belief base becoming inconsistent (i.e., bothb and˜ b are in the belief base, for
some beliefb)5. Unless the programmer deliberately intends to make use of paracon-
sistency, this is clearly undesirable, yet it isnot currently checked or handled byJason
automatically.

Speech-act based communication and plan exchangeAnother important addition, first
proposed in [16], is the extension of the AgentSpeak operational semantics to allow
speech-act based communication among AgentSpeak agents. That work gave semantics

4 Jason is Open Source (GNU LGPL) and is available fromhttp://jason.
sourceforge.net

5 The ’̃ ’ operator denotes strong negation inJason.

4

to the change in the mental attitudes of AgentSpeak agents when receiving messages
from other agents (using a speech-act based language). This includes not only changes
in beliefs and goals, but also the plans used by the agent. This allows agents to exchange
know-how with other agents in the form of plans for dealing with specific events [3].
The intuitive idea is that if one does not know how to do something, one should ask
someone who does. However, to systematise this idea, hence introducing the possibility
of cooperationamong agents, it was necessary not only the means for the retrieval of
external plans for a given triggering event for which the agent has no applicable plan,
but also to annotate plans withaccess specifiers(e.g., to prevent private plans being
accessed by other agents), or with indications of what the agent should do with the
retrieved plan once it has been used for a particular event (e.g., discard it, or keep it in
the plan library for future reference).

Ontological reasoningIn [17], an extension of AgentSpeak was proposed which aimed
at incorporating ontological reasoning within an AgentSpeak interpreter. The language
was extended so that the belief base can include Description Logic [4] operators; the
extended language was called AgentSpeak-DL. In addition to the usual ABox (factual
knowledge in the form of ground atomic formulæ), the belief base can also have a
TBox (containing definitions of complex concepts and relationships between them).
This results in a number of changes in the interpretation of AgentSpeak programs: (i)
queries to the belief base are more expressive as their results do not depend only on
explicit knowledge but can also be inferred from the ontology; (ii) the notion of belief
update is refined so that a property about an individual can only be added if the resulting
belief base is consistent with the concept description; (iii) the search for a plan (in the
agent’s plan library) that is relevant for dealing with a particular event is more flexible
as this is not based solely on unification, but also on the subsumption relation between
concepts; and (iv) agents may share knowledge by using web ontology languages such
as OWL.

The issue of belief revision is clearly important in the context of ontological reason-
ing (e.g., item (ii) above), and this is another motivation for the work presented here.
Further, ontologies are presently being used in various agent-based applications (see,
e.g., [9]).

Although AgentSpeak-DL is not yet available in the latest release ofJason, we
briefly outline how our work on belief revision will combine with the ongoing imple-
mentation of AgentSpeak-DL. InJason, the abstract language presented in [17] will
take the following more practical form. We will represent ontological knowledge in
OWL Lite− [11], or in the form of Horn clauses. Interestingly, the OWL Lite− lan-
guage was created precisely so that any ontology thus defined could be translated into
Datalog, hence efficient query answering could be done based on logic programming
techniques. Unlike the abstract language used in [17], definitions such as

presenter ≡ invitedSpeaker t paperPresenter.
are not allowed in the practical language to be used in this work (the best that we can
do here are definitions such asinvitedSpeaker v presenter andpaperPresenter v
presenter). On the other hand, we will be able to expressontology rules[14] which
are not expressible in description logic.

5

Belief annotationsAnother important change in the version of AgentSpeak interpreted
by Jasonis that atomic formulæ now can have “annotations”. An annotation is a list of
terms enclosed in square brackets immediately following a predicate. For example, the
annotated belief “green patch(r1)[doc(0.9)] ” could be used by a program-
mer to represent the fact that rockr1 is believed to have a green patch in it, and this
is believed with a degree of certainty (doc) of 0.9. Within the belief base, an impor-
tant use of annotations is to record the sources of information for a particular belief,
and a (pre-defined) termsource(s) is provided for that purpose, wheres can be an
agent’s name (to denote the agent that has communicated that information), or two spe-
cial atoms,percept andself , which denote, respectively, that a belief arose from
perception of the environment, or from the agent explicitly adding a belief to its own
belief base as a result of executing a plan. The initial beliefs that are part of the source
code of an AgentSpeak agent are assumed to be internal beliefs (i.e., as if they had a
[source(self)] annotation), unless the belief has any source explicit annotation
given by the user (this could be useful if the programmer wants the agent to have an
initial belief as if it had been perceived from the environment, or as if it had been com-
municated by another agent). For more on the annotation of sources of information for
beliefs, see [16].

As will be seen below, annotations can be used to support context sensitive belief
revision, where beliefs of a particular type or from a particular source are preferred to
others when an inconsistency arises.

3.2 Belief Update inJason

Users can customise certain aspects of the (practical) reasoning of aJasonagent by
overriding methods of theAgent. This includes, for example, the three user-defined
selection functions that are required by an AgentSpeak interpreter. One of the meth-
ods of theAgent class that can be overridden, which is of interest here, is thebrf()
method. This represents thebelief revision functioncommonly found in agent architec-
tures (although the Agents literature often assumes that this function is used mainly for
belief update, rather than revision). To create a customised agent class which overrides
the brf method (e.g., to include a more sophisticated algorithm than the standard one
distributed withJason), the following method needs to be overridden6:

public class MyAgent extends Agent {

public List[] brf(List adds, List dels) {
// This function should revise the belief base
// with the given literals to add and delete

// In its return, List[0] has the list of actual
// additions to the belief base, and List[1] has
// the list of actual deletions; this is used to
// generate the appropriate internal events

}
}

6 Note that the signature of thebrf method as given below is different from what is currently
available inJason, but this is how it will be in the next public release.

6

In the currentJasonimplementation, thebrf method receives only a list of additions,
and is used both for belief revision and belief update (i.e., perception of the environment
is followed by a call to this method with literals representing the percepts7). For belief
update following perception of the environment, it is assumed that all perceptible prop-
erties are included in the list of additions: all current beliefs no longer within the list
of percepts are deleted from the belief base, and all percepts not currently in the belief
base are added to it. For belief revision, the defaultbrf method inJasonsimply adds to
the belief base any belief addition executed within a plan, as well as any information
from trusted sources (note, however, that the source is annotated on the belief added to
belief base, so in practice further consideration of the degree of trust in any belief can
be taken by the programmer).

At present, belief additions (from whatever source) arenotchecked for consistency,
with the result that the belief base can become inconsistent, unless much care is taken
by programmers.

4 Requirements for Belief Revision in AgentSpeak

We have two main objectives in our introduction of belief revision in AgentSpeak. First
the algorithm should be theoretically well motived, in the sense of producing revisions
which conform to a generally accepted set of postulates characterisingrational belief
revision. Second, we want the resulting language to be practical, which means that the
belief revision algorithm must be efficient. Our approach draws on recent work [2]
on efficient (polynomial-time) belief revision algorithms which satisfy the well-known
AGM postulates [1] characterising rational belief revision and contraction.

The theory of belief revision as developed by Alchourron, Gärdenfors, and Makin-
son in [12, 1, 13] models belief change of an idealised rational reasoner. The reasoner’s
beliefs are represented by a potentially infinite set of beliefs closed under logical conse-
quence. When new information becomes available, the reasoner must modify its belief
set to incorporate it. The AGM theory defines three operators on belief sets: expansion,
contraction, and revision.Expansion, denotedK + A, simply adds a new beliefA to
K and the resulting set is closed under logical consequence.Contraction, denoted by
K

.− A, removes a beliefA from from the belief set and modifiesK so that it no longer
entailsA. Revision, denotedK

.
+ A, is the same as expansion ifA is consistent with

the current belief set, otherwise it minimally modifiesK to make it consistent withA,
before addingA.

Contraction and revision cannot be defined uniquely, since in general there is no
unique maximal setK ′ ⊂ K which does not implyA. Instead, the set of ‘rational’
contraction and revision operators is characterised by the AGM postulates [1]. Below,
Cn(K) denotes closure ofK under logical consequence.

The basic AGM postulates for contraction are:

(K .−1) K .− A = Cn(K .− A) (closure)
(K .−2) K .− A ⊆ K (inclusion)

7 The fact that a literal is a percept rather than other forms of information is explicitly stated in
the annotations: all percepts have asource(percept) annotation.

7

(K .−3) If A /∈ K, thenK .− A = K (vacuity)

(K .−4) If not ` A, thenA /∈ K .− A (success)

(K .−5) If A ∈ K, thenK ⊆ (K .− A) +A (recovery)

(K .−6) If Cn(A) = Cn(B), thenK .− A = K
.− B (equivalence)

AGM style belief revision is sometimes referred to ascoherenceapproach to belief
revision, because it is based on the ideas of coherence and informational economy. It
requires that the changes to the agent’s belief state caused by a revision be as small
as possible. In particular, if the agent has to give up a belief inA, it does not have to
give up believing in things for whichA was the sole justification, so long as they are
consistent with the remaining beliefs.

AGM belief revision is generally considered to apply only to idealised agents, be-
cause of the assumption that the set of beliefs is closed under logical consequence. To
model AI agents, an approach called belief base revision has been proposed (see for ex-
ample [15, 18, 24, 22]). A belief base is a finite representation of a belief set. Revision
and contraction operations can be defined on belief bases instead of on logically closed
belief sets. However the complexity of these operations ranges from NP-complete (full
meet revision) to low in the polynomial hierarchy (computable using a polynomial num-
ber of calls to an NP oracle which checks satisfiability of a set of formulas) [20]. The
reason for the high complexity is the need to check for classical consistency while per-
forming the operations. One way around this is to weaken the language and the logic of
the agent so that the consistency check is no longer an expensive operation (as suggested
in [19]). This is also the approach taken in [2] and adopted here.

The ‘language’ of an AgentSpeak agent is weaker than the language of full classical
logic (the belief base contains only literals) and the deductions the agent can make
are limited to what can be expressed as plans (and, for example, ontology rules). We
introduce belief revision operators in AgentSpeak which satisfy all but one of the AGM
postulates (recovery is not satisfied), but the logical closureCn in the postulates is
interpreted as closure with respect to a logic which is weaker than full classical logic.
This allows us to define theoretically sound, but efficient belief revision operations.

Another strand of theoretical work in belief revision is thefoundational, or reason-
maintenancestyle approach to belief revision. Reason-maintenance style belief revi-
sion is concerned with tracking dependencies between beliefs. Each belief has a set of
justifications, and the reasons for holding a belief can be traced back through these jus-
tifications to a set of foundational beliefs. When a belief must be given up, sufficient
foundational beliefs have to be withdrawn to render the belief underivable. Moreover, if
all the justifications for a belief are withdrawn, then that belief itself should no longer be
held. Most implementations of reason-maintenance style belief revision are incomplete
in the logical sense, but tractable.

In the next section we present an approach to belief revision and contraction for
resource-bounded agents which allows both AGM and reason-maintenance style belief
revision.

8

5 The Belief Revision Algorithm

In this section we briefly describe the linear-time contraction algorithm introduced in
[2]. The algorithm defines resource-bounded contraction by a literalA as the removal
of A and sufficient literals from the agent’s belief base so thatA is no longer derivable.

Assume that the agent’s belief base is a directed graph, where the nodes are beliefs
and justifications. A justification consists of a belief and asupport listcontaining the
context (and possibly the triggering event) of the plan used to derive this belief, for
example:(A, [B,C]), whereA is a derived belief and it was asserted by a plan with
contextB and triggering belief additionC (or derived by an ontology ruleB,C → A).
If A can be derived in several different ways, for example, fromB,C and fromD
(whereB,C andD are in the belief base), the graph contains several justifications for
A, for example(A, [B,C]) and(A, [D]). Foundational beliefs which were not derived,
have a justification of the form(D, []). In the graph, each justification has one outgoing
edge to the belief it is a justification for, and an incoming edge from each belief in its
support list. We assume that each support lists has a designatedleast preferredmember
w(s). Intuitively, this is a belief which is not preferred to any other belief in the support
list, and which we would be prepared to discard first, if we have to give up one of the
beliefs in the list. We discuss possible preference orderings and their computation in the
next section. We assume that we have constant time access tow(s).

The algorithm to contract a beliefA is as follows:

For each of A’s outgoing edges
to a justification (C, s),
remove (C,s) from the graph.

For each of A’s incoming edges
from a justification (A, s),

if s is empty:
remove (A, s);

else:
contract by w(s);

Remove A.

To implement reason-maintenance type contraction, we also remove beliefs which have
no incoming edges.

In [2], it was shown that the contraction operator defined by the algorithm satisfies
(K .−1)–(K .−4) and (K.−6). The agent’s beliefs are closed under logical consequence in
in a logicW which has a single inference rule (generalised modus ponens):

δ(A1), . . . , δ(An), ∀x̄(A1 ∧ . . . ∧An → B)
δ(B)

whereδ is a substitution function which replaces all free variables of a formula with
constants.

The algorithm runs in timeO(kr + n), wherek the maximal number of beliefs in
any support list,r is the number of plans, andn the number of literals in the belief base
[2].

9

5.1 Preferred Contractions

In general, an agent will prefer some contractions to others. In this section we focus on
contractions based on preference orders over individual beliefs, e.g., degree of belief or
commitment to beliefs.

We distinguishindependentbeliefs, beliefs which have at least one non-inferential
justification (i.e., a justification with an empty support), such as beliefs acquired by per-
ception and the literals in the belief base when the agent starts. We assume that an agent
associates ana priori quality with each non-inferential justification for its independent
beliefs. For example, communicated information may be assigned a degree of reliabil-
ity by its recipient which depends on the degree of reliability of the speaker (i.e., the
speaker’s reputation), percepts may be assumed to be more reliable than communicated
information, and so on.

For simplicity, we assume that quality of a justification is represented by non-
negative integers in the range0, . . . ,m, wherem is the maximum size of the belief
base. A value of 0 means the lowest quality andm means highest quality. We take the
preference of a literalA, p(A), to be that of its highest quality justification:

p(A) = max{qual(j0), . . . , qual(jn)},

wherej0, . . . , jn are all the justifications forA, and define the quality of an inferential
justification to be that of the least preferred belief in its support:8

qual(j) = min{p(A) : A ∈ support of j}.

This is similar to ideas in argumentation theory: an argument is only as good as its
weakest link, yet a conclusion is at least as good as the best argument for it. This ap-
proach is also related to Williams ‘partial entrenchment ranking’ [25] which assumes
that the entrenchment of any sentence is the maximal quality of a set of sentences im-
plying it, where the quality of a set is equal to the minimal entrenchment of its members.
While this approach is intuitively appealing, nothing hangs on it, in the sense that any
preference order can be used to define a contraction operation, and the resulting op-
eration will satisfy the postulates. To perform a preferred contraction, we preface the
contraction algorithm given above with a step which computes the preference of each
literal in the belief base, and for each justification, finds the position of a least preferred
member of the support list. The preference computation algorithm can be found in [2].

We then simply run the contraction algorithm, to recursively delete the weakest
member of each support in the dependencies graph ofA.

We define theworth of a set of literalsΓ asworth(Γ) = max{p(A) : A ∈ Γ}. In
[2] it was shown that the contraction algorithm removes the set of literals with the least
worth. More precisely:

Proposition 1. If contraction of the set of literals in the belief baseK byA resulted in
removal of the set of literalsΓ , then for any other set of literalsΓ ′ such thatK − Γ ′
does not implyA, worth(Γ) ≤ worth(Γ ′).

8 Literals with no supports (as opposed to an empty support) are viewed as having an empty
support of the lowest quality.

10

The proof is given in [2]. Computing preferred contractions involves only modest com-
putational overhead. The total cost of computing the preference of all literals in the
belief base isO(n log n+kr), wheren the number of literals in the belief base,k is the
maximal number of beliefs in any support list, andr the number of plans. As the con-
traction algorithm is unchanged, this is also the additional cost of computing a preferred
contraction. Computing the most preferred contraction can therefore be performed in
time linear inkr + n.

5.2 Revision

In the previous sections we described how to contract by a belief. Now let us consider
revision, which is adding a new belief in a manner which does not result in an inconsis-
tent set of beliefs.

If the agent is a reasoner in classical logic, revision is definable in terms of con-

traction and vice versa using Levi identityK
.
+
df
= (K .− ¬A) + A and Harper identity

K
.− A

df
= (K

.
+ ¬A) ∩K (see [13]).

However, revision and contraction are not inter-definable in this way for an agent
which is not a classical reasoner, in particular, a reasoner in a logic for which it does
not hold thatK +A is consistent if, and only if,K 6` ¬A. If we apply the Levi identity
to the contraction operation defined earlier, we will get a revision operation which does
not satisfy the belief revision postulates. One of the reasons for this is that contracting
the agent’s belief set by¬A does not make this set consistent withA, so(K .− ¬A)+A
may be inconsistent.

Instead, we define revision of the set of literals in the belief baseK byA as(K +
A) .− ⊥ (addA, close under consequence, and eliminate all contradictions).

Algorithm: revision by A

Add A to K;
apply all matching plans;

while there is a pair (B, ˜B) in K:
contract by the least preferred member of the pair

In [2], it is shown that this definition of revision satisfies all of the basic AGM postulates
for revision below apart from (K

.
+2):

(K
.
+1) K

.
+ A = Cn(K

.
+ A)

(K
.
+2) A ∈ K .

+ A
(K
.
+3) K

.
+ A ⊆ K +A

(K
.
+4) If {A} ∪K is consistent, thenK +A = K

.
+ A9

(K
.
+5) K

.
+ A is inconsistent if, and only if,A is inconsistent.

(K
.
+6) If Cn(A) = Cn(B), thenK

.
+ A = K

.
+ B

9 We replaced ‘¬A 6∈ K ’ with ‘ {A} ∪ K is consistent’ here, since the two formulations are
classically equivalent.

11

6 Belief Revision inJason

Future releases ofJasonwill include an alternative definition of thebrf() method dis-
cussed in Section 3.2 which implements the belief revision algorithm presented above.
A belief to be added to the belief base, passed to this new implementation ofbrf, may be
discarded or may result in the deletion of some other belief(s) in order to allow the new
belief to be consistently added to the belief base. Which beliefs are effectively deleted
is determined by a user-specified preference order (see below).

The only change to the AgentSpeak interpreter code that was necessary to facilitate
the implementation of the belief revision algorithm, was to explicitly include in any
internal belief change, the label of the plan that executed the belief change. For example,
if at a particular reasoning cycle, the intended means (i.e., plan instance) chosen for
execution is “@p1 te : ct <- +b. ”, the belief b is annotated with “plan(p1) ”
(in addition tosource(self) , as normally) before addingb to the belief base.

The graph used by the belief revision algorithm is implemented in terms of two
lists for each belief: the “dependencies list” (the literals that allowed the derivation of
the belief literal in question), and the “justifies list” (which other beliefs the literal in
question justifies, i.e., it appears in their dependencies list).10 Each belief to be added
has an annotation “plan() ” recording the label of the plan instance that generated it,
which can be used to retrieve the necessary information regarding the antecedents of the
belief from the plan library (together with the unifier used in that plan’s instance in the
set of intentions). For example, if the plan that generated the belief change, say+bl, has
the form “@p te : l1 & ...& ln <- bd”, wherete is a triggering event andbd a
plan body, the support list of the justification is simply the (ground) literals from the plan
context, “[l1,. . . ,ln]”. Note that if the triggering event,te, is itself a belief (addition),
the literal inte is included together with the context literals in the support list. Further,
for each literal inl1, . . . , ln we add the justification to the literal’s “justifies” list. We
also record the time at which the justification was added to the relevant list.

In addition to the “dependencies” and “justifies” lists, the belief revision algorithm
also requires the definition of a partial order relation specifying contraction preference.
To allow for user customisation, this is defined as a separate method that can also be
overridden. The default definition of this method gives preference to perceived infor-
mation over communicated information (as also happens in [23]), and in case of in-
formation from similar sources, it gives preference to newer information over older
information (this is why the time when a justification was inserted is also annotated, as
explained above).

The implementation described above is conservative in revising only the agent’s
belief state. The agent’s plans are considered part of the agent’s program and are not
revised (though revising, e.g., plans received from other agents would be an interesting
extension). Similarly, when revising beliefs derived using ontological rules, we assume
the ontology used by the agent to be immutable and consistent and that it is consis-

10 Note that the “dependencies” and “justifies” lists are associated with each unique belief, i.e.,
a ground belief atom and the annotations with which it is asserted into the belief base, rather
than the internalJason representation of the belief which holds all annotations for a given
ground belief atom in a single list.

12

tent with every other ontology it references. Moreover,intentionrevision remains the
responsibility of the programmer. Changes in the agent’s intentions following the re-
moval of beliefs to restore consistency must be programmed using the appropriateJa-
sonmechanisms. All belief changes, regardless of whether they are internal, communi-
cated, or perceived can lead to the execution of a plan which could be used, for example,
to drop an intention. If the belief revision algorithm has to remove any beliefs to en-
sure consistency, this will also generate the appropriate (belief-deletion) internal events,
which in turn can trigger the execution of a such plans to revise the agent’s intentions.

7 An Example

To illustrate the importance of belief revision in the context of AgentSpeak, we present
a simple example of an agent that buys stocks from the stock market. The agent receives
financial information (or guesses) from other agents, some of which can be trusted (or
are currently considered trustworthy), and it also has access to Web Services which filter
relevant newspaper stories and provide symbolic versions of such news for stock market
agents. As these web services are authenticated, this corresponds to actual perception
of the “environment”.

Suppose our agent receives a message〈ag1, tell, salesUp(c1)〉 and its plan library
has the following plan:

+salesUp(C)[source(A)]
: wellManaged(C) & trust(A)

<- +goodToBuy(C).

When the plan is executed, thebrf() method will then add
goodToBuy(c1)[source(ag1)] to the belief base with
[salesUp(c1), wellManaged(c1), trust(ag1)] in its “dependen-
cies” list, and goodToBuy(c1) is added to the “justifies” lists of the beliefs
salesUp(c1) , wellManaged(c1) , and trust(ag1) . In the context of the
overall agent program, the idea is that if the agent ever comes to have the goal of
buying stocks, it can make use of beliefs such asgoodToBuy , together with various
other conditions, to decide which specific stocks to buy.

Now assume that from the financial news web service, the agent acquires the belief
stocks(c2,10)[source(percept)] , which means that companyc2 ’s stocks
are up by 10 points, and the agent also believes thatrival(c2,c1) (i.e., that com-
paniesc2 andc1 are competitors), so that increase in the stocks of one of them tend
to lead to decrease in the other’s stocks. Assume further that the agent happens to have
the following plan:

+stocks(C,P)
: P > 5 & rival(C,R)

<- + ˜ goodToBuy(R).

When the plan is executed, the attempt to simply add˜ goodToBuy(c1) to the belief
base would not be carried out because it would result in an inconsistent belief state.
With the available contraction preference relation, it is not difficult to see that in this
instance, the algorithm would contractgoodToBuy(c1) because its support is based

13

on communicated information which is less reliable than the observed information from
which ˜ goodToBuy(c1) was derived.

As can be seen, the belief revision algorithm takes care of ensuring that inconsisten-
cies such as(goodToBuy(c1) ∧˜ goodToBuy(c1)) never occur in the belief base.
Moreover, the data structures used by the algorithm (the dependencies and justifications
lists) allow it to automatically revise the belief base in ways that previously would re-
quire major programming efforts from the user. For example, suppose the agent receives
news that a crooked CEO has just been fired fromc1 . The agent is likely to have a plan
to update its beliefs aboutc1 being well managed as a consequence of such new in-
formation about the CEO. If the user has chosen thereason-maintenance styleof the
algorithm, and there is no other justification forgoodToBuy , then the algorithm would
remove not only thewellManaged(c1) belief, but also thegoodToBuy(c1) be-
lief because the latter depends on the former. Similarly if for some reason the agent
later finds out thatag1 is not trustworthy after all.

However, with the user choosing thecoherence styleof the algorithm, removing
wellManaged wouldnot removegoodToBuy . Although in this example the reason-
maintenance style is clearly more adequate, in other applications the coherence style
might be more useful. In any case, it is clear that without the use of an automatic belief
revision algorithm, it would be very difficult for a programmer to ensure such kind of
revision would occur appropriately at all times. This would require that the programmer
developed an application-specificbrf method, or else writing specific plans to handle
all possible events (due to belief changes) that might affect any such inferences.

8 Conclusions and Future Work

As multi-agent programming languages become richer, it becomes harder for program-
mers to ensure that the belief states of agents developed using these languages are kept
consistent. In this paper we briefly summarised the rationale for including automatic be-
lief revision in an agent programming language. Using the AgentSpeak programming
language as an example, we showed how a number of features recently added to the
language dramatically increase the need for automatic belief revision. We motived the
choice of a polynomial-time belief revision algorithm and described its integration into
theJasonAgentSpeak interpreter. We also gave a simple example which illustrates the
utility of such an automatic belief revision mechanism in a practical multi-agent sys-
tem application, and sketched how it can significantly reduce the programming efforts
required. We believe that other agent-oriented programming languages and their plat-
forms [5], which currently push responsibility for maintaining a consistent belief state
onto programmers, can also benefit from our approach.

We are aware of a number of limitations of the work presented here. In future work,
we plan to further explore the issue of the interaction of belief revision with theJason
extension that allows the belief base to refer to OWL ontologies and uses ontological
reasoning as part of the AgentSpeak interpreter [17], and to address the issue the infer-
ences that occur from complex test goals. On the more practical side, we plan to develop
large-scale agent applications to assess the performance ofJasonwith belief revision.

14

Acknowledgements

Rafael Bordini gratefully acknowledges the support of The Nuffield Foundation (grant
number NAL/01065/G).

References

1. C. E. Alchourŕon, P. G̈ardenfors, and D. Makinson. On the logic of theory change: Partial
meet functions for contraction and revision.Journal of Symbolic Logic, 50:510–530, 1985.

2. N. Alechina, M. Jago, and B. Logan. Resource-bounded belief revision and contraction. In
Proceedings of the 3rd International Workshop on Declarative Agent Languages and Tech-
nologies (DALT 2005), Utrecht, the Netherlands, July 2005.

3. D. Ancona, V. Mascardi, J. F. Ḧubner, and R. H. Bordini. Coo-AgentSpeak: Cooperation
in AgentSpeak through plan exchange. In N. R. Jennings, C. Sierra, L. Sonenberg, and
M. Tambe, editors,Proceedings of the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-2004), New York, NY, 19–23 July, pages 698–705,
New York, NY, 2004. ACM Press.

4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.Hand-
book of Description Logics. Cambridge University Press, Cambridge, 2003.

5. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Number 15 in Multiagent Systems,
Artificial Societies, and Simulated Organizations. Springer, 2005.

6. R. H. Bordini, J. F. Ḧubner, et al.Jason: A Java-based agentSpeak interpreter used with saci
for multi-agent distribution over the net, manual, release version 0.7 edition, August 2005.
http://jason.sourceforge.net/ .

7. R. H. Bordini, J. F. Ḧubner, and R. Vieira.Jasonand the Golden Fleece of agent-oriented
programming. In Bordini et al. [5], chapter 1.

8. R. H. Bordini andÁ. F. Moreira. Proving BDI properties of agent-oriented programming
languages: The asymmetry thesis principles in AgentSpeak(L).Annals of Mathematics and
Artificial Intelligence, 42(1–3):197–226, Sept. 2004. Special Issue on Computational Logic
in Multi-Agent Systems.

9. H. Chen, T. Finin, and A. Joshi. The SOUPA Ontology for Pervasive Computing. In V. T.
et al, editor,Ontologies for Agents: Theory and Experiences, pages 233–258. BirkHauser,
2005.

10. K. L. Clark and F. G. McCabe. Ontology schema for an agent belief store.IJCIS, 2006. To
appear.

11. J. de Bruijn, A. Polleres, and D. Fensel. Owl lite−. working draft, wsml deliever-
able d20 v0.1, WSML, 18th July 2004.http://www.wsmo.org/2004/d20/v0.1/
20040629/ .

12. P. G̈ardenfors. Conditionals and changes of belief. In I. Niiniluoto and R. Tuomela, editors,
The Logic and Epistemology of Scientific Change, pages 381–404. North Holland, 1978.

13. P. G̈ardenfors.Knowledge in Flux: Modelling the Dynamics of Epistemic States. The MIT
Press, Cambridge, Mass., 1988.

14. I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules language. In S. I. Feld-
man, M. Uretsky, M. Najork, and C. E. Wills, editors,Proceedings of the 13th international
conference on World Wide Web, WWW 2004, pages 723–731. ACM, 2004.

15. D. Makinson. How to give it up: A survey of some formal aspects of the logic of theory
change.Synthese, 62:347–363, 1985.

15

16. Á. F. Moreira, R. Vieira, and R. H. Bordini. Extending the operational semantics of a BDI
agent-oriented programming language for introducing speech-act based communication. In
J. Leite, A. Omicini, L. Sterling, and P. Torroni, editors,Declarative Agent Languages and
Technologies, Proc. of the First Int. Workshop (DALT-03), held with AAMAS-03, 15 July,
2003, Melbourne, Australia, number 2990 in LNAI, pages 135–154, Berlin, 2004. Springer-
Verlag.

17. A. F. Moreira, R. Vieira, R. H. Bordini, and J. Ḧubner. Agent-oriented programming with
underlying ontological reasoning. InProceedings of the 3rd International Workshop on
Declarative Agent Languages and Technologies (DALT 2005), Utrecht, the Netherlands, July
2005.

18. B. Nebel. A knowledge level analysis of belief revision. In R. Brachman, H. J. Levesque,
and R. Reiter, editors,Principles of Knowledge Representation and Reasoning: Proceedings
of the First International Conference, pages 301–311, San Mateo, 1989. Morgan Kaufmann.

19. B. Nebel. Syntax-based approaches to belief revision. In P. Gärdenfors, editor,Belief Revi-
sion, volume 29, pages 52–88. Cambridge University Press, Cambridge, UK, 1992.

20. B. Nebel. Base revision operations and schemes: Representation, semantics and complexity.
In A. G. Cohn, editor,Proceedings of the Eleventh European Conference on Artificial Intel-
ligence (ECAI’94), pages 341–345, Amsterdam, The Netherlands, August 1994. John Wiley
and Sons.

21. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
W. Van de Velde and J. Perram, editors,Proceedings of the Seventh Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25 January, Eindhoven, The
Netherlands, number 1038 in Lecture Notes in Artificial Intelligence, pages 42–55, London,
1996. Springer-Verlag.

22. H. Rott. “Just Because”: Taking belief bases seriously. In S. R. Buss, P. Hájaek, and
P. Pudĺak, editors,Logic Colloquium ’98—Proceedings of the 1998 ASL European Summer
Meeting, volume 13 ofLecture Notes in Logic, pages 387–408. Association for Symbolic
Logic, 1998.

23. R. M. van Eijk, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Information-passing
and belief revision in multi-agent systems. In J. P. Müller, M. P. Singh, and A. S. Rao,
editors,Intelligent Agents V — Agent Theories, Architectures, and Languages, 5th Interna-
tional Workshop, ATAL ’98, Paris, France, July 4-7, 1998, Proceedings, volume 1555 of
LNCS, pages 29–45, Berlin, 1999. Springer-Verlag.

24. M.-A. Williams. Two operators for theory base change. InProceedings of the Fifth Aus-
tralian Joint Conference on Artificial Intelligence, pages 259–265. World Scientific, 1992.

25. M.-A. Williams. Iterated theory base change: A computational model. InProceedings of
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1541–
1549, San Mateo, 1995. Morgan Kaufmann.

26. M. Wooldridge.Reasoning about Rational Agents. The MIT Press, Cambridge, MA, 2000.

16

A Foundational Ontology of Organizations and Roles

Guido Boella1 and Leendert van der Torre2

1Dipartimento di Informatica - Università di Torino - Italy. email: guido@di.unito.it
2University of Luxembourg. e-mail: leendert@vandertorre.com

Abstract. In this paper we propose a foundational ontology of the social con-
cepts of organization and role which structure institutions. We identify which
axioms model social concepts like organization and role and which properties
distinguish them from other categories like objects and agents: the organizational
structure of institutions, the relation between roles and organizations, and the
powers among the components of an organization. All social concepts depend on
descriptions defining them, which are collectively accepted, and the description
defining the components of organizations, including roles, are included in the
description of the organizations they belong to. Thus, the relational dependence
of roles means that they are defined in the organizations they belong to. Finally,
powers inside organizations are defined by the fact that components of an orga-
nization can access the state of the organization whose definition they depend on
and of the other components, thus violating the standard encapsulation principle
of objects.

1 Introduction

In order to constrain the autonomy of agents and to control their emergent behavior
in multiagent systems, the notion of organization has been applied [1]. According to
Zambonelliet al. [2] “a multiagent system can be conceived in terms of an organized
society of individuals in which each agent plays specific roles and interacts with other
agents”. For Zambonelliet al. “an organization is more than simply a collection of
roles [...] further organization-oriented abstractions need to be devised and placed in
the context of a methodology [...] As soon as the complexity increases, modularity and
encapsulation principles suggest dividing the system into different sub-organizations”.

There is not yet a common agreement, however, on how to model organizations and
roles, and, in particular, which are the ontological assumptions behind them. For exam-
ple, departments and roles are parts of an organization, but they do not exist without it.
Can organizations be explained by means of agent based models? Or can they be better
modelled with the object oriented paradigm?

Since the existence of institutions depends on what Searle [3] calls the construc-
tion of social reality, it is possible that institutions, organizations and roles have very
different properties with respect to objects or agents. Searle argues that social reality
is constructed by means of so called “constitutive rules” which state what “counts as”
institutional facts in the institution. Constitutive rules define institutions: they exist only
because of the collective acceptance of constitutive rules by a community.

Searle’s construction of social reality does not explain all issues, in particular, the
fact that some institutions have a structure in terms of sub-institutions and roles. We

17

will call them organizations. Thus Searle’s analysis is not a sufficient starting point
for a foundational ontology, that specifies which are the properties distinguishing social
reality from objects and agents. We need to know the axioms which allow to distinguish
them from, rather than specifying all the properties of organizations, including those in
common with agents. Thus the research questions of this paper are:

– How do organizations and roles differ from objects and agents?
– How can a foundational ontology of social entities, like organizations and roles, be

constructed?

In [4–6] we start studying some properties of social entities. However, these works
are based on a very specific multiagent framework, which uses the so called agent
metaphor, i.e., the attribution of mental attitudes to social entities to explain them.

So in this paper we analyse organizations using an axiomatic ontology and we con-
sider additional properties. The methodology we choose is to extend the ontology of
Masoloet al. [7]. The main properties of their framework are three. First, it allows to
express the fact that social concepts are defined by means of descriptions. Second, it
explains the definitional dependence of a role from another concept and the relational
nature of roles. Last, it offers a temporalized classification relation, used for modelling
the fact that roles are anti-rigid.

We extend Masoloet al. [7]’s axiomatic ontology to model institutions and their
organizational structure, to explain the asymmetry in the relations defining roles, and
to introduce the notion of power relations internal to the organizations. With this work
we want to justify the decisions taken in our other works about normative systems,
organizations and roles, showing that they all share a common denominator. Second,
we want to show that current object oriented representation languages like UML can be
extended using the ontology developed in this work, so to ensure a large applicability.

This paper is structured as follows. First, we consider the differences between social
reality and objects and agents. In Section 3, we present Masoloet al. [7]’s model. In
Section 4, starting from the limitations of [7] we extend it to define the foundational
ontology. In Section 5, we consider the relation of this ontology with our other works.
Conclusions end the paper.

2 The properties of organizations

The role of knowledge representation and software engineering is to provide models
and techniques that make it easier to handle the complexity arising from the large num-
ber of interactions in a system [8]. Models and techniques allow expressing knowledge
and supporting the analysis and reasoning about a system to be developed. As the con-
text and needs of software change, advances are needed to respond to changes. For
example, today’s systems and their environments are more varied and dynamic, and
accommodate more local freedom and initiative [9].

For these reasons, agent orientation emerged as a new paradigm for designing and
constructing software systems [8, 9]. The agent oriented approach advocates decom-
posing problems in terms of autonomous agents that can engage in flexible, high-level
interactions. Much like the concepts of activity and object that have played pivotal roles

18

in earlier modelling paradigms - Yu [9] argues - the agent concept can be instrumental
in bringing about a shift to a much richer,socially-oriented ontologythat is needed to
characterize and analyze today’s systems and environments.

The notions of institution, organization and role are part of this socially-oriented
ontology. It is not clear, however, if the ontological assumptions behind this kind of
entities are the same which underlie objects and agents. Many approaches recognize
as properties of social entities their being the addressee of obligations [10], like agents
are, the delegation mechanisms among roles [11],etc. Organizations are modelled as
collections of agents, gathered in groups [1], playing roles [8, 12] or regulated by orga-
nizational rules [2]. We focus instead on the distinguishing properties of social concepts
of organization and role.

Consider, for example, an organization which is composed by a direction area and a
production area. The direction area is composed by the CEO and the board. The board
is composed by a set of administrators. The production area is composed by two pro-
duction units; each production unit by a set of workers. The direction area, the board,
the production area and the production units aresub-organizations. In particular, the
direction area and the production areas belong to the organization, the board to the
direction area,etc. The CEO, the administrators and the members of the production
units areroles, each one belonging to a sub-organization, e.g., the CEO is part of the
direction area. This recursive decomposition terminates with roles: roles, unlike organi-
zations and sub-organizations, are not composed by further social entities. Rather, roles
are played by other agents, real agents who have to act as expected by their role.

Besides the decomposition structure, as we argue in [6] in organizations we have
relations among the components of the organization which specify which are the pow-
ers of each component to modify the institutional properties of the other component
institutions. This relation does not necessarily matches the decomposition hierarchy.
For example, the senior board member has the power to command other members of
the board to participate to a board meeting, even if it is at the same decomposition level
of the other members. Moreover, the head of a department can give commands to the
other members of the department even if they are roles all at the same level. Viceversa,
the CEO and the board can take decisions for the whole organization they belong to, for
example, committing it to pay for a purchased good.

Is it possible to model such structures in the object oriented paradigm? The object
oriented paradigm is based on the idea that software design and implementation can be
inspired by our commonsense view of the reality made of objects. For Booch [13] a
basic property of objects is that they can be decomposed. Decomposition allows coping
with complexity: “the most basic technique for tackling any large problem is to divide it
into smaller, more manageable chunks each of which can then be dealt with in relative
isolation”. Isolation is the idea that code should be encapsulated in classes hiding the
implementation of the objects’ state; thus, other objects can access an object’s state
only via its public interface. Decomposition means that an object can include other
objects which exist independently of it, like they were parts of the object. But even the
components of an object can access it only via its public interface (and vice-versa) to
preserve the encapsulation principle.

19

In case of organizations, the situation is different. First, in the decomposition struc-
ture: the components of an organization do not exist independently from the organiza-
tion itself. For example a department does not exist without the organization it belongs
to. If an organization goes bankrupt its departments do not exist anymore and similarly
the roles in them (there is no CEO nor employee anymore). Viceversa, an organization
can close a department without necessarily giving up its identity. Second, the notion of
power inside an organization conflicts with the encapsulation principle of objects.

One alternative could be to see whether organizations can be modelled as agents, but
again some difficulties arise. First of all, organizations can have organizations as their
parts, while it is debatable whether agents can have parts which are homogeneous with
the whole. Moreover, agents can play roles but they cannot have roles as their parts.

However, some form of decomposition should be added to multiagent systems, as
noticed by Zambonelliet al. [2]: agents alone, and also roles, are not sufficient to deal
with the complexity of a system; an organizational structure added to a multiagent sys-
tem fosters modularity and encapsulation.

A bigger problem is that while agents are autonomous, organizations and roles are
not, in two senses. First of all, roles’ decisions are taken by the players of the roles:
the actions of their players count as decisions of the roles. Analogously, the organi-
zations take a decision on the basis of the decisions of their roles (e.g., the CEO) or
sub-organizations (e.g., the board). These relations among decisions are expressed via
constitutive rules. Second, a role is not autonomous in the sense that it cannot decide
which goals to adopt. Rather, the goals representing the responsibilities of a role are
delegated to it by other roles or by the organization itself. For example, an employee
can be commanded to perform a task by its director. Analogously, the role’s beliefs are
assigned to it by other roles and organizations: consider the case of an advocate in a
trial who has to show to believe and to support the belief that his client is innocent even
if he privately believes otherwise.

We do not consider in this paper, instead, the control structure of organizations,
which, e.g., [11] discuss.

Again these relations are expressed via constitutive rules, saying, e.g., that a deci-
sion of another role counts as the adoption of a goal by a role. Constitutive rules have
been introduced by Searle in its construction of social reality:

“Some rules regulate antecedently existing forms of behaviour. For example,
the rules of polite table behaviour regulate eating, but eating exists indepen-
dently of these rules. Some rules, on the other hand, do not merely regulate an
antecedently existing activity called playing chess; they, as it were, create the
possibility of or define that activity. The activity of playing chess is constituted
by action in accordance with these rules. The institutions of marriage, money,
and promising are like the institutions of baseball and chess in that they are
systems of such constitutive rules or conventions” ([14], p. 131).

For Searle, regulative and constitutive norms are related via institutional facts like
marriage, money and private property. They emerge from an independent ontology of
“brute” physical facts through constitutive rules of the form “such and such an X counts
as Y in context C” where X is any object satisfying certain conditions and Y is a label

20

that qualifies X as being something of an entirely new sort. E.g., “X counts as a presid-
ing official in a wedding ceremony”, “this bit of paper counts as a five euro bill” and
“this piece of land counts as somebody’s private property”.

As we say in [6, 15] constitutive rules define the powers among roles and organiza-
tions. Powers are behaviors which affect the internal state of another entity (the decision
and obligations of an organization, the goals and beliefs of a role,etc.) [6]. In particular,
in the example above we can distinguish three kinds of power of roles, which we extend
here also to sub-organizations:

– Actions of a sub-organization or of a role that are recognized as actions of the
organization: e.g., a CEO’s signature on a buy-order, or a decision of the board, is
considered as a commitment of its organization to pay for the requested good.

– Actions of the agent playing the role that can modify the state of the role itself.
E.g., a director can commit itself to new responsibilities.

– Interaction capabilities among sub-organizations and roles in the same organiza-
tion. The CEO or the board can send a message to another role, e.g., a command to
an employee.

Powers do not only violate the autonomy of organizations, but they violate also the
standard encapsulation principle in object orientation described above: a sub-organization
or a role which are part of an organization can access the private state of the organiza-
tion they belong to and of other roles and vice versa (but not the state of the agents
playing them, which are autonomous).

If we consider the current ontological analyses of social reality, we find that fur-
ther differences between organizations and objects and agents have been identified.
When roles are considered as predicates like natural kinds (from the linguistic analogy
between “John is a person” and “John is a student”), as e.g. [7] do, then there is an
asymmetry: John can stop being a student, but he cannot stop being a person. A role
like student is anti-rigid because persons are only contingently students. This is a prob-
lem for the notion of class used in agent and object orientation which lacks of dynamic
reclassification.

Furthermore, roles and sub-organizations are defined in relation to the organizations
they belong too. In contrast, the other kinds of entities are defined independently of one
another’s definition (albeit in their definitions other concepts are used). This is called
definitional dependence. This property cannot be accounted for by the current view of
object orientation and agent orientation.

Finally we will not consider here the problem of collective acceptance of institu-
tions: institutions do not exist by themselves but they exist only if their definitions in
terms of constitutive rules are collectively accepted by the community of agents.

3 Background

Masoloet al. [7] present a formal framework for developing axiomatical ontologies of
socially constructed entities, and study the ontological nature of roles. Social entities
and roles exist just because of social conventions, i.e., constitutive rules accepted by

21

communities of agents: these can be social concepts like organization, nation, money,
or social individuals like the DALT workshop or the FIAT company.

In Masoloet al.[7] roles are ‘properties’ according the position defended by Sowa [16]:
roles can be ‘predicated’ of different entities, i.e., different entities can play the same
role. The basic properties of roles are the anti-rigidity and being founded. According to
Guarino and Welty [17] the definition of foundation is: “a propertya is founded on a
propertyb if, necessarily, for every instancex of a there exists an instancey of b which
is not ‘internal’ tox”. The notion of ‘internalness’ is complex: e.g., ifx is a car, things
internal to it can be parts of it (its wheels), but also constituents of it (the metal it is
made of) or qualities of it (its color). To avoid all trivial cases, Fine [18] introduces
another notion of dependence: “to say that an objectx depends upon anF is to say that
anF will be ineliminably involved in any definition ofx”.

This notion can be generalized to properties considering that a propertya is def-
initionally dependenton a propertyb if, necessarily, anydefinitionof a ineliminably
involvesb. To model this fact ‘definitions’ are explicitly introduced in the domain of
discourse. [7] consider ‘reified’ social concepts and roles, as well as their descriptions,
i.e, the ‘social conventions’ that define them. This allows to formally characterize in a
first-order theory the relationships among all these entities and to talk of roles as ‘first-
class citizens’, similarly to more common entities like objects, events,etc.

[7]’s approach is based on a distinction between the properties and relations in the
ground ontology (like DOLCE [19]) and those at the object level representing the social
reality. The former ones are represented as predicates and therefore assumed as static,
rigid, extensional, and not explicitly defined or linked to a description (i.e., the primitive
predicates of the theory). The latter ones (called “concepts”) are reified and not neces-
sarily static, rigid, and extensional and for which it is possible to explicitly describe
some aspects of the conventions that define them (called “descriptions”).

Social concepts, denoted byCN(x) are defined (DF) or used (US) by descriptions
(DS) and they classify (CF) other individuals:DF (x, y) stands for “the conceptx is
defined by the descriptiony” to deal with the social, relational, and contextual nature of
social concepts.US(x, y) stands for “the conceptx is used by the descriptiony”; they
introduce a temporalized classification relation to link concepts with the entities they
classify, while accounting for the dynamic behavior of social roles:CF (x, y, t) stands
for “at the timet, x is classified by the concepty” or, more explicitly, “at the timet, x
satisfies all the constraints stated in the description ofy”.

In the axioms defining [7]’s theory,ED(x) stands for “x is an endurant”, i.e., an
entity that is wholly present at any time it is present, e.g., a book, Hakodate, a law, some
metal,etc.NASO(x) stands for “x is a non-agentive social object”, i.e., an endurant
that: (i) is not directly located in space and, has no direct spatial qualities; (ii) has
no intentionality; (iii) depends on a community of intentional agents, e.g., a law, an
organization, a currency, an assetetc.; TL(x) stands for “x is a temporal location”, i.e.,
a temporal interval or instant;P (x, y) stands for “x is part-ofy”, for perdurants and
temporal locations;PRE(x, t) stands for “x is present at the timet”.

We report here the most important axioms of their theory. Concepts, and descrip-
tions as well, are non-agentive social objects; concepts are linked to descriptions by the
relations used-by (US) and defined-by (DF). Theorem T2 below captures the fact that

22

a concept must be defined by a single description. This is not true for theUS relation:
concepts can be used by different descriptions.

(A1) DS(x) ⊃ NASO(x)
(A2) CN(x) ⊃ NASO(x)
(A3) DS(x) ⊃ ¬CN(x)
(A4) US(x, y) ⊃ (CN(x) ∧DS(y))
(A5) DF (x, y) ⊃ US(x, y)
(A8) (DF (x, y) ∧DF (x, z)) ⊃ y = z

(T1) DF (x, y) ⊃ (CN(x) ∧DS(y))
(T2) CN(x) ⊃ ∃!y(DF (x, y))
(A11) CF (x, y, t) ⊃ (ED(x) ∧ CN(y) ∧ TL(t))
(A14) CF (x, y, t) ⊃ ¬CF (y, x, t)
(A15) (CF (x, y, t) ∧ CF (y, z, t)) ⊃ ¬CF (x, z, t)
The properties of anti-rigidity (AR) and foundation (FD) for roles can be defined

in this formalism. A concept is anti-rigid if, for any time an entity is classified under it,
there exists a time at which the entity is present but not classified under the concept:

(D1) AR(x) ≡df ∀y, t(CF (y, x, t) ⊃ ∃t′(PRE(y, t′) ∧ ¬CF (y, x, t′)))
A conceptx is founded if its definition involves (at least) another concepty (defini-

tional dependence) such that for each entity classified byx, there is an external entity
classified byy:

(D2) FD(x) ≡df ∃y, d(DF (x, d) ∧ US(y, d)∧
∀z, t(CF (z, x, t) ⊃ ∃z′(CF (z′, y, t) ∧ ¬P (z, z′, t) ∧ ¬P (z′, z, t)))

Roles are anti-rigid and founded:
(D3) RL(x) ≡df AR(x) ∧ FD(x)
Masoloet al. [20] extend [7]’s framework introducing explicitly a relation between

an institution and a role to express that a role like student is relationally dependent, e.g.,
for a person to be a student it requires the existence of another entity, namely a certain
university, to which this person is related by an enrollment relation. As Steimann [21]
shows, this view of roles as anti-rigid and relationally dependent predicates is supported
by the vast majority of approaches in the conceptual modeling and object-modeling
literature.

Roles can be defined on the basis of a relation whose arguments are characterized
by specific properties. For example, the role of ‘being a student’ can be defined as: “a
student is a person enrolled in a university”. In this case, ‘being a student’ is defined
on the basis of ‘being enrolled in’, ‘being a person’, and ‘being a university’. Formally,
considering the previous properties as predicates, this definition can be formulated as:

Student(x) ≡df Person(x) ∧ ∃y(enr(x, y) ∧ University(y))
But given a specific relationr of arity n, it is possible to definen different predi-

cates. For example, in the case of the relationenr(x, y) ⊃ (Person(x)∧University(y)),
the predicateEnrollingUni can be defined as:

EnrollingUni(x) ≡df ∃y(enr(y, x))
Hence the authors are aware that there is an asymmetry in the relation defining roles.

EnrollingUni has exactly the “same logical form” asStudent, but this does not imply
thatEnrollingUni is a role. Let us assume a theory containing an axiom stating that,
necessarily, universities enroll at least one student, i.e., when a university loses all its

23

students, it ceases to be a university. In this theory, ‘being an enrolling university’ is a
rigid property of universities, and therefore it cannot be a role (assumingUniversity as
rigid). In addition, the two predicatesEnrollingUni andUniversity coincide from an
extensional point of view (since all universities are enrolling universities) and they can-
not be distinguished by means of the theory. In this case, the predicateEnrollingUni
seems “redundant” with respect to the predicateUniversity because they are provably
equivalent.

To extend [7]’s framework to take into account the reification ofn-ary relations,
[20] introduce a classification relation where a relationr is considered in the domain of
quantification:CF (x1, . . . , x1, r, t) stands for “at the timet, the individualsx1, . . . , xn

are classified by the relationr”. Second, they extend the primitivesDF andUS to the
reification of predicates in general, i.e., both concepts and relations.

The fact thatStudent andEnrollingUni are concepts defined on the basis of the
same relationenr is represented by the fact thatStudent, EnrollingUni, andenr are
used in the same descriptiond. Moreover, a link between a relation and the concepts
it defines is necessary to avoid the symmetry with the other arguments of the relation.
They thus introduce the predicatedf , with df(x, y) standing for “the (relational) concept
x is defined by the relationy”. Clearly, in order to define a relational conceptx, a
description needs to use the relationy by whichx is defined:
(DF (x, d) ∧ df(x, y)) ⊃ US(y, d).

4 The ontology of organizations

4.1 Ontological requirements

Summarizing the discussion in Section 2, the basic properties of institutions, organiza-
tions and roles are that, first, organizations have an organizational structure in terms of
sub-organizations and roles. Second, roles are defined by the organizations they belong
to. The decomposition hierarchy of the organizational structure, however, is not based
on the part-of relation of objects. In particular, it is transitive (a role in a department is
part of the organization the department belongs to), but the parts do not exist without
and before the whole. Third, there is another type of relation among the parts of an
organizations, specifying which components have power on other components.

The formal framework of Masoloet al. [7] is the suitable starting point for defining
a foundational ontology of organizations and roles. Our requirements, however, are not
fully satisfied in their axiomatization.

First of all, they do not consider the structure of social entities. They do not define
sub-organizations nor roles as parts of organizations. So a social entity does not have a
recursive decomposition structure. Roles have been recognized as depending on some
other entity which is used in their definition, but they are not defined in the entity they
depend on. Moreover, we need to extend this dependence relation to specify that also
sub-organizations, and not only roles, depend on the organizations.

Moreover in [7] there is no notion of power, that is the possibility that the com-
ponents of an organization can affect the state of each other. However, they offer the
notion of a description defining an institution, which we will use for introducing power.

24

The extended framework of [20] is a closer starting point for our axiomatization.
The introduction of an explicit relation between an institution and a role explains the
link between them. But still they do not capture the fact that a role is part of the institu-
tion and it is defined by it as we claim.

We will fulfill the above requirements in our ontology in the following way. The
organizational structure of an institution is defined exploiting the fact that a social entity
is defined by a description. We say that a sub-organization or a role are defined by a
description which is part of the description defining the institution they belong to. This
explains also why the relations associating roles to institutions are asymmetric and why
roles are part of the institution and not only involved in a relation with the institution.

Concerning power, we have to model the fact that a behavior of an organization or
role can access the state of another organization or role where institutional facts are
represented as private behaviors or private properties. A behavior can be an action, in
an agent setting, or a method, in an object oriented one which makes an institutional
change; a property can be a goal, a belief, an obligation of an organization or role,
etc. The fact that a description of an organization contains the description of a sub-
organization allows the components of the organization to access each other. The idea
is that all components of an organization are defined at the same time and by the same
author, thus it is safe that the private methods or actions and private properties of a
component can be accessed by another component’s methods or actions. A behavior or
a property can be accessed by a behavior not only when it is public, but also when it is
private. The condition is that the accessed entity is an organization and the entity who
is accessing it is a component of that organization or belongs to the same organization
(e.g., when a role accesses another role). In these cases we say that the behavior is a
power.

4.2 Concepts and relations

In the ontology we define the following predicates used in the definitions below:

– The predicates social conceptCN and descriptionDS are borrowed from [7].
Moreover, we need the concept of behaviorBH and propertyPROPto model meth-
ods or actions and properties of entities, either real or social.

– The part-of relationP is extended to hold between descriptions: a descriptiond
of a conceptc can useUS other concepts, but it can also include the definition of
another concept. We assumeP is a transitive property and that a part (pre)exists
independently of the whole:
P (a, b) ⊃ ∃t(PRE(a, t) ∧ ¬PRE(b, t))

– The classification relationCF is extended as in [20] to relations; we omit the tem-
poral index when it is not necessary.

– The relationdefined-byrelates concepts and descriptionsDF (c, d): the conceptc
(CN(c)) is defined by the descriptiond (DS(d)). The defined-by relation is used
also to define the relationMDF which identifies a minimal description of a con-
ceptc: a description which cannot be reduced without being unable to define the
concept.
MDF(c, d) ≡df DF (c, d) ∧ ¬∃d′P (d′, d) ∧DF (c, d′)

25

Note that to have non-minimal descriptions we have to change Axiom A8 of [7]
(and thus theorem T2), so that only minimal descriptions are required to be unique:
(A8’) (MDF(x, y) ∧MDF(x, z)) ⊃ y = z

– Besides describing concepts, descriptions define relations between concepts and
their properties and behaviors (e.g., methods and actions). We distinguish two kinds
of relations between a concept and a property or behavior:public andprivate. This
captures the idea usual in programming languages or in modelling languages like
UML that some properties and behaviors are accessible (properties can be visible
or modified, and behavior invoked) by other entities while some others are not. In
Section 4.4 we show that privately accessible properties and methods play a role in
the definition of powers of organizations and roles.
Thus, in order to define accessibility we reify the two special relationsprivateand
public. CF (c, i, private) means that the conceptc and the property or behaviori
are classified by theprivaterelation defined by descriptiond DF (private, d).
CF (c, i, private) ⊃ ED(c) ∧ (BH(i) ∨ PROP(i))

– The access relation specifies when behaviors associated to entities can access the
behaviors and properties of other entities:
access(x, a, y, b) ⊃ BH(a) ∧ (BH(b) ∨ PROP(b))
This access relation is expressed in terms of public properties and behaviors, but it
is also defined in more complex terms when we have organizations.

4.3 The structure of organizations

The first requirement of a foundational ontology is that organizations are institutions
which have a structure. We do not introduce here a primitive part-of relation between
organizations and suborganizations, nor we can useP since we need different prop-
erties, like the fact that the parts do not exist without the whole. An organizationc is
part-of IP another organizationc′ if it is defined inside the minimal description defin-
ing the other one. Note that we need a minimal description, otherwise we could have a
descriptiond which is the union of two (minimal) descriptionsd′ andd′′ defining two
unrelated concepts. Requiring a minimal description thus means that the definition ofc
is essential to definec′.

IP(c, c′) ≡df ∃d, d′ MDF(c, d) ∧MDF(c′, d′) ∧ P (d, d′)

Since theP relation between descriptions is transitive, also theIP relation is tran-
sitive: a role which is part of a sub-organization of an organization, it is also part of the
organization.

The following axiom states that if a sub-organizationc is part of organizationc′ then
the conceptc′ is used in the definition ofc.

(B1) IP(c, c′) ⊃ ∃d MDF(c, d) ∧ US(c′, d)

We can use theIP predicate to define our notion of definitional foundationDFD.
Our definition is a revised version of the foundedFD predicate of [7]. It captures the
idea that an instance of sub-organizations and roles is not only an instance of a concept
which is part of (IP) another concept, but it requires the existence of an instance of such
concept.

26

MDF

±°
²¯

±°
²¯

±°
²¯

±°
²¯

-

..........................=

A
A

A
A

A
A

AK

C
C
C
C
C
C
C
C
CO

¾

¾

6 6

B
B

B
BBM

A
A

A
AAK

A
A

A
A

A
A

A
AA

B
B

B
BBM 6 6

±
²

°
¯

.........
.........

........}
........

........
.....

µ

±
²

°
¯

¾ -

´́+ QQs

£
¤

¢
¡

£
¤

¢
¡

£
¤

¢
¡

£
¤

¢
¡

±
²

°
¯

¾

¾

i1

i2

i3

d1

d2

c1
access

access

c2

BHDS CN PROP

MDF

MDF

MDF

MDF
private

public

is-ais-ais-a is-ais-a is-ais-a

private

±°
²¯

Fig. 1. An example of organization.

Definition 1 (Definitional foundation).

DFD(x) ≡df

∃y IP(x, y)∧∀z, t (CF (z, x, t) ⊃ ∃z′(CF (z′, y, t)∧¬P (z, z′, t)∧¬P (z′, z, t)))
We write also:
DFD(x, y) ≡df

IP(x, y) ∧ ∀z, t (CF (z, x, t) ⊃ ∃z′(CF (z′, y, t) ∧ ¬P (z, z′, t) ∧ ¬P (z′, z, t)))

The difference with respect to theFD predicate of [7] is that it does not require that
a concept is used in a definition ofx, but that the definition is part of another concept.

Which is the relation between the two definitions? TheDFD property is stronger
thanFD since we assume Axiom B1.

Theorem 1.
From Axiom B1 and from the fact that MDF(x, d) ⊃ DF (x, d) we have:
DFD(x) ⊃ [∃y, d DF (x, d) ∧ US(y, d)∧
∀z, t (CF (z, x, t) ⊃ ∃z′ (CF (z′, y, t)∧¬P (z, z′, t)∧¬P (z′, z, t)))] ⊃ FD(x)

We can introduce now our definition of institutions, organizations and roles. Institu-
tions are simply social concepts defined by descriptions, organizations are institutions
which have sub-organizations and roles as their parts, sub-organizations are organiza-
tions which are definitionally founded on some organization and roles are anti-rigid
definitionally founded concepts, and there is no institution dependent on them.

Definition 2 (Institutions, organizations and roles).

INST(x) ≡df CN(x)
ORG(x)≡df INST(x) ∧ ∃y DFD(y, x)
S-ORG(x) ≡df ORG(x) ∧ DFD(x)
RL(x)≡df AR(x) ∧ DFD(x) ∧ ¬∃y DFD(y, x)

27

In the following example a simple organization composed by one institution with
one role is illustrated:

Example 1.
c1 is an organization which is minimally defined by descriptiond1 (see Figure 1).

It has a private behaviori1 and a public propertyi2. Descriptiond1 includes also a
subdescriptiond2 which is the minimal description of the conceptc2, a role ofc1. c2

has a private propertyi3.

DS(d1), DS(d2), CN(c1), CN(c2), BH(i1), PROP(i2), BH(i3)P (d2, d1)
MDF(c1, d1), MDF(c2, d2), MDF(d1, private), MDF(d1, public), MDF(d2, private)1

CF (c1, i1, private), CF (c1, i2, public), CF (c2, i3, private)

Thus,c2 is a part ofc1: IP(c2, c1)

In [6] we consider another definitional property of roles: the fact that a role can play
a role. This property is implicit in the fact that nothing prevents that a role, as a social
concept, can be classified by another role. Note that this is in contrast with the position
about role playing roles stated in [7], even if their model allows also the alternative we
choose.

4.4 Powers

Properties and behaviors associated with organizations cannot be all freely accessed by
any agent. Some of them, e.g., the building where an organization is officially located,
are physical properties which every agent can manipulate. In contrast, other properties
have only a social character, and thus are immaterial: the id number of the employees,
the action of firing an employee, making the organization buy some goods, obliging
an employee to do something, changing the structure of the organization. Since these
institutional properties and behaviors are immaterial, how can they be manipulated?
As discussed in Section 2 institutional properties are controlled by counts as rules. In
our ontology we model counts as rules defining powers as behaviors of social entities
(organizations and roles) which access properties. To represent the fact that institutional
properties can be manipulated only from inside an institution we model them as private
properties of institutions.

The problem to be solved is the behaviors of which entities can access a private
property of an institution, since the visibility rules in organizations are different than
in objects. The notion of power is thus based on the definition of anaccess relation
defining a sort of scope for behaviors and properties.

We do not describe here behaviors. For example, actions could be described by plan
operators and methods by programs. We represent, however, that a behavior accesses
other behaviors (since they are actions in a plan or invoked by a program) or some
properties (the value of the property is needed for executing the behavior or it is changed
by the behavior).

1 This does not mean thatpublic is defined twice, but that its extension (i.e., the tuples of entities
classifiedCF by it) is determined by both descriptions.

28

An entity classified by a conceptc can access a propertyp of another entity, if it is a
public property, or it is a private property of a conceptc′ whose definition defines also
the conceptc (i.e.,c is part ofIP c′) or of another concept which depends onc′ too.

Definition 3 (Powers).

The access relation is defined as:

access(x, a, y, b) ≡df public(y, b) ∨ superaccess(x, y, b) ∨ peeraccess(x, y, p)

A method or propertyb of individualy is public if it is a public behavior or property
of a concept subsumingy:

public(y, b) ≡df ∃c CN(c) ∧ CF (y, c) ∧ CF (c, b, public)

A method or propertyb of individual y can be accessed from individualx if the
concept subsumingx is part of another concept subsumingy (or vice-versa) andb is a
private behavior or property of the latter.

superaccess(x, a, y, b) ≡df ∃c, c′ CF (x, c)∧CF (y, c′)∧IP(c, c′)∧CF (c′, b, private)

A method or propertyb of individualy can be accessed from individualx if the con-
cept subsumingx is part of another concept which has as its part a concept subsuming
y andb is a private behavior or property of this concept.

peeraccess(x, a, y, b) ≡df ∃c, c′, c′′ CF (x, c)∧CF (y, c′)∧ IP(c, c′′)∧ IP(c′, c′′)∧
CF (c′, b, private)

A behavior of an entity is a power if it cansuperaccess or peeraccess another
behavior.

POW(x, a) ≡df ∃y superaccess(x, a, y, b) ∨ peeraccess(x, a, y, b)

If we impose thatIP is a reflexive relation, then we have that a behavior of an entity
can access the private behaviors and properties of itself and that the behaviors of an
organization can access the private state of its components.

Note that theaccess relation specifies which behaviors can access other behav-
iors and properties. This does not mean that in an actual organization every behavior
accesses every other behaviors or properties. The fact that a behavior accesses some
other behavior or property depends on how this behavior is defined in the description
by means of plans or programs. As we said, the author of the definition of the orga-
nization is the author of the definitions of its components, so the access definition is
safe. Nothing prevents, however, that a more restrictive definition of access is given to
respect the organizational structure. For example, it can be defined on a non-transitive
part-of relation, so that each component can have powers only on its direct super or sub
components or on its siblings.

Example 2.In Figure 1 behaviori3 can access both behaviori1 and propertyi2 even if
the former is private, sinceIP(c2, c1).

Note that dealing with visibility rules in a programming languages is a complex
issue. In this model we do not want to propose to define a general notion of accessibility,
but to study the peculiarities of accessibility in organizations.

29

5 Applications

In this section we explain how the foundational ontology presented here matches our
previous work, and, in particular, how it can be used to introduce organizations and
roles not only in multiagent systems but also in the object oriented paradigm.

We study normative systems [15, 22] and organizations composed of sub-organizations
and roles [5, 6] using the so called agent metaphor. The agent metaphor allows to de-
scribe social entities, like normative systems, as they were agents, and thus attributing
them mental attitudes like beliefs and goals. What corresponds in the agent metaphor
to the basic primitives of our foundational ontology? First of all, we have to explain the
structure of an organization. An agent does not have parts which are agents themselves,
so an organization-as-an-agent cannot have other organizations as its parts. Rather, to
structure organizations we exploit the idea that an agent can attribute mental attitudes
to other entities via the agent metaphor, also to entities which are not agents. Since an
organization is described as an agent, then it can attribute mental attitudes to other enti-
ties. In this way, it can define sub-organizations and roles by describing them as agents,
in a recursive way.

As Searle claims, social entities are defined by means of constitutive (and regulative)
rules. In [15]’s model beliefs attributed to a social entities correspond to the constitutive
rules and goals the regulative rules. Thus, describing a social entity as an agent amounts
to defining it. A definition of a sub-organization is included in the definition of the
organization it belongs to since, in the definition of the latter are present not only the
beliefs and goals attributed to them, but also the beliefs and goals which it attributes to
sub-organizations and roles.

Like in our foundational ontology, powers arise from the fact that all the structure
of the organization is defined in the same definition: so that the constitutive rules of a
sub-organization can refer to other sub-organizations as well.

Even if at first sight can be surprising, our foundational ontology of organizations
can be used to model organizations by means of standard object oriented representation
languages, like UML. Rather than adding primitives to UML, we use a pattern. This
does not mean that it is not useful to introduce some primitives which are based on
this pattern. As a consequence, institutions can be introduced also in object oriented
programming languages like Java. Thus, in [23, 24] we present an extension of Java,
called powerJava, where suitable constructs are introduced to represent roles.

The basic idea is that the description of a concept in object orientation corresponds
to a class and in UML and some programming languages a class can contain other
classes, called inner classes. Outer classes correspond to descriptions having other de-
scriptions as parts. An inner class can contain further inner classes as well, thus allowing
a recursive decomposition structure. Moreover, inner classes have the features we need
for modelling institutions: dependence and powers. First, an instance of an inner class
does not exist without an instance of the outer class, since it has a reference to an in-
stance of the outer class. Second, the methods of an inner class can access the state of
the outer class and of other sibling inner classes. Powers thus can be modelled just as
the methods of an inner class.

The difference between sub-organizations and roles is that roles do not have further
inner classes inside them and that they are associated to a player via a reference. Roles

30

are anti-rigid because they are associated to their players by a reference, rather than
being modelled as sub or super classes (like other proposals for representing roles, e.g.,
[25], do instead). Thus an inner class representing a role has always two references to
two objects: the institution that defines it and the player that plays it.

6 Conclusions

In knowledge representation, and more specifically in the field of description logics, the
term ‘role’ is nowadays synonymous of an arbitrary binary relation (often a function)
used to characterize the structure of a concept. The concept ‘person’, for instance, may
have the role ‘likes’, which represents the relationship between a person and what she
likes best. But this is not what is meant by social roles.

In multi-agent systems (MAS) roles are generally viewed as descriptions of agent’s
acting and interacting, where agents include also societies or organizations of agents.
The characterization of this kind of social roles (in the restricted sense) is founded on
theories of action and behavior (involving tasks, goals, plans,etc.) and deontic notions.
In [2] a role is viewed as an “abstract description of an entity’s expected function”
which is defined by four attributes: responsibilities (that determine the functionality
of the role), permissions, activities, and protocols. Pacheco and Carmo [26] clearly
distinguish roles from agents (agents can act, and roles cannot). But these descriptions
do not tell much about what distinguish roles from objects or agents.

In object-oriented programming languages the focus has been on technical issues
(multiple and dynamic classification, multiple inheritance, objects changing their at-
tributes and behaviors,etc.), rather than what are the roles’ distinguishing properties.

In this paper we propose a foundational ontology of organizations and roles which
extend Masoloet al. [7]’s proposal. Institutions are social concepts which exist be-
cause of descriptions defining them, which are collectively accepted. Organizations
are institutions which have a structure in terms of sub-institutions. Sub-organizations
are organizations which are parts of other organizations. Finally, roles are components
of organizations which do not have further organizational structure and which can be
played by agents.

This work builds on our previous work on normative multiagent systems and orga-
nizations based on the agent metaphor. In [4] we present the agent metaphor to build a
cognitive ontology. Here, instead we present an axiomatic ontology built in an analyt-
ical style. This work aims at isolating the essential properties which distinguish social
concepts from other kind of entities and to justify the choices made in previous works.
Moreover, we show that this ontology can be used to extend current representation lan-
guages like UML and object oriented programming languages.

References

1. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view of
multiagent systems. In: LNCS n. 2935: Procs. of AOSE’03, Springer Verlag (2003) 214–230

2. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. IEEE Transactions of Software Engineering and Methodology12(3) (2003)
317–370

31

3. Searle, J.: The Construction of Social Reality. The Free Press, New York (1995)
4. Boella, G., van der Torre, L.: An agent oriented ontology of social reality. In: Procs. of

FOIS’04, Amsterdam, IOS Press (2004) 199–209
5. Boella, G., van der Torre, L.: Organizations as socially constructed agents in the agent

oriented paradigm. In: LNAI n. 3451: Procs. of ESAW’04, Berlin, Springer Verlag (2004)
1–13

6. Boella, G., van der Torre, L.: The ontological properties of social roles: Definitional depen-
dence, powers and roles playing roles. In: Procs. of LOAIT workshop at ICAIL’05. (2005)

7. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.:
Social roles and their descriptions. In: Procs. of KR’04, AAAI Press (2004) 267–277

8. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence117(2)(2000)
277–296

9. Yu, E.: Agent orientation as a modelling paradigm. Wirtschaftsinformatik43(2) (2001)
123–132

10. Dastani, M., van Riemsdijk, B., Hulstijn, J., Dignum, F., Meyer, J.J.: Enacting and deacting
roles in agent programming. In: Procs. of AOSE’04, New York (2004)

11. Grossi, D., Dignum, F., Dastani, M., Royakkers, L.: Foundations of organizational structures
in multiagent systems. In: Procs. of AAMAS’05. (2005)

12. McCallum, M., Norman, T., Vasconcelos, W.: A formal model of organisations for engineer-
ing multi-agent systems. In: Procs. of CEAS Workshop at ECAI’04. (2004)

13. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-Wesley, Read-
ing (MA) (1988)

14. Searle, J.: Speech Acts: an Essay in the Philosophy of Language. Cambridge University
Press, Cambridge (UK) (1969)

15. Boella, G., van der Torre, L.: A game theoretic approach to contracts in multiagent systems.
IEEE Transactions on Systems, Man and Cybernetics - Part C (2006)

16. Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Founda-
tions. Brooks/Cole, Pacific Growe (CA) (2000)

17. Guarino, N., Welty, C.: Evaluating ontological decisions with ontoclean. Communications
of ACM 45(2)(2002) 61–65

18. Fine, K.: Ontological dependence. Proceedings of the Aristotelian Society95 (1995) 269–
290

19. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies
with dolce. In: Proc. EKAW 2002, Siguenza (SP) (2002)

20. Masolo, C., Guizzardi, G., Vieu, L., Bottazzi, E., Ferrario, R.: Relational roles and qua-
individuals. In: Procs. of AAAI Fall Symposium Roles’04, AAAI Press (2005)

21. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.
Data and Knowledge Engineering35 (2000) 83–848

22. Boella, G., van der Torre, L.: Security policies for sharing knowledge in virtual communities.
IEEE Transactions on Systems, Man and Cybernetics - Part A (2006)

23. Baldoni, M., Boella, G., van der Torre, L.: Bridging agent theory and object orientation:
Importing social roles in object oriented languages. In: Procs. of PROMAS’05 workshop at
AAMAS’05. (2005)

24. Baldoni, M., Boella, G., van der Torre, L.: Roles as a coordination construct: Introducing
powerJava. In: Procs. of MTCoord’05 workshop at COORDINATION’05. (2005)

25. Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An object data model with roles. In: Procs.
of VLDB’93. (1993) 39–51

26. Pacheco, O., Carmo, J.: A role based model of normative specification of organized collective
agency and agents interaction. Autonomous Agents and Multiagent Systems6 (2003) 145–
184

32

When Agents Communicate Hypotheses in

Critical Situations

Gauvain Bourgne1, Nicolas Maudet1, and Suzanne Pinson1

LAMSADE, Université Paris-Dauphine
Paris 75775 Cedex 16 (France)

Email: {bourgne,maudet,pinson}@lamsade.dauphine.fr

Abstract. This paper discusses the problem of efficient propagation of
uncertain information in dynamic environments and critical situations.
When a number of (distributed) agents have only partial access to infor-
mation, the explanation(s) and conclusion(s) they can draw from their
observations are inevitably uncertain. In this context, the efficient propa-
gation of information is concerned with two interrelated aspects: spread-
ing the information as quickly as possible, and refining the hypotheses
at the same time. We describe a formal framework designed to inves-
tigate this class of problem, and we report on preliminary results and
experiments using the described theory.

1 Introduction

Consider the following situation: witness of a threathening and unexpected event,
say a fire in a building, Jeanne has to act promptly to both escape the danger
and warn other people who might get caught in the same situation. However,
there are no official signs or alarms indicating where the fire actually started:
Given her partial knowledge of the situation, Jeanne may build some hypotheses
explaining her observations (where the fire did start in the first place, maybe
why), but the conclusions she may reach would remain uncertain. (That is,
uncertainty here lies on the fact that she has incomplete knowledge of the world,
rather than untrusted perceptions of this world). In addition, there is no way
for Jeanne to trigger an alarm. In other words, Jeanne will try to both circulate
the information in order to spread the information to colleagues, and refine the
hypothesis at the same time. Typically, Jeanne faces two questions:

– What information should I transmit?
– To whom should I transmit this information?

Clearly, these two questions are interelated. Depending on the person Jeanne
selected to communicate with, she may decide to transmit different messages:
the objectives being to ensure that the transmitted information can be used
efficiently in the next transmission, and so on. This defines, we believe, a prob-
lem of efficient propagation of uncertain information. The purpose of this paper
is to put forward a formal framework expliciting both the reasoning and com-
municational aspects involved in these situations. We explore some preliminary

33

properties of the proposed framework and interaction protocol, and illustrate
our approach with a case study experimented using the described theory.

The remainder of this paper is as follows. Section 2 presents the formal reason-
ing machinery that we shall use in the framework: it heavily builds upon Poole’s
Theorist system [14]. Section 3 details the communication module, and explores
specifically some properties of a protocol designed to exchange hypothesis. Sec-
tion 4 describes our case study example, instantiating the proposed framework.
The situation involves a number of agents trying to escape from a burning build-
ing. We give the detail of a simple example, showing how critical, in this crisis
context, can be the decisions taken by agents as to whether/what communicate.
Section 5 draws connections to related works, and Section 6 concludes.

2 Agents Reasoning

This section introduces the formal machinery involved in the agents reasoning
process. The described situation suggests agents able to deal with partial per-
ception of the world, to build hypotheses from observations they make, to draw
conclusions from a set of explanations, and to communicate with each other
in order to exchange pieces of information. Agents reasoning process builds on
Poole’s framework [14], which allows to elegantly combine both the explana-
tion and the prediction processes, using a single axiomatization. By formulae
we mean well-formed formulae in a standard first order language. Each agent is
(slightly modified version) of an instance of a Theorist system [14]:

〈F ,H, C,O,E,≤〉

where

– F a set of facts, closed formulae taken as being true in the domain
– H a set of formulae which act as possible hypotheses, common to all agents
– C a set of closed formulae taken as constraints, common to all agents
– O is a set of grounded formulae representing the observations made so far

by the agent. Each agent believes every observation in this set to be true.
– E is the set of preferred explanations, it is the set of all justifiable explana-

tions of the observation set O

– ≤ is the preferrence relation, a pre-order on the explanations common to all
agents

We first recall a number of basic definitions.

Definition 1 (Scenario [14]). A scenario of (F ,H) is a set θ ∪ F where θ is
a set of ground instances of elements of H such that θ ∪ F ∪ C is consistent.

In the following, we shall also refer to the conjunction h of the elements of θ as
the hypothesis associated to this scenario.

34

Definition 2 (Explanation of a closed formulae [14]). If g is a closed
formula, then an explanation of g from (F ,H) is a scenario of (F ,H) that
implies g.

We now introduce a couple of further notions that proved to be appropriate
in our context. Events occuring in the world and observed by the agents may or
may not be explained, or contradicted, by the agent model.

Definition 3 (Positive observation). A positive observation of (F ,H) is an
observation o ∈ O such that there exists an explanation of o from (F ,H)

Definition 4 (Negative observation). A negative observation of (F ,H) is
an observation o ∈ O such that there exists an explanation of ¬o from(F ,H)

In the following, we shall note P (O) to refer to the set of all positive ob-
servations of (F ,H), and N(O) to refer to the set of all negative observations
of (F ,H). Note that this is not necessarily a partition: some observations may
have no explanation, while some others may have both positive and negative
explanations.

Definition 5 (Explanation of an observation set). If O is a set of obser-
vations, an explanation of O from (F ,H) is an explanation ξ of P (O) such that
ξ ∪ C ∪ N(O) is consistent (which implies the consistency of ξ ∪ C ∪ O).

Definition 6 (Justifiable explanation). A justifiable explanation of O from
(F ,H) is an explanation such that if any element of its associated hypothesis set
θ is removed from it, it is no longer an explanation of O.

Based on this system, we also define, for each agent ai:

1. Hi, the set of preferred hypotheses associated with Ei, the set of justifiable
explanations. For a given set of observation Oi, Eexp, the explanation function
returns the set of all justifiable explanations of Oi from (F ,H). Ehyp(Oi) gives
the set of hypotheses associated with Eexp(Oi). We assume Eexp and Ehyp to
be deterministic, and common to all agents.

2. h is the favoured hypothesis from E. The agent choses one favoured hypoth-
esis among its own minimal hypothesis according to the preferrence relation.

In summary, for each agent we have:

– Ei = Eexp(Oi)
– Hi = Ehyp(Oi)
– hi ∈ min(Hi)

This ensures that hi is associated with a minimal justifiable explanation for
Oi, that is :

– hi is consistent with Oi, that is 6 ∃oi ∈ Oi s.t. hi |= ¬oi

– hi explains all elements of P (Oi)

35

– hi is justifiable from Oi, that is for each clause ck of the conjunction hi

(hi = h′

i ∧ ck), there is an element o of P (Oi) such that hi |= o but h′

i 6|= o.
– hi is minimal according to the preorder ≤

Typically, as suggested by the aforementioned model, different explanations
will exist for a given formula. What should be the preference relation between
explanations? Clearly there can be many different ways to classify prefered ex-
planations. In [14], different comparators are introduced. In our framework, we
shall use variants of two of them:

1. minimal explanation— prefer the explanations that make the fewest (in
terms of set inclusion) assumptions. In other words, no strict subset of a
minimal explanation should also be an explanation.

2. least presumptive explanation— an explanation is less presumptive than an-
other explanation if it makes fewer assumptions (in terms of what can be
implied from this explanation together with the facts)

Now we need to see how these agents will evolve and interact in their environ-
ment. In our context, agents evolve in a dynamic environment, and we classicaly
assume the following system cycle:

1. Environment dynamics: the environment evolves according to the defined
rules of the system dynamics

2. Perception step : agents get perceptions from the environment. These per-
ceptions are typically partial (e.g. the agent can only see a portion of the
map), but we assume that they are certain, in the sense that the sensors are
assumed perfect.

3. Reasoning step: agents compare perception with predictions, seek explana-
tions for (potential) difference(s), refine their hypothesis, draw new con-
clusions. More precisely, during this step, if the agent perception prove its
hypothesis false, the agent computes the possible explanations for these new
perception, given its previous perception. It makes use of Theorist for this
task. It must then select the action to be executed in the next phase.

4. Action step: agents modify the environment by executing the action selected
by the previous deliberation steps.

What remains to be described, of course, is the interaction module and the
way agents will exchange hypotheses and observations.

3 Agent Communication

In our system, observations are not only made directly by agents (by perceiv-
ing the environment): they can also result from communication between agents.
The cycle is then augmented with an explicit communication step, which directly
follows the reasoning step. During the Communication step, agents engage com-
munication with other agents to warn of their observation and tune up their
hypothesis. In a given round, a given agent can only communicate with one

36

agent. If that agent is occupied talking to another agent, it must wait or choose
a different agent to communicate with. We now describe the interaction protocol
pictured in Fig. 1, together with agents’ behaviour.

1 2

3

counterpropose

propose

accept

4 5
challenge

accept

argue

counterpropose

counterexample

Fig. 1. Hypotheses Exchange Protocol.

3.1 Description of the Interaction Protocol and Strategies

Upon receiving a hypothesis h1 (propose(h1) or counterpropose(h1)) from a1,
agent a2 is in state 2 and has the following possible replies:

– if ∃o2 ∈ N(O2) s.t. h1 |= ¬o2, then the agent knows a counter-example that
contradicts this hypothesis: he will communicate this counter-example and
utter counterexample(o2). We are back in state 1 of the protocol. Agent will
then recompute his hypothesis with this new fact, and will propose h′

1
.

– if ∃o2 ∈ P (O2) s.t. h1 6|= o2, then the agent knows an example of positive
observation that is not explained by this hypothesis: he will communicate
this uncovered example and utter counterexample(o2), as in the previous
case.

– otherwise, no observation made by a2 contradicts h1 and h1 implies P (O2),
that h1 is the hypothesis associated with an explanation of O2. We have
then the following cases:
• if the agent has no argument in favour of the hypothesis (h1 6∈ H2 where

Hi is the set of the hypothesis associated to agent ai’s preferred explana-
tions), he will challenge a1 in order to obtain some arguments supporting
this hypothesis. Agent a1 is then bound to communicate an argument
(argue(arg))1, leading to state 5. Upon receiving this argument, a2 re-
computes his hypothesis by using this argument. If h1 is obtained, he
will accept, leading to the final state 3. Otherwise, a different hypothesis
h′

2
is obtained and proposed, leading back to state 2.

1 Note that the agent keeps track of the communicated arguments, which allows him
not to send twice the same argument to this agent during a communication step.

37

• otherwise h1 ∈ H2 : h1 is a hypothesis associated to a justifiable expla-
nation of O. We have then two possibilities:

∗ if h1 is not preferred to h2 in the sense of the defined preference
relation, then agent a2 would counterpropose(h2), leading to state 2
with inverted roles.

∗ otherwise, h1 is necessarily prefered to h2: a2 will then respond
accept, concluding the conversation (state 3).

3.2 Local Properties of the Interaction Protocol

We first investigate locally the properties of the proposed protocol, that is, the
outcome of a single dialogue governed by the rules and decision process described
in the previous subsection, and involving only two agents.

Lemma 1. Let c = |O1 ∪ O2| − |O1 ∩ O2|. If c = 0 then O1=O2 and H1 = H2.

Proof. Clearly, O1∩O2 ⊆ O1∪O2. If c = 0, |O1∪O2|= |O1∩O2|, hence O1∪O2=
O1 ∩ O2. Now because O1 ∩ O2 ⊆ O1 ⊆ O1 ∪ O2, (and symetrically for O2), we
have O1 = O2. By virtue of the determinism of the explanation function, we
conclude that H1 = Ehyp(O1) = Ehyp(O2) = H2. 2

The first property that needs to be verified is the termination. We show that
this algorithm enjoys this property.

Property 1 (Termination). Termination is guaranteed, and the length of the in-
teraction process (in terms of the number of exchanged messages) is bounded by
4 × c + |O1 ∩ O2|.

Proof. Let c = |O1 ∪O2| − |O1 ∩O2|. By Lemma 1, we know that in case c = 0,
it follows that O1 = O2 and H1 = H2 (in which case we note O = O1 = O2

and H = H1 = H2). Then observe that, H = Ehyp(O), together with the fact
that h1, h2 ∈ H, guarantees that h1 and h2 are the favored hypotheses of the
justifiable explanations of O. The following points then follow (i) 6 ∃o ∈ O s.t.
h1 |= ¬o or h2 |= ¬o, (ii) 6 ∃o ∈ P (O) s.t. h1 6|= o or h2 6|= o, (iii) h1 ∈ H2 and
h2 ∈ H1, and (iv) both h1, h2 ∈ min(H), no hypothesis is then strictly prefered
to the other one.

Given this, as soon as the system is in state 2, all termination conditions are
met. But we also know that the message exchange between agents leads to state
2 every 3 messages at most. Termination is then guaranteed when c = 0.

We now need to prove that c will eventually reach the value 0. To do that,
we will show that every 4 messages at most, it decreases of 1.

The first message leads to state 2. Without loss of generality, we assume
that the last message is, say, from agent aj to agent ai (hypothesis hj is then
proposed to ai). Following the agent’s decision algorithm previously described,
there are now four possibilities:

38

(i) ∃oi ∈ Oi, s.t. hj |= ¬oi or ∃oi ∈ P (Oi), s.t. hj 6|= oi, then ai sends a
counterexample oi to aj . In this case, O′

j = Oj ∪ {oi} with oi ∈ Oi and
oi 6∈ Oj , which means that |O′

j ∩ Oi| = |Oj ∩ Oi| + 1, and |Oj ∪ Oi| remains
unchanged. It follows that c is decreased by 1.

(ii) 6 ∃oi ∈ Oi s.t. hj |= ¬oi and ∀oi ∈ P (Oi), hj |= oi and hj 6∈ Hi, then ai

requires an argument and aj provides oj . In this case, O′

i = Oi ∪ {oj}. If
oj ∈ Oi, then ai repeats its challenge until he gets an observation oj he didn’t
know before. Since aj keeps track of its messages, at most |O1 ∩ O2| such
messages can be exchanged. We eventually reach o′j such that O′

i = Oi∪{oj
′}

where o′j ∈ Oj and o′j 6∈ Oi.
(iii) 6 ∃oi ∈ Oi s.t. oi |= ¬hj and ∀oi ∈ P (Oi), hj |= oi and hj ∈ Hi but hj 6∈

min(Hi), then ai respond with counterpropose(hi). We are back in state 2,
but now we are sure that hi 6∈ Hj (because hi ≤ hj and hj ∈ min(Hj), by
definition), which means that we would be in case (i) or (ii).

(iv) 6 ∃oi ∈ Oi s.t. oi |= ¬hj , and ∀oi ∈ P (Oi), hj |= oi, and hj ∈ min(Hi), but
then ai accepts and the protocol terminates.

2

Corollary 1. After termination, the following properties are guaranteed:

– a1 and a2 are consistent
– a1 and a2 have a hypothesis that explains both P (O1) and P (O2)
– a1 and a2 have a hypothesis that is justifiable from O1 and O2

– a1 and a2 have a hypothesis that is minimal for O1 and O2 (that is h1 ∈
min(Ehyp(O2)) and h2 ∈ min(Ehyp(O1)))

3.3 Global Properties of the Communication Protocol

The properties previously described hold locally, when only two agents interacts
over one communication step. The next question is then to ask whether these
properties can be guaranteed at a more global level. Clearly, many properties
will not hold any longer when considered globally. One simple such property is
the consistance, which cannot be transitive when only based on the bilateral
hypothesis exchange protocol described. This can be observed by constructing
an example where an agent a would first communicate a hypothesis to agent
b, not revealing the full arguments supporting its position though. Now if b

communicates in turn with a third agent, say c, it is clear that he may not be in
a position to effectively defend this hypothesis, and may accepting c’s hypothesis.
a and c would then not be consistent. This is formally stated as follows.

Property 2. The consistance property guaranteed by the communication proto-
col is not transitive.

Proof. We construct the following counterexample : agent a1 can communicate
with agent a2 and a3, but agents a2 and a3 cannot communicate with each
other. We assume that they share the following facts {p(X) → r(X), q(X) →

39

r(X), p(X) → s(X)}, where p(X) and q(X) are hypothesis. We start with the
following sets of observations P1 = {r(a),¬p(X)}, P2 = { }, and P3 = {s(a)}.
Agent a1 communicates q(A), which is challenged by a2. a1 then provides an
explanation (r(a)). Now a2 communicates with a3 and proposes q(a), but a3

has an additional observation, namely s(a). Upon receiving this hypothesis, a3

challenges a2 and a2 provides the only argument he has in possession: r(a).
But a3 knows the further observation that s(a) which makes the hypothesis
p(a) prefered. a3 makes this counterproposal, a2 challenges and a3 gives his
argument (s(a)). Now a2 will accept. At this point of the interaction though, a1

holds q(a) as favoured hypothesis, while a3 prefers p(a), which is not consistent
with ¬p(X) ∈ P1. 2

What this suggests is that we will need much more elaborated synchroniza-
tion techniques to guarantee that these desirable properties still hold at the
global level. However, in our context where time is a critical factor, and where
communication can be highly restricted, it will be interesting to investigate in
which situations simple protocols, like the one described here, can still give
promising result and ensure an average good efficiency of the information prop-
agation. As a first step towards this objective, we give in the next section an
instance of the proposed framework and show a critical situation where commu-
nication and hypothesis exchange proves to be efficient.

4 A Case Study: Crisis Management

This section presents an instance of the general framework introduced earlier.
We first describe the different parameters used to instantiate the framework. A
complete example is then detailed.

4.1 Description of the situation

This experiment involves agents trying to escape from a burning building. The
environment is described as a spatial grid with a set of walls and (thankfully)
some exits. Time and space are considered discrete. Time is divided in rounds.

Agents are localised by their position on the spatial grid. These agents can
move and communicate with other agents. In a round, an agent can move of one
cell in any of the four cardinal directions, provided it is not blocked by a wall. In
this application, agents communicate with any other agent (but, recall, a single
one) given that this agent is in view, and that they have not yet exchanged
their current favored hypothesis. Note that this spatial constraint on agents’
communication could be relaxed in other contexts (which would require, in turn,
to apply a more elaborated recipient choice algorithm).

At time t0, a fire erupts in theses premises. From this moment, the fire
propagates. Each round, for each cases where there is fire, the fire propagates
in the four directions. However, the fire cannot propagate through a wall. If the
fire propagates in a case where an agent is positionned, that agents burns and is

40

considered dead. It can of course no longer move nor communicate. If an agent
gets to an exit, it is considered saved, and can no longer be burned. It still can
communicate, but need not move.

Agents know the environment and the rules governing the dynamics of this
environment, that is, they know the map as well as the rules of fire propagation
previously described. They also locally perceive this environment, but cannot
see further than 3 cases away, in any direction. Walls also block the line of
view, preventing agents from seeing behind them. Within their sight, they can
see other agents and whether or not the cases they see are on fire. All these
perceptions are memorised.

In order to deliberate, agents maintain a list of their possible explanations E

(and a list of associated hypotheses H) explaining their observations about fire,
and a prediction of fire propagation based on their favoured hypothesis h. The
preference relation (≤) is the following:

– the agent prefers the minimal explanation, taking into account only fire
origins. In other words, an agent will prefer an explanation using an unique
fire origin propagating over one using several sources.

– the agent prefer the least presumptive explanation, taking into account prop-
agation and origins. In effect it means that the agent will favor an explanation
considering the fire origin as closer to the observed manifestation.

Based on the reasoning described above, agents also maintain a list of possible
escape route, sorted by simply favouring the shortest paths to exits.

4.2 Sample of Agents Theories

We now give a snapshot of the declarative representation of agents’ knowledge,
illustrating the different kind of rules involved in this example.

– Facts (F) allow to represent the static elements of the environment, as well
as the rules governing the dynamic of the environment. For instance, the
following three rule state that there is indeed a vertical wall at location
(0,1), that the fire can always be assumed to have started at the location it
is observed, and eventually that the fire should propagate in four possible
directions. This last one is an example of a rule justified in normal circum-
stances, but which may suffer exceptions: it is then represented as a default
rule.

fact vwall(at(0,1)).

fact fire(T,at(X,Y)) <- origin(T,at(X,Y)).

default rule_propagates_L(T2,from(X2,Y)): fire(T,at(X,Y)) <-

previous(X,X2), previous(T,T2), fire(T2,at(X2,Y)).

– The possible hypotheses set (H), in this example application, is the set of
all conjunctions of possible fire origin(s).

– Constraints (C) prevent default rules from applying. For example, the land-
scape includes walls and doors which prevent the fire from propagating.

41

constraint not rule_propagates_L(T,from(X,Y)) <- vwall(at(X,Y))

– Observations (O) can either be of the form fire(T,at(X,Y)), or of the form
nofire(T,at(X,Y))

4.3 Example

We are now in a position to describe the steps of our illustrative example.

[Round t=0] A fire erupts at (6,6), but nobody can initially see it. It will prop-
agate until t=3 before beeing seen.

[Round t=3]

Perception step. Agent a1 sees fire at (3,6) (not expected), and agent a3.
Agent a2 sees fire at (6,3) and (5,4) (not expected). Agent a3 sees a1.

Explanation step (a1). Having computed an explanation for fire(t=3, at

(3,6)), a1 gets 12 possible explanations, each one exhibiting a single origin.
One such explanation, as provided by the Theorist system, states that the
fire may have started at location (4,5), before propagating to the north (i.e.
from south) and to the west.

Answer is fire(t3, at(3, 6))

Theory is

[rule_propagates_R(t2, from(4, 6)),

rule_propagates_D(t1, from(4, 5)),

origin(t1, at(4, 5))]

To classify these hypothesis, he first selects the minimal hypothesis consid-
ering only the origin. In this case, all the hypothesis suppose only one origin
for the observed fire. Among those, he then selects the less presumptive
hypothesis. In this case, the selected hypothesis is:

[origin(t3, at(3, 6))]

Explanation step (a2). Searching explanations for fire at (6,3) and (5,4), a2

gets 6*6 possible explanations, such as :

Answer is fire(t3, at(6, 3)) and fire(t3, at(5, 4))

Theory is

[rule_propagates_R(t2, from(6, 4)),

origin(t2, at(6, 4)),

origin(t3, at(6, 3))]

Among those theories, only four of the explanations propose a common ori-
gin, and as such are minimal according to the origin criteria. Among those
four, the less pre-emptive one is eventually:

42

[rule_propagates_R(t2, from(6, 4)),

rule_propagates_D(t2, from(6, 4)),

origin(t2, at(6, 4))].

Communication step. Agents a1 and a3 are the only agent seeing each other.
Agent a3 has no reason to initiate a communication, but a1 has one: it has
just changed its hypothesis and will try propagating and validating it. a3

asks for arguments and a1 sends it fire(t=3,at(3,6)). With this facts,
Agent 3 recomputes its hypothesis and get the same favoured hypothesis.
The hypothesis is confirmed and the communication stopped.

[Round t=4]

Action step. a3 moves towards the west exit, which is the closest exit. a1 moves
towards the east exit, for the same reason. Although it is closer to the east
exit, a2 moves towards the west exit because it predicts that fire will arrive
at the east exit before it can go out this way.

Perception step. Agent a1 sees a2 and conversely. All the fire seen by agents
were predicted during this step.

Explanation step. No agents has been confronted to unpredicted events. They
have no need for explanation and just trim their hypothesis list.

Communication step. Agents a1 and a2 will communicate. Agent a1 sends its
hypothesis (origin(t=3,at(3,6))). As this hypothesis is not invalidated
by its perception but does not belong to its hypothesis list, a2 asks for
arguments. Agent a1 sends argument (fire(t=3,at (3,6))), and a2 then
computes possible explanations for this and its perception, and gets 6*6*12
possible explanations. Among those, only one contains a common origin for
the three observed fires:

[rule_propagates_R(t2, from(6, 4)),

rule_propagates_D(t2, from(6, 4)),

rule_propagates_D(t1, from(6, 5)),

rule_propagates_D(t0, from(6, 6)),

rule_propagates_R(t3, from(4, 6)),

rule_propagates_R(t1, from(5, 6)),

rule_propagates_R(t0, from(6, 6)),

origin(t0, at(6, 6))].

43

Agent a2 then proposes this hypothesis to a1, which in turn ask for argu-
ments. Finally both agreed upon this hypothesis.

Action step. Agent a3 continues its escape towards the west exit. Agent a2

confirms its chosen path with its new hypothesis, and keeps going towards
the west door. Agent a1, however, using its new hypothesis, discover that its
escape route is bad. It changes its course to go towards the west exit.

[Round t=5 to 10] From time t=5 to time t=10, agents a1, a2 and a3 exit the
building. Agents a1 and a2 are closely followed by the fire: one false move would
have been fatal! If a1 did not communicate with a2 or 3 it would not have been
able to determine whether the fire was coming from left or right, and would have
chosen the east exit and been trapped by the fire.

5 Related Work

Our approach has several facets that can be related to a number of related works.
We now introduce some of these related works, starting with the studies of the
notion of rumours in social science, that proved to be very inspiring for us.

Rumour in Social Sciences. Rumour is a complex phenomenon that has been
the object of numerous studies in social science but is often seen as something
that can only bring lies or diffamation. Studies of rumour in social science show,
however, that there is more to rumour than just a routing or perception sharing
system. Whereas the first studies, done during and after World War II, seem

44

to consider rumour as something dangerous which should be avoided (rumours
could lead to moral loss or information leak), more recent stances are somewhat
more neutral or positive about it. J.N Kapferer [10] defines rumour as “the emer-
gence and circulation in the social body of information that either are not yet
publicly confirmed by official sources or are denied by them”. As an unofficial
information, it must use alternative ways to be distributed, such as individ-
ual communication (gossip, word-of-mouth). He precises that a rumour spreads
very quickly because it has value, and because this value decreases over time.
Moreover the rightness of the content has no importance. A true rumour spread
exactly like a false rumour. The exactitude of the content is not a criteria to de-
fine rumour. However, one can choose to take a slightly different perspective on
the rumouring process. Shibutani [19] defines rumour as improvised news result-
ing from a collective discussion process, usually originating from an important
and ambiguous event. In his own words, rumour is “common use of the group
individual ressources to get a satisfying intepretation of an event”. In this case,
the rumour is seen as being both an (i) information routing process and (ii) an
interpretation and comment adding process. Crucially, the distorsion of infor-
mation that is often seen as characteristic of rumour is seen as an evolution of
the content due to continual interpretation by the group. A crucial aspect of ru-
mour, of course, is that it is a decentralized process. The information propagates
without any official control. It is deeply linked with spatial or communication
constraint, and can be an efficient way to convey information in spite of these.
It is also expected that this process is quite robust to agent error or disparition.

Distributed Diagnosis. The problem of multiagent diagnosis has been studied
by Roos and colleagues [15, 16], where a number of distributed entities try to
come up with a satisfying global diagnosis of the whole system. They show in
particular that the number of messages required to establish this global diagnosis
is bound to be prohibitive, unless the communication is enhanced with some
suitable protocol. The main difference with our approach lies in the dynamic
nature of our context, as well as in the constraints governing agents’ interactions
that we assume.

Argument-based Interaction. The idea of enhancing communication between
agents by adding extra-information that may have the form of arguments has
been influential over the last past years in the multiagent community [13]. How-
ever, although this approach has several clear advantages (e.g. improving ex-
pressivity, or facilitating conformance checking), its effectiveness regarding the
speed and likelihood of fullfillment of the goal of the interaction has seldom been
tested (exceptions are the work of [9], or [11], for instance).

Gossip Problem. Rumours and gossip first appeared within the distributed sys-
tem community with the gossip problem: each agent has a distinct piece of in-
formation (called a rumour) to start with. The goal is to make every agent know
all the rumours [18]. Some variation of it are the rumour-spreading problem,
where the agent to communicate to is selected each round by an adversary [1],

45

and the collect problem. In the last one, each of n processes in a shared memory
system have several pieces of information, and all these processes must learn all
the values of all others while making as few as possible primitive read or write
operations [17]. It has also been used for reaching consensus [6]. This differs from
our approach, mainly because we do not seek to necessarily converge towards a
common knowledge of (initially distributed) informations. Also, agents do not
modify informations they propagate.

Gossip-based protocols. Each agent has a determined number of neighbours it
can communicate with. Each time an agent receives a rumour, it transmits it to
to a number of agents chosen at random among its neighbours. Then in turn,
each of these agents would do the same. This rumour spreading is analogous
to the spreading of an epidemic, which have been the object of mathematical
studies [2] and can spread exponentionally fast. Such an information propaga-
tion system has first been used for replicated database consistency management
[8]. It has been applied to unstructured peer-to-peer communities. Every time
an agent detects a change in the system (that would be the rumour), it sends it
to a random neighbour, and repeats this operation until it has contacted enough
neighbour(s). Some anti-entropy mechanisms are sometimes used to ensure that
every agent can get to know each change, even if the rumour has already died
out [7]. Another application of these protocols is reliable multicast [3]. It aims at
propagating an information from an agent to another agent without a centralised
source or knowledge of the system topology, and with a lower cost than with a
simple flooding. It is robust to agent deficiency, and very scalable. A variation of
it uses weight to enhance the reliability in specific topology [12]. This approach
is related to the “recipient selection” aspect of our problem. However, the trans-
mitted information is, again, assumed to be unaffected by agents’ reasoning.

Rumour routing. Another approach of rumour as an alternative to flooding is
rumour routing [4]. In the context of sensor networks, there is a need to transmit
queries to agents having observed an event. A fast route between an agent making
a request and the agents observing the events might be needed. It can be found
by flooding event notifications or queries, and creating a network-wide gradient
field [20], but it is a costly approach. Braginsky and Estrin instead propose to use
a kind of traceable rumour. Each time an agent observes a new event, it sends
an event notification rumour to a random neighbour. This neighbour transmits
it in turn to another neighbour, keeping trace of whom it received it from, and
how many agent(s) have acted as relay(s), creating rumour paths. When an
agent needs to make a query, it sends it to one of its neighbours. If it has heard
of the event concerned before, it transmits the query to the agent who told it
the rumour, else it transmits to a random neighbour. Eventually, the query will
cross the rumour path and be led to the right source. As in the preceding cases,
rumour routing propagates pure information, therefore the main studied aspects
are the velocity and robustness of these processes.

46

Reputation Systems. Buchegger and Le Boudec, for instance, use the term of
rumour in a reputation system [5]. Their agents can make decisions about the
reliability of others agents according to their previously observed behaviour,
but also according to what others agents tell about it. In this case, rumour is
primarily intended to mean “second-hand information”. In this case, agents can
keep track of previous partners’ behaviours, and also report their observations
to other agents. However, these agents are not able to explicitly reason over the
justifications governing their decisions.

6 Conclusion

This paper discusses the problem of efficient propagation of uncertain informa-
tion in dynamic environments and critical situations. When a number of (dis-
tributed) agents have only partial access to information, the explanation(s) and
conclusion(s) they can draw from their observations are inevitably uncertain. In
this context, the efficient propagation of information is concerned with two in-
terrelated aspects: spreading the information as quickly as possible, and refining
the hypothesis at the same time. We describe a formal framework designed to
investigate this class of problem, and propose a simple protocol allowing hypoth-
esis exchange. We also prove some preliminary properties of the protocol and
report on an experiment conducted using the described theory.

An obvious advantage of this process (that we observed on the described
example) is that agents do not wait to collect all data before providing and
propagating hypotheses. In our example this allows agents to escape a building
before being caught by the fire. When exactly temporary hypotheses are good
enough to be acted upon is to be determined, but this process definitely enable
quicker reaction to events than a static centralized data analysis.

The problem is that, of course, it can give incomplete or wrong hypothe-
sis, as the very preliminary analysis of the global properties of the framework
suggests. More elaborated communication techniques may then be investigated,
allowing agents to backtrack and further refine their hypotheses. In critical sit-
uations however, it is unlikely that agents will dispose of sufficient resources to
fully synchronize their hypotheses and observations. In consequence, we believe
the situations as the one described in our case study to be well suited to such
an approach. Further studies are required, however, to determine when exactly
this kind of communication would be beneficial, but we expect quickly evolv-
ing systems to provide interesting applications. Whereas this paper has mainly
focused on agents’ reasoning and content selection, we plan to investigate in fu-
ture research the related problem of recipient selection. Finally, it would also be
interesting to consider more complex cases, for instance where agents may have
unreliable perceptions of the world, or where malicious propagators of informa-
tion could adopt an uncooperative behaviour.

Acknowledgments. We would like to thank the anonymous reviewers whose de-
tailed comments helped to greatly improve the paper.

47

References

1. J. Aspnes and W. Hurwood. Spreading rumors rapidly despite an adversary. In
Proc. 15th ACM Symposium on Principles of Distributed Computing, pages 143–
151, 1996.

2. N. Bailey. The Mathematical Theory of Infectious Diseases. Charles Griffin and
Company, London, 1975.

3. K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast. ACM Transactions on Computer Systems, 17(2), 1999.

4. D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In
Proceedings of the 1st ACM international workshop on Wireless sensor networks
and applications, 2002.

5. S. Buchegger and J. Le Boudec. The effect of rumor spreading in reputation
systems for mobile ad-hoc networks. In Proc. of Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, 2003.

6. B. Chlebus and D. Kowalski. Gossiping to reach consensus. In Proc., 14th ACM
Symp. on Parallel Algorithms and Architectures, 2002.

7. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Com-
munities. In Twelfth IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-12), pages 236–246. IEEE Press, June 2003.

8. A. Demers et al. Epidemic algorithms for replicated database maintenance. In
Proceedings of 6th ACM Symposium on Principles of Distributed Computing, pages
1–12. Vancouver, British Columbia, Canada, 1987.

9. H. Jung and M. Tambe. Argumentation as distributed constraint satisfaction:
Applications and results. In Proceedings of AGENTS01), 2001.

10. J.-N. Kapferer. Rumeurs, le plus vieux média du monde. Points Actuel, 1990.
11. N. C. Karunatillake and N. R. Jennings. Is it worth arguing? In Proceedings of

First International Workshop on Argumentation in Multi-Agent Systems (ArgMAS
2004), pages 62–67, 2004.

12. M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a wide area network. In
European Dependable Computing Conference, pages 364–379, 1999.

13. S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8(3):261–292, 1998.

14. D. Poole. Explanation and prediction: An architecture for default and abductive
reasoning. Computational Intelligence, 5(2):97–110, 1989.

15. N. Roos, A. ten Tije, and C. Witteveen. A protocol for multi-agent diagnosis
with spatially distributed knowledge. In Proceedings of AAMAS03, pages 655–661,
2003.

16. N. Roos, A. ten Tije, and C. Witteveen. Reaching diagnostic agreement in multi-
agent diagnosis. In Proceedings of AAMAS04, pages 1254–1255, 2004.

17. M. Saks, N. Shavit, and H.Woll. Optimal time randomized consensus - making
resilient algorithms fast in practice. In Proceedings of the 2nd ACM-SIAM Sym-
posium on Discrete Algorithms, pages 351–362, 1991.

18. S.Even and B. Monien. On the number of rounds needed to disseminate informa-
tion. In Proc. of the First Annual ACM Symposium on Parallel Algorithms and
Architectures, 1989.

19. T. Shibutani. Improvised News : A Sociological Study of Rumor. Indianapolis and
New york, 1966.

20. F. Ye, G. Zhong, S. Lu, and L. Zhang. Gradient broadcast: A robust data delivery
protocol for large scale sensor networks. ACM Wireless Networks, 2005.

48

A Fibred Tableau Calculus for BDI Logics

Vineet Padmanabhan & Guido Governatori

School of Information Technology & Electrical Engineering
The University of Queensland, Queensland, Australia

[vnair,guido]@itee.uq.edu.au

Abstract. In [12, 16] we showed how to combine propositional BDI logics us-
ing Gabbay’sfibring methodology. In this paper we extend the above mentioned
works by providing a tableau-based decision procedure for the combined/fibred
logics. To achieve this end we first outline with an example two types of tableau
systems, (graph& path), and discuss why both are inadequate in the case of fib-
ring. Having done that we show how to uniformly construct a tableau calculus for
the combined logic using Governatori’s labelled tableau systemKEM .

Keywords:Modal and Epistemic Logics for Agent Modelling, Modal Tableaux.

1 Introduction

BDI logics are normal1 multimodal logics used to formalise the internal mental attitudes
of an agent such as beliefs, desires, goals and intentions. Multimodal logics generalise
modal logics allowing more than one modal operator to appearin formulae, i.e., a modal
operator is named by means of a label, for instance2i which identifies it. Hence a for-
mula like 2iϕ could be interpreted asϕ is believed by the agent i orϕ is a goal for
agent i etc.representing respectively the belief and goal of an agent. In addition to the
above representation, the traditional BDI logics [17] impose constraints between be-
liefs, desires and intentions in the form ofinteraction axiomslike, INT(ϕ)→ DES(ϕ),
DES(ϕ) → BEL(ϕ), denoting intentions being stronger than desires and desires be-
ing stronger than beliefs. Moreover the interaction axiomsarenon-homogeneousin the
sense that every modal operator is not restricted to the samesystem, i.e., the underlying
axiom systems for DES isK andD of modal logic whereas that of BEL isKD45.
Hence the basic BDI logicL can be seen as a combination of different component
logics plus the two interaction axioms as given below

L≡ (⊗n
i=1KD45BELi)⊗ (⊗n

i=1KDDESi)⊗ (⊗n
i=1KD INT i)

+ {INT iϕ → DESiϕ}+{DESiϕ → BELiϕ}
(1)

Any BDI theory, or for that matter any fully-fledged Multi-Agent-System (MAS)
theory, modelling rational agents consists of a combined system of logic of beliefs,
desires, goals and intentions as mentioned above. They are basically well understood

1 General modal systems with an arbitrary set of normal modal operators all characterised by
the axiomK : 2(ϕ → ψ)→ (2ϕ →2ψ) and the necessitation rule. i.e.,⊢ ϕ/ ⊢2ϕ .

49

standard modal logicscombined togetherto model different facets of the agents. A
number of researchers have provided such combined systems for different reasons and
different applications. However, investigations into a general methodology for combin-
ing the different logics involved has been mainly neglectedto a large extent. Recently
[12, 16] it has been shown thatfibring/dovetailing[8] can be adopted as a semantic
methodology to characterise BDI logics. But in that work they did not provide any de-
cision procedure for the fibred BDI logics. In this paper we extend our previous work
so as to provide a tableau decision procedure for the fibred logic which in turn is based
on the labelled tableau systemKEM [10, 9, 1].

The key feature of our tableau system is that it is neither based on resolution nor
on standard sequent/tableau techniques. It combines linear tableau expansion rules with
natural deduction rules and an analytic version of the cut rule. The tableau rules are
supplemented with a powerful and flexible label algebra thatallows the system to deal
with a large class of intensional logics admitting possibleworld semantics (non-normal
modal logic [11], multi-modal logics [10] and conditional logics [2]). The label algebra
is intended to simulate the possible world semantics and it has a very strong relationship
with fibring [9].

As far as the field ofcombining logicsis concerned, it has been an active research
area since some time now and powerful results about the preservation of important prop-
erties of the logics being combined has been obtained [13, 5,4, 20, 21]. Also, investiga-
tions related to using fibring as a combining technique in various domains has produced
a wealth of results as found in works like [8, 18, 22, 19, 6]. The novelty of combining
logics is the aim to developgeneral techniquesthat allow us to produce combinations
of existingand well understood logics. Such general techniques are needed for formal-
ising complex systems in a systematic way. Such a methodology can help decompose
the problem of designing a complex system into developing components (logics) and
combining them.

The advantages of using fibring as a semantic methodology forcombining BDI
logics as compared to other combining techniques likefusion 2 is that the later has
the problem of not being able to express interaction axioms,much needed for MAS
theories. Fibring is more powerful because of the possibility of adding conditions on the
fibring function. These conditions could encode interactions between the two classes
of models that are being combined and therefore could represent interaction axioms
between the two logics. One such result was shown in [12]. Moreover, fibring does not
require the logics to be normal. The drawbacks of other combining techniqiues like
embeddingandindependent combinationwhen compared to fibring (in the case of BDI
logics) has been discussed at length in [15].

The paper is structured as follows. The next section provides a brief introduction
to the technique of fibring. Section 3 outlines the path-based and graph-based tableau
procedures. Section 4 describes theKEM tableau system. The paper concludes with
some final remarks.

2 Normal bimodal and polymodal logics without any interaction axioms are well studied as
fusionsof normal monomodal logics [13, 20].

50

2 Fibring BDI Logics

Consider the basic BDI logicL given in (1) which is defined from three component
logics, viz.,KD45n for belief, andKDn for desires and intentions. For sake of clarity,
consider two of the component logics,H1(KD45) andH2(KD) and their corresponding
languagesLH1,LH2 built from the respective setsQ 1 andQ 2 of atoms having classes of
modelsM H1, M H2 and satisfaction relations|=1 and|=2. Hence we are dealing with two
different systemsS1 andS2 characterised, respectively, by the class of Kripke models
K1 andK2. For instance, we know how to evaluate21ϕ (BEL(ϕ)) in K1 (KD45)
and22ϕ (DES(ϕ)) in K2 (KD). We need a method for evaluating21 (resp.22) with
respect toK2 (resp.K1). In order to do so, we are to link (fibre), via afibring function
the model forH1 with a model forH2 and build a fibred model of the combination. The
fibring function can evaluate (give a yes/no) answer with respect to a modality inS2,
being inS1 and vice versa. The interpretation of a formulaϕ of the combined language
in the fibred model at a statew can be given as

w |= ϕ if and only if F (w) |=∗ ϕ

whereF is a fibring function that maps a world to a modelsuitable for interpretingϕ
and|=∗ is the corresponding satisfaction relation(|=1 for H1 or |=2 for H2).

Example 1.Let H1,H2 be two modal logics as given above and letϕ = 2132p 0 be
a formula on a worldw0 of the fibred semantics.ϕ belongs to the languageL(1,2) as
the outer connective (21) belongs to the languageL1 and the inner connective(32)
belongs to the languageL2.

By the standard definition we start evaluating21 of 2132 at w0. Hence according
to the standard definition we have to check whether32p 0 is true at everyw1 accessible
from w0 since from the point of view ofL1 this formula has the form21p (where
p = 32p 0 is atomic). But atw1 we cannot interpret the operator32, because we are in
a model ofH1, not ofH2. In order to do this evaluation we need the fibring functionF

which atw1 points to a worldv0, a world in a model suitable to interpret formulae from
H2. (Fig.1). Now all we have to check is whether32p 0, is true atv0 in this last model
and this can be done in the usual way. Hence the fibred semantics for the combined
languageL(1,2) has models of the form(F1,w1,ν1, F 1), whereF1 = (W1,R1) is a
frame, andF 1 is the fibring function which associates a modelM 2

w from L2 with w in
L1 i.e. F 1(w) = M 2

w.

2.1 Fibring BDI Logics

Let I be a set of labels representing the modal operators for the intentional states (be-
lief, goal, intention) for a set of agents, andHi , i ∈ I be modal logics whose respective
modalities are2i , i ∈ I .

Definition 1 [8] A fibred model is a structure(W,S,R,a,ν ,τ,F) where

– W is a set of possible worlds;
– S is a function giving for each w a set of possible worlds,Sw ⊆W;

51

f
1

w0

w1

w2

w3

v0

v1

KM

M KB 2

Fig. 1.An Example of Fibring

– R is a function giving for each w, a relationRw ⊆ Sw×Sw;
– a is a function giving the actual worldaw of the model labelled by w;
– ν is an assignment functionνw(q 0)⊆ Sw, for each atomicq 0;
– τ is the semantical identifying functionτ : W → I. τ(w) = i means that the model

(Sw,Rw,aw,νw) is a model inKi , we useWi to denote the set of worlds of type i;
– F, is the set of fibring functionsF : I×W 7→W. A fibring functionF is a function

giving for each i and each w∈W another point (actual world) inW as follows:

F i(w) =

{

w if w∈ SM and M ∈Ki

a value inWi , otherwise

such that if w6= w′ then F i(w) 6= F i(w′). It should be noted that fibring happens when
τ(w) 6= i. Satisfaction is defined as follows with the usual truth tables for boolean con-
nectives:

w |= q 0 iff ν(w, q 0) = 1, whereq 0 is an atom

w |= 2iϕ iff

{

w∈ M and M ∈Ki and∀w′(wRw′ → w′ |= ϕ),or

w∈ M , and M 6∈Ki and∀F ∈ F, F i(w) |= 2iϕ.

We say the model satisfiesϕ iff w0 |= ϕ.

A fibred model forHF
I can be generated from fibring the semantics for the modal logics

Hi , i ∈ I . The detailed construction is given in [16]. Also, to accommodate the interac-
tion axioms specific constraints need to be given on the fibring function. In [12] we
outline the specific conditions required on the fibring function to accommodate axiom
schemas of the typeGa,b,c,d:3. We do not want to get into the details here as the main
theme of this paper is with regard to tableaux decision procedures for fibred logics.

What we want to point out here, however, is that the fibring construction given in
[12, 16] works for normal (multi-)modal logics as well as non-normal modal logics.

3 Multimodal Tableaux

In the previous sections we showed that BDI logics are normalmultimodal logics with
a set of interaction axioms and introduced general techniques like fibring to explain

3 Ga,b,c,d
3a2bϕ →2c3dϕ .

52

such combined systems. In this section, before getting intothe details related to the
constructs needed for a tableau calculus for a fibred/combined logic, we outline with
an example two types of tableau systems (graph & path) that can be used to reason
about the knowledge/beliefs of BDI agents in a multi-agent setting. We discuss why
both types are inadequate in the case of fibring. Having done that, in the next section,
we describe how to uniformly construct a sound and complete tableau calculus for the
combined logic from calculi for the component logics.

Example 2.(The Friends Puzzle) [3] Consider the agents Peter, John andWendy with
modalities2p,2 j , and2w. John and Peter have anappointment. Suppose that Peter
knows thetime of appointment. Peter knows that John knows theplace of their ap-
pointment. Wendy knows that if Peter knows thetime of appointment, then John knows
that too (since John and Peter are friends). Peter knows thatif John knows theplace
and thetime of their appointment, then John knows that he has anappointment. Pe-
ter and John satisfy the axioms T and 4. Also, if Wendy knows something then Peter
knows the same thing (suppose Wendy is Peter’s wife) and if Peter knows that John
knows something then John knows that Peter knows the same thing.

The Knowledge/belief base for Example 2 can be formally given as follows;

1. 2ptime A1 Tp : 2pϕ → ϕ
2. 2p2 j place A2 4p : 2pϕ →2p2pϕ
3. 2w(2ptime→2 j time) A3 Tj : 2 j ϕ → ϕ
4. 2p2 j (place∧ time→ appointment) A4 4 j : 2 j ϕ →2 j2 j ϕ

A5 Iwp : 2wϕ →2pϕ
A6 Sp j : 2p2 j ϕ →2 j2pϕ

Fig. 2.Knowledge base related to the Friend’s puzzle.

So we have a modal language consisting of three modalities2p,2 j and2w denoting
respectively the agents Peter, John and Wendy and characterised by the setA = {Ai |
i = 1, . . . ,6} of interaction axioms. Suppose now that one wants to show that each of
the friends knows that the other one knows that he has an appointment, i.e, one wants
to prove

2 j2pappointment∧2p2 jappointment (2)

is a theorem of the knowledge-base. The tableaux rules for a logic corresponding to the
Friends puzzle are given in Fig.3 [14], and the tableaux proof for (2) is given in Fig.4
[14]. The tableaux in Fig.4. is a prefixed tableau [7] where the accessibility relations
are encoded in the structure of the name of the worlds. Such a representation is often
termed as apath representation. We show the proof of the first conjunct and the proof
runs as follows. Item 1 is the negation of the formula to be proved; 2, 3, 4 and 5 are
from Example 2; 6 is from 1 by a3-rule; 7 is from 6 by anSp j-rule; 8 is from 7 by a
3-rule; 9 is from 8 by a3-rule; 10 is from 5 by a2-rule; 11 is from 10 by a2-rule. 12
and 24 are from 11 by a∨-rule; 13 and 16 are from 12 by a∨-rule; 14 is from 3 by a
2-rule; 15 is from 14 by a2-rule; the branch closes by 13 and 15; 17 is from 4 by an
Iwp-rule; 18 and 22 are from 17 by a∨-rule; 19 is from 18 by a3-rule; 20 is from 2 by
a 4p-rule; 21 is from 20 by a2-rule; the branch closes by 19 and 21; 23 is from 22 by
a2-rule; the branch closes by 16 and 23; by 9 and 24 the remainingbranch too closes.

53

∧-rules
σ ϕ ∧ψ

σ ϕ
σ ψ

σ ¬(ϕ ∨ψ)

σ ¬ϕ
σ ¬ψ

σ ¬(ϕ → ψ)

σ ϕ
σ ψ

For any prefixσ

∨-rules
σ ϕ ∨ψ

σ ϕ | σ ψ
σ ¬(ϕ ∧ψ)

σ ¬ϕ | σ ¬ψ
σ ϕ → ψ

σ ¬ϕ | σ ¬ψ
For any prefixσ

¬¬-rules
σ¬¬ϕ

σϕ
For any prefixσ

3-rules
σ 3iϕ
σ .ni ϕ

σ ¬2iϕ
σ .ni ¬ϕ

if the prefixσ .ni is

new to the branch (i ∈ {1, . . . ,m})

2-rules
σ 2iϕ
σ .ni ϕ

σ ¬3iϕ
σ .ni ¬ϕ

If the prefixσ .ni already

occurs on the branch (i ∈ {1, . . . ,m})

Tprules:
σ 2pϕ

σ ϕ
σ ¬3pϕ

σ ¬ϕ
σ ϕ

σ 3pϕ

Tj rules:
σ 2 j ϕ

σ ϕ
σ ¬3 j ϕ

σ ¬ϕ
σ ϕ

σ 3 j ϕ

4prules:
σ 2pϕ

σ .n∗p2pϕ
σ ¬3pϕ

σ .n∗p2p¬ϕ
σ .np 3pϕ

σ 3pϕ
σ .np ¬2pϕ

σ 3p¬ϕ

4 j rules:
σ 2 j ϕ

σ .n∗j 2 j ϕ
σ ¬3 j ϕ

σ .n∗j 2 j¬ϕ
σ .n j 3 j ϕ
σ 3 j¬ϕ

σ .n j ¬2 j ϕ
σ 3 j¬ϕ

Iwprules:
σ 2wϕ
σ .n∗pϕ

σ ¬3wϕ
σ .n∗p¬ϕ

σ .np ϕ
σ 3wϕ

Sp jrules:
σ 2p2 j ϕ
σ .n∗j 2pϕ

σ ¬3p3 j ϕ
σ .n∗j 2p¬ϕ

σ .n j 3pϕ
σ 3p3 j ϕ

σ .n j ¬2pϕ
σ 3p3 j¬ϕ

(∗) prefix already occurs on the branch

Fig. 3.Tableau rules corresponding to the Friend’s Puzzle.

In a similar manner the tableaux proof for (2) using agraph representation where
the accessibility relations are represented by means of an explicit and separate graph of
named nodes is given in Fig.6. Each node is associated with a set of prefixed formulae
and choice allows any inclusion axiom to be interpreted as arewriting rule into the path
structure of the graph. The proof uses the rules given in Fig.5. which is often referred
to as the Smullyan-Fitting uniform notation. We will be using this notation in the next
section for ourKEM tableaux system. The proof for (2) as given in [3] runs as follows.
Steps 1-4 are from Fig.2 and 5 is the first conjunct of (2). Using π-rule we get items
6 and 7 (from 5) and 8 and 9 (from 6). We get 10 from 7 using axiomA6 in Fig.2 and
ρ-rule in Fig.5. Similarly 11 is from 9 viaA6 andρ-rule. By making use of theν-rule
in Fig.5 we get 12 (from 4 and 10) and 13 (from 12 and 11). 14a and14b are from 13
usingβ -rule (”a” and ”b” denote the two branches created by the application ofβ -rule).
Branch ”a” (14a) closes with 8. Applyingβ -rule again we get 15ba and 15bb from 14b
(”ba” and ”bb” denote the two branches created by the application of β -rule). Applying
ν-rule we get 16ba (from 3 and 10) and 17ba (from 16ba and 11). Branch ”ba” closes
because of 15ba and 17ba. We get 16bb from 10 via axiomA5 in Fig.2 andπ-rule in
Fig.5. Similarly from 2 and 16bb by usingν-rule we get 17bb. We get 18bba and 18bbb

54

1 ¬2 j2pappointment 1.
1 2ptime 2.
1 2p2 j place 3.
1 2w(2ptime→2 j time) 4.
1 2p2 j (place∧ time→ appointment) 5.
1.1 j ¬2pappointment 6.
1 3p3 j¬appointment 7.
1.1p 3 j¬appointment 8.
1.1p.2 j ¬appointment 9.
1.1p 2 j (place∧ time→ appointment) 10.
1.1p.2 j place∧ time→ appointment 11.

1.1p.2 j ¬(place∧ time) 12. 1.1p.2 j appointment 24.

1.1p.2 j ¬place 13. 1.1p.2 j ¬time 16.
1.1p 2 j place 14. 1.1p 2ptime→2 j time 17.
1.1p.2 j place 15.

1.1p ¬2ptime 18.
1.1p.2p ¬time 19. 1.1p 2 j time 22.
1.1p 2ptime 20. 1.1p.2 j time 23.
1.1p.2p time 21.

Fig. 4.Proof of2 j2p appointment usingpathrepresentation

from 17bb by applying theβ -rule (”bba” and ”bbb” denote the branches created by the
β -rule). By usingν-rule we get 19bba (from 18bba and 11). Branch ”bba” (19bba)
closes with 15bb. From 18bbb usingπ-rule we get 19bbb and 20bbb. From 10 and
20bbb via axiomA2 (in Fig.2) andρ-rule (in Fig.5) we get 21bbb. By applyingν-rule
to 1 and 21bbb we get 22bbb as a result of which the branch ”bbb”closes (22bbb and
19bbb).

It should be noted that axiom schemas likeA1, . . . ,A6 of Example 2 given in Fig. 2
belong to the class of axioms calledinclusion axioms. In particular they belong to axiom
sets of the form,2i1 . . .2in →2i′1

. . .2i′m (in > 0, i′m≥ 0), which in turn characterise the
class ofnormal modal logicscalled inclusion modal logics. As shown in [3], for each
axiom schema of the above type the correspondinginclusionproperty on theaccessi-
bility relation can be given as

Ri1 ◦Ri2 ◦ . . .Rin ⊇ Ri′1
◦Ri′2

. . .◦Ri′m (3)

where ”◦ ” denotes the relation compositionRi1 ◦Ri2 = {(w,w′′) ∈W×W | ∃w′ ∈W
such that(w,w′) ∈ Ri1 and(w′,w′′) ∈ Ri2}. This inclusion property is used to rewrite
items 7.(w0R johnw1) and 9.(w1Rpeterw2) of the proof given in Fig.6 so as to derive
a new path(w0Rpeterw3) and(w3R johnw2) as in items 10. and 11. The corresponding
tableaux rule for this property is given asρ-rule (5) in Fig.5. Also, the type of inter-
action axiom schemas of Example 2 involves the interaction between thesame mental
attitudeof different agents. There is also another type where there is interaction between

55

(1)
w : α
w : α1

w : α2

α-rule

(2)
w : β

w : β1 | w : β2
β -rule

(3)
w : νi wρiw′

w′ : ν0
i

ν-rule wherewρiw′ is availableon the branch

(4)
w : πi

w′ : π0
i

w : ρiw′

π-rule wherew′ is newon the branch

(5)
wρs1w1 . . .wm−1ρsmw′

wρi1w′1
...

w′n−1ρinw′

ρ-rule wherew′1, . . . ,w
′
n−1 arenewon the branch and

2i1 . . .2inϕ →2i′1
. . .2i′mϕ ∈ A

α α1 α2
T (ϕ ∧ψ) T ϕ T ψ
F (ϕ ∨ψ) F ϕ F ψ
F (ϕ → ψ) T ϕ F ψ
F (¬ϕ) T ϕ T ϕ

(a)∧-formulae

β β1 β2
F (ϕ ∧ψ) F ϕ F ψ
T (ϕ ∨ψ) T ϕ T ψ
T (ϕ → ψ) F ϕ T ψ
T (¬ϕ) F ϕ F ϕ

(b)∨-formulae

νi ν0
T2iϕ Tϕ
F3iϕ F ϕ

(c) 2-
formulae

πi π0
F2iϕ Fϕ
T3iϕ T ϕ

(d) 3-
formulae

Fig. 5.Tableaux rules based on uniform notation for propositional inclusion modal logics. [3].

different mental attitudesof thesame agent. The BDI interaction axioms given in (1) is
of the later type. In the coming sections we will show that theKEM tableau can deal
with both types of interaction axioms.

As pointed out in [3], the main difference between the two types of tableaux, (graph
and path), is in the use ofν-rule. In the case ofpath representation one needs to use
a specificν-rule for each logic as can be seen from Fig.3. These rules code the prop-
erties of the accessibility relations so as to express complex relations between prefixes
depending on the logic. Whereas in the case ofgraph representation the accessibility
relations are given explicitly. Also, it has been pointed out in [3] that the approach based
on path representation can be used only for some subclasses of inclusion axioms and
therefore difficult to extend the approach to the whole classof multi-modal systems.

4 Labelled Tableau for Fibred BDI Logic

In this section we show how to adaptKEM , a labelled modal tableaux system, to deal
with the fibred combination of BDI logics. In labelled tableaux systems, the object
language is supplemented by labels meant to represent semantic structures (possible
worlds in the case of modal logics). Thus the formulas of a labelled tableaux system
are expressions of the formA : i, whereA is a formula of the logic andi is a label. The
intuitive interpretation ofA : i is thatA is true at (the possible world(s) denoted by)i.

56

1. w0 : T2ptime 14b. w2 : F(place∧ time)
2. w0 : T2w(2ptime→2 j time) 15ba. w2 : F place
3. w0 : T2p2 j place 16ba. w3 : T2 j place
4. w0 : T2p2 j (place∧ time→ appointment) 17ba. w2 : Tplace
5. w0 : F2 j2pappointment ×
6. w1 : F2pappointment 15bb. w2 : Ftime
7. w0R johnw1 16bb. wRwi f ew3
8. w2 : F appointment 17bb. w3 : T(2ptime→2 j time)
9. w1Rpeterw2 18bba.w3 : T 2 j time
10. w0Rpeterw3 19bba.w2 : Ttime
11. w3R johnw2 ×
12. w3 : T2 j (place∧ time→ appointment) 18bbb.w3 : F2ptime
13. w2 : T (place∧ time→ appointment) 19bbb.w4 : Ftime
14a.w2 : T appointment 20bbb w3Rpeterw4

× 21bbb. w0Rpeterw4
22bbb.w4 : T time

×

Fig. 6.Proof of2 j2p usinggraphrepresentation.

KEM ’s inferential engine is based on a combination of standard tableaux linear
expansion rules and natural deduction rules supplemented by an analytic version of the
cut rule. In addition it utilises a sophisticated but powerful label formalism that enables
the logic to deal with a large class of modal and non-classical logics. Furthermore the
label mechanism corresponds to fibring and thus it is possible to define tableaux systems
for multi-modal logic by a seamless combination of the (sub)tableaux systems for the
component logics of the combination.

It is not possible in this paper to give a full presentation ofKEM for fully fledged
BDI logic supplemented with the interaction axioms given inExample 2. (for a com-
prehensive presentation see [9]). Accordingly we will limit ourselves to a single modal
operator for each agent and we will show how to characterise the axioms and the inter-
action of example 2.

4.1 Label Formalism

KEM usesLabelled Formulas(L-formulas for short), where anL-formula is an expres-
sion of the formA : i, whereA is a wff of the logic, andi is a label. For fibred BDI
logic (from now onFBL) we need to have labels for various modalities (belief, desire,
intention) for each agent. However, as we have just explained we will consider only one
modality and thus will have only labels for the agents.

The set of atomic labels,ℑ1, is then given as

ℑ1 =
⋃

i∈Agt
Φ i ,

whereAgt is the set of agents. EveryΦ i is partitioned into (non-empty) sets of variables
and constants:Φ i = Φ i

V ∪Φ i
C wereΦ i

V = {Wi
1,W

i
2, . . .} andΦ i

C = {wi
1,w

i
2, . . .}. ΦC and

ΦV denote the set of constants and the set of variables. We also add a set of auxiliary un
indexed atomic labelsΦA = ΦA

V = {W1,W2, . . .}∪ΦA
C = {w1,w2, . . .}, that will be used

in unifications and proofs.

57

Definition 1 (labels) A label u∈ ℑ is either (i) an element of the setΦC, or (ii) an
element of the setΦV , or (iii) a path term(u′,u) where (iiia) u′ ∈ ΦC∪ΦV and (iiib)
u∈ ΦC or u = (v′,v) where(v′,v) is a label.

As an intuitive explanation, we may think of a labelu∈ΦC as denoting a world (agiven
one), and a labelu∈ΦV as denoting a set of worlds (anyworld) in some Kripke model.
A labelu = (v′,v) may be viewed as representing a path fromv to a (set of) world(s)v′

accessible fromv (the world(s) denoted byv).
For any labelu = (v′,v) we shall callv′ theheadof u, v thebodyof u, and denote

them byh(u) andb(u) respectively. Notice that these notions are recursive (they corre-
spond to projection functions): ifb(u) denotes the body ofu, thenb(b(u)) will denote
the body ofb(u), and so on. We call each ofb(u), b(b(u)), etc., asegmentof u. The
length of a labelu, ℓ(u), is the number of atomic labels in it.sn(u) will denote the seg-
ment ofu of lengthn and we shall usehn(u) as an abbreviation forh(sn(u)). Notice that
h(u) = hℓ(u)(u). Let u be a label andu′ an atomic label. We use(u′;u) as a notation for
the label(u′,u) if u′ 6= h(u), or for u otherwise. For any labelu, ℓ(u) > n, we define the
counter-segment-nof u, as follows (forn < k < ℓ(u)):

cn(u) = h(u)× (· · ·× (hk(u)× (· · ·× (hn+1(u),w0))))

wherew0 is a dummy label, i.e., a label not appearing inu (the context in which such
a notion occurs will tell us whatw0 stands for). The counter-segment-n defines what
remains of a given label after having identified the segment of lengthn with a ‘dummy’
labelw0. The appropriate dummy label will be specified in the applications where such
a notion is used. However, it can be viewed also as an independent atomic label. In the
context of fibringw0 can be thought of as denoting the actual world obtained via the
fibring function from the world denoted bysn(u).

So far we have provided definitions about the structure of thelabels without regard
to the elements they are made of. The following definitions will be concerned with the
type of world symbols occurring in a label.

We say that a labelu is i-preferrediff h(u) ∈Φ i ; a labelu is i-pure iff each segment
of u of lengthn > 1 is i-preferred.

4.2 Label Unifications

The basic mechanism ofKEM is its logic dependent label unification. In the same
way as each modal logic is characterised by a combination of modal axioms (or se-
mantic conditions on the model),KEM defines a unification for each modality and
axiom/semantic condition and then combines them in a recursive and modular way.
In particular we use what we call unification to determine whether the denotation of
two labels have a non empty intersection, or in other terms whether two labels can be
mapped to the same possible world in the possible worlds semantics.

The second key issue is the ability to split labels and to workwith parts of labels.
The mechanism permits the encapsulation of operations on sub-labels. This is an im-
portant feature that, in the present context, allows us to correlate unifications and fibring
functions. Given the modularity of the approach the first step of the construction is to

58

define unifications (pattern matching for labels) corresponding to the single modality in
the logic we want to study.

Every unification is built from a basic unification defined in terms of a substitution
ρ : ℑ1 7→ ℑ such that:

ρ : 1ΦC

Φ i
V 7→ ℑi for everyi ∈ Agt

ΦA
V 7→ ℑ

Accordingly we have that two atomic (“world”) labelsu andv σ -unify iff there is a
substitutionρ such thatρ(u) = ρ(v). We shall use[u;v]σ both to indicate that there
is a substitutionρ for u andv, and the result of the substitution. Theσ -unification is
extended to the case of composite labels (path labels) as follows:

[i; j]σ = k iff ∃ρ : h(k) = ρ(h(i)) = ρ(h(j)) and

b(k) = [b(i);b(j)]σ

Clearlyσ is symmetric, i.e.,[u;v]σ iff [v;u]σ . Moreover this definition offers a flexible
and powerful mechanism: it allows for an independent computation of the elements of
the result of the unification, and variables can be freely renamed without affecting the
result of a unification.

We are now ready to introduce the unifications correspondingto the modal operators
at hand, i.e.,2w, 2 j and2p. We can capture the relationship between2w and2p by
extending the substitutionρ by allowing a variable of typew to be mapped to labels of
the same type and of typep.

ρw(Ww) ∈ ℑw∪ℑp

Then the unificationσw is obtained from the basic unificationσ by replacingρ with
the extended substitutionρw. This procedure must be applied to all pairs of modalities
21,22 related by the interaction axiom21ϕ →22ϕ.

For the unifications for2p and2 j (σ p andσ j) we assume that the labels involved
are i-pure. First we notice that these two modal operators areS4 modalities thus we
have to use the unification for this logic.

[u;v]σS4 =

[u;v]σD if ℓ(u) = ℓ(v)
[u;v]σT if ℓ(u) < ℓ(v),h(u) ∈ ΦC

[u;v]σ4 if ℓ(u) < ℓ(v),h(u) ∈ ΦV

(4)

It is worth noting that the conditions on axiom unifications are needed in order to pro-
vide a deterministic unification procedure. TheσT andσ4 are defined as follows:

[u;v]σT =

[sℓ(v)(u);v]σ if ℓ(u) > ℓ(v), and
∀n≥ ℓ(v), [hn(u);h(v))]σ = [h(u);h(v)]σ

[u;sℓ(u)(v)]σ if ℓ(u) > ℓ(v), and
∀n≥ ℓ(u), [h(u);hn(v)]σ = [h(u);h(v)]σ

The above unification allows us to unify to labels such that the segment of the longest
with the length of the other label and the other label unify, provided that all remaining

59

elements of the longest have a common unification with the head of the shortest. This
means that after a given point the head of the shortest is always included in its extension,
and thus it is accessible from itself, and consequently we have reflexivity.

[u;v]σ4 =

cℓ(u)(v) if ℓ(v) > ℓ(u),h(u) ∈ ΦV and
w0 = [u;sℓ(u)(v)]σ

cℓ(v)(u) if ℓ(u) > ℓ(v),h(v) ∈ ΦV and
w0 = [sℓ(v)(u);v]σ

In this case we have that the shortest label unifies with the segment with the same
length of the longest and that the head of the shortest is variable. A variable stands for
all worlds accessible from the predecessor of it. Thus, given transitivity every element
extending the segment with length of the shortest is accessible from this point.

Then a unification corresponding to axiom A6 from Example is 2.

[u;v]σSp, j =

cm+n(v) if h(u) ∈ Φ j
V andcn(v) is p-pure, and

hℓ(u)−1(u) ∈ Φ p
V andcn(v) is j-pure, and

w0 = [sℓ(u)−2(u);sm(v)]σ
cm+n(u) if h(v) ∈ Φ j

V andcn(u) is p-pure, and
hℓ(v)−1(v) ∈ Φ p

V andcn(u) is j-pure and
w0 = [sm(u);sℓ(v)−2(v)]σ

This unification allows us to unify two labels such that in onewe have a sequence of a
variable of typep followed by a variable of typej and a label where we have a sequence
of labels of typej followed by a sequence of labels of typep.

The unification for2p and2 j are just the combination of the three unifications
given above. Finally the unification for the logicL defined by the axioms A1–A6 is
obtained from the following recursive unification

[u;v]σL =

{

[u;v]σw,p, j

[cm(u);cn(v)]σw,p, j wherew0 = [sm(u);sn(v)]σL

σw,p, j is the simple combination of the unifications for the three modal operators. Hav-
ing accounted for the unification we now give the inference rules used inKEM proofs.

4.3 Inference Rules

For the inference rules we use the Smullyan-Fitting unifying notation [7].

α : u

α1 : u

α2 : u

(α)

β : u

β c
i : v

(i = 1,2)

β3−i : [u;v]σ
(β)

The α-rules are just the familiar linear branch-expansion rulesof the tableau method.
The β -rules are nothing but natural inference patterns such as Modus Ponens, Modus

60

Tollens and Disjunctive syllogism generalised to the modalcase. In order to apply such
rules it is required that the labels of the premises unify andthe label of the conclusion
is the result of their unification.

ν i : u

ν i
0 : (Wi

n,u)
(ν)

π i : u

π i
0 : (wi

n,u)
(π)

whereWi
n is a new label.

The ν andπ rules are the normal expansion rule for modal operators of labelled
tableaux with free variable. The intuition for theν rule is that if2iA is true atu, then
A is true at all worlds accessible viaRi from u, and this is the interpretation of the label
(Wi

n,u); similarly if 2iA is false atu (i.e.,¬BA is true), then there must be a world, let
us saywi

n accessible fromu, where¬A is true. A similar intuition holds whenu is not
i-preferred, but the only difference is that we have to make use of the fibring function
instead of the accessibility relation

A : u | ¬A : u
(PB)

The “Principle of Bivalence” represents the semantic counterpart of the cut rule of the
sequent calculus (intuitive meaning: a formulaA is either true or false in any given
world). PB is a zero-premise inference rule, so in its unrestricted version can be applied
whenever we like. However, we impose a restriction on its application. PB can be only
applied w.r.t. immediate sub-formulas of unanalysedβ -formulas, that isβ formulas for
which we have no immediate sub-formulas with the appropriate labels in the tree.

A : u

¬A : v

×
[if [u;v]σ] (PNC)

The Principle of Non-Contradiction(PNC) states that two labelled formulas areσL -
complementary when the two formulas are complementary and their labelsσL -unify.

4.4 Proof Search

Let Γ = {X1, . . . ,Xm} be a set of formulas. ThenT is aKEM -tree for Γ if there ex-
ists a finite sequence(T1,T2, . . . ,Tn) such that (i)T1 is a 1-branch tree consisting of
{X1 : t1, . . . ,Xm : tm}; (ii) Tn = T , and (iii) for eachi < n,Ti+1 results fromTi by an
application of a rule ofKEM . A branchθ of aKEM -treeT of L-formulas is said to be
σL -closedif it ends with an application ofPNC, open otherwise. As usual with tableau
methods, a setΓ of formulas is checked for consistency by constructing aKEM -tree
for Γ . Moreover we say that a formulaA is a KEM -consequence of a set of formu-
las Γ = {X1, . . . ,Xn} (Γ ⊢KEM (L) A) if a KEM -tree for{X1 : u1, . . . ,Xn : un,¬A : v} is
closed using the unification for the logicL, wherev∈ ΦA

C , andui ∈ ΦA
V . The intuition

behind this definition is thatA is a consequence ofΓ when we takeΓ as a set of global
assumptions [7], i.e., true in every world in a Kripke model.

61

We now describe a systematic procedure forKEM . First we define the following
notions. Given a branchθ of a KEM -tree, we shall call anL-formulaX : u E-analysed
in θ if either (i) X is of typeα and bothα1 : t andα2 : u occur inθ ; or (ii) X is of typeβ
and one of the following conditions is satisfied: (a) ifβC

1 : v occurs inθ and[u;v]σ, then
alsoβ2 : [u;v]σ occurs inθ , (b) if βC

2 : v occurs inθ and[u;v]σ, then alsoβ1 : [u;v]σ
occurs inθ ; or (iii) X is of type µ and µ0 : (u′,u) occurs inθ for some appropriate
u′ of the right type, not previously occurring inθ , or (iv) X is of typeγ andγ0(xn) : u
occurs inθ for some variablexn not previously occurring inθ or (v) X is of typeδ and
δ0(cn) : u occurs inθ for some variablecn not previously occurring inθ .

We shall call a branchθ of a KEM -treeE-completedif every L-formula in it isE-
analysed and it contains no complementary formulas which are notσL -complementary.
We shall say a branchθ of a KEM -tree completedif it is E-completed and all the
L-formulas of typeβ in it either are analysed or cannot be analysed. We shall calla
KEM -treecompletedif every branch is completed.

The following procedure starts from the 1-branch, 1-node tree consisting of{X1 :
u, . . . ,Xm : v} and applies the inference rules until the resultingKEM -tree is either
closed or completed.

At each stage of proof search (i) we choose an open non completed branchθ . If θ is
not E-completed, then (ii) we apply the 1-premise rules untilθ becomesE-completed.
If the resulting branchθ ′ is neither closed nor completed, then (iii) we apply the 2-
premise rules untilθ becomesE-completed. If the resulting branchθ ′ is neither closed
nor completed, then (iv) we choose anL-formula of typeβ which is not yet analysed
in the branch and applyPB so that the resultingLS-formulas areβ1 : u′ andβC

1 : u′ (or,
equivalentlyβ2 : u′ andβC

2 : u′), whereu = u′ if u is restricted (and already occurring
whenh(u)∈ΦC), otherwiseu′ is obtained fromu by instantiatingh(u) to a constant not
occurring inu; (v) (“Modal PB”) if the branch is notE-completed nor closed, because of
complementary formulas which are notσL -complementary, then we have to see whether
a restricted label unifying with both the labels of the complementary formulas occurs
previously in the branch; if such a label exists, or can be built using already existing
labels and the unification rules, then the branch is closed, (vi) we repeat the procedure
in each branch generated byPB.

1. F2 j2pappt w0 9. T(place∧ time→ appt) (W j
1 ,Wp

1 ,w0)

2. T2p2 j (place∧ time→ appt) W0 10. Fplace∧ time (wp
1,w j

1,w0)
3. T2w(2ptime→2 j time) W0 11. T2ptime→2 j time (Ww

1 ,w0)
4. T2p2 j place W0 12. T2 j place (Wp

2 ,w0)

5. T2ptime W0 13. Tplace (W j
2 ,Wp

2 ,w0)

6. F2pappt (w j
1,w0) 14. Ftime (wp

1,w j
1,w0)

7. Fappt (wp
1,w j

1,w0) 15. T2ptime (w j
1,w0)

8. T2 j (place∧ time→ appt) (Wp
1 ,w0) 16. Ttime (Wp

3 ,w j
1,w0)

×

Fig. 7.Proof of2 j2p usingKEM representation.

Fig.7. shows aKEM tableaux proof using the inference rules in section 4.3 and
following the proof search mentioned above to solve the firstconjunct of (2). The proof
goes as follows; 1. is the negation of the formula to be proved. The formulas in 2–5 are

62

the global assumptions of the scenario and accordingly theymust hold in every world
of every model for it. Hence we label them with a variableW0 that can unify with every
other label. This is used to derive 12. from 11. and 5. using aβ -rule, and for introducing
15.; 6. is from 1., and 7. from 6. by applyingπ rule. Similarly we get 8. from 2., 9. from
8. usingν rule. 10. comes from 9. and 7. through the use of modus tollens. Applying
ν rule twice we can derive 11. from 3. as well as 13. from 12. Through propositional
reasoning we get 14. from 10. and by a further use ofν rule on 15. we get 16. (14. and
16.) are complementary formulas indicating a contradiction and this results in a closed
tableaux because the labels in 14. and 16. unify, denoting that the contradiction holds
in the same world.

5 Concluding Remarks

In this paper we have argued that BDI logics can be explained in terms of fibring as
combination of simpler modal logics. Then we have outlined three labelled tableaux
systems (path, graph and unification). For each of the methodwe have seen how they
can deal with the Friend’s puzzle as a way to evaluate their features. The path approach
requires the definition of new inference rules for each logic, but then we can use a
simple labelling mechanism. However, it is not clear how this approach can be extended
to more complex cases of fibring, for example when we considernon-normal modal
operators for the mental attitudes of the agents.

The graph approach on the other hand does not require, in general, any new rule,
since it uses the semantic structure to propagate formulas to the appropriate labels. It
is then suitable for an approach based on fibring, since the relationships between two
labels can be given in terms of fibring. However, when the structure of the model is
more complicated (for example when the models for the logicsare given in terms of
neighbourhood models) then the approach might not be applicable since it assumes
relationships between labels/worlds in a model and not morecomplex structures. In
addition, the system does not give a decision procedure unless the relationships among
labels are restricted to decidable fragments of first-orderlogic. Thus it is not possible to
represent logic that are not first-order definable and the designer of an agent logic has
to verify that she is operating within a decidable fragment of first order logic.

KEM , in general similar to the graph approach, does not need logic dependent
rules, however, similar to the path approach, it needs logicdependant label unifications.
We have seen that the label algebra can be seen as a form of fibring [9], thus simple
fibring does not require special attention inKEM ; therefore it allows for a seamless
composition of (sub)tableaux for modal logics. The label algebra contrary to the graph
reasoning mechanism is not based on first order logic and thuscan deal with complex
structure and is not limited to particular fragment. IndeedKEM has been proved able
to deal with complex label schema for non-normal modal logics in a uniform way [11]
as well as other intensional logics such as conditional logics [2]. For these reasons
we believe thatKEM offers a suitable framework for decision procedure for multi-
modal logic for multi-agent systems. As we only described the static fragment of BDI
logics, (no temporal evolution was considered), the futurework is to extend the tableaux
framework so as to accomodate temporal modalities.

63

Acknowledgements

This work was supported by the Australian Research Council (ARC) under Discovery
Project No. DP0452628 on “Combining Modal Logics for Dynamic and Multi-Agent
Systems”.

References

1. A. Artosi, P. Benassi, G. Governatori, and A. Rotolo. Shakespearian modal logic: A labelled
treatment of modal identity. InAdvances in Modal Logic, volume 1. CSLI, 1998.

2. A. Artosi, G. Governatori, and A. Rotolo. Labelled tableaux for non-monotonic reasoning:
Cumulative consequence relations.Journal of Logic and Computation, 12(6):1027–1060,
2002.

3. Matteo Baldoni.Normal Multimodal Logics: Automatic Deduction and Logic Programming
Extension. PhD thesis, Universita degli Studi di Torino, Italy, 1998.

4. Patrick Blackburn and Maarten de Rijke. Zooming in, zooming out.Journal of Logic,
Language and Information, 1996.

5. Patrick Blackburn and Martin de Rijke. Why combine logics.Studia Logica, 59(1), 1997.
6. Artur S. d’ Avila Garcez and Dov M. Gabbay. Fibring neural networks. InAAAI-2004, pages

342–347. AAAI/MIT Press, 2004.
7. Melvin Fitting.Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht, 1983.
8. Dov M. Gabbay.Fibring Logics. Oxford University Press, Oxford, 1999.
9. Dov M. Gabbay and Guido Governatori. Fibred modal tableaux. InLabelled Deduction.

Kluwer academic Publishers, 2000.
10. Guido Governatori. Labelled tableau for multi-modal logics. InTABLEAUX, volume 918,

pages 79–94. Springer, 1995.
11. Guido Governatori and Alessandro Luppi. Labelled tableaux for non-normal modal logics.

In AI*IA 99: Advances in AI, LNAI-1792, pages 119–130, Berlin, 2000. Springer.
12. Guido Governatori, Vineet Padmanabhan, and Abdul Sattar. On Fibring Semantics for BDI

Logics. InLogics in Artificial Intelligence: (JELIA-02), Italy, LNAI-2424. Springer, 2002.
13. Marcus Kracht and Frank Wolter. Properties of independently axiomatizable bimodal logics.

The Journal of Symbolic Logic, 56(4):1469–1485, 1991.
14. John W. Llyod. Modal higher-order logic for agents.

http://users.rsise.anu.edu.au/ jwl/beliefs.pdf, 2004.
15. Alessio Lomuscio.Information Sharing Among Ideal Agents. PhD thesis, School of Com-

puter Science, University of Brimingham, 1999.
16. Vineet Padmanabhan.On Extending BDI Logics. PhD thesis, School of Information Tech-

nology, Griffith University, Brisbane, Australia, 2003.
17. Anand S. Rao and Michael P. Georgeff. Formal models and decision procedures for multi-

agent systems. Technical note 61, Australian Artificial Intelligence Institute, 1995.
18. Amíılcar Sernadas, Cristina Sernadas, and Carlos Caleriro. Fibring of logics as a categorial

construction.Journal of Logic and Computation, 9(2):149–179, 1999.
19. Aḿılcar Sernadas, Cristina Sernadas, and A. Zanardo. Fibring modal first-order logics: Com-

pleteness preservation.Logic Journal of the IGPL, 10(4):413–451, 2002.
20. Frank Wolter. Fusions of modal logics revisited. InAdvances in Modal Logic, volume 1.

CSLI Lecture notes 87, 1997.
21. Frank Wolter. The decision problem for combined (modal) logics. Technical report, In-

stitut fur Informatik, universitat Leipzig, Germany, www.informatik.uni-leipzig.de/ wolter/,
September 9, 1999.

22. A. Zanardo, Amíılcar Sernadas, and Cristina Sernadas. Fibring: Completeness preservation.
Journal of Symbolic Logic, 66(1):414–439, 2001.

64

Programming Declarative Goals Using Plan Patterns

Jomi Hübner1, Rafael H. Bordini2, and Michael Wooldridge3

1 University of Blumenau (Brazil)
jomi@inf.furb.br

2 University of Durham (UK)
R.Bordini@durham.ac.uk

3 University of Liverpool (UK)
mjw@csc.liv.ac.uk

Abstract. AgentSpeak is a well-known language for programming intelligent
agents which captures the key features of reactive planning systems in a sim-
ple framework with an elegant formal semantics. However, the original language
is too abstract to be used as a programming language for developing multi-
agent system. In this paper, we address one of the features that are essential for
a pragmatical agent programming language. We show how certainpatternsof
AgentSpeak plans can be used to define various types of declarative goals. In or-
der to do so, we first define informally how plan failure is handled in the extended
version of AgentSpeak available inJason, a Java-based interpreter; we also de-
fine special (internal) actions used for dropping intentions. We present a number
of plan patternswhich correspond to elaborate forms of declarative goals. Fi-
nally, we give examples of the use of such types of declarative goals and describe
how they are implemented inJason.

1 Introduction

The AgentSpeak(L) language, introduced by Rao in 1996, provides a simple and elegant
framework for intelligent action via the run-time interleaved selection and execution of
plans. Since the original language was proposed, substantial progress has been made
both on the theoretical foundations of the language (e.g., its formal semantics [6]), and
on its use, via implementations of practical extensions of AgentSpeak [5]. However, one
problem with the original AgentSpeak(L) language is that it lacks many of the features
that might be expected by programmers in practical development. Our aim in this paper
is to focus on the integration of one such features, namely the definition of declarative
goals and the use of plan patters. Throughout the paper, we use AgentSpeak as a more
general reference to AgentSpeak(L) and its extensions.

In this paper, we consider the use ofdeclarative goalsin AgentSpeak programming.
By a declarative goal, we mean a goal thatexplicitly represents a state of affairs to be
achieved, in the sense that, if an agent has a goalp(t1, . . . , tn), it expects to eventu-
ally believep(t1, . . . , tn) (cf. [19]) and only then can the goal be considered achieved.
Moreover, we are interested not only in goals representing states of affairs, but goals
that may have complex temporal structures. Currently, although goals form a central

65

component of AgentSpeak programming, they are onlyimplicit in the plans defined by
the agent programmer. For example, there is no explicit way of expressing that a goal
should be maintained until a certain condition holds; such temporal goal structures are
defined implicitly, within the plans themselves, and byad hocefforts on the part of
programmers.

While one possibility would be to extend the language and its formal semantics
to introduce an explicit notion of declarative goal (as done in other languages, e.g.,
[19, 7, 22]), we show that this is unnecessary. We introduce a number ofplan patterns,
corresponding to common types of explicit temporal (declarative) goal structures, and
show how these can be mapped into AgentSpeak code. Thus, a programmer or designer
can conceive of a goal at the declarative level, and this goal will be expanded, via these
patterns, into standard AgentSpeak code. We then show how such goal patterns can be
used inJason, a Java-based implementation of an extended version of AgentSpeak [4].

In order to present the plan patterns that can be used for defining certain types of
declarative goals discussed in the literature, theplan failure handling mechanism im-
plemented inJason, and some pre-definedinternal actionsused for dropping goals,
need to be presented. Being able to handle plan failure is useful not only in the con-
text of defining plan patterns that can represent complex declarative goals. In most
practical scenarios, plan failure is not only possible, it is commonplace: a key com-
ponent of rational action in humans is the ability to handle such failures. After pre-
senting these features ofJasonthat are important in controlling the execution of plans,
we can then show the plan patterns that define more complex types of goals than has
been claimed to be possible in AgentSpeak [7]. We present (declarative) maintenance
as well as achievement goals, and we present different forms of commitments towards
goal achievement/maintenance (e.g., the well-known blind, single-minded, and open-
minded forms of commitment [18]). Finally, we discussJasonimplementations of ex-
amples that appeared in the literature on declarative goals; the examples also help in
showing why declarative goals with complex temporal structures are an essential fea-
ture in programming multi-agent systems.

2 Goals and Plans in AgentSpeak

In [17], Rao introduced the AgentSpeak(L) programming language. It is a natural ex-
tension of logic programming for the BDI agent architecture, and provides an elegant
abstract framework for programming BDI agents. In this paper, we only give a very
brief introduction to AgentSpeak; see e.g. [6] for more details.

An AgentSpeak agent is created by the specification of a set of initial beliefs and
a set of plans. Abelief atomis simply a first-order predicate in the usual notation, and
belief atoms or their negations arebelief literals. The initial beliefs define the state of the
belief base at the moment the agent starts running; the belief base is simply a collection
of ground belief atoms (or, inJason, literals).

AgentSpeak distinguishes two types of goals:achievement goalsand test goals.
Achievement goals are predicates (as for beliefs) prefixed with the ‘! ’ operator, while
test goals are prefixed with the ‘?’ operator. Achievement goals state that the agent
wants to achieve a state of the world where the associated predicate is true. (In practice,

66

these lead to the execution of other plans.) Atest goalstates that the agent wants to test
whether the associated predicate is a belief (i.e., whether it can be unified with one of
the agent’s beliefs).

Next, the notion of atriggering eventis introduced. It is a very important concept
in this language, as triggering events define which events may initiate the execution of
plans; the idea ofevent, both internal and external, will be made clear below. There are
two types of triggering events: those related to theaddition (‘+’) and deletion(‘ - ’) of
mental attitudes (beliefs or goals).

Plans refer to thebasic actionsthat an agent is able to perform on its environ-
ment. Such actions are also defined as first-order predicates, but with special predi-
cate symbols (calledaction symbols) used to distinguish them. The actual syntax of
AgentSpeak programs is based on the definition of plans, as follows. Ife is a trig-
gering event,b1, . . . , bm are belief literals, andh1, . . . , hn are goals or actions, then
e : b1 & . . . & bm ← h1 ; . . . ; hn. is aplan.

An AgentSpeak(L) plan has ahead(the expression to the left of the arrow), which is
formed from a triggering event (denoting the purpose for that plan), and a conjunction
of belief literals representing acontext(separated from the triggering event by ‘:’). The
conjunction of literals in the context must be satisfied if the plan is to be executed (the
context must be a logical consequence of that agent’s current beliefs). A plan also has
a body, which is a sequence of basic actions or (sub)goals that the agent has to achieve
(or test) when the plan is triggered.

Besides the belief base and the plan library, the AgentSpeak interpreter also man-
ages a set ofeventsand a set ofintentions, and its functioning requires threeselection
functions. The event selection function selects a single event from the set of events;
another selection function selects an “option” (i.e., an applicable plan) from a set of
applicable plans; and a third selection function selects one particular intention from the
set of intentions. The selection functions are supposed to be agent-specific, in the sense
that they should make selections based on an agent’s characteristics in an application-
specific way. An event has the form〈te, i〉, wherete is a plan triggering event (as in
the plan syntax described above) andi is that intention that generated the event orT for
external events.

Intentionsare particular courses of actions to which an agent has committed in order
to handle certain events. Each intention is a stack of partially instantiated plans. Events,
which may start the execution of plans that have relevant triggering events, can beex-
ternal, when originating from perception of the agent’s environment (i.e., addition and
deletion of beliefs based on perception are external events); orinternal, when generated
from the agent’s own execution of a plan (i.e., a subgoal in a plan generates an event of
type “addition of achievement goal”). In the latter case, the event is accompanied with
the intention which generated it (as the plan chosen for that event will be pushed on top
of that intention). External events create new intentions, representing separate focuses
of attention for the agent’s acting within the environment.

67

3 Plan Failure

We identify three cases of plan failure. The first cause of failure is alack of relevant
or applicable plans, which can be understood as the agent “not knowing how to do
something”. This happens either because the agent simply does not have the know-how
(in case it has no relevant plans) — this could happen through simple omission (the
programmer did not provide any appropriate plans) — or because all known ways of
achieving the goal cannot currently be used (there are known plans but whose contexts
do not match the agent’s current beliefs). The second is where a test goal fails; that is,
where the agent “expected” to believe in a certain condition of the world, but in fact
the condition did not hold. The third is where an internal action (“native method”), or a
basic action (the effectors within the agent architecture are assumed to provide feedback
to the interpreter stating whether the requested action was executed or not), fails.

Regardless of the reason for a plan failing, the interpreter generates a goal deletion
event (i.e., an event for “−!g”) if the corresponding goal achievement (+!g) has failed.
This paper introduces for the first time an (informal) semantics for the notion of goal
deletion as used inJason. In the original definition, Rao syntactically defined the possi-
bility of goal deletions as triggering events for plans (i.e., triggering event with-! and
-? prefixes), but did not discuss what they meant. Neither was goal deletion discussed
in further attempts to formalise AgentSpeak or its ancestor dMars [12, 11]. Our own
choice was to use this as some kind of plan failure handling mechanism4, as discussed
below (even though this was probably not what they originally were intended for).

The idea is that a plan for a goal deletion is a “clean-up” plan, executed prior to
(possibly) “backtracking” (i.e., attempting another plan to achieve the goal for which a
plan failed). One of the things programmers might want to do within the goal deletion
plan is to attempt again to achieve the goal for which the plan failed. In contrast to
conventional logic programming languages, during the course of executing plans for
subgoals, AgentSpeak programs generate a sequence of actions that the agent performs
on the external environment so as to change it, the effects of which cannot be undone by
simply backtracking (i.e., it may require further action in order to do so). Therefore, in
certain circumstances one would expect the agent to have to “undo” the effects of certain
actions before attempting some alternative courses of action to achieve that goal, and
this is precisely the practical use of plans with goal deletions as triggering events.

It is important to observe that omitting possible goal deletion plans for existing
goal additions implicitly denotes that such goal should never be backtracked, i.e., no
alternative plan for it should be attempted in case one fails. To specify that backtracking
should always be attempted (e.g., until special internal actions in the plan explicitly
cause the intention to be dropped), all the programmer has to do is to specify a goal
deletion plan (for a given goalg addition) with empty context and the same goal in the
body, as in “-! g: true ← ! g. ”.

4 The notation−!g, i.e., “goal deletion” also makes sense for such plan failure mechanism; if a
plan fails there is a possibility that the agent may need to drop the goal altogether, so it is to
handle such event (of the possible need to drop a goal) that plans of the form−!g : . . . are
written.

68

When a failure happens, the whole intention is dropped if the triggering event of the
plan being executed was neither an achievement nor a test goaladdition: only these can
be attempted to recover from failure using the goal deletion construct (one cannot have
a goal deletion event posted for a failure in a goal deletion plan). In any other circum-
stance, a failed plan means that the whole intention cannot be achieved. If a plan for a
goal addition (+! g) fails, the intentioni where that plan appears is suspended, and the
respective goal deletion event (〈−!g, i〉) is included in the set of events. Eventually, this
might lead to the goal addition being attempted again as part of the plan to handle the
-! g event. When the plan for-! g finishes not only itself but also the failed+! g plan
below it5 are removed from the intention. As it will be clear later, it is a programmer’s
decision to attempt the goal again or not, or even to drop the whole intention (possi-
bly with special internal action constructs, whose informal semantics is given below),
depending on the circumstances. What happens when a plan fails is shown in Figure 1.

+!g1(t): ct
<− a(t);
 !g2(t);
 ?g2(t);

te ct:
<− !g1(t);

(a) An Intention
before Plan Failure

 !g2(t);
 ?g2(t);

te ct:
<− !g1(t);

<− a(t);
+!g1(t): ct

 !g1(t);

<− ... ;
−!g1(t): ct

(b) That Intention
after Plan Failure

Fig. 1. Plan Failure.

In the circumstance de-
scribed in Figure 1(a) above,
supposea(t) fails, or otherwise
after that action succeeds an
event for +!g2(t) was created
but there were no applicable
plans to handle the event, or
?g2(t) is not is the belief base,
nor there are applicable plans
to handle a+?g2(t) event. In
any of those cases, the intention
is suspended and an event for
−!g1(t) is generated. Assuming
the programmer included a
plan for −!g1(t), and the plan
is applicable at the time the
event is selected, the intention
will eventually look as in Fig-
ure 1(b). Otherwise the original
goal addition event is re-posted

or the whole intention dropped, depending on a setting of theJasoninterpreter that is
configurable by programmers. (See [1] for an overview of how various BDI systems
deal with the problem of there being no applicable plans.)

The reason why not providing goal deletion plans in case a goal is not to be back-
tracked works is because an event (with the whole suspended intention within it) is dis-
carded in case there are no relevant plans for a generated goal deletion. In general, the
lack of relevant plans for an event indicates that the perceived event is not significant for
the agent in question, so they are simply ignored. An alternative approach for handling
the lack of relevant plans is described in [2], where it is assumed that in some cases,
explicitly specified by the programmer, the agent will want to ask other agents how to

5 The failed plan is left in the intention, for example, so that programmers could check which
plan failed (e.g., by means ofJasoninternal actions).

69

handle such events. The mechanism for plan exchange between AgentSpeak agents pre-
sented in [2] allows the programmer to specify which triggering events should generate
attempts to retrieve external plans, which plans an agent agrees to share with others,
what to do once the plan has been used for handling that particular event instance, and
so on.

In the next section, besides the plan failure handling mechanism, we also make use
of a particular standard internal action. Standard internal actions, unlike user-defined
internal actions, are those available with theJasondistribution; they are denoted by
an action name starting with symbol ‘. ’. Some of these pre-defined internal actions
manipulate the structure used in giving semantics to the AgentSpeak interpreter. For
that reason, they need to be precisely defined. As the focus here is on the use of patterns
for defining declarative goals, we will give only informal semantics to the internal action
we refer to in the next section.

The particular internal action used in this paper is.dropGoal(g,true) . Any
intention that has the goalg in the triggering event of any of its plans will be changed
as follows. The plan with triggering event+! g is removed and the plan below that
in the stack of plans forming that intention carries on being executed at the point af-
ter goalg appeared. Goalg, as it appears in the.dropGoal internal action is used
to further instantiate the plan where the goal that was terminated early appears. With
.dropGoal(g,false) , the plan for+! g is also removed, but an event for the dele-
tion of the goal whose plan body requiredg is generated: this informally means that
there is no way of achievingg so the plan requiringg to be achieved must fail. That
is, .dropGoal(g,true) is used when the agent realises the goal has already been
achieved so whatever plan was being executed to achieve that goal does not need to be
executed any longer. On the other hand,.dropGoal(g,false) is used when the
agent realises that the goal has become impossible to achieve, hence the need to fail the
plan that requiredg being achieved as one of its subgoals.

It is perhaps easier to understand how these actions work with reference to Figure 2.
The figure shows the consequence of each of these internal actions being executed (the
plan where the internal action appeared is not shown; it is likely to be within another
intention). Note that the state of the intention affected by the execution of one of these
internal actions, as shown in the figure, is not the immediate resulting state (at the end
of the reasoning cycle where the internal action was executed) but the most significant
next state of the changed intention.

4 Declarative Goal Patterns

Although goals form a central component of the AgentSpeak conceptual framework,
it is important to note that the language itself does not provide any explicit constructs
for handling goals with complex temporal structure. For example, a system designer
and programmer will often think in terms of goals such as “maintainP until Q be-
comes true”, or “preventP from becoming true”. Creating AgentSpeak code to realise
such complex goals has, to date, been largely anad hocprocess, dependent upon the
experience of the programmer. Our aim in this section is firstly to define a number of
declarative goal structures, and secondly to show how these can be realised in terms

70

ct+!g2(t):

<− !g1(t);
ct+!g0(t):

 !g4(t);

<− !g2(t);

+!g1(t): ct

<− ... ;
 !g3(t);

...

(a) Initial In-
tention

ct+!g4(t):

<− !g4(t);

<− ... ;

 !g5(t);

ct+!g0(t):

...

(b) After
.dropGoal(g1(t),true)

<− !g1(t);
ct+!g0(t):

<− ... ;
ct

 !g0(t);

−!g0(t):

 !g4(t);

...

(c) After
.dropGoal(g1(t),false)

Fig. 2. Standard Internal Actions for Dropping Goals.

of patternsof AgentSpeak plans — that is, complex combinations of plan structures
which are often useful in actual scenarios. As we shall see, such patterns can be used
to implement, in a systematic way, not only complex types of declarative goals, but
also the types of commitments they represent, as discussed for example by Cohen and
Levesque [8].

As an initial motivational example for declarative goals, consider a robot agent with
the goal of being at some location (represented by the predicatel(X, Y)) and the
following plan to achieve this goal:

+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y).

where the predicatebc/1 stands for “battery charge”, andgo identifies an action that
the robot is able to perform in the environment.

At times, using an AgentSpeak plan as a procedure, can be a quite useful program-
ming tool. Thus, in a way, it is important that the AgentSpeak interpreter does not en-
force any declarative semantics to its only (syntactically defined) goal construct. How-
ever, in the plan above,l(X, Y) is clearly meant as a declarative goal; that is, the
programmer expects the robot to believel(X, Y) (by perceiving the environment) if
the plan executes to completion. If it fails because, say, the environment is dynamic, the
goal cannot be considered achieved and, normally, should be attempted again.

This type of situation is commonplace in multi-agent system, and this is why it is
important to be able to define declarative goals in agent-oriented programming. How-
ever, this can be done without the need to change the language and/or its semantics. As
similarly pointed out by van Riemsdijket al. [19], we can easily transform the above
procedural goal into a declarative goal by adding a correspondingtest goalat the end
of the plan’s body, as follows:

71

+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y); ?l(X,Y) .

This plan only succeeds if the goal is actually (believed to be) achieved; if the given
(procedural) plan executes to completion (i.e., without failing) but the goal happens not
to be achieved, the test goal at the end will fail. In this way, we have taken a simple
proceduralgoal and transformed it into adeclarativegoal – the goal to achieve some
state of affairs.

This solution forms a plan pattern, which can be applied to solve other similar prob-
lems which, as we mention above, are commonplace in agent programming. Thus, our
approach to include declarative goals in AgentSpeak programming is inspired by the
successful adoption of design patterns in object oriented design [13]. To represent such
patterns for AgentSpeak, we shall make use of skeleton programs with meta variables.
For example, the general form of an AgentSpeak plan for a simple declarative goal, as
the one used in the robot’s location goal above, is as follows:

+! g: c ← p; ? g.

Here,g is a meta variable that represents the declarative goal,c is a meta variable that
represents the context expression stating in which circumstances the plan is applicable,
andp represents the procedural part of the plan body (i.e., a course of action to achieve
g). Note that, with the introduction of the final test goal, this plan to achieveg finishes
successfully only if the agent believesg after the execution of plan bodyp.

To simplify the use of the patterns, we also define pattern rules which rewrite a set
of AgentSpeak plans into a new AgentSpeak program according to a given pattern.6 The
following pattern rule, calledDG (Declarative Goal), is used to transform procedural
goals into declarative goals. The pattern rule name is followed by the parameters which
need to be provided by the programmer, besides the actual code (i.e., a set of plans) on
which the pattern will be applied.

+! g: c1 ← p1.
+! g: c2 ← p2.
. . .
+! g: cn ← pn.

DGg (n ≥ 1)
+! g: g ← true.
+! g: c1 ← p1; ? g.
+! g: c2 ← p2; ? g.
. . .
+! g: cn ← pn; ? g.
+g: true ← .dropGoal(g, true).

Essentially, this rule adds?g at the end of each plan in the given set of plans which has
+! g as trigger event, and creates two extra plans (the first and the last plans above). The

6 Note that some of the patterns presented in this paper require the atomic execution of certain
plans, but we avoid including this in the patterns for clarity of presentation; this feature is
available inJasonthrough a simple plan annotation.

72

first plan checks whether the goalg has already been achieved — in such case, there is
nothing else to do. That last plan is triggered when the agent perceives thatg has been
achieved while it is executing any of the courses of actionpi (1 ≤ i ≤ n) which aim
at achievingg; in this circumstance, the plan being executed in order to achieveg can
be immediately terminated. The internal action.dropGoal(g, true) terminates
such plan with success (as explained in Section 3).

In this pattern, when one of the plans to achieveg fails, the agent gives up achieving
the goal altogether. However it could be the case that for such goal, the agent should try
another plan to achieve it, as in the “backtracking” plan selection mechanism available
in platforms such asJACK [21, 14] and 3APL [10, 9]. In those mechanisms, usually
only when all available plans have been tried in turn and failed is the goal abandoned
with failure, or left to be attempted again later on. The following rule, calledBDG
(Backtracking Declarative Goal), defines this pattern based on a set of conventional
AgentSpeak plansP transformed by theDG pattern (each plan inP is of the form
+! g: c ← p):

P
BDGg

DGg(P)
-! g: true ← ! g.

The last plan of the pattern catches a failure event, caused when a plan fromP fails, and
then tries to achieve that same goalg again. Notice that it is possible that the same plan
is selected and fails again, causing a loop if the plan contexts have not been carefully
programmed. Thus the programmer would need to specify the plan contexts in such a
way that a plan is only applicable if it has a chance of succeeding regardless of it having
been tried already (recently).

Instead of worrying about defining contexts in such more general way, in some
cases it may be useful for the programmer to apply the following pattern, calledEBDG
(Exclusive BDG), which ensures that none of the given plans will be attempted twice
before the goal is achieved:

+! g: c1 ← b1.
+! g: c2 ← b2.
. . .
+! g: cn ← bn.

EBDGg

+! g: g ← true.
+! g: not p1(g) & c1 ← +p1(g); b1.
+! g: not p2(g) & c2 ← +p2(g); b2.
. . .
+! g: not p n(g) & cn ← +pn(g); bn.
-! g: true ← ! g.
+g: true ← -p1(g); -p2(g);dropGoal(g, true).

In this pattern, each plan, when selected for execution, initially adds a beliefpi(g) ; the
goalg is used as an argument top so as to avoid interference among applications of the

73

pattern for different goals. The belief is used as part of the plan contexts (note the use
of not p i in the contexts of the plans in the pattern above) to state the plan should not
be applicable in a second attempt (of that same plan within a single adoption of goalg
for that agent).

In the pattern above, despite the various alternative plans, the agent can still end
up dropping the intention with the goalg unachieved, if all those plans become non-
applicable. Conversely, in ablind commitment goalthe agent can drop the goal only
when it is achieved. This type of commitment toward the achievement of a declarative
goal can thus be understood asfanatical commitment[18]. TheBCGg,F pattern below
defines this type of commitment:

P
BCGg,F

F(P)
+! g: true ← ! g.

This pattern is based on another pattern rule (represented by the variableF); F is often
BDG, although the programmer can chose another pattern (e.g.,EBDG if a plan should
not be attempted twice). Finally, the last plan keeps the agent pursuing the goal even
in case there is no applicable plan. It is assumed that the selection of plans is based on
the order that the plans appear in the program and all events have equal chance of being
chosen as the event to be handled in a reasoning cycle.

For most applications,BCG-style fanatical commitment is too strong. For example,
if a robot has the goal to be at some location, it is reasonable that it can drop this goal
in case its battery charge is getting very low; in other words, the agent has realised that
it has become impossible to achieve the goal, so it is useless to keep attempting it. This
is very similar to the idea of a persistent goal in the work of Cohen and Levesque: a
persistent goal is a goal that is maintained as long as it is believed not achieved, but still
believed possible [8]. In [22] and [7], the “impossibility” condition is called a “drop
condition”. The drop conditionf (e.g., “low battery charge”) is used in the Single-
Minded Commitment (SMC) pattern to allow the agent to drop a goal if it becomes
impossible:

P
SMCg,f

BCGg,BDG(P)
+f : true ← .dropGoal(g, false).

This pattern extends theBCG pattern adding the drop condition represented by the
literal f in the last plan. If the agent comes to believef , it can drop goalg, signalling
failure (refer to the semantics of the internal action.dropGoal in section 3). This
effectively means that the plan in the intention whereg appeared, which depended on
g to carry on execution, must itself fail (asg is now impossible to achieve). However,
there might be an alternative for that other plan which does not depend ong, so that
plan’s failure handling may take care of such situation.

As we have a failure drop condition for a goal, we can also have a successful drop
condition, e.g., because the motivation to achieve the goal has ceased to exist. Suppose

74

a robot has the goal of going to the fridge because its owner has asked it to fetch a beer
from there; then, if the robot realises that its owner does not want a beer anymore, it
should drop the goal [8]. The belief “my owner wants a beer” is themotivationm for
the goal. The following pattern, called Relativised Commitment Goal (RCG) defines a
goal that is relative to a motivation condition: the goal can be dropped with success if
the agent looses the motivation for it.

P
RCGg,m

BCGg,BDG(P)
- m: true ← .dropGoal(g, true).

Note that, in the particular combination ofRCG and BCG above, if the attempt to
achieveg ever terminates, it will always terminate with success, since the goal will be
dropped only if either the agent believes it has been achieved achieved (byBCG) orm
is removed from belief base.

Of course we can combine the last two patterns above to create a goal which can be
dropped if it has been achieved, has become impossible to achieve, or the motivation
to achieve it no longer exists (representing an open-minded commitment). The Open-
Minded Commitment pattern (OMC) defines this type of goal:

P
OMCg,f,m

BCGg,BDG(P)
+f : true ← .dropGoal(g, false).
- m: true ← .dropGoal(g, true).

For example, a drop condition could be “no beer at location (X,Y)” (denoted below
by ¬ b(X,Y)), and the motivation condition could be “my owner wants a beer” (de-
noted below bywb). Consider the initial plan below with representing the single known
course of action to achieve goall(X,Y) :

+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y).

When the patternOMC l(X,Y),¬b(X,Y),wb is applied to the plan above, we get the fol-
lowing program:

+!l(X,Y): l(X,Y) ← true.
+!l(X,Y): bc(B) & B > 0.2 ← go(X,Y); ?l(X,Y).
+!l(X,Y): true ← !l(X,Y).
-!l(X,Y): true ← !l(X,Y).
+¬b(X,Y): true ← .dropGoal(l(X,Y), false).
-wb: true ← .dropGoal(l(X,Y), true).

Another important type of goal in agent-based systems aremaintenance goals: the
agent needs to ensure that the state of the world will always be such thatg holds. When-
ever the agent realises thatg is no longer in its belief base (i.e., believed to be true), it
attempts to bring aboutg again by having the respective declarative (achievement) goal.
The pattern rule that defines a Maintenance Goal (MG) is as follows:

75

P
MGg,F

g.
- g: true ← ! g.
F(P)

The first line of the pattern states that, initially (when the agent starts running) it will
assume thatg is true. (As soon as the interpreter obtains perception of the environment
for the first time, the agent might already realise that such assumption was wrong.) The
first plan is triggered wheng is removed from the belief base, e.g. becauseg has not
been perceived in the environment in a given reasoning cycle, and thus the maintenance
goalg is no longer achieved. This plan then creates a declarative goal to achieveg. The
type of commitment to achievingg if it happens not to be true is defined byF, which
would normally beBCG given that the goal should not be dropped in any circumstances
unless it is has been achieved again. (Realistically, plans for the agent to attempt pro-
actively to prevent this from even happening would also be required, but the pattern is
useful to make sure the agent will act appropriately in case things go wrong.)

Another useful pattern is a Sequenced Goal Adoption (SGA). This pattern should
be used when various instances of a goal should not be adopted concurrently (e.g., a
robot that needs to clean two different places). To solve this problem, theSGA pattern
adopts the first occurrence of the goal and records the remaining occurrences as pending
goals by adding them as special beliefs. As one such goal occurrence is achieved, if any
other occurrence is pending, it gets activated.

SGAt,c,g
t: not fl() & c ← !fg(g).
t: fl() & c ← +fl(g).
+!fg(g): true ← +fl(g); ! g; -fl(g).
-!fg(g): true ← -fl(g).
-fl(): fl(g) ← !fg(g).

In this pattern,t is the trigger leading to the adoption of a goalg; c is the context for
the goal adoption;fl(g) is the flag to control whether the goalg is already active; and
fg(g) is a procedural goal that guarantees thatfl will be added to the belief base to
record the fact that some occurrence of the goal has already been adopted, then adopts
the goal! g, as well as it guarantees thatfl will be eventually removed whether! g
succeeds or not. The first plan is selected wheng is not being pursued; it simply calls
the fg goal. The second plan is used if some other instance of that goal has already
been adopted. All it does is to remember that this goalg was not immediately adopted
by addingfl(g) to the belief base. The last plan makes sure that whenever a goal
adoption instance is finished (denoted by the removal of afl belief), if there are any
pending goal instances to be adopted, they will be activated through thefg call.

5 Using Patterns inJason

Jasonis an interpreter for an extended version of AgentSpeak(L) and is availableOpen
Sourceunder GNU LGPL athttp://jason.sourceforge.net [4]. It imple-

76

ments the operational semantics of AgentSpeak(L) as given in [6]. It also implements
the plan failure mechanism and the pre-defined internal action7 used in the patterns
described in Section 4. Since these features are enough for programming declarative
goals,Jasonalready supports them. However, it would be clearly not acceptable if the
programmer had to apply the patterns by hand.

To simplify the programming of sophisticated goals by the use of patterns, we ex-
tend the language interpreted byJasonto include pre-processing directives. The syntax
for pattern directives is:

directive ::=
"{" "begin" <pattern-name>"("<parameters>")" "}"

<agent-speak-program>
"{" "end" "}"

Source
Code

Pre-processor
Patterns

AgentSpeak
Code

AgentSpeak Interpreter

Fig. 3.JasonPre-Processing and Patterns.

We have implemented a pre-
processor forJason which also handles
patterns as illustrated in Figure 3. Each
pattern is implemented in a Java class
that receives an AgentSpeak program
and returns another program, trans-
formed as defined by the respective
pattern. This implementation allows us,
and even users, to make new patterns
available in a straightforward manner.
One simply has to create a new Java
class for the new pattern and register this
class with the pre-processor8.

In the remainder of this section,
we will illustrate how theJason pre-
processing directives for the use of pat-
terns can be used to program a clean-
ing robot for the scenario described in [7]
(where the robot was implemented using
Jadex [15, 16]). The first goal of the robot
is to maintain its battery charged: this is

clearly a maintenance goal (MG). The agent should pursue this goal when its battery
level goes below 20% and should remain pursuing it until the battery is completely
charged. In the program below, based on the perception of the battery level, the belief
battery charged , which indicates that the goal is satisfied, is either removed or
added to the belief base, signalling whether the corresponding achievement goal must
be activated or not.

7 The internal action used here is not yet available in the latest public release ofJason, but will
be available in the next release.

8 Note that this too will only be available in the next release ofJason

77

+battery level(B): B < 0.2 ← -battery charged.
+battery level(B): B = 1.0 ← +battery charged.

{ begin mg("battery charged", bcg("battery charged")) }
+!battery charged : not l(power supply)

go(power supply).
+!battery charged: l(power supply) ← plug in.

{ end }
The first plan of the pattern for thebattery charged goal moves the agent

to the place where there is a power supply, if it is not already there (according to its
l(power supply) belief). Otherwise, the second plan will plug the robot to the
power supply. Theplug in action will charge the battery and thus change the robot’s
state that is perceived back throughbattery level(B) percepts (which generate
+battery level(B) events).

The second goal the robot might adopt is to patrol the museum at night. This goal is
therefore activated when the agent perceives sunset (represented by the event+night).
Whenever activated, the goal can be dropped only if the agent perceives dawn (repre-
sented by the event-night). The following program definespatrol as this kind of
goal using aRCG pattern withnight as the motivation:

+night: true ← !patrol.

{ begin rcg("patrol", "night") }
+!patrol: battery charged ← wander.

{ end }
The agent will never have the beliefpatrol in its belief base, since no plan or
perception of the environment will add this particular belief. The goal is, in some
sense, deliberately unachievable, while RCG maintains the agent committed to the goal
nevertheless. However, it is considered as achieved (finished with success) when the
motivation condition is removed from the belief base. Note that the context for the
!patrol plan is that the battery is charged, therefore while the maintenance goal
battery charged is active, the robot does not wander, but it resumes wandering
as soon the battery becomes charged again. We are thus using this belief to create an
interferencebetween goals (i.e., charging the battery precludes patrolling).

The last goal the robot might adopt is to clean the museum during the day whenever
it perceives waste around. Since the robot can perceive various different pieces of waste
around, it would accordingly generate several concurrent instances of this goal. How-
ever these goals are mutually exclusive: they cannot be achieved simultaneously; trying
to go in two different directions must be avoided, and expressing this at the declarative
level avoids too much work on implementing application-specific intention selection
functions (in the context of AgentSpeak). It is indeed another kind of interference be-
tween different goals. TheSGA pattern is used in the program below to ensure that
only oneclean goal instance is being pursued at a moment in time. The event that
triggers this goal is+waste(X,Y) (some waste being perceived at location X,Y), and
the context isnot night :

78

{ begin sga("+waste(X,Y)", "not night", "clean(X,Y)") }
{ end }

{ begin omc("clean(X,Y)", "night", "waste(X,Y)") }
+!clean(X,Y): l(X,Y) ← pick; go(bin); drop.
+!clean(X,Y): not l(X,Y) ← go(X,Y).

{ end }
+battery charged: true ← .suspend(clean(X,Y)).
-battery charged: true ← .resume(clean(X,Y)).

In the program above, an open-minded commitment pattern (OMC) is used to cre-
ate theclean(X,Y) goal with night as the failure condition (at sunset, the goal
should be abandoned with failure) andwaste(X,Y) as the motivation (if the agent
came to believe that there is no longer waste at that location, the goal could be dropped
with success). The last two plans are used to suspend and resume the goal when the
battery charge goal is active. Of course we could addbattery charge in the
context of the plans (as we did in thepatrol goal); however, using the.suspend
internal action is more efficient because the goal becomes actually suspended (until
resumed with the respective.resume internal action) rather than being continuously
attempted without any applicable plans.

6 Conclusions

In this paper we have shown that sophisticated types of goals discussed in the agents
literature can be implemented in the AgentSpeak language with only the extensions
(and extensibility mechanisms) available inJason. In fact, this is done by combining
AgentSpeak plans, forming certain patterns, for each type of goal and commitment to-
wards goals that agents may have. Therefore, our approach is to take advantage of the
simplicity of the AgentSpeak language, using only its well-known support for proce-
dural goals plus the idea of “plan patterns” to support the use of declarative goals with
complex temporal structures in AgentSpeak programming.

Besides the use of internal actions such as.dropGoal (that are available inJason
for general use, independently of this proposal for declarative goals), our proposal does
not require either: (i) syntactical or semantical changes in the language (as done, for
example, in [22, 7]); nor (ii) the definition of a goal base (cf. [19]) which is also usual
in other approaches. Van Riemsdijket at. [20] also pointed out that declarative goals
can be built based on the procedural goals available in 3APL, by simply checking if
the corresponding belief is true at the end of the plan execution. What they proposed
in that paper corresponds to ourBDG pattern. In this work, we further define various
other types of declarative goals, represented them aspatternsof AgentSpeak programs,
and presented an implementation inJason(using a pre-processor) that facilitates this
approach for declarative goals. Another advantage of our approach is that, as complex
types of goals are mapped to plain AgentSpeak using patterns, programmers can change
the patterns to fit their own requirements, or indeed create new patterns easily.

79

In future work we intend to formalise our approach based on the existing operational
semantics and to verify some properties of the programs generated by the patterns,
including a comparison with approaches that use a goal base to have declarative goals.
An example of an issues that might be of particular interest in such comparison is how
the use of plan patters will affect other aspects of agent-based development such as
debugging. In the future, we also plan to support conjunctive goals such asp∧ q (where
bothp andq should be satisfied at the same time, as done in [19]), possibly through the
use of plan patterns as well. Furthermore, we plan to investigate other patterns that may
useful in the practical development of large-scale multi-agent systems.

Acknowledgements

Many thanks to A.C. Rocha Costa for discussions on maintenance goals in AgentSpeak.
Anonymous reviewers for this paper have made detailed comments which helped im-
prove the paper. Rafael Bordini gratefully acknowledges the support of The Nuffield
Foundation (grant number NAL/01065/G).

References

1. D. Ancona and V. Mascardi. Coo-BDI: Extending the BDI model with cooperativity. In
J. Leite, A. Omicini, L. Sterling, and P. Torroni, editors,Declarative Agent Languages and
Technologies, Proc. of the First Int. Workshop (DALT-03), held with AAMAS-03, 15 July,
2003, Melbourne, Australia, number 2990 in LNAI, pages 109–134, Berlin, 2004. Springer-
Verlag.

2. D. Ancona, V. Mascardi, J. F. Ḧubner, and R. H. Bordini. Coo-AgentSpeak: Cooperation
in AgentSpeak through plan exchange. In N. R. Jennings, C. Sierra, L. Sonenberg, and
M. Tambe, editors,Proc. of the Third Int. Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS-2004), New York, NY, 19–23 July, pages 698–705, New York, NY,
2004. ACM Press.

3. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.Multi-Agent Pro-
gramming: Languages, Platforms, and Applications. Number 15 in Multiagent Systems,
Artificial Societies, and Simulated Organizations. Springer, 2005.

4. R. H. Bordini, J. F. Ḧubner, et al.Jason: A Java-based AgentSpeak interpreter used with
saci for multi-agent distribution over the net, manual, release version 0.7 edition, Aug. 2005.
http://jason.sourceforge.net/ .

5. R. H. Bordini, J. F. Ḧubner, and R. Vieira.Jasonand the Golden Fleece of agent-oriented
programming. In Bordini et al. [3], chapter 1.

6. R. H. Bordini andÁ. F. Moreira. Proving BDI properties of agent-oriented programming
languages: The asymmetry thesis principles in AgentSpeak(L).Annals of Mathematics and
Artificial Intelligence, 42(1–3):197–226, Sept. 2004. Special Issue on Computational Logic
in Multi-Agent Systems.

7. L. Braubach, A. Pokahr, W. Lamersdorf, and D. Moldt. Goal representation for BDI agent
systems. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors,Second
Int. Workshop on Programming Multiagent Systems: Languages and Tools (ProMAS 2004),
pages 9–20, 2004.

8. P. R. Cohen and H. J. Levesque. Intention is choice with commitment.Artificial Intelligence,
42(3):213–261, 1990.

80

9. M. Dastani, B. van Riemsdijk, F. Dignum, and J. Meyer. A programming language for
cognitive agents: Goal directed 3APL. InProc. of the First Workshop on Programming
Multiagent Systems: Languages, frameworks, techniques, and tools (ProMAS03), volume
3067 ofLNAI, pages 111–130, Berlin, 2004. Springer.

10. M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer. Programming multi-agent systems in
3APL. In Bordini et al. [3], chapter 2.

11. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS. In
M. P. Singh, A. S. Rao, and M. Wooldridge, editors,Intelligent Agents IV—Proceedings of the
Fourth International Workshop on Agent Theories, Architectures, and Languages (ATAL-97),
Providence, RI, 24–26 July, 1997, number 1365 in LNAI, pages 155–176. Springer-Verlag,
Berlin, 1998.

12. M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A formal computational model.
Journal of Logic and Computation, 8(3):1–27, 1998.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

14. N. Howden, R. R̈onnquist, A. Hodgson, and A. Lucas. JACK intelligent agentsTM — sum-
mary of an agent infrastructure. InProceedings of Second International Workshop on Infras-
tructure for Agents, MAS, and Scalable MAS, held with the Fifth International Conference
on Autonomous Agents (Agents 2001), 28 May – 1 June, Montreal, Canada, 2001.

15. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In Bordini
et al. [3], chapter 6.

16. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In Bordini
et al. [3], chapter 6, pages 149–174.

17. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
W. Van de Velde and J. Perram, editors,Proc. of the Seventh Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25 January, Eindhoven, The
Netherlands, number 1038 in LNAI, pages 42–55, London, 1996. Springer-Verlag.

18. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
J. Allen, R. Fikes, and E. Sandewall, editors,Proceedings of the 2nd International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’91), pages 473–484.
Morgan Kaufmann publishers Inc.: San Mateo, CA, USA, 1991.

19. B. van Riemsdijk, M. Dastani, and J.-J. C. Meyer. Semantics of declarative goals in
agent programming. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and
M. Wooldridge, editors,Proceedings of the 4rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2005), pages 133–140. ACM, 2005.

20. M. B. van Riemsdijk, M. Dastani, and J.-J. C. Meyer. Subgoal semantics in agent program-
ming. In C. Bento, A. Cardoso, and G. Dias, editors,Proceedings of the 12th Portuguese
Conference on Artificial Intelligence, EPIA 2005, Covilhã, Portugal, December 5-8, 2005,
volume 3808 ofLNCS, pages 548–559, 2005.

21. M. Winikoff. JACKTM intelligent agents: An industrial strength platform. In Bordini et al.
[3], chapter 7, pages 175–193.

22. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and procedural goals
in intelligent agent systems. InProceedings of the Eighth International Conference on Prin-
ciples of Knowledge Representation and Reasoning, 2002.

81

JADL - an Agent Description Language for
Smart Agents

Thomas Konnerth, Benjamin Hirsch, and Sahin Albayrak

DAI Labor
Technische Universität Berlin

{Thomas.Konnerth,Benjamin.Hirsch,Sahin.Albayrak}@dai-labor.de

Abstract. In this paper, we describe the declarative agent program-
ming language Jadl (JIAC Agent Description Language). Based on three-
valued logic, it incorporates ontologies, FIPA-based speech acts, a (pro-
cedural) scripting part for (complex) actions, and allows to define proto-
cols and service based communication. Rather than relying on a library
of plans, the framework implementing Jadl allows agents to plan from
first principles. We also describe the framework and some applications
that have been implemented.

1 Introduction

The growth of interconnected devices, as well as the digitisation of content, has
led to ever more complex applications running on ever more diverse devices.
In recent years, the concept of service has become an important tool in coping
with this development. Broadly speaking, services allow loosely coupled software
entities to interact. Rather than providing a fixed and rigid set of interfaces,
services provide means to adapt software to the ever faster changing environment
of businesses. However, while the growing number of devices and networks poses
a challenge to software engineering, it also opens the door to new application
areas and offers possibilities to provide services on a new level of integration,
context awareness, and interaction with the user.

In order to leverage the current and developing network and device technolo-
gies, a programming paradigm is needed that embraces distributed computing,
open and dynamic environments, and autonomous behaviour.

Agent technology is such a paradigm. While there are many different areas
and theories within the agent community, most work to make true the idea of
an open, distributed, dynamic, and intelligent framework.

Without wanting to go into all the diverse subjects that research into agents
encompasses, we want to point out some of the more prominent concepts and
ideas here. On the level of single agents, BDI [1] has arguably been one of the
most influential ideas. By assigning high level mentalistic notions to agents a new
level of abstraction has been reached which allows to program agents in terms
of goals rather than means. Agents contain not only functionality, but also the
ability to plan (or alternatively a plan library) in order to achieve set goals. On

82

the other hand, reactive behaviour is often desirable within agents, and should
be supported in some way.

Research into interaction between agents is another important field. Here,
agent communication languages attach semantic information about the “state
of mind” of the sending agent [2]. Also, in order to enable interaction between
agents, they need to understand each other. Ontologies allow agents to use a
shared vocabulary, and to de-couple syntax and interpretation.

Agent-based technologies provide one possible and much sought-after ap-
proach to containing the complexity of today’s soft- and hardware environment.
However, while agents have been the subject of research for more than a decade,
there are hardly any applications in the industry. There are differing views as to
the reason for the slow uptake. Some blame a lack of “killer applications”, or the
general disconnect between research community and industry players. Others
say that there is no problem at all, because industry uptake only happens at a
certain maturity level has been reached [3]. Another reason that agent technolo-
gies have not been so successful is the lack of dedicated programming languages
that allow the programmer to map agent concepts directly onto language con-
structs, and frameworks that cater for the needs of enterprise applications, such
as security and accounting.

In this paper, we present the agent programming language Jadl (JIAC Agent
Description Language). The thrust of the paper is to give a rather broad overview
over the language — a planned series of papers will go into the different areas
and cover them in greater detail.

The structure of this paper is as follows. After a broad overview over the
different elements of Jadl (Section 2), we will describe its different features in
some detail. In particular, we highlight knowledge representation in Section 3,
followed by Section 4 with some words about programming the agents using
reactive and planning elements. Section 5 finalises this part with a discussion
on high-level communication. After introducing the framework that implements
Jadl in Section 6, we proceed by presenting some of the projects that have
been implemented using the framework (Section 7), and wrap up with some
conclusions in Section 8.

2 Jadl Overview

Before we delve into different aspects of the language, it is important to give
a broad overview over the language, in order to allow the reader to place the
different elements of the language within their respective context.

Jadl is an agent programming language developed during the last few years
at the DAI Laboratory of the Technische Universität Berlin. It is the core of
an extensive agent framework called JIAC, and has originally been proposed by
Sesseler [4]. As JIAC has been developed in cooperation with the telecommunica-
tions industry, it has until now not been available to the general public (though
this might change soon, so watch this space!). Its stated goal is to support the

83

creation of complex service-based applications. In Sections 6 and 7 we describe
the framework and some exemplary implementations based on JIAC.

Jadl is based on three-valued predicate logic [5], thereby providing an open
world semantics. It comprises four main elements: plan elements, rules, ontolo-
gies, and services.

While the first three elements are perhaps not too surprising, we should say
a word or two about the last part, services. While we go into details in Section 5,
we note here that agents communicate via services. From the perspective of the
agent execution engine, a service call is handled the same way internal (complex)
actions are executed. This is possible as services have the same structure as
actions, having pre- and post conditions, as well as a body that contains the
actual code to be executed. Reducing (or extending) communication to only
consist of service calls allows us to incorporate advanced features like security
and accounting into our framework. Also, programming communication becomes
easier as all messages are handled in a clearly defined frame of reference.

Agents consist of a set of ontologies, rules, plan elements, and initial goal
states, as well as a set of so-called AgentBeans (which are Java classes im-
plementing certain interfaces). The state of the world is represented within a
so-called fact base which contains instantiations of categories (which are defined
in ontologies). AgentBeans contain methods which can be called directly from
within Jadl, allowing the agent to interact with the real world, via user interfaces,
database access, robot control, and more.

In the following sections, we will detail some different areas of Jadl, namely
knowledge representation, agent behaviour, and communications.

3 Knowledge Representation

The language Jadl was designed to specifically meet the needs of open and
dynamic agent systems. In a dynamic system where agents and services may
come and go any time, the validity period of local information is quite short.
Therefore, any system that allows and supports dynamic behaviour needs to
address the issue of synchronisation and sharing of information. One answer to
this is addressed by research in the area of transaction management (e.g. [6]).
Our approach, however is to incorporate the idea of uncertainty about bits of
information into our knowledge representation and thus allow the programmer to
actively deal with outdated, incomplete or wrong data. Even leaving aside for a
moment that there are unsolved issues when it comes to transaction management
in multi-agent systems, we felt there are many cases when a real transaction-
management would have been too much and it is quite acceptable and probably
even more effective to just identify the bits of information that are inconsistent
and afterwards update those bits.

We realised the concept of uncertainty by using a situation calculus that
features a three valued logic. The use of logic allows us to use powerful and
well known AI-techniques within a single agent. The third truth value is added
for predicates that cannot be evaluated, with the information available to a

84

particular agent. Thus, a predicate can be explicitly evaluated as unknown. This
is an integral part of the language, and the programmer is forced to handle
uncertainty when developing a new agent. Consequently, JIAC allows to handle
incomplete or wrong information explicitly.

Jadl allows to define knowledge bases which are the basis of most of the rest
of the language. Every object that the language refers to needs to be defined in
an ontology. Jadl implements strong typing, i.e. contrary to for example Prolog,
variables range over categories, rather than the full universe of discourse.

Categories are represented in a tree-like structure. Each node represents a cat-
egory, with attached a set of (typed) attributes. Categories “inherit” attributes
of ancestors.

Categories are specified as follows:

CatDecl = (cat CatName (ext CatName+) AttributeDecl*), where
AttributeDecl = (AttName Type Keyword*)

Keywords encode meta-information about the attributes.
To note here is that we allow multiple inheritance. Categories inherit all

attributes of all ancestors. As attribute names are silently expanded to include
the category structure, naming conflicts are avoided.

In addition to categories, Jadl allows to define functions and comparisons
(which essentially are functions with a boolean, or rather 3-valued return type).
The interpretation of functions is given by operational semantics. In practise,
functions are encoded in Java.

While Jadl uses its own language to describe ontologies, we have developed a
OWL-light to Jadl translator which allows JIAC agents to use published OWL-
based ontologies.

Complex actions, or plan elements, describe the functional abilities of the
agent. They in turn might call Java-methods, or use the Jadl scripting language.
There are different types of plan elements — (internal) actions, and protocols
and service invocations. All of them though have the same global structure. They
consist of three main elements (in addition to the action name):

(act ActName pre PreCond eff Effect Body)

Pre-condition and Effect are described using logical formulae, consisting of ele-
ments defined in associated ontologies. It should be noted here that Jadl does not
always allow the full power of first order formulae. For example, pre-conditions
and effects can only consist of conjuncts. Also, formulae have to be written in
disjunctive normal form. The body of an action can be either a script, a service,
or an inference. Once the exectuion of this body is finished, the results are writ-
ten to the variables, and afterwards the effect-formula is evaluated with these
results to determine whether the action was successful. This way JIAC ensures
that the actual result of an action does match the specified effect. Furthermore,
protocols usually inherit the effect of their associated service. They may however
have their own precondition, as there may be multiple protocols for a service -
not all of which have to be applicable at a certain state.

85

4 Agent Behaviour

4.1 Goals and Action selection

As Jadl is meant to be interpreted in a BDI-like architecture, it includes the
concept of achievement goals. These goals are implemented as simple formulae
which an agent tries to fulfill once the goal is activated.

Goal = (goal Condition)

Once an agent has a goal, it tries to find an appropriate action that fulfills
that goal. Such an action may either be a simple script or a service that is
provided by another agent. For this selection, there is no difference between
actions that can be executed locally and actions that are in fact services. The
actual selection is done by comparing the formula stated in the goal (including
the respective variable bindings) with the effects of all actions known to the
agent. In this matching process, the literals of the formulae are compared, and
if compatible, the values from the goal variables are bound to the corresponding
variables of the action. After the action is completed, the results are writen to
the original variables of the goal and the goal formula is evaluated to ensure that
the goal is actually reached. If that is not the case, the agent is replanning its
actions, and may try to reach the goal with other actions. One fact that should
be mentioned here is that this matching of course considers the types of the
variables. As these types may also include categories that come from ontologies,
the matching process does also consider the semantic information that is present
in those ontologies, e.g. inheritance.

4.2 Reactive Behaviour

Jadl allows to define rules. These rules are a means to realize the reactive be-
haviour of an angent. More specifically, a rule can give the agent a goal, whenever
a certain event occurs. Rules are implemented in a rather straightforward fash-
ion, consisting of a condition and two actions, one of which is executed when the
condition becomes true, and the other when the condition becomes false.

Rule = (rule Condition Action Action)

Specifically, whenever an object is either added, removed, or changed in the
fact base, the conditions that match the object type of the fact in question are
tested against it, and execute the true or false action-part respectively. If the
test yields unknown, no action is taken. The restriction of applicable rules to
the matching object types is purely for efficiency purposes — if tested, rules
whose condition does not match the fact will always yield unknown. Actions can
themselves be either a new goal or a call to an AgentBean. In the former case,
a new planning task for the agent is effectively created.

86

4.3 Planning

In the literature, there are numerous agent programming languages available. We
can roughly classify them as logic based (such as AgentSpeak(L) [7, 8], 3APL [9,
10], Golog [11, 12], and MetateM [13, 14]) and Java based (such as Jack [15], Jade
[16], Cougaar, [17] and MadKit [18]). The languages are mostly in the prototype
stage, and provide high level concepts that implement some notion of BDI [19].

Generally, the concept of having beliefs, desires, and intentions, is “trans-
lated” into belief bases, goals, and a plan library. In particular, possibly with
the exception of Golog and Cougaar, which allows for planning from first prin-
ciples, all those languages assume a library of fully developed plans (modulo
some parameters). A general execution cycle therefore maps internal and ex-
ternal states via some matching function to one or more plans, which are then
(partially) executed.

While this approach certainly has its merits, in particular when it comes to
execution speed, it is by no means clear that planning from first principles is
not a viable alternative, certainly if approached with caution. The language we
are presenting here has been used to implement numerous complex applications,
showing that planning has its place and its uses in agent programming.

(Complex) Actions Before we detail the execution algorithm, we need to
introduce the plan elements which are combined to plans which then are executed
by the agent.

Plan elements can take a number of different forms. These include actions,
as well as protocols, and services, which we will detail in the next subsection.

Actions, rather than being atomic elements, can be scripts. Jadl script pro-
vides keywords for sequential and parallel execution, conditionals, calls to Agent-
Beans, and even the creation of new goals, which then lead to new planning ac-
tions. It should be clear to the reader that extensive use of the scripting language,
and especially the ability to trigger new plans, should be used with caution.

For a discussion on protocols and services, we refer the reader to Section 5.
While it is out of the scope of this paper to describe the action language

in detail, we want to give the reader an impression in Figure 1. As Jadl is
logic based, variables need to be bound and unbound to actual objects that are
stored in the fact base. Also, formulae can be evaluated in order to ascertain
their values. Sequential and parallel execution, as well as branching instructions
can be used. Note further the keywords iseq and seq in the example. While
the latter reflects a simple sequential execution of following elements, the former
iterates through the given list (in this case a list of e-mail objects) and executes
the sequence for each element. The branch statement executes the body if the
test condition evaluates to true.

Plan Generation and Execution While Jadl can be used to provide a library
of fully developed plans, its execution environment allows for planning from first
principles. It employs the UCPOP algorithm [20], which generates a set of partial

87

(seq

(unbind ?coredata)

(unbind ?emailList)

(unbind ?email)

(eval (att coredata ?c ?coredata))

(eval (att email ?coredata ?emailList))

(bind ?haveIt false)

(iseq ?emailList (var ?emailObj:EMailAddress)

(seq

(branch (isTrue (var ?haveIt))

cont

(par

(eval (att email ?emailObj ?email))

(bind ?haveIt true)

)

)

)

)

(bind ?e ?email)

)

Fig. 1. Code Snippet of a complex script

plans based on a goal state and a set of actions. The partial plans are then
“flattened” by a scheduler to create a full plan.

In order to create partial plans, the system first tries to reach the goal state
by using local plan elements only, as this is considered the fastest and cheapest
way of reaching a goal. If no plan can be found, the directory facilitator (DF) of
the agent platform is contacted, and all available services are downloaded to the
planning agent. Then, a second planning cycle is run, this time with the services
registered at the DF included in the search. To limit the search space as far as
possible, the algorithm ever only considers plan elements (and therefore services)
that are relevant. Here, relevancy is determined by using ontology information
on pre-conditions. So, a plan elements written for cars will be considered when
looking for a BMW, but plan elements dealing with houses will not be used to
expand the plan.

4.4 Scheduling and Failure Handling

In order to arrive at a full plan, the partial plans need to be ordered in a con-
sistent fashion. As scheduling can be computationally expensive, the algorithm
does little optimisation, and mainly ensures that the causal links (i.e. the order
of actions that depend on each other) are met. Actions that are executed in
parallel are not checked for consistency.

88

The actual execution has fall-back mechanisms on several levels. As can be
seen in Figure 2, the execution of a goal (which can be either a single goal, or
one of a number of steps that have been computed by the planner) is approached
as follows. First, the locally known plan elements are matched against the goal.
If one is found, and its pre-conditions are met, it is executed. If the precondi-
tions are not yet fulfilled, the planner tries to find further planelements, that
may meet the preconditions recursively. If either the goal or some preconditions
cannot be met with the locally known planelements, a request is sent to the di-
rectory facilitator (DF), and the goal is again matched against the received set of
services. As mentioned before, elements that are atomic actions for the planner
(and execution model) can be complex actions, and even service calls. We will
describe service calls in details later, and want to mention only that in the case
of service calls, unsuccessful service invocations are also repeated with different
service providers before re-initiating the process of finding a new action. Also
note that the re-initialisation only occurs once, as otherwise a loop could occur.

Fig. 2. Fulfilling a goal

89

5 High Level Communications

Protocols and services are used for communication purposes. In order to allow
for an open system, agents solely communicate using service calls. Actual mes-
sages follow the FIPA ACL standard [21]. Rather than either exposing its whole
functionality, or alternatively having an implicit representation of functionalities
that might or might not be used by other agents, JIAC forces the programmer to
define explicitly the functionalities that the agent exposes to the outside. This is
done by explicitly configuring the list of services that are exposed to other agents.
Each service has attached a number of protocols that can be executed during the
service invocation, allowing for a conscious design of protocols. Figure 3 shows
a small example which provides a time-synch service.

Figure 3 details a service definition. The example service is defined as an
action (act timeSyncService) which has four elements. Firstly, a variable ?t
of type TimeActualization is declared. The type is defined in the TimeSync
ontology. Second, we have the pre-conditions which must hold for the service
to be executed. In our example, this is set to true, but can be any conjunc-
tive formula (and can include unkown attributes as well. Thirdly, the effect
of executing the service is described. The example service sets the attribute
locallySynchronized of the object assigned to ?t to true. Finally the actual
service description starts.

A service consists of a service object, which is defined by a name, a set of
protocols, and some ontologies. We should note here that the set of protocols
includes protocols for negotiation as well as service provision. Figure 3 for exam-
ple defines two protocols. The first describes the actual service protocol which
implements the body of the service, while the contractNet protocol has the flag
multi true which defines it as a one-to-many negotiation protocol that is used
for provider-selection.

The actual linking of protocols to services happens during runtime. Whenever
an agent decides to execute a service it looks up the corresponding protocols
(which are identified by their names) an tries to negotiate the protocol with
the service-partner. If they can find a common protocol, both protocol-sides are
intiated, otherwise the service fails.

Channelling communication through services makes security much easier to
implement. This is because agents can only interact through the clearly defined
service invocation, rather than any sort of interaction. Secondly, services can
define additional meta-data such as costs, AAA, or QoS in a clear and consistent
manner, allowing agents (and their owners) to have clear policies concerning the
provision of functionalities to third party contacts. Again, allowing for simple
message exchanges makes accounting very complex.

The last two points, security and accounting, are important aspects of any
industrial application of agent technology. Only if we can guarantee a certain
level of security, and only if we can ensure that services offered can actually be
accounted according to clear and definable policies can we ever hope to convince
industry players to consider agent technology as a viable alternative to today’s
technologies.

90

(act timeSyncService

(var ?t:TimeActualization)

(pre true)

(eff

(att locallySynchronized ?t true)

)

(service

(obj Service:DAI_1

(name "timeSyncService")

(protocols

[Protocol:

(obj Protocol

(name "timeSyncServiceProtocol")

(provider true)

)

(obj Protocol

(name "contractNet")

(multi true)

)

]

)

(ontologies

{string:

"de.dailab.jiac.ontology.Service:DAI_1"

"de.dailab.scb.ontology.TimeSync:DAI_1"

}

)

)

)

)

Fig. 3. Example of a service definition in Jadl

91

Meta-Protocol

As mentioned before, service calls are wrapped by a meta-protocol in JIAC (see
Figure 4), which deals with session handling, security, accounting, provider and
transport selection, and error handling, leaving the programmer to concentrate
on the actual functionality and protocol interaction.

Fig. 4. Graphical representation of the meta-protocol

In order to trigger a service invocation, the agent must have failed to satisfy a
goal which using just actions that are available by the agent itself. This includes
services, that the agents provides by himself. If such a situation occurs, the agent
sends a request to the DF, which answers with a list of services that could fulfil
the goal. The agent then chooses one service, and notifies the DF, which again
sends back a list, but this time of agents that are providing the requested service.

As Figure 4 shows, a service invocation consists of three distinct phases.
During the initiation phase, the user and provider(s) agree on a protocol to use.
This includes security negotiations, as well as accounting and QoS requirements.

Once this is done, a (optional) negotiation protocol is triggered, during which
the actual provider agent is chosen. Only then, the actual service is invoked.

To note here is that while a service provision is always a one-to-one com-
munication, the actual service selection allows for one-to-many communication.
If the negotiation protocol is empty, the first service provider is chosen. The
meta protocol catches any errors that might occur during service provision (i.e.
time outs, or cancel- and not-understood messages), and reacts accordingly. For
example, in case of a failed service provisioning, it returns to the selection phase

92

and chooses another agent that can provide the service. Only once no more
agents are available does the service provisioning fail (from the point of view of
the agent). In that case, a re-plan action is triggered.

For a more detailed description of the meta-protocol we refer the reader to
[22].

6 JIAC

In the preceding sections we have described the Jadl language. Now, we describe
the JIAC framework which implements Jadl.

JIAC consists of a (java-based) run-time environment, a methodology, tools
that support the creation of agents, as well as numerous extensions, such as
web-service-connectivity, accounting and management components, device in-
dependent interaction, an owl-to-Jadl translator, a OSGI-connector and more.
An agent consists of a set of application specific java-classes, rules, plan ele-
ments, and ontologies. Strong migration is supported, i.e. agents can migrate
from one platform to another during run-time. JIAC’s component model allows
to exchange, add, and remove components during run time. Standard compo-
nents (which themselves can be exchanged as well) include a fact-base compo-
nent, execution-component, rule-component, and more. A JIAC agent is defined
within a property file which describes all elements that the agent consists of.

JIAC is the only agent-framework that has been awarded a common criteria
EAL3 certificate, an internationally accepted and renowned security certificate.

Conceptually, an agent system consists of a number of platforms, each of
which has its own directory facilitator and agent management system. The DF
registers the agents on the platform, as well as the services that they offer. We
have investigated a number of different techniques to connect different DF’s,
such as P2P and hierarchical approaches. On each platform, a number of agent
“lives” at each moment. Agents themselves implement one or more agent roles.
Each role consists of the components that are necessary to implement it. Usually,
this will include plan elements, ontologies, rules, and AgentBeans. Here, Jadl and
the elements that can be described using it come into play.

Currently we finalise a new version of the tool-suite which is based on Eclipse.
Programming in Jadl, as well as creating and running JIAC agents is supported
on different levels. Additional to text-based support elements such as syntax
highlighting and code folding, most Jadl elements can be displayed and edited in
a graphical interface, removing the sometimes awkward syntax as far as possible
from the user, and allowing her to focus on functionality rather than syntax
debugging.

In addition to the tools that support Jadl itself, we have created a num-
ber of additional tools. A security tool provides methods to manage certificates,
and ensure secure communication between agents. An accounting tool provides
the user with means to create and manage user databases and related elements
such as tariff information. The Agent configurator allows to display and mod-
ify agent’s components during run-time, and to change goals, plan elements,

93

and so forth. We have also incorporated advanced testing and logging features,
to facilitate debugging and the general quality of the produced code. Without
wanting to go into details, we have extended the Unit-test approach to agents,
thereby providing a test-environment where interactions of agents can be tested
automatically, for example in conjunction with a cruise-control server.

While tools help to hide the inherent complexity, they can only partially
support the programmer during the design phase of a project. Recognising this,
JIAC provides users with a methodology which is rooted in the concepts of
Jadl, and of JIAC. Here, we focus not only on design but also on practical
needs of project management. The JIAC methodology describes the interaction
between customer, designer, and project manager, and uses the agile program-
ming approach [23]. Continuous integration is another important element of the
methodology, and is supported by above described testing environment.

Both, the methodology and the tool-suite support re-use of components. On
the tool side, we are currently implementing a repository which can can be
accessed via the network, and which holds functionality that can be included in
projects. On the methodology side, special care is taken to enable re-use during
analysis, design, and implementation. It also encourages programmers to refine
new functionality to a re-usable form towards the end of the project, facilitating
further the re-use of components.

Most importantly, the service concept supports re-use of functionality by
design. Each created service can be invoked by other agents, thereby offering the
most natural re-use of functionality.

Another extension to JIAC is the IMASU (Intelligent Multi-Access Service
Unit). With it, interfaces between agents and (human) users can be described
abstractly. The unit creates an appropriate user interface for a number of devices,
such as web-browsers (HTML), PDA’s and mobile phones (WML), and telephone
(VoiceXML) [24].

7 Implemented Applications

To give the reader an idea about the power of the framework, we present some
of the projects that have been implemented.

BerlinTainment This project is aimed at simplifying the provision of informa-
tion over the internet. In order to provide cultural and leisure related function-
ality to visitors of Berlin, a personalised service based on the JIAC framework
has been developed. Agents provide and integrate information from restaurants,
route planners, public transport information, cinemas, theatres, and more. Using
BerlinTainment, users can plan their day out, make reservations, be guided to
the various locations, and be informed about touristic sites from one place, and
with various devices [25].

PIA (Personal Information Agent) concerns the collection, dissemination, and
provision of personalised content. It employs agents on three layers. Firstly,

94

extractor agents monitor sources of information and extract content provided in
different formats, such as HTML pages, PDF, and Microsoft Word documents.
Secondly, filter-agents analyse the content based on preferences of the users.
Thirdly, presentation agents control the presentation and output of the filtered
data, again based on the users preference and device. PIA is used internally in
our institute to collect information concerning research projects and grants, as
well as providing personalised news-letters [26].

8 Conclusion

In this paper we have presented the agent programming language Jadl. Based on
three-valued logic, it provides constructs to describe ontologies, protocols and
services, and complex actions. JIAC agents use a planner to construct plans
from those actions. There, internal actions and service invocations are handled
transparently to the planning component.

The Jadl language and its framework, JIAC, provide arguably all elements
that are needed for a successful agent deployment. JIAC provides tools, a method-
ology, and a host of extensions that provide extensions like webservice-interaction,
OSGI-connectors, accounting, security, and network components that support
the creation of complex services in commercial settings.

We do not claim to have created a language that the best choice for creating
anything related with agents. However, we have tried to show that Jadl covers a
host of issues that we think should be covered by agent programming languages.
Using JIAC, several large implementations have been done, and shown to us the
merits of the language.

9 Acknowledgements

Jadl and JIAC are based on work done by Sesseler [4] in the course of his doctoral
thesis. JIAC has been developed with the kind support of Deutsche Telekom.

References

1. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In
Allen, J., Fikes, R., Sandewall, E., eds.: Principles of Knowledge Representation
and Reasoning: Proc. of the Second International Conference (KR’91). Morgan
Kaufmann, San Mateo, CA (1991) 473–484

2. Labrou, Y., Finin, T., Peng, Y.: The current landscape of agent communication
languages. IEEE Intelligent Systems 14 (1999) 45–52

3. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent based computing - agent
technology roadmap. Roadmap, AgentLink III (2005) Draft Version of July 2005.

4. Sesseler, R.: Eine modulare Architektur für dienstbasierte Interaktion zwischen
Agenten. Doctocal thesis, Technische Universität Berlin (2002)

5. Kleene, S.C.: Introduction to Metamathematics. Wolters-Noordhoff Publishing
and North-Holland Publishing Company (1971) Written in 1953.

95

6. Kotagiri, R., Bailey, J., Busetta, P.: Transaction oriented computational models
for multi-agent systems. In: Proc. 13th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2001), IEEE Press (2001) 11–17

7. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In van Hoe, R., ed.: Agents Breaking Away, 7th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, MAAMAW’96,. Volume
1038 of Lecture Notes in Computer Science., Eindhoven, The Netherlands, Springer
Verlag (1996) 42–55

8. Bordini, R.H., Hübner, J.F., et al.: Jason: a Java Based AgentSpeak Interpreter
Used with SACI for Multi-Agent Distribution over the Net. 5th edn. (2004)

9. Dastani, M.: 3APL Platform. Utrecht University. (2004)

10. Hindriks, K.V., Boer, F.S.D., der Hoek, W.V., Meyer, J.J.: Agent programming
in 3apl. Autonomous Agents and Multi-Agent Systems 2 (1999) 357–401

11. Giacomo, G., Lesperance, Y., Levesque, H.: Congolog, a concurrent programming
language based on the situation calculus: Foundations. Technical report, University
of Toronto (1999)

12. Giacomo, G., Lesperance, Y., Levesque, H.: Congolog, a concurrent programming
language based on the situation calculus: Language and implementation. Technical
report, University of Toronto (1998)

13. Finger, M., Fisher, M., Owens, R.: Metatem at work: Modelling reactive systems
using executable temporal logic. In: Proceedings of the International Conference
on Industrial and Engeneering Applications of Artificial Intelligence, Gordon and
Breach (1993)

14. Fisher, M., Ghidini, C., Hirsch, B.: Programming groups of rational agents. In
Dix, J., Leite, J., eds.: CLIMA IV, Fourth International Workshop. Volume 2359
of LNAI. (2004) 16–33

15. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK — components for
intelligent agents in java. Technical report, Agent Oriented Software Pty, Ltd.
(1999)

16. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - a FIPA-compliant agent frame-
work. Internal technical report, CSELT (1999) Part of this report has been also
published in Proceedings of PAAM’99, London, April 1999, pp.97-108.

17. Helsinger, A., Thome, M., Wright, T.: Cougaar: A scalabe, distributed multi-agent
architecture. In: IEEE SMC04. (2004)

18. Gutknecht, O., Ferber, J.: The madkit agent platform architecture. Technical
Report R.R.LIRMM00xx, Laboratoire d’Informatique, de Robotqiue et de Mi-
croélectronique de Montpellier (2000)

19. Bratman, M.E.: Intentions, Plans, and Practical Reason. Havard University Press,
Cambridge, MA (1987)

20. Penberthy, J.S., Weld, D.: UCPOP: A sound, complete, partial-order planner for
ADL. In: Proceedings of Knowledge Review 92, Cambridge, MA (1992) 103–114

21. FIPA: Fipa acl message structure specification (2002)

22. Albayrak, S., Konnerth, T., Hirsch, B.: Ensuring security and accountability in
agent communication. In Preparation (2005)

23. Lyons, K.: The agile approach. Technical report, Conoco Phillips Australia Pty
Ltd. (2004)

24. Rieger, A., Cissée, R., Feuerstack, S., Wohltorf, J., Albayrak, S.: An agent-based
architecture for ubiquituous multitmodal user interfaces. In: The 2005 Interna-
tional Conference in Active Media Technology. (2005)

96

25. Wohltorf, J., Cissée, R., Rieger, A.: BerlinTainment: An agent-based context-aware
entertainment planning system. IEEE Communications Magazine 43 (2005) 102–
109

26. Albayrak, S., Dragan, M.: Generic intelligent personal information agent. In:
International Conference on Advances in Internet, Processing, Systems, and Inter-
disciplinary Research. (2004)

97

Agreeing on Defeasible Commitments

Ioan Alfred Letia1 and Adrian Groza1

Technical University of Cluj-Napoca
Department of Computer Science

Baritiu 28, RO-3400 Cluj-Napoca, Romania
{letia,adrian}@cs-gw.utcluj.ro

Abstract. Social commitments are developed for multi-agent systems
according to the current practice in law regarding contract formation
and breach. Deafeasible commitments are used to provide a useful link
between multi-agent systems and legal doctrines. The proposed model
makes the commitments more expressive relative to contract law, im-
proving the model for the life cycle of the commitments. As a conse-
quence, the broader semantics helps in modelling different types of con-
tracts: gratuitous promises, unilateral contracts, bilateral contracts, and
forward contracts. The semantics of higher-order commitments is useful
in deciding whether to sign an agreement or not, due to a larger variety
of protocols and contracts.

1 Introduction

Artificial agents and the contracts they make are ubiquitous, while at the same
time, there is a lack of application of the current practice in law to multi-agent
systems (MAS). From the point of view of law, there is a philosophical debate
regarding when to attach person-hood to artificial agents. The actual context of
web services representing business entities and agents interacting with services
implies legal responsibilities for each agent. From the engineering point of view,
agents have to be built and synchronized with the norms and values of society.

Social commitments were introduced as a way to capture the public aspects of
communications [1] and research has been focused on the development of agent
communication languages and flexible interaction protocols [2, 3]. As commit-
ments appear to be sometimes too restrictive (direct obligations) and sometimes
too flexible, allowing unconstrained modification of commitments, social commit-
ments should be more flexible than usual obligations but also more constrained
than permissions [1]. On this line, we apply principles of contract law as an ob-
jective measure to decide on the flexibility of the operations on commitments,
beginning with a commitment-based representation of different types of agree-
ments from contract law. The main advantage of applying current practice in
law to model commitments within multi-agents systems is that the principles of
contract law are verified and polished during years of economical and judicial
practice.

98

Modeling agent communication implies several approaches: mental (BDI and
modalities), social (which highlights the public and observable elements like so-
cial commitments that agents exchange when conversing), and argumentative
(based on agent reasoning capabilities). When participating in an agreement,
agents should use their mental states, share information and reason about new
facts. We seek to synchronize the social commitments developed for MAS with
the existing legal doctrines, which the law applies in case of contract formation.
We define a framework by using the temporalised normative positions in de-
feasible logic [4] to introduce defeasible commitments for representing contract
laws [5] in the model of the life cycle of commitments.

2 Temporalised normative positions

For defining defeasible commitments, we are using the temporalised normative
positions [4]. A theory in normative defeasible logic (NDL) is a structure (F , RK ,
RI , RA, RO, Â) where F is a finite set of facts, RK RI RA RO are respectively
a finite set of persistent or transitive rules (strict, defeasible, and defeaters) for
knowledge, intentions, actions, and obligations, and Â representing the superi-
ority relation over the set of rules.

A rule in NDL is characterized by three orthogonal attributes: modality,
persistence, strength. As for modality, RK represents the agent’s theory of the
world, RA encodes its actions, RO the normative system or his obligations, while
RI and the superiority relation capture the agent’s strategy or its policy. A per-
sistent rule is a rule whose conclusion holds at all instants of time after the
conclusion has been derived, unless a more powerful rule, according to the supe-
riority relation, has derived the opposite conclusion. A transient rule establishes
the conclusion only for a specific instance of time [4].

Strict rules are rules in the classical sense, that is whenever the premises are
indisputable, then so is the conclusion, while defeasible rules are rules that can
be defeated by contrary evidence. For ”sending the goods means the goods were
delivered”, if we know that the goods were sent then they reach the destination,
unless there is other, not inferior, rule suggesting the contrary. Defeaters are
rules that cannot be used to draw any conclusions. Their only use is to prevent
some conclusions, as in ”if the customer is a regular one and he has a short
delay for paying, we might not ask for penalties”. This rule cannot be used to
support a ”not penalty” conclusion, but it can prevent the derivation of the
penalty conclusion.
→t
X ,⇒t

X and Ãt
X denote transitive rules (strict, defeasible, defeaters), while

→p
X , ⇒p

X and Ãp
X denote persistent rules (strict, defeasible, defeaters), where

X ∈ {K, I,A,O} represents the modality. A conclusion in NDL is a tagged literal
where +∆τ

Xq:t means that q is definitely provable of modality X, at time t in
NDL (figure 1); and +∂τXq:t means that q is defeasibly provable of modality
X, at time t in NDL (figures 2, 3). Here τ ∈ {t, p}, t stands for transient,
while p for a persistent derivation. A strict rule r ∈ Rs is ∆X − applicable if
r ∈ Rs,X∀a : tk ∈ A(r) : ak : tk is ∆X − provable. A strict rule r ∈ Rs is

99

∆X − discarded if r ∈ Rs,X∃ak : tk ∈ A(r) : ak : tk is ∆X − rejected, and
similarly for ∂. The conditions for concluding whether a query is transient or

+∆t
X : If P (i+ 1) = +∆t

Xq : t then
q : t ∈ F , or
∃r ∈ Rts,X [q : t] r is ∆X − applicable

+∆p
X : If P (i+ 1) = +∆p

Xq : t then
q : t ∈ F , or
∃r ∈ Rps,X [q : t] r is ∆X − applicable or

∃t′ ∈ Γ : t′ < t and +∆p
Xq : t′ ∈ P (1..i).

Fig. 1. Transient and persistent definite proof for modality X

persistent, definitely provable is shown inthe figure 1. For the transient case,
at step i + 1 one can assert that q is definitely transient provable if there is a
strict transient rule r ∈ Rts with the consequent q and all the antecedents of r
have been asserted to be definitely (transient or persistent) provable, in previous
steps. For the persistent case, the persistence condition allows us to reiterate
literals definitely proved at previous times. For showing that q is not persistent
definitely provable, in addition to the condition we have for the transient case, we
have to assure that, for all instances of time before now the persistent property
has not been proved. According to the above conditions, in order to prove that
q is definitely provable at time t we have to show that q is either transient, or
persistent definitely provable [4].

+∂tX : If P (i+ 1) = +∂tXq : t then
(1) +∆Xq : t ∈ P (1..i) or
(2)−∆X ∼ q : t ∈ P (1..i) and

(2.1) ∃r ∈ Rsd,X [q : t]: r is ∂X -applicable and
(2.2) ∀s ∈ R[∼ q : t]: s is ∂X -discarded or

∃w ∈ R(q : t) : w is ∂X -applicable or w Â s

Fig. 2. Transient defeasible proof for modality X

Defeasible derivations have an argumentation like structure [4]: firstly, we
choose a supported rule having the conclusions q we want to prove, secondly
we consider all the possible counterarguments against q, and finally we rebut
all the above counterarguments showing that, either some of their premises do
not hold, or the rule used for its derivation is weaker than the rule supporting
the initial conclusion q. A goal q which is not definitely provable is defeasibly
transient provable if we can find a strict or defeasible transient rule for which

100

+∂pX : If P (i+ 1) = +∂tXq : t then
(1) +∆p

Xq : t ∈ P (1..i) or
(2)−∆X ∼ q : t ∈ P (1..i), and

(2.1) ∃r ∈ Rpsd,X [q : t]: r is ∂X -applicable, and

(2.2) ∀s ∈ R[∼ q : t]: either s is ∂X -discarded or
∃w ∈ R(q : t): w is ∂X -applicable or w Â s; or

(3) ∃t′ ∈ Γ : t′ < t and +∂pXq : t′ ∈ P (1..i) and
(3.1) ∀s ∈ R[∼ q : t”], t′ < t” ≤ t, s is ∂X -discarded, or
∃w ∈ R(q : t”): w is ∂X -applicable and w Â s.

Fig. 3. Persistent defeasible proof for modality X

all its antecedents are defeasibly provable, ∼ q is not definitely provable and for
each rule having ∼ q as a consequent we can find an antecedent which does not
satisfy the defeasible provable condition (figure 2). For the persistence case, the
aditional clause (3) from figure 3 verifies if the literal q : t has been persistent
defeasibly proved before, and this conclusion remained valid all this time (there
was no time t“ when the contrary ∼ q was proved by firing the rule s, or the
respective rule was no stronger than the one sustaining q).

3 Types of commitments

The classical definition of a conditional commitment states that a commitment
is a promise from a debtor x to a creditor y to bring about a particular sentence
p under a condition q. Starting from this definition we provide a generalized
commitment abstract data type.

Definition 1. A commitment is a relation

Cnm(x, y, qn : [tissue], [?]pm : [tmaturity]) : [texpiration]

with optional literals within square brackets, representing the promise p made
by debtor x to creditor y in exchange of which the action q is requested, where
the time of maturity tmaturity shows the time remaining until the promise pm

is satisfied by the debtor x if the request qn holds until time tissue and ? ∈
{+∆,−∆,+∂,−∂, ?} is an optional tag used to express informing messages.

The parameters m and n help us to define meta commitments or higher-order
commitments. Their role is to provide a rich semantics used to express a large
variety of contractual clauses or negotiation patterns: m is a measure of the
promises made by the debtor, while n is a measure of the requests made by the
debtor (figure 4). We define two operators for the composition of commitments:
◦q which deals with requests and ◦p which deals with promises.

101

 C (x,y,q,1)

C (x,y,1,C (x,y,q1,p1))
10.5

forward contract

1 0
C (x,y,q,C (x,y,1,p1))

1

0

1

00

2

2

1

3

C (x,y,q,p)

free commitment gratuitous promise guarantee to commit

unilateral contract

conditional bilateral contract

request a promise

01

bilateral contract

C

0.5 1.50

Op Op

C (x,y,C (y,x,q1,1),1)
1

requests (n)

Op

Oq

Oq Oq

Op

2

Oq

Oq

1

conditional guarantee to commit
Op

Oq

Oq
0

1

1

request act

1

request a request conditional promise

Op

promises (m)C(x,y,1,1)
0

0

0

0 0

1

2

2
C (x,y,1,C (x,y,1,p1))

C
0.5

(x,y,C (y,x,1,p1),1)
1 1.5

(y,x,1,p1),p)(x,y,C
1

1
1

1
2C (x,y,C (y,x,q1,1),p)

request a unilateral contract

0.5
C (x,y,C (y,x,q1,p1),1)

1 1.5
C (x,y,C (y,x,q1,p1),p)

1

2 1

2 1

11
C (x,y,1,p)

2

Fig. 4. Types and composition of the commitments

3.1 Contractual commitments

When m ∈ [1, 2) we name the resulting commitments contractual commitments.
Next, we discuss each type of contractual commitments from a legal point of
view.

The example ”I will give you the item g1 in 5 days.” is represented by
C0

1 (me, you, 1, g1 : 5), defined by law as gratuitous promise.

Definition 2. In a Gratuitous Promise (n=0, m=1) the debtor x promises the
creditor y to bring about p until tmaturity without requesting anything (n = 0).

C0
1 (x, y, 1, p1 : tmaturity)

The example ”I will give you the item g1 in 5 days after you will pay the
price” will be represented by C1

1 (me, you, pay(you) : tpay, g1 : tpay + 5), and ”I
will give you the item g1 as long as the oil price is 135$” by C1

1 (me, you, price =
135 : tprice, g1 : tprice+5). In the first example the condition is brought about by
the creditor y, while in the second the condition is an environment fact and does
not necessarily depend on y. The law defines such a commitment a unilateral
contract, involving an exchange of the offerer’s promise (p) for the oferee’s act
(q), with the completion of the act required to indicate acceptance.

Definition 3. A Unilateral Contract (n=1, m=1) involves an exchange of the
offerer’s promise p for the oferee’s act q, where the debtor x promises the creditor
y to bring about p until tmaturity if condition q holds at time tissue.

C1
1 (x, y, q : tissue, p : tmaturity)

102

Consider the examples ”I will give you the item g1 no later than 5 days, if you
promise me in maximum 1 day that you will pay the price no later than 3 days”
represented as C1

1.5(me, you,C0
1 (you,me, 1, pay : 3) : 1, g1 : 5) and ”I will give

you the item g1 no later than 5 days, if the bank promises me in maximum one
day to pay the price no later than 3 days” as C1

1.5(me, you,C0
1 (bank,me, 1, pay :

3) : 1, g1 : 5). According to contract law, a contract in which both sides make
promises is called a bilateral contract.

Definition 4. In a Bilateral Contract (n=1, m=1.5) both sides make promises,
the debtor x promises the creditor y to bring about p if the creditor y promises
x to bring about p1.

C1
1.5(x, y, C0

1 (y, x, 1, p1), p)

We note that a C1
1.5 commitment is somehow weaker than a C1

1 commitment.
This fine grained mechanism opens the possibility of designing agents with dif-
ferent levels of attitude towards risk and it also refines the idea of leveled com-
mitment contracts [6].

”I will give you the item g1 no later than 5 days, if you promise me to pay the
price no later than 3 days under the condition that oil price reaches 135$; my
offer expires in 10 days.” is represented by C2

1.5(me, you,C1
1 (you,me, oilPrice =

135, pay : 3) : 10, g1 : 5).

Definition 5. In a Conditional Bilateral Contract (n=2, m=1.5) the debtor x
promises the creditor y to bring about p if agent y promises x to bring about p1

under condition q1.
C2

1.5(x, y, C1
1 (y, x, q1, p1), p)

Here n = 2 means that agent x has two requests: it requests the promise C1
1

which contains the second request q1. On the other hand, m = 1.5 means that it
promises p and also p1 which, being an inner promise, in our model weighs only
0.5. The above semantics includes a form of negotiation because, at the creation
of the inner commitment, both C2

1.5 and C1
1 commitments are open offers (see

section 4). Therefore, the agents are not committed to them and they may be
canceled anytime in this state, without considering it a breach.

3.2 Request commitments

When m ∈ [0, 1) the debtor does not promise anything directly, called re-
quest commitments. For both m = 0 and n = 0 we have a free commitment
C0

0 (x, y, 1, 1), while n 6= 0 gives the following types of requests.
”Please pay me the price of the product g1 in two days” is represented as a

request act C1
0 (me, you, price : 2, 1)1.

Definition 6. In a Request Act (n=1, m=0) the debtor x requests the creditor
y to bring about q until time tissue.

C1
0 (x, y, q : tissue, 1)

1 With n = 1 we denote q1 = q and p0 = 1.

103

Observe that the debtor does not promise anything. The acceptance of the above
request is made simply by causing the sentence q or performing the requested
action. If the requested act is a negative sentence, it represents a taboo [7] or
interdiction.

”Please promise me that you will pay for the item in 3 days” is represented
as C1

0.5(me, you,C0
1 (you,me, 1, pay : 3), 1).

Definition 7. A Request a Promise (n=1, m=0.5) is used by a debtor x to
request the creditor y to promise until texpiration that it will bring about p1 until
tmaturity

C1
0.5(x, y, C0

1 (y, x, 1, p1 : tmaturity) : texpiration, 1)

obtainable from C1
0 ◦q C0

1 .

The acceptance of the request is done by creating the inner commitment C0
1 (y, x, 1, p1 :

tmaturity) until the deadline texpiration. When the time-out elapses the request
commitment reaches the failed state. If the creditor wants to explicitly reject the
request, it will respond by creating the negative commitment ¬C0

1 (y, x, 1, pay :
3) : 5, having the same deadline with the request commitment2. The meaning of
the above rejection is ”I will not commit to you to bring about p1 in 3 days; I
will reconsider your request after 5 days”.

”Ask me to give you the money”is shown as C2
0 (me, you,C1

0 (you,me,money, 1), 1)
and ”Please request the bank to pay you”as C2

0 (me, you,C1
0 (you, bank, pay, 1), 1).

Definition 8. In a Request a Request (n=2, m=0) the debtor x requests the
creditor y to request the sentence q1 from another agent z3 until time te

C2
0 (x, y, C0

1 (y, z, q1, 1) : texpiration, 1)

obtainable from C0
1 ◦q C0

1 .

”Please buy me shares as soon as their price reaches 10$” is represented by
C2

0.5(me, you,C1
1 (you,me, price = 10, buy), 1).

Definition 9. In a Request a Unilateral Contract (n=2, m=0.5) the debtor x
requests the creditor y to commit to bring about p1 if the condition q1 holds

C2
0.5(x, y, C1

1 (y, z, q1, p1) : texpiration, 1)

obtainable from C0
1 ◦q C1

1 .

3.3 Guarantee commitments

In these commitments the debtor promises that a specific commitment will exist
in a given window of time.

For ”I guarantee you that the bank will commit in maximum 7 days to give
you the credit” we use the formula C0

1 (me, you, 1, C0
1 (bank, you, 1, credit) : 7).

2 Otherwise a form of negociation may arise.
3 The agent z may be the debtor x.

104

Definition 10. In a Guarantee to Commit (n=0, m=2) the debtor x guarantees
the creditor y that a special commitment will exist until texpiration

C0
2 (x, y, 1, C0

1 (z, y, 1, p1) : texpiration)

obtainable from C0
1 ◦p C0

1 .

If z = y the creditor manifests its own intention to commit or it guarantees that
it will make the respective gratuitous promise no longer than texpiration. It can
be seen as a precommitment or an intention to commit.

”If you have all the papers, I promise you that the bank will commit in maxi-
mum 7 days to give you the credit”is represented as C1

2 (me, you, papers, C0
1 (bank, you, 1, credit) :

7)).

Definition 11. In a Conditional Guarantee to Commit (n=1, m=2) the debtor
x guarantees the creditor y that a specific commitment will exist until texpiration
if condition q holds

C1
2 (x, y, q, C0

1 (z, y, 1, p1) : texpiration)

obtainable from C1
1 ◦p C0

1 .

We represent ”I commit you to sell my house to you next year at the price
20000$” by C0.5

2 (me, you, 1, C1
1 (me, you, 20000, house) : 365)).

Definition 12. In a Forward Unilateral Contract (n=0.5, m=2) the debtor
x guarantees the creditor y that a specific unilateral contract will exist until
texpiration.

C0.5
2 (x, y, 1, C1

1 (z, y, q1, p1) : texpiration)

According to contract law, the particular case in which z = x is a form of a
forward contract, obtainable from C0

1 ◦pC1
1 . Applying the composition operators

◦q or ◦p we can also model forward bilateral contracts and forward conditional
bilateral contracts.

3.4 Informing commitments

We see the informing act as a form of commitment in the sense that the agent
who propagates some information guarantees its validity. In other words, it is
committed to the creditor that the notified fact is true, based on the debtor’s
view of the world. Contract law names such type of statement terms. The truth
of the term is guaranteed by the agent that made the statement. We use this
type of commitment to allow information sharing between agents. The literature
shows that information sharing is a key-point in the coordination of multi-agent
systems.

The situation ”My partner informs me that he has already sent the money,
while the bank says that the payment has not been made yet” is coded with
C0

1 (partner,me, 1,+∂pKpay) and C0
1 (bank,me, 1,−∂pKpay). The agent me will

fire both defeasible rules r1 : C0
1 (partner,me, 1,+∂pKpay) ⇒ pay and r2 :

C0
1 (bank,me, 1,−∂pKpay)⇒ ¬pay, but it will give more credit to the statement

of the bank r2 > r1.

105

Definition 13. In a Fact Notification the debtor x informs creditor y if a spe-
cific sentence p is +∆τ

Xp, −∆τ
Xp, +∂τXp, or −∂τXp according to its defeasible

theory D.
C0

1 (x, y, 1, ?p)

”I inform you that agent z has an active commitment for delivering to me the
item g1 within 3 days” is represented by C0

2 (me, you, 1,+∆p
OC

0
1 (z,me, 1, g1 : 3)),

which may help ”me” in the negotiation process with ”you”.

Definition 14. In a Commitment Existence Notification the debtor x informs
the creditor y about the existence of a specific commitment according to its de-
feasible theory D.

C0
2 (x, y, 1, ?C0

1 (z, w, 1, p))

”If you promise me to keep it secret I will tell you if z is committed to me or
not to deliver g1” will be C2

2 (me, you,C0
1 (you,me, 1, secret), ?C0

1 (z,me, 1, g1)),
an example of a confidentiality agreement. This situation may arise during ne-
gotiations for a larger contract, when agents may need to divulge information
about their operations to each other, also known as non-disclosure agreement.

Definition 15. In a Conditional Notification the debtor x informs the creditor
y about the existence of a specific commitment if condition q holds until ti.

C0
2 (x, y, q : ti, ?C0

1 (z, w, 1, p))

Asking for represents a composition between a request commitment and an
informing commitment, e.g., ”Please tell me if the payment was made”, repre-
sented as C1

2 (me, bank,C0
1 (bank,me, 1, ?pay), 1).

Definition 16. In an Asking For the debtor x asks the creditor y about the
existence of a specific fact p.

C1
2 (x, y, C0

1 (y, x, 1, ?p), 1)

4 Commitment life cycle

During its life cycle, a commitment may be in one of the following states: open
offer, active, released, breached, fulfilled, canceled, or failed (figure 5), which are
also useful to be considered from a legal perspective.

First consider a gratuitous promise C0
1 (x, y, 1, p : tmaturity) : texpiration. Un-

der the donative-promise principle, a simple, unrelied-upon gratuitous commit-
ment is unenforceable since there is no consideration [8] or no element of ex-
change. Therefore, the breach of a C0

1 commitment attracts only social sanctions
or trust sanctions. The use of normative foundation of trust attached to a C0

1

commitment serves to promote business relations. In case the creditor y has re-
lied on the commitment, one can make use of the doctrine of promissory estoppel.
This doctrine comes from the equity part of the law and it prevents one party
from withdrawing a promise made to a creditor, if that creditor has relied on

106

t =0maturity

t =0maturity

Failed Cancelled

Active

Released

Fulfilled

Breached

>Cancel

p=1

p=1

x x

x

x

x

y y

y

y

y

>Cancel v

offer
active
breached

>Create

yx

<Release

> executed by debtor x

< executed by creditor y

<Release

<Accept(reliance)
Open offer

x y

Fig. 5. The life cycle of a gratuitous commitment

that promise and acted upon it. The only remedy of contract law that can be
applied in this case is reliance damages [8]. Also, the law stipulates that this
reliance must be foreseeable. In the context of open agent systems we define a
foreseeable fact as one which has been notified to the potential breacher. For
instance, in a supply chain scenario, the creditor must notify the promiser that,
based on the C0

1 commitment, it has signed other contracts: ”I inform you that,
based on your gratuitous promise, I commit to deliver item g1 to my client z
within 3 days”. This is represented by C0

2 (me, you, 1,+∆p
KC

0
1 (me, z, 1, g1 : 3)).

On the other hand, the estoppel is ”a shield, not a sword”. It cannot be used as
the basis of an action of its own. Hence, we implement estoppel with defeaters.

→t
I promise(p : tm, y) : ti

⇒p
I riskProne : ti

→p
K promissoryEstoppel : ti

r0 : promise(p : tm, y) : ti, riskProne : ti ⇒t
A create(x, c) : ti

r1 : create(x, c) : ti →p
K c : ti

r2 : c : ti, tm = ti →p
K ¬c : ti

r3 : c : ti, cancel(x, c) : ti ⇒p
K ¬c : ti

r4 : c : ti, release(y, c) : ti →p
O ¬c : ti

r5 : breached : ti ⇒p
O relianceDamages : ti+3,¬c : ti

r6 : specificPerformance : ti Ãp
O ¬c : ti

r7 : execute(p) : ti ⇒p
K p : ti+2

r8 : assign(y, z, c) : ti, c : ti ⇒p
O ¬c : ti, C

0
1 (x, z, 1, p : tm) : ti

r9 : delegate(x, z, c) : ti, c : ti ⇒p
O ¬c : ti, C

0
1 (z, y, 1, p : tm) : ti

Fig. 6. Sample of rules for commitment operations

107

Possible operations on commitments: create, cancel, release, assign, and del-
egate (figure 6) are discussed next, considering their effect on a gratuitous com-
mitment c = C0

1 (x, y, 0, p : tm). Similar rules are defined for other types of
commitments, the main difference results from what acceptance means for each
type of commitment. For instance, the acceptance of a gratuitous commitment
means reliance and acted upon it, the aceptance of a unilateral contract means
the execution of the required task, the acceptance of a bilateral contract means
the creation of the required promise, etc.

Create. Consider that agent x has the intention to satisfy sentence p for
agent y, until deadline tm. Its policy is risk prone, meaning that it creates the
gratuitous commitment c, while it has no guarantee that its partner will give
something in exchange. Moreover, the interaction is made under the doctrine of
promissory estoppel. The above intentions drive the agent to create the com-
mitment c (rule r0, which being transient, the create action is executed once).
The creation of a commitment, an action typically undertaken by the debtor,
is equivalent to an open offer in contract law. Therefore, it is derived only as
persistence knowledge (rule r1) and is not considered an obligation in this state4.

Cancel. The debtor x may cancel a commitment with no penalties only if the
commitment is an open offer (rule r3). The breached state is reached when the
time for accomplishing the promise elapses. This state activates the mechanism
for computing reliance damages, which usually suppose the creation of another
commitment or contrary-to-duty obligation5. In some situations, a commitment
may be active even after it is breached, allowed by defining rule r5 as defeasible.
Therefore, a normative agent may block the derivation of that conclusion in order
to force the execution of the specific commitment c (rule r6)6. When the time-
out of an open offer commitment expires, the state of the commitment becomes
failed (rule r2).

Release. If the acceptance has been made, this operation releases the debtor
from its gratuitous commitment (rule r4). The agent x executes p, but the effect
is expected to be seen after two time steps (rule r7). The defeasible rule r7 leaves
space to treat some exceptions.

Assign. The assign operation, transferring the rights held by the creditor y
to another party, the assignee z, may be executed only by the creditor y and the
state of the commitment is preserved (rule r8). Common law favors the freedom
of assignment, unless there is an express prohibition against it, requiring that it
must occur in the present, to assign in the future having no legal effect.

Delegate. The delegate operation, transferring the duties held by the debtor
x to another party z, is executed only by the debtor x and the state of the
4 Equivalent to a proposed or attempted commitment.
5 The sooner it notifies by executing the cancel operation, the lower the reliance dam-

ages.
6 In common law [8] expectation damages and no specific performance are granted as

the usual remedy in case of breach. Since contracts, more often, are essentially about
profit, the granting of expectation damages provides an acceptable substitute to the
innocent party. While the state of granting of a performance remedy would amount
to doing unnecessary harm to the party who has committed the breach [6].

108

commitment is preserved (rule r9). The creditor must be informed of the act of
delegation. In case z breaches, the creditor y may elect to treat this failure as a
breach of the original commitment and to sue the delegator x or to choose the
role of a third party beneficiary.

In the case of the life cycle of a unilateral contract, the debtor x can revoke
his commitment anytime before acceptance. When the condition q becomes true,
the commitment becomes active. Until then, the debtor may cancel without
considering this as a breach. Most courts now hold that creditor y must give
notice of its acceptance after it has done the requested act. If it does not do
that, the commitment that was formed by the act may be canceled without
breach (of course, the debtor must return the money). Therefore, the acceptance
of a C1

1 commitment can be viewed as a compound operation: execution of the
q and a fact notification C0

1 (x, y, 1,+∂pKq) . Due to the late activation of the
C1

1 commitment the promiser x has maximal protection. What happens if the
creditor executes a part of the q condition and notifies about this? The common
law stipulates that an option contract was formed, which protects the creditor
y from the debtor’s ability to cancel the commitment (i.e. partPerformance →
optionContract, optionContract Ã ¬C1

1 (x, y, q, p : tmaturity)). If acceptance is
late (tissue < tacceptance < tmaturity), it becomes a counter-offer and it creates
the power of acceptance for the initial debtor x.

5 Using higher-order commitments

5.1 English auction

We illustrate the usage of commitments in the English auction (figure 7). Ac-

r21 : deliver(g1) : t3 →p
K C0

1 (b, a, 1,+∂pKg1 : t7)) : t3
r22 : deliver(g1) : t3 ⇒p

K g1 : t7
r23 : g1 : t3 →p

O C0
1 (b, a, 1,+∂pKg1 : t7)) : t3

r24 : pay : t9 →t
A release(a, b, C

0
1 (b, a, 1, 12 : t9)) : t9

Fig. 7. Sample rules for English auction

cording to contract law, when an item is put up for auction, this is usually not
an offer, but rather a solicitation of offers (bids) or an invitation to treat. The
English auction protocol uses the pattern ”request a unilateral contract”7. There-
fore, the auctioneer a has to compose a request commitment with a unilateral
contract (f1 in figure 8, where ”-” is used to express existential quantification)

7 For the simplified Net bill protocol [9] which ignores the cryptography-related aspect
and also the existence of a third party agent, unlike the complete version of the
Net bill protocol [10] we would use the ”request a conditional bilateral contract”
C3

1.5(x, y, C2
1.5(y, x, C1

1 (x, y,Deliver, EPO), receipt), 1).

109

f1 : C2
0.5(a,−, C1

1 (−, a, g1 : t7, bid > 10 : t9) : 3, 1) : t1
f2 : C1

1 (b, a, g1 : t7, 12 : t9) : t2
f3 : C1

1 (b′, a, g1 : t7, 11 : t9)) : t2
f4 : C0.5

2 (a, b′, 1,+∆p
K¬C1

1 (b′, a, g1 : t7, 11 : t9))) : t3
f5 : C0.5

2 (a, b, 1,+∆p
OC

1
1 (b, a, g1 : t7, 12 : t9))) : t3

f6 : deliver(g1) : t3
f7 : C0

1 (a, b, 1,+∂pKg1 : t7)) : t3
f8 : C0

1 (b, a, 1,+∆p
Kg1 : t7)) : t7

f9 : C0
1 (b, a, 1,+∂pK12 : t9)) : t7

Fig. 8. A trace in English auction

for item g1 with starting price 10$, and bids expected for 3 time steps. In case
of accepting the bids, a has to deliver the item g1 in 7 time steps, while b has to
pay for it in 9 time steps.

Suppose that two bids are received (f2 and f3) at t2, both open offers. Hence,
at this stage, both b and b′ may cancel their C1

1 commitments without breach,
and a also may cancel its C2

0.5 commitment, because the inner commitment is not
active yet (according to current practice in law). The above commitments reach
the active state and they become obligations only if a accepts them. The bidders
have made offers according to the auctioneer request regarding the deadline for
sending bids and tmaturity. In other encounters they might react with different
terms, which would be considered a counter-offer and a more complex form of
negotiation would arise.

At t3, when the deadline for receiving bids expires, a clears the auction,
considering the bids that conform to the request and accepting the winning one
(lower level aspects of coordination are not shown). It may explicitly reject one
bid (f4) and accept the other one (f5). In a unilateral contract the completion of
the requested act is necessary to indicate acceptance. Most courts now hold that
creditor y must also give notice of its acceptance after it has done the requested
act. Therefore, the acceptance of a C1

1 commitment can be viewed as a compound
operation: execution and a commitment notification. Due to the late activation
of C1

1 the promiser has maximal protection. At this time, the existence of the
requested commitment C1

1 is verified and C2
0.5 is discharged, leaving C1

1 .

The defeasible derivation rule r22 allows to treat some exceptions8. When
the partner informs that the item has arrived (f8), the strict rule r24 fires, C1

1

becomes active, and when the item arrives after 4 time steps b1 releases it.
With the payment made, the auctioneer would release the debtor b from its
commitment (rule r24), otherwise the mechanism for treating exceptions should
be activated according to a’s policy.

8 For instance, due to an accident the item has not arrived.

110

5.2 Considering risk in the supply chain

Consider the contract between two agents me and you, with agent me having
to deliver the item, while agent you having to pay for it. There is more than

Risk Commitments Meaning

risk prone C0
1 (me, you, 1, deliver)∧ I commit to deliver the item and I

C2
0 (me, you, C0

1 (you,me, 1, pay), 1) request you to commit to pay for it

moderate risk prone C0
1 (me, you, 1, deliver)∧ I commit to deliver the item

C1
0 (me, you, pay, 1) and I request you to pay for it

risk neutral C1
1.5(me, you, C0

1 (you,me, 1, pay), I commit to deliver the item
deliver) if you commit me to pay for it

moderate risk averse C1
1 (me, you, pay, deliver) I commit to deliver the item

after you pay for it

risk averse C1
2 (me, you, pay, C0

1 (me, you, 1, deliver)) I will commit to deliver the item
if you pay me

Table 1. Risk attitudes between two agents

one possibility to represent this process, depending on the commitments signed
between them, identified by five levels of risk attitudes (table 1). Now consider

Risk Commitments Meaning

risk averse C1
2.5(me, you, C0

1 (sup,me, 1, deliver′), If my supplier commits to deliver my input
C0

1 (me, you, 1, deliver) item, I commit to deliver my output item

risk neutral C2.5
2.5 (me, you, C1

1.5(sup,me, If my supplier commits to deliver my input
C0

1 (me, sup, 1, pay′), deliver′), item if I promise him to pay,
C0

1 (me, you, 1, deliver)) I commit to deliver my output item

risk prone C2.5
1.5 (me, you, C1

1 (sup,me, pay, deliver), If my supplier commits to deliver
C0

1 (me, you, 1, deliver) my input item if I pay it,
I commit to deliver my output item

Table 2. Risk attitudes considering a third party

the situation when agent me is conditioned by its supplier sup. In order to deliver
its output item, it has to obtain first its input item (table 2) with other possible
attitudes towards risk.

Assuming agent me has a risk prone strategy (⇒p
I riskProne : ti), it will cre-

ate commitments C0
1 (me, you, 1, deliver) and C2

0 (me, you,C0
1 (you,me, 1, pay), 1).

The acceptance of C0
1 (me, you, 1, deliver) appears when agent you relies on it

and it also notifies agent me about this reliance9. Once the acceptance occured,
the commitment reaches the active state (⇒p

O C0
1 (me, you, 1, deliver)) and thus

it becomes an obligation for agent me. On the other side, agent you has no
obligation at all, knowing only that its partner has requested to promise to pay

9 Such a notification may look like this: ”I (agent me), based on a gratuitous
promise, commit to deliver item g1 to my client z within 3 days”, represented by
C0

2 (you,me, 1,+∆p
KC

0
1 (you, z, 1, g1 : 3)).

111

for the item10. In case of a risk neutral strategy, the acceptance occurs at the
creation of the inner commitment (→t

A create(you,C
0
1 (you,me, 1, pay))). Thus,

each agent has one obligation: →p
O C0

1 (me, you, 1, deliver) for agent me and
→p
O C0

1 (you,me, 1, pay) for agent you. In case of a risk averse strategy the ac-
ceptance of the unilateral contract is done by the completion of the requested act,
in this case the payment. Therefore, agent me has the obligation to deliver the
item only after it had received the payment (pay →p

O C0
1 (me, you, 1, deliver)).

In table 2 agent me has the obligation to deliver its output item only in case
it has active contracts with its supplier regarding its input item. A similar risk
averse strategy can be adopted on the other side of the flow within the supply
chain. In this situation, the contracts with the suppliers become active only if
demand exists for the items, a part of the market fluctuations being taken by
the supplier instead of me.

6 Related work and conclusions

Ideas from legal reasoning have been applied to social commitments [1, 7], but
without the use of the contract law, although the rich semantics of higher-order
commitments [7] introduces concepts like: ought, pledge, taboo, convention, col-
lective commitment, obligation, claim, privilege, power, and immunity.

The declarative contracts using RuleML [11] use a semantic part for con-
tracts, while contracts have already been represented with defeasible logic and
RuleML [12]. By introducing commitments, we offer a more flexible solution for
contract monitoring and for agents reasoning on current actions.

Causal logic has been used [13] for protocol engineering, leading to a formal
method for protocol design, and more realistic commitments can also be mod-
elled in event calculus [14]. Our commitments are addressed in a more contrac-
tual style, with the deadlines attached to commitments offering a more realistic
approach from a contractual point of view.

Commitments between a network of agents have also been analyzed [3], but
without time constraints. Our higher-order commitments are closer to the leveled
commitment contracts [6], with different attitudes towards risk.

Verdicchio and Collombetti [15] treat the semantics of communicative acts
in terms of social commitments, instead of the classical approach, with a pre-
commitment similar to our commitment having the open offer state derived
from contract law. Our higher-order commitments have a similar semantics to
the derivative communicative acts [15], but we also cover the completion of the
requested act.

By introducing defeasible commitments in the execution of contracts, we ob-
tain two main advantages. On the one hand, agents can reason with incomplete
information, including confidential contractual clauses. On the other hand, this
framework is suitable for exceptions and legal reasoning: (i) concerning resolu-
tion of a dispute, strategies are explainable; (ii) skeptical mechanism; (iii) allows
10 In the case of a moderate risk prone strategy, agent me requests agent you to effec-

tively pay for the item and not only to promise to pay.

112

preferences; (iv) linear complexity; (v) fine-grained mechanism to deal with ex-
ceptions in the same manner for expected or unexpected ones.

7 Acknowledgments

We are grateful to the anonymous referees for useful comments. Part of this work
was supported by the grant 27702-990 from the National Research Council of
the Romanian Ministry for Education and Research.

References

1. Pasquier, P., Flores, R.A., Chaib-draa, B.: Modelling flexible social commitments
and their enforcement. In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.: Engi-
neering Societies in the Agents World. LNAI 3451, Springer-Verlag (2005) 139–151

2. Mallya, A.U., Singh, M.P.: Modeling exceptions via commitment protocols. In: 4th
International Joint Conference on Autonomous Agents and Multiagent Systems,
Utrecht, Netherlands, ACM Press (2005) 122–129

3. Wan, F., Singh, M.: Formalizing and achieving multiparty agreements via com-
mitments. In: 4th International Joint Conference on Autonomous Agents and
Multiagent Systems, Utrecht, Netherlands, ACM Press (2005) 770–777

4. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in de-
feasible logic. In: 10th International Conference on Artificial Inteligence and Law,
Bologna, Italy (2005)

5. Letia, I.A., Groza, A.: Running contracts with defeasible commitments. In
Dapoigny, R., ed.: IEA/AIE, Annecy, France (2006) to appear.

6. Sandholm, T., Lesser, W.: Leveled commitment contracts and strategic breach.
Games and Economic Behavior 35 (2001) 212–270

7. Singh, M.P.: An ontology for commitments in multiagents systems: Toward a
unification of normative concepts. Artificial Intelligence and Law 7 (1999) 97–113

8. Craswell, R.: Contract law: General theories. In Bouckaert, B., Geest, G.D., eds.:
Encyclopedia of Law and Economics, Volume III. The Regulation of Contracts.
Cheltenham (2000) 1–24

9. Winikoff, M., Liu, W., Harland, J.: Enhancing commitment machines. In: Declar-
ative Agent Languages and Technologies. (2004) 198–220

10. Cox, B., Tygar, J., Sirbu, M.: Netbill security and transaction protocol. In: Pro-
ceedings of the First USENIX Workshop on Electronic Commerce, New York (1995)

11. Grosof, B.: Representing E-Commerce rules via situated courteous logic programs
in RuleML. Electronic Commerce Research and Applications 3(1) (2004) 2–20

12. Governatori, G.: Representing business contracts in RuleML. Journal of Cooper-
ative Information Systems 14(2-3) (2005)

13. Chopra, A.K., Singh, M.P.: Contextualizing commitment protocols. In: 5th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, Hako-
date, Japan, ACM Press (2006)

14. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus:
An approach for specifying and executing protocols. Annals of Mathematics and
Artificial Intelligence 42(1-3) (2004)

15. Verdicchio, M., Colombetti, M.: A commitment-based communicative act library.
In: 4th International Joint Conference on Autonomous Agents and Multiagent
Systems, Utrecht, Netherlands, ACM Press (2005) 755–761

113

Using Dynamic Logic Programming to Obtain
Agents with Declarative Goals

– preliminary report

Vivek Nigam? and João Leite

CENTRIA, New University of Lisbon, Portugal
vivek.nigam@gmail.com and jleite@di.fct.unl.pt

Abstract. Goals are used to define the behavior of (pro-active) agents.
It is our view that the goals of an agent can be seen as a knowledge base of
the situations that it wants to achieve. It is therefore in a natural way that
we use Dynamic Logic Programming (DLP), an extension of Answer-
Set Programming that allows for the representation of knowledge that
changes with time, to represent the goals of the agent and their evolution,
in a simple, declarative, fashion. In this paper, we represent agent’s goals
as a DLP, discuss and show how to represent some situations where the
agent should adopt or drop goals, and investigate some properties that
are obtained by using such representation.

1 Introduction

It is widely accepted that intelligent agents must have some form of pro-active
behavior [19]. This means that an intelligent agent will try to pursue some set of
states, represented by its goals. At the same time, goals will serve as explanations
for agent’s actions. Goals have two distinct, though related, aspects: a procedural
that can be identified with the sequence of actions that the agent attempts to
perform in order to achieve a goal; and a declarative that can be associated with
the set of states that the agent wants to bring about. In this paper we will focus
on the declarative aspect of goals.

Recently, there has been an increasing amount of research devoted to the issue
of declarative goals and their properties [18, 6, 13, 16, 17, 15]. Agent programming
languages with declarative goals open up a number of interesting possibilities
to the programmer, such as checking if a goal has been achieved, if a goal is
impossible, if a goal should be dropped, i.e., if the agent should stop pursuing
a goal, or if there is interference between goals [18, 15]. Having declarative goals
also facilitates the task of constructing agents that are able to communicate them
with other agents [13]. In [18, 15, 13] the reader can find examples illustrating
the need for a declarative aspect to goals.

As dynamic entities, agents often must adopt new goals, and drop existing
ones, and these changes in the adopted goals can be made dependent on the
? Supported by the Alβan Program, the European Union Programme of High Level

Scholarships for Latin America, no. E04M040321BR

114

state of affairs. There has been a great deal of research to identify when an
agent should change its goals [5, 16, 15, 18]. For example, an agent should drop
a goal when it believes that the goal is no longer achievable (maybe represented
by a failure condition [18]). As for adopting new goals, after a negotiation is
successfully closed there may be new obligations [7] that the agents involved
have committed to, that lead to the revision of the agent’s goals and, possibly,
the adoption of new ones.

In this paper, we will address the problem of representing and reasoning
about dynamic declarative goals using a logic programming based approach.

In [12, 8], the paradigm of Dynamic Logic Programming (DLP) was intro-
duced. According to DLP, knowledge is given by a series of theories, encoded
as generalized logic programs1, each representing distinct states of the world.
Different states, sequentially ordered, can represent different time periods, thus
allowing DLP to represent knowledge that undergoes successive updates. Since
individual theories may comprise mutually contradictory as well as overlapping
information, the role of DLP is to employ the mutual relationships among dif-
ferent states to determine the declarative semantics for the combined theory
comprised of all individual theories at each state. Intuitively, one can add, at
the end of the sequence, newer rules (arising from new or reacquired knowledge)
leaving to DLP the task of ensuring that these rules are in force, and that previ-
ous ones are valid (by inertia) only so far as possible, i.e. that they are kept for as
long as they are not in conflict with newly added ones, these always prevailing.

It is our perspective that the declarative goals of an agent can be seen as a
knowledge base encoding the situations it wants to achieve. There has been, in
the past years, an intense study of the properties of DLP to represent knowledge
bases that evolve with time [2, 8, 11]. However, up to now, there hasn’t been much
investigation of how DLP could be used to represent, in a declarative manner,
the goals of an agent. Since DLP allows for the specification of knowledge bases
that undergo change, and enjoys the expressiveness provided by both strong and
default negations, by dint of its foundation in answer-set programming, it seems
a natural candidate to be used to represent and to reason about the declarative
goals of an agent, and the way they change with time.

In this paper we will represent the goal base of an agent as a Dynamic Logic
Program, and investigate some of its properties. Namely, we will see that the
semantics of DLP will allow us to straightforwardly drop and adopt new goals
by updating the goal base of the agent, and will allow those operations to be
conditional on the current state of affairs.

Furthermore, an agent can distinguish between maintenance and achievement
goals. A maintenance goal represents a state of affairs that the agent wants to
hold in all states. For example, a person doesn’t want to get hurt. An achievement
goal represents a state of affairs that, once achieved, is no longer pursued. For
example, an agent that has as goal to write a paper for a congress, after it believes
it has written the paper, it should no longer consider this as a goal. Therefore,

1 Logic programs with default and strong negation both in the body and head of rules.

115

to correctly define the conditions for dropping a goal, we also investigate how to
express maintenance and achievement goals using DLP.

For our purpose, we will use a simple agent framework to be able to clearly
demonstrate the properties obtained by using DLP. Agents in this framework
are composed of data structures representing its beliefs, goals, committed goals
(intentions) and reasoning rules. We propose three types of reasoning rules: 1)
Intention Adoption Rule: used to commit to a goal by adopting a plan to achieve
it; 2) Goal Update Rule: used to update an agent’s goals using the DLP seman-
tics; 3) Intention Dropping Rule: used to drop previously committed goals.

The remainder of the paper is structured as follows: in the next Section we are
going to present some preliminaries, introducing DLP and the agent framework
we are going to use. Later, in Section 3, we are going to define the semantics of
the goal queries and in Section 4 the reasoning rules. In Section 5, we discuss
some situations related to when to drop and adopt new goals, and how to use
the DLP semantics to represent these situations. In Section 6 we give a simple
example of a multi-agent system illustrating how DLP could be used to represent
goals, to finally draw some conclusions and propose some further research topics
in Section 7.

2 Preliminaries

In this section we are going to give some preliminary definitions that will be
used throughout the paper. We start by introducing the language and semantics
of Dynamic Logic Programming and, afterwards, we introduce the simple agent
framework that we will adopt to demonstrate our investigations.

2.1 Dynamic Logic Programming

Let K be a set of propositional atoms. An objective literal is either an atom A
or a strongly negated atom ¬A. A default literal is an objective literal preceded
by not . A literal is either an objective literal or a default literal. The set of
objective literals is denoted by L¬K and the set of literals by L¬,not

K . A rule r
is an ordered pair Head (r) ← Body (r) where Head (r) (dubbed the head of
the rule) is a literal and Body (r) (dubbed the body of the rule) is a finite set
of literals. A rule with Head (r) = L0 and Body (r) = {L1, . . . , Ln} will simply
be written as L0 ← L1, . . . , Ln. A generalized logic program (GLP) P , in K,
is a finite or infinite set of rules. If Head(r) = A (resp. Head(r) = not A)
then not Head(r) = not A (resp. not Head(r) = A). If Head (r) = ¬A, then
¬Head (r) = A. By the expanded generalized logic program corresponding to the
GLP P , denoted by P, we mean the GLP obtained by augmenting P with a
rule of the form not ¬Head (r) ← Body (r) for every rule, in P , of the form
Head (r)← Body (r), where Head (r) is an objective literal2. Two rules r and r′

are conflicting, denoted by r on r′, iff Head(r) = not Head(r′). An interpretation
2 Expanded programs are defined to appropriately deal with strong negation in up-

dates. For more on this issue, the reader is invited to read [9, 8]. From now on, and

116

M of K is a set of objective literals that is consistent i.e., M does not contain
both A and ¬A. We define the set I as the set of all interpretations. An objective
literal L is true in M , denoted by M � L, iff L ∈ M , and false otherwise. A
default literal not L is true in M , denoted by M � not L, iff L /∈ M , and false
otherwise. A set of literals B is true in M , denoted by M � B, iff each literal in
B is true in M . Only an inconsistent set of objective literals, In, will entail the
special symbol ⊥ (denoted by In |= ⊥). ⊥ can be seen semantically equivalent
to the formula A ∧ ¬A. An interpretation M of K is an answer set of a GLP P
iff M ′ = least (P ∪ {not A | A 6∈M}), where M ′ = M ∪ {not A | A 6∈M}, A is
an objective literal, and least(.) denotes the least model of the definite program
obtained from the argument program by replacing every default literal not A by
a new atom not A. For notational convenience, we will no longer explicitly state
the alphabet K. As usual, we will consider all the variables appearing in the
programs as a shorthand for the set of all their possible ground instantiations.

A dynamic logic program (DLP) is a sequence of generalized logic pro-
grams. Let P = (P1, ..., Ps), P ′=(P ′

1, ..., P
′
n) and P ′′=(P ′′

1 , ..., P ′′
s) be DLPs.

We use ρ (P) to denote the multiset of all rules appearing in the programs
P1, ...,Ps, and (P,P ′) to denote (P1, ..., Ps, P

′
1, ..., P

′
n) and P ∪ P ′′ to denote

(P1 ∪ P ′′
1 , ..., Ps ∪ P ′′

s).
In the past years there have appeared several semantics for a DLP. We are

going to use the Refined Dynamic Stable Model semantics defined below, because
of its nice properties, as investigated in [9].

Definition 1 (Semantics of DLP). [8, 1] Let P = (P1, . . . , Ps) be a dynamic
logic program over language K, A be an objective literal, ρ (P), M ′ and least(.)
be as before. An interpretation M is a (refined dynamic) stable model of P iff

M ′ = least ([ρ (P)−Rej(M,P)] ∪Def(M,P))

Where:

Def(M,P) = {not A | @r ∈ ρ(P),Head(r) = A,M � Body(r)}
Rej(M,P) = {r | r ∈ Pi,∃r′ ∈ Pj , i ≤ j ≤ s, r on r′,M � Body(r′)}

It is important to notice that a DLP might have more than one stable model.
Each stable model can be viewed as a possible world that follows from the knowl-
edge represented by the DLP. We will denote by SM(P) the set of stable models
of the DLP P. Further details and motivations concerning DLPs and its seman-
tics can be found in [8].

2.2 Agent Framework

In this subsection we are going to define the agent framework3 that we will
use throughout this article. We will start by introducing the concept of agent

unless otherwise stated, we will always consider generalized logic programs to be in
their expanded versions.

3 The agent framework defined in this section could be seen as a modified (simplified)
version of the agent framework used in the 3APL multi-agent system [4].

117

configuration, which consists of a belief base representing what the agent believes
the world is, a goal base representing the states the agent wants to achieve, a set
of reasoning rules and a set of intentions with associated plans representing the
goals that the agent is currently committed to achieve. We are going to make
precise, later in Section 4, how the reasoning rules of the agents are defined. We
are considering that the agent has, at its disposal, a plan library represented by
the set of plans, Plan. A plan can be viewed as a sequence of actions that can
modify the agent’s beliefs or/and the environment surrounding it, and is used
by the agent to try to achieve a committed goal.

Our main focus in this paper is to investigate the properties of represent-
ing the goal base as a Dynamic Logic Program. We are not going to give the
deserved attention to the belief base. We consider the belief base as a simple
interpretation. However, a more complex belief base could be used. For exam-
ple, we could represent the belief base also as a Dynamic Logic Program and
have some mechanism such that the agent has an unique model for its beliefs4.
Elsewhere, in [14], we explore the representation of 3APL agent’s belief base as
a DLP.

Definition 2 (Agent Configuration). An agent configuration is a tuple 〈σ, γ,
Π,R〉, where σ ∈ I is an interpretation representing the agent’s belief base, γ a
Dynamic Logic Program representing it’s goal base, Π ⊆ Plan×L¬ the intentions
of the agent and R the set of reasoning rules.

We assume that the semantics of the agents is defined by a transition system.
A transition system is composed of a set of transition rules that transforms one
agent configuration into another agent configuration, in one computation step.
It may be possible that one or more transition rules are applicable in a certain
agent configuration. In this case, the agent must decide which one to apply.
This decision can be made through a deliberation cycle, for example, through a
priority among the rules. In this paper, we won’t specify a deliberation cycle.
An unsatisfied reader can consider a non-deterministic selection of the rules.

We are interested in knowing what an agent believes and what are its goals.
To this purpose, we start by introducing, in the next definition, the belief and
goal query languages.

Definition 3 (Belief and Goal Query Language). Let φ ∈ L¬,not and φ′ ∈
L¬. The belief query language, LB, with typical element β, and the goal query
language, LG, with typical element κ are defined as follows:

> ∈ LB Bφ ∈ LB β, β′ ∈ LB then β ∧ β′ ∈ LB
> ∈ LG Gφ′ ∈ LG

Notice that we don’t include default literals in the goal query formulas. This
is because we believe that it would only make sense for an agent to pursue a
situation that the agent is completely sure when it is achieved. For example, if
4 For example, a belief model selector that would select one of the stable models of

the belief base to represent the agent’s beliefs.

118

an agent had the goal of not (by default) failing an exam, not fail, it would
be possible for the agent not to study for the exam and still satisfy this goal
(considering that the agent is not a genius) by simply not checking its mark.
On the other hand, default literals can be quite useful for the belief queries.
For example, for cautious agents in emergency situations, if an agent is not sure
that a place is safe (not safe), it could trigger the goal of moving to a safer
location. We will explain better how this could be represented when we discuss
goal adoption and dropping, in Section 5.

Now, we will start by defining the semantics of the belief query formulas
(|=B). The semantics of the goal query formulas (|=G), one of the key interests
of this paper, will be defined later in Section 3.

Definition 4 (Semantics of Belief Formulas). Let Bφ, β, β′ ∈ LB be belief
query formulas and 〈σ, γ, Π,R〉 be an agent configuration. Then, the semantics
of belief query formulas, |=B, is defined as:

〈σ, γ, Π,R〉 |=B >
〈σ, γ, Π,R〉 |=B Bφ⇔ σ |= φ

〈σ, γ, Π,R〉 |=B β ∧ β′ ⇔ 〈σ, γ, Π,R〉 |=B β and 〈σ, γ, Π,R〉 |=B β′

Although this is a quite simple agent framework it will be enough for the
purpose of this paper.

3 Semantics of Agent Goal Bases

As defined in the previous section, we are considering the goal base of the agent as
a Dynamic Logic Program. We will use the stable models of the goal base of the
agent to determine the goals that it should achieve. Since the logic programs used
in DLP use default negation, we can have situations where one DLP has more
than one stable model, each internally consistent, but entailing contradictory
conclusions between them. For example, consider a goal base consisting of the
logic program with the following two rules:

a← not ¬a. ¬a← not a.

This program has two stable models, namely {a} and {¬a}. Even though each
of them is consistent (recall that models are interpretations which, themselves,
are consistent), they are contradictory in the sense that one entails a while the
other entails ¬a. This contradiction could be seen as undesirable. However, as
argued by Hindriks et al. in [6], the goal base of an agent doesn’t have to be
consistent since, for example, the goals of an agent can be achieved at different
times. We add to this that these apparently contradictory goals can just be seen
as alternative ones. The semantics of the intention adoption rules, defined below,
makes sure that the agent doesn’t concurrently pursue inconsistent intentions5.
5 [17] uses a default logic system to be able to express contradictory goals, but no

mechanism to drop goals is proposed. We propose a system based on the stable
models of the goal base, with the same expressiveness as the system in [17], and
with the possibility of elegantly drop goals.

119

However, we shouldn’t directly consider the stable models of the goal base
(γ) of an agent as its goals, because the agent shouldn’t consider a goal if it
already believes that the goal is currently achieved. A naive way of solving this
problem is to refine the stable models of the goal base by removing the goals
that are entailed by the belief base: GM = {M \ σ | M ∈ SM(γ)}. But, by
doing so, we partially lose expressiveness of having conditional goals. Consider
the following illustrative example:

Example 1 (Conditional Goals). Let the goal base of an agent be the DLP com-
posed of one GLP, with the intended meaning that the agent has as goal to buy
a Ferrari if it won the prize, otherwise it would like to buy a Beetle. The goal of
getting an insurance will depend on which car the agent will buy.

buy ferrari← win lottery.

buy beetle← not win lottery

get insurance← buy ferrari.

We must consider the agent’s belief base to determine what its goals are.
Which car to buy will depend on whether it believes to have won or not the
lottery, since obviously winning the lottery would not be a feasible goal for the
agent.

The next definition formalizes an agent’s Goal Models. The agent’s Goal
Models will be used to represent the agent’s goals and they are obtained by
refining the stable models of the agent’s goal base in such a way that the agent
takes in consideration its beliefs, and doesn’t consider a formula as a goal if this
formula is entailed by its belief base. In the previous example, if win lottery is
entailed by the beliefs of the agent, buy ferrari would be one of its goals.

Definition 5 (Goal Models). Let 〈σ, γ, Π,R〉 be an agent configuration. Then,
the set of Goal Models (GM) of the agent is defined as:

GM (σ, γ) = {M \ σ |M ∈ SM((γ, Ψ(σ)))}

where Ψ(σ) = {L←| L ∈ σ}

Notice that, similarly to interpretations, the Goal Models are individually
consistent, but two different goal models can be mutually contradictory. As ar-
gued previously, we want to express agents with contradictory goals. Therefore,
to express the goals of an agent, we are going to use simultaneously all of its
Goal Models.

The definition below formalizes the semantics of the goal query formulas.

Definition 6 (Semantics of Goal Query Formulas). Let Gφ, κ, κ′ ∈ LG
be a goal query formula and 〈σ, γ, Π,R〉 be an agent configuration. Then, the
semantics of goal query formulas, |=G, is defined as:

〈σ, γ, Π,R〉 |=G >
〈σ, γ, Π,R〉 |=G Gφ⇔ ∃M.(M ∈ GM(σ, γ) ∧M |= φ)

120

The next proposition states that the agent cannot have a goal that is entailed
by the belief base.

Proposition 1. Let 〈σ, γ, Π,R〉 be an agent configuration, then:

(∀φ ∈ σ).(〈σ, γ, Π,R〉 2G Gφ)

Proof. It is trivial from the way the Goal Models are constructed and by the
Definition 6 of the Semantics of Goal Query Formulas

4 Reasoning Rules

We now define the types of reasoning rules an agent can have. We begin following
[17], introducing the Intention Adoption Rule that is used by the agent to commit
to a goal by associating a plan to it.

Definition 7 (Intention Adoption Rules). Let β ∈ LB be a belief query
formula and κ ∈ LG be a goal query formula, and π ∈ Plan be a plan. The
Intention Adoption Rules is defined as, κ ← β | π. We will call, β the guard of
the rule and κ the head of the rule.

Informally, the semantics of the Intention Adoption Rules is that if the goal
base satisfies the head of the rule (κ = Gφ) and the agent beliefs in the guard
(β) of the rule, the plan π is adopted to try to achieve the goal in the head of rule
by adding the pair (π, φ) to the agent’s intention base. However, as discussed
by Bratman in [3], a rational agent shouldn’t incorporate new intentions if it
conflicts with the current intentions. For example, a rational agent wouldn’t
adopt the intention of going on vacations if it has committed to clean its house.

Taking this into account, we now formalize the semantics of the intention
adoption rules.

Definition 8 (Semantics of Intention Adoption Rules). Let 〈σ, γ, Π,R〉
be an agent configuration, κ← β | π ∈ R, is an Intention Adoption Rule, where
κ = Gφ, and Π = {(π1, φ1), . . . , (πn, φn)}.

〈σ, γ, Π,R〉 |=G κ 〈σ, γ, Π,R〉 |=B β {φ1, . . . , φn, φ} 2 ⊥
〈σ, γ, Π,R〉 −→ 〈σ, γ, Π ∪ {(π, φ)} , R〉

Notice that the condition of consistency of the agent’s intentions is maybe
not yet the best option to avoid irrational actions, Winikoff et al. suggest, in
[18], that it is necessary also to analyze the plans of the agent, as well as the
resources available to achieve the intentions. However, this is out of the scope
of this paper. The reader can also notice that the conjunction of goals cannot
be expressed by only considering the intention adoption rule. It is necessary to
increment the goal base of the agent. Consider that we want to program an
agent with the following goal a1∧, . . . ,∧an. We can express this goal by having

121

the following rules in the goal base conj as ← a1, . . . , an and conj as ←, where
conj as is a new variable in the goal base. The goal conj as will only be achieved
if the conjunction a1∧, . . . ,∧an is true.

We have just introduced a rule to adopt new intentions. Considering that
intentions are committed goals, if the goal that the intention represents is no
longer pursued by the agent, it would make sense to drop it. Therefore, we
introduce into our agent framework the Intention Dropping Rule. Informally,
the semantics of this rule is to remove from its intention base, any intention
that is no longer supported by the goal base of an agent. The next definition
formalizes this idea.

Definition 9 (Intention Dropping Rule). Let 〈σ, γ, Π,R〉 be an agent con-
figuration, where {(π, φ)} ⊆ Π. Then:

〈σ, γ, Π,R〉 2G Gφ
〈σ, γ, Π,R〉 −→ 〈σ, γ, Π \ {(π, φ)} , R〉

As the intention dropping rule is defined, the agent could stop executing
a plan if a goal is no longer entailed by the goal base. Stopping abruptly the
execution of the plan could be undesired since there might be some cleaning
actions to be taken after the goal is achieved. For example, if an agent’s goal is
to bake a cake, it would execute an appropriate plan, gathering the ingredients,
the utensils, and setting up the oven. After the cake is baked the agent would
still have to wash the utensils and throw the garbage away, these actions could
be seen as clean up actions. To handle this issue, we could propose a more
complex system of intentions, where there would be two plans associated with
the committed goal, one used to achieve the goal and another used to do the
cleaning up. When the goal is achieved the agent would execute the cleaning
up plan. However, this issue is not our main interest here in this paper, and
therefore we will limit our system to the intention dropping rule proposed in the
definition above.

To be able to use the update semantics of DLP it is interesting to have a rule
that can update the goal base of an agent with a generalized logic program. We
will call this rule as Goal Update Rule. We will investigate in the Section 4, how
to use the Goal Update Rule to adopt, drop or modify goals.

Definition 10 (Goal Update Rule). Let P be a Generalized Logic Program
and β ∈ LB be a query formula. The Goal Update Rule is defined as the tuple,
〈β, P 〉. We will call β as the precondition of the goal update rule.

Informally, the semantics of the goal update rule 〈β, P 〉, is that when the pre-
condition, β, is satisfied the goal base of an agent is updated by the generalized
logic program P .

Definition 11 (Semantics of Goal Update Rules). Let 〈σ, γ, Π,R〉 be an
agent configuration, the semantics of a Goal Update Rule, 〈β, P 〉 ∈ R is given
by the transition rule:

〈σ, γ, Π,R〉 |=B β
〈σ, γ, Π,R〉 −→ 〈σ, (γ, P),Π, R〉

122

5 Adopting and Dropping Goals

In this section we are going to investigate how to represent, in our system,
situations where an agent has to adopt or drop goals. We begin, in Subsection
4.1, by investigating how to represent failure conditions for goals. We will also
define, in this Subsection, how to represent maintenance and achievement goals,
since they are important concepts to be analyzed by an agent when it is intending
to drop a goal. Later, in Subsection 4.2, we discuss some possible motivations
of why an agent should adopt a goal and also investigate how to represent these
motivations in our agent framework. Finally in Subsection 4.3, we identify some
further properties of our framework.

5.1 Goal Dropping

In this subsection, we are going to investigate some situations where the agent
must drop a goal and discuss how this could be done with our agent framework.

Winikoff et al. in [18], suggests some properties that the agent should have
with respect to its goals, one of these properties is being able to define failure
conditions. The idea is that when the failure condition is true the goal should be
dropped and, furthermore, the agent should remove it from its intention base in
case it had committed to it.

We can easily define failure conditions for goals using Dynamic Logic Pro-
grams, since failure conditions can be viewed as conditional goals. Consider the
following example.

Example 2. Consider an agent that has to write a paper until a deadline of a
conference. We could represent this situation using the following DLP, composed
by a single GLP with a single rule, write paper ← not deadline over. The agent
will consider write paper as a goal only if the deadline is not over.

Another situation where the agent should drop a goal (or an intention) is
when the goal (or intention) has been achieved, i.e., when the belief base entails
the goal (or intention). By Proposition 1, we have that the agent will never
entail a goal formula that is believed to be achieved. Hence, the agent can use
the Intention Dropping Rule to drop intentions that are no longer goals of the
agent.

Up to now we haven’t explored the full expressiveness of Dynamic Logic
Programs, by the simple fact that we didn’t need, in any of the examples, the
update semantics of DLP. We are going to use the semantics of DLP to be able
to construct agents that can have maintenance as well as achievement goals.

In what circumstances an agent should drop a goal will depend in which type
of goal it is. If it is an achievement goal, once it is achieved the goal must be
dropped and not pursued in the future anymore. And if it is a maintenance goal,
it will only be dropped when it is currently entailed by the agent’s beliefs. But
if in the future the goal is no longer entailed by its belief base, the agent will
have to pursue this goal once more.

123

To be able to differentiate between these types of goals, we are going to de-
fine a special predicate, only appearing in the goal base, with signature, mainte-
nance(.), stating that the goal as argument is a maintenance goal. The following
definition makes this precise.

Definition 12 (Maintenance and Achievement Goals). Let 〈σ, γ, Π,R〉 be
an agent configuration. We will call the goal φ as a maintenance goal iff

〈σ, γ, Π,R〉 |=G Gmaintenance (φ) ∧ 〈σ, γ, Π,R〉 |=G Gφ

We call the goal φ an achievement goal iff

〈σ, γ, Π,R〉 2G Gmaintenance (φ) ∧ 〈σ, γ, Π,R〉 |=G Gφ

We are going to use the semantics of DLP to define a goal update operator
that updates the goals of the agent by dropping the achievement goals that have
been achieved. The idea is to apply the goal update operator whenever the belief
base of the agent is changed (this could be done by a deliberation cycle).

Definition 13 (Goal Update Operator - Ω). Let 〈σ, γ, Π,R〉 −→ 〈σ′, γ′,Π ′, R〉
be a transition in the transition system, where 〈σ, γ, Π,R〉 and 〈σ′, γ′,Π ′, R〉 are
agent configurations, and Γ (σ) = {not L ← not maintenance(L) | L ∈ σ}. We
define the goal update operator, Ω, as follows:

Ω(γ, σ′) = γ′ = (γ, Γ (σ′))

We must be sure that with the goal update operator defined above, new goals
are not created and only the goals that have to be dropped are removed from
the Goal Models. The next theorem states that when the goal update operator
is used, no achievement goals that are achieved will be entailed by the agent,
regardless of its future beliefs. For example, consider that an agent has achieved
a goal φ and has updated its goal base with the goal update operator. If the agent
doesn’t adopt φ as a goal once more, or changes its status to a maintenance goal,
φ will not be a goal of the agent even if in the future, the agent’s belief base
doesn’t entail φ.

Theorem 1. Let 〈σ, γ, Π,R〉 be an agent configuration and σ′ be another belief
base, such that 〈σ, γ, Π,R〉 |=G Gφ and σ′ |= φ. Then:

(∀σ′′ ∈ I).(〈σ′′, γ′,Π, R〉 2 Gmaintenance(φ)⇒ 〈σ′′, γ′,Π, R〉 2 Gφ)

where γ′ = Ω(γ, σ′).

Proof. Proof: Since σ′ |= φ the goal update operator will update γ with a rule r,
{not φ← not maintenance(φ)}. As 〈σ′′, γ′,Π, R〉 2 Gmaintenance(φ), the rule
r will be activated rejecting all the rules with head, φ. Hence 〈σ′′, γ′,Π, R〉 2 Gφ.

By proposition 1 we have that the maintenance goals will not be entailed by
the agent if it believes that it is currently achieved.

124

5.2 Goal Adoption

Agents often have to adopt new goals. The reasons for adopting new goals can be
varied, the simplest one, when dealing with pro-active agents, would be because
the agent doesn’t have any goals and it is in an idle state.

We follow [16], and distinguish two motivations behind the adoption of a
goal: internal and external. Goals that derive from the desires of the agent, rep-
resented by abstract goals, have an internal motivation to be adopted. External
motivations, such as norms, impositions from other agents, and obligations, can
also be a reason for the agent to adopt new goals. An example of a norm, in the
daily life, is that a person should obey the law. Obligations could derive from
a negotiation where an agent commits to give a service to another agent e.g.
your internet provider should (is obliged to) provide the internet connection at
your home. Agents usually have a social point of view e.g. a son usually respects
his father more than a stranger, and it may be the case that an agent imposes
another agent some specific goals e.g. a father telling the son to study.

Dignum and Conte discuss, in [5], that an agent usually has abstract goals
that are usually not possible to be achieved by a simple plan, but the agent
believes that these abstract goals can be approximated by a set of concrete goals.
Notice that the beliefs of the agent must be taken in consideration to adopt new
concrete goals. For example, if an agent has the desire to obey the law and it
believes that if it drives too fast it will break the law, it might have the goal of
driving slower. On the other hand, it would be acceptable for the agent to talk
on the mobile phone while driving a car, if an agent believes that by doing so it
is not breaking the law, even though, by doing so, it might be violating the law.

Using DLP as the goal base of an agent we can partially simulate this behav-
ior. Consider an agent with the a goal base consisting of one GLP, {¬drive fast←
obey law; obey law ←;maintenance(obey law) ←}. As the agent will have the
abstract maintenance goal of obeying the law (however there might be no plan
to achieve it), it will try not to drive fast.

To be able to commit to obligations, changes in norms, or changes in desires,
we need to be able to change the goal base during execution. For example, if a
new deal is agreed to provide a service to another agent, the agent must entail
this new obligation. By using the Goal Update Rule, an agent can update its
goal base in such a way that it can incorporate new goals in several situations:

Adopt New Concrete Goals - As discussed previously, the agent may have
some desires that can be represented by abstract goal κ that is usually not
really achievable, but the agent believes that it can be approximated by
some concrete goals (κ1, . . . , κn). Consider that the agent learns that there
is another concrete goal κl that, if achieved, can better approximate the
abstract goal, κ. The agent can update its goal base using the following
Goal Update Rule, 〈concrete goal(κl, κ), {κl ← κ}〉, as κ is a goal of the
agent, it will activate the new rule, hence the new concrete goal, κl, will also
be a goal of the agent;

Norm Changes - Consider that the agent belongs to a society with some norms
that have to be obeyed (norm1, . . . , normn) and furthermore that there is a

125

change in the norms. Specifically, the normi is changed to norm′
i, hence the

agent’s goal base must change. We do this change straightforwardly, using
the goal update rule, 〈change(normi, norm′

i), {not normi ←;norm′
i ←}〉.

This update will force all the rules, r, with Head(r) = normi to be rejected
and normi will no longer be a goal of the agent. Notice that there must
be some coherence with the change in the norms. For example, the agent
shouldn’t believe that on change(normi, normj) and at the same time on
change(normj , normi);

New Obligations - Agents are usually immersed with other agents in an en-
vironment and, to achieve certain goals, it might be necessary to negotiate
with them. After a negotiation round, it is normal for agents to have an
agreement that stipulates some conditions and obligations (e.g. in Service
Level Agreements [7]). The agent can again easily use the goal update rules
to incorporate new obligations, 〈obligation(φ), {φ ←}〉, as well as dismiss
an obligation when an agreement is over, 〈¬obligation(φ), {not φ←}〉;

Impositions - Agents not only negotiate, but sometimes have to cooperate with
or obey other superior agents. This sense of superiority is quite subjective
and can be, for example, the obedience of an employee to his boss, or a
provider towards his client. It will depend on the beliefs of the agent to
decide if it should adopt a new goal or not, but this can be modeled using
the goal update rule, 〈received(achieve, φ, agenti) ∧ obey(agenti), { φ←}〉.
Meaning that if it received a message from agenti to adopt a new goal
φ, and the receiving agent believes it should obey agenti, it will update
its goal base. Notice that more complex hierarchy could be achieved by
means of preferences between the agents. However, it would be necessary
to elaborate a mechanism to solve possible conflicts (e.g by using Multi-
Dimensional Dynamic Logic Programming [10]).

5.3 Further Properties

We still can identify some more properties that could be elegantly achieved by
using the goal update rule:

Defining Maintenance and Achievement Goals We can define a goal as a
maintenance goal if a certain condition is satisfied. For example, an initially
single male agent finds the woman agent of its life and marries it. After
this is achieved, it might like to be married with this agent until the end of
its life. This can be represented by the goal update rule 〈married(girl), {
married(girl) ←;maintenance(married(girl)) ←}〉. The opposite can also
be easily achieved, using the goal update rule. A goal that initially was
a maintenance goal can be dropped or switched to an achievement goal.
For example, consider that the previous agent had a fight with its agent
wife and, after the divorce, it doesn’t want to marry again. This can be
represented by the goal update rule, 〈divorce(girl), { not married(girl)←
; not maintenance(married(girl)) ←}〉. We define a new achievement or
modify a maintenance goal to an achievement by using the following goal
update rule 〈achieve(φ), { φ←; not maintenance(φ)←}〉;

126

Defining and Modifying Failure Conditions and Conditional Goals - As
discussed, failure conditions are used to define when a goal has to be dropped.
It is possible that the agent is not aware of all the failure conditions for a goal,
or there has been a change in the environment such that the previous failure
is not enough or, furthermore, it is not a valid failure condition anymore. Us-
ing the goal update rule, we are able to define new, modify or even eliminate
failure conditions. Consider the example where the agent has to write a paper
until a deadline and the deadline is postponed, we can use the following goal
update rule, 〈postponed deadline, {write paper ← postponed deadline}〉.
Conditional goals can be defined using a similar goal update rule.

6 Example

Consider a scenario containing two agents, a father and a son. Furthermore
consider that the father agent is the head of a mob family. The son agent wants
to obey the law but only if by doing so he doesn’t disobey its father. Obeying
the law can be viewed as an abstract goal that will be approximated by more
concrete goals. These concrete goals can also been seen as the norms that the
society imposes on the son agent. However, according to his social viewpoint, his
father is more important than the society itself.

The goal base of the son agent can be represented by the following DLP:

¬kill← obey law,not disobey father.

disobey father ← received (father, φ, command) ,not φ.

φ← received (father, φ, command) .

obey law ← .

maintenance (obey law)← .

Considering an initially empty belief set, the son agent has a unique Goal
Model, namely {maintenance(obey law), obey law,¬kill}. Consider that, sub-
sequently, his father orders him to kill one of the mobsters of the rival family.
Hence, the son receives the achievement goal of killing, modifying its beliefs to
{received(father, kill, command)}. Therefore, the Goal Model of the son agent
changes to {maintenance (obey law), obey law, kill}6.

The son agent, after committing to the goal of killing, will create a plan to
achieve it and, after executing the plan (killing the mobster), the agent updates
its goal base with the rule

not kill← not maintenance (kill) .

And the Goal Model of the son is again {maintenance(obey law), obey law,
¬kill}. Consider now that the politicians, being annoyed by the gambling in city,

6 Notice that ¬kill is not in the Goal Model because we are using the expanded version
of the GLPs

127

resolved to consider it illegal. Accordingly, the goal base of the son is updated
with the GLP consisting of the following rule:

¬gamble← obey law,not disobey father.

The Goal Model of the son agent would change to {maintenance(obey law),
obey law,¬kill,¬gamble}. However, his father, not being happy with this deci-
sion, orders his son to continue the gambling activities. Hence, {received(gamble,
φ, command)} is added to his beliefs and the Goal Model of the son changes to

{maintenance(obey law), obey law,¬kill, gamble}

This example illustrates how a programmer can use the Goal Update Rule to
represent changes in the norms (considering gambling illegal) and use DLPs to
represent concrete goals (not killing and not gambling). Furthermore, we could
represent, in this small scenario, a social point of view of an agent (the son’s
social point of view) and how to give the correct preference on the goals according
to this view.

7 Conclusions

In this paper, we introduced a simple agent framework with the purpose of in-
troducing the agent’s goal base as a Dynamic Logic Program. We investigated
some properties of this framework. We were able to express, in a simple manner,
conditional, maintenance and achievement goals, as well as identify some situa-
tions where the agent would need to adopt and drop goals, and how this could
be done in this framework.

Since the objective of this paper was to investigate the use of DLP as the
goal base of an agent, we didn’t investigate what additional properties we could
have by also using the belief base as a DLP. We also didn’t give an adequate
solution for conflicting intentions, since it would probably be also necessary to
analyze the plans of the agent as well as its resources [18] to be able to conclude
which goals to commit to.

Further investigation could also be done to solve possible conflicts in the so-
cial point of view of the agent. For example, if the agent considers the opinion
of his mother and father equally, it would be necessary to have a mechanism
to solve the conflicts since the agent doesn’t prefer any one of them more than
the other. [10] introduces the concept of Multi Dimensional Dynamic Logic Pro-
gramming (MDLP) that could represent an agent’s social point of view. Further
investigation could be made in trying to incorporate the social point of view of
an agent as a MDLP in our agent framework.

Even though this is still a preliminary report, we believe that DLP is a
promising approach in which to represent the declarative goals of an agent,
since it easily allows for the representation of the various aspects associated with
agents’ goals, and their updates, while enjoying a formal well defined semantics.

128

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle
for semantics of dynamic logic programming. Studia Logica, 79(1), 2005.

2. J. J. Alferes, J. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45(1-3):43–70, 2000.

3. M. Bratman. Intentions, Plans and Practical Reason. Harvard University Press,
1987.

4. M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-
agent systems in 3APL. In Multi-Agent Programming: Languages, Platforms and
Applications, chapter 2. Springer, 2005.

5. F. Dignum and R. Conte. Intentional agents and goal formation. In Intelligent
Agents IV, volume 1365 of LNAI, pages 231–243, 1998.

6. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming with declarative goals. In Intelligent Agents VII, volume 1986 of
LNAI, pages 228–243. Springer, 2000.

7. N. R. Jennings, T. J. Norman, P. Faratin, P. O’Brien, and B. Odgers. Autonomous
agents for business process management. Applied Artificial Intelligence, 14(2):145–
189, 2000.

8. J. Leite. Evolving Knowledge Bases. IOS press, 2003.
9. J. Leite. On some differences between semantics of logic program updates. In

IBERAMIA’04, volume 3315 of LNAI, pages 375–385. Springer, 2004.
10. J. Leite, J. J. Alferes, and L. M. Pereira. On the use of multi-dimensional dynamic

logic programming to represent societal agents’ viewpoints. In EPIA’01, volume
2258 of LNAI, pages 276–289. Springer, 2001.

11. J. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming
agent architecture. In Intelligent Agents VIII, volume 2333 of LNAI. Springer,
2002.

12. J. Leite and L. M. Pereira. Generalizing updates: From models to programs. In
LPKR’97, volume 1471 of LNAI, pages 224–246. Springer, 1998.

13. Á. F. Moreira, R. Vieira, and R. H. Bordini. Extending the operational semantics
of a BDI agent-oriented programming language for introducing speech-act based
communication. In DALT’03, volume 2990 of LNAI, pages 135–154. Springer, 2004.

14. V. Nigam and J. Leite. Incorporating knowledge updates in 3apl. In PROMAS’06,
2006.

15. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting & avoiding interference
between goals in intelligent agents. In IJCAI’03, pages 721–726. Morgan Kauf-
mann, 2003.

16. B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J. Ch. Meyer. Dynamics of
declarative goals in agent programming. In DALT’04, volume 3476 of LNAI, pages
1–18, 2004.

17. M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Semantics of declarative
goals in agent programming. In AAMAS’05. ACM Press, 2005.

18. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and pro-
cedural goals in intelligent agent systems. In KR’02. Morgan Kaufmann, 2002.

19. M. Wooldridge. Multi-agent systems : an introduction. Wiley, 2001.

129

A Collaborative Framework to realize Virtual
Enterprises using 3APL

Gobinath Narayanasamy1, Joe Cecil2, and Tran Cao Son1

1Computer Science Department
New Mexico State University, USA
{gonaraya,tson}@cs.nmsu.edu
2 Department of Industrial Engineering
New Mexico State University, USA

jcecil@nmsu.edu

Abstract. In this paper, we propose a collaborative framework to realize a Vir-
tual Enterprise (VE) for the domain of Micro Assembly. The framework is de-
veloped using 3APL technologies [5] and employs the idea of viewing Web-
Service composition as a planning problem [10]. We describe the implementa-
tion of the framework and experiment with two micro assembly work cells.

1 Introduction

In today’s business world, being innovative and withstanding competitive pressure
from contemporary business vendors are a key to success for any business vendors.
With dynamic nature of consumer demands, business vendors often need a sophisti-
cated mechanism to tap those momentous market demands. One such mechanism
which will facilitate as well as satisfy the business vendors need is the concept of a
Virtual Enterprise (VE). A VE is a conglomeration of different business vendors un-
der one hood (to meet the market demands arising from consumers) by sharing their
own resources and expertise, which – sometime – cannot be provided by a single
business vendor. Each of the business vendors participating in a VE has different
resource capabilities. Here a resource is anything that is necessary for the production
of a product. It can be a machine, a software program, a component, a service, etc.
Each resource might have a cost associated with it. Furthermore, there might be a
resource, which can be used in the assembly of a product and is available in several
places. The diversifying nature of a VE causes heterogeneity which slows down the
process of forming collaborations among the vendors.

Our goal is to develop a framework that facilitates collaborations and seamless
flow of information exchange among the partners in a VE. We explore this idea using
the agent technologies provided by the 3APL framework [5].

We develop a prototype VE using the proposed collaborative framework in the
Micro Assembly domain. Micro Assembly is the domain where parts in micron sizes
are assembled using computer enabled micro assembly work cells. We target this
domain for the following reasons: (i) it is considered as a better alternative to Micro

130

Electro Mechanical Systems (MEMS) where parts having varying material properties
cannot be manufactured; (ii) it is a completely new methodology for developing prod-
ucts in manufacturing sector, and hence, not many business vendors possess the whole
range of tools and resources to accomplish micro assembly related tasks such as micro
assembly planning, simulation and actual physical implementation; and (iii) each
business vendor possesses different micro assembly resources which – when used
together – can accomplish most of the customer requests related to Micro Assembly.

As many parts in the Micro Assembly domain are assembled using computer pro-
grams and the VE is virtually available on the internet, we need a multi-agent devel-
opment platform in which agents with various capabilities can be created. Each agent
should have their own belief, capabilities, goals, and rules for reasoning. This platform
should also facilitate the agent communication and collaboration. This is the reason
why we choose 3APL as our implementation platform.

The paper is organized as follows: Section 2 provides a review of some past and
recent developments of Virtual Enterprises using agent based approaches. Section 3
highlights the 3APL framework. Section 4 describes the collaborative system design.
Section 5 discusses the development of collaborative framework using 3APL. Section
6 discusses VE formation for Micro Assembly domain using the proposed collabora-
tive framework and Section 7 is the conclusions.

2 Literature Review

In this section, background information about virtual enterprises as well as a review
of agent based systems is provided. Other issues such as agent communications, agent
interaction protocols, and distributed problem solving approaches in agent based sys-
tems are also discussed.

In [12], it is observed that Co-operative or Concurrent Engineering (CE) techniques
are the reason for forming collaborative working environment among company levels.
In [3], a consortium of companies is called a Virtual Enterprise (VE) which allows for
the development of a working environment to manage all or part of different resources
towards achieving a common goal. Common information definition and sharing prob-
lem while forming Virtual Enterprises are discussed in [4]. The paper also discusses
the issues of interaction among the companies that will agree upon a contract to form
virtual enterprise.

In [8], the concept of forming Virtual Enterprises using agent based systems is pro-
posed. In this conceptualization, partners of a virtual enterprise are considered as
software agents. This paper also discusses different agent communication protocols
such as KQML and KIF. A significant agent communication protocol proposed by US
Defense Advanced Research Projects Agency’s (DARPA) Knowledge-Sharing Effort
known as Knowledge Query Management Language (KQML) is presented in [7]. The
language includes variety of primitives, assertives, and directives which allow agents
to query other agents, subscribe to other agents services, or find other agents for dis-
tributed problem solving. KQML assumes that each agent is built with its own knowl-
edge bases. This allows other agents to extract information from the knowledge base

131

of that particular agent. In the context of micro assembly, a sample KQML message
between two agents, Path_Planner and Service_Locater, the former requests the latter
for information about providers of a certain service with the help of ontological in-
formation is

(tell :sender Path_Planner :receiver Service_Locater
:ontology Micro_Assembly_ontology content publish(Service)).

In [6], Knowledge Interchange Format is emphasized. KIF is a language for inter-
changing knowledge between heterogeneous programs. KIF has a declarative seman-
tics which allows agents to understand a KIF representation without any interpreters.
It allows expressing arbitrary sentences using first order predicate calculus. It has
constructs to represent knowledge in the domain, represent non monotonic reasoning
rules and define objects, functions and relations. KIF has been employed in the devel-
opment of the Process Specification Language (PSL), a language specifically designed
to facilitate correct and complex exchange of process information among manufactur-
ing systems [13].

In [10], it is observed that web services markup will allow agent technologies to
efficiently capture the ‘meta’ data associated with the services and reason about them.
This paves way for agent technologies to perform automated web services discovery,
execution, composition and interoperation. In automated web services discovery, the
software agent automatically discovers the web services based on user constraints,
which is performed manually in the current World Wide Web (WWW). In automated
web services execution, the software agent discovers the web services based on user
constraints, understands the requirements for the services, and executes them auto-
matically. In automated web services composition and interoperation, the software
agent selects the required web services, compose and interoperate them to accomplish
the requested complex task.

In [11], a need is identified to automate the process of discovering, executing,
composing, and monitoring services. Automation refers to no human intervention and
allows for the use of software agents. For a software agent to automatically process
and execute a service, a machine understandable description of the service is required.
One such language which provides descriptions that are machine understandable is
OWL-S which is evolved as a collaborative work of BBN Technologies, Carnegie
Mellon University, Nokia, Stanford University, SRI International, and Yale Univer-
sity.

In [2], the importance of using ontologies in manufacturing domain is explained.
The paper emphasis on the need for developing richer ontological structures especially
to the manufacturing domain so that more sophisticated intelligent applications can be
developed.

3 3APL Language

An Abstract Agent Programming Language (3APL) developed at Universiteit
Utrecht is a new agent oriented programming language for developing agents with

132

cognitive capability, as given in [5]. The language comes with programming con-
structs that allows developing agents with complex mental states. A 3APL agent de-
veloped using this language is a tuple of the form <B, G, P, A> where,

• B is Belief base,
• G is Goal base,
• P is a set of Practical reasoning rules and
• A is an Action base.

Each of this component is briefly explained next.

3.1 Belief Base

A belief base encodes the agent knowledge about its operating environment and is
a set of first order sentences. For example, a belief that a robot at room A is repre-
sented by the atom at(Robot, RoomA); other belief that a robot is not at the room x
then it is at the room next to x is expressed by the sentence1 ∀x,y(¬at(Robot,x) ∧ nex-
tto(x,y)⇒ at(Robot,y)). Notice that a belief base can contain non-grounded sentences.

3.2 Goal Base

A goal base consists of goals-to-do goals. 3APL considers goals of procedural
type. Under this view, a goal can be considered as an imperative program. A goal
defines a plan of actions for an agent to execute. The language allows for the defini-
tion of simple and complex goals.

Simple goals (also called basic goals) are of three types: basic action, test goal, and
achievement goal. For example, a simple goal like inquireUDDI() allows an agent to
inquire the UDDI registry.

Complex goals (also called composite goals) are composed from basic goals and
are used to specify complex actions such as sequences of actions, disjunctive goals, or
non-deterministic choices, etc. Conventional programming constructs such as ‘;’ and
‘+’ are used to create complex goals. For example, “goal1; goal2” defines a sequence
of goals and “goal1+goal2” defines a disjunctive goal.

3.3 Practical Reasoning Rules

A 3APL agent can manipulate its goals by using practical reasoning rules. These
reasoning rules allow an agent to find plans, which help him/her achieve its goals.
They also allow the agent to monitor its goal base. These rules facilitate the practical
reasoning which an agent can use to decide (i) to adopt a plan for achieving a goal;
(ii) to revise a plan if necessary. The set of practical rules is built from semi-goals and
first order formulas where semi-goals are defined similar to goals using a new set of
variables.

1 The sentence might or might not be valid.

133

A practical reasoning rule is of the form
 π ← φ | π’,

where

• π is the head of a the rule,
• φ is the guard of the rule and
• π’ is the body of the rule,
• Global variables are free first order variables in the head of the rule, and
• Local variables are non global first order variables in the body of a rule.

A practical rule π ← φ | π’ says that if the agent adopts some goal or plan π and be-
lieves that φ is true, then it may consider adopting π’ as a new goal.

3.4 Action Base

Action base defines the set of primitive actions (or basic actions) that an agent can
execute. This set of basic actions defines the capabilities of an agent with which an
agent can change its mental state of belief about its working environment.

4 Framework Design

We follow the idea behind the design of this system follows the model proposed in
[8] and [9]. We view each partner in a VE as an agent who has its own knowledge
about the environment, its actions (basic and complex), its set of practical rules, and
its own goals. A VE is a collection of agents who collaborate to achieve a common
goal. As we have discussed above, most activities in the Micro Assembly domain are
controlled by computer programs. As such, each partner is implemented as a software
agent who can offer their services (or actions) to others. Our framework facilitates the
communication between agents and allows users of the system to simulate the VE. The
overall design of our framework is depicted in Figure 1.

Central to our system is a central manager agent which is a 3APL agent. This agent
facilitates the communication between different agents and creating solutions for us-
ers’ requests.

An agent can advertise its services in a service directory, which is implemented as
a part of our system. A 3APL service directory agent provides other agents in the
system the capability to find service provider(s) that can satisfy their needs. This agent
communicates with other agents through the agent manager. In our implementation,
each service is specified by its inputs and its execution method.

One issue in a collaborative framework is the semantically differences between dif-
ferent agents. This is also an issue in our framework. We follow others by addressing
this issue using ontologies and develop ontologies for the Micro Assembly domain.
To incorporate ontologies into our system, a 3APL agent is developed. This agent also
communicates with other agents through the agent manager. We call this the meta-
information of services.

134

We note that in [1], design and development of ontologies for physical devices are

explained.

Figure 1. Collaborative System for Virtual Enterprise

5 Framework Implementation

This section discusses the implementation of the collaborative framework as
shown in Figure 1. It consists of following agents:

1. User Agent
2. Virtual Enterprise Agent (or Enterprise Agent Manager)
3. Ontology Agent
4. Service Directory Agent and

135

5. Service Provider Agents
All these agents are implemented using 3APL and they run in 3APL platform.

Plug-in programming construct is provided by 3APL platform so that agents can use
the plug-in as their working environments and access the methods available in them.
With the help of plug-ins, agents in 3APL platform can access the external JAVA
methods, virtually allowing an agent to execute a service provided by another agent.
For each agent in the our system, an associated plug-in is developed to assist the for-
mation of Virtual Enterprise in real time. Detailed descriptions of 3APL agents used in
the collaborative system are given below.

5.1 User Agent

User Agent provides the user interface to the collaborative system. This agent is
probably the simplest agent in the system. It acts on behalf of real world entities such
as human users, software applications, or even other business vendors who may need
to accomplish a task.

5.2 Virtual Enterprise Agent

The Virtual Enterprise Agent coordinates the various activities in the collaborative
framework. It is responsible for processing users’ requests (from the user agent) and
providing an initial solution (i.e. plan) for these requests. In the course of finding this
solution, it queries the Ontology agent for meta-information and uses this information
to find a list of best available service providers by querying the Service Directory
agent.

The Virtual Enterprise Agent also serves as a search engine for other agents who
need to find service providers for their own needs. Figure 2 shows a view of collabo-
rative framework implemented in 3APL platform with developed plug-ins and partici-
pating software agents

136

 Figure 2. Collaborative System for VE using 3APL

5.3 Ontology Agent

The Ontology Agent in the collaborative system provides the necessary meta-
information for the VE agent to further process the input from the user agent. For
demonstration purpose, some sample ontologies are created using Stanford’s Protégé
editor. Figure 3 displays a part of the ontology developed for the Micro Assembly
domain.

The ontologies developed for the collaborative system are deployed in a Tomcat
web server. Any modifications to the existing ontologies are done through the ontol-
ogy agent. This is achieved by means of a Ontology plug-in developed to assist the
ontology agent. Ontology plug-in contains some basic functions for querying and
modifying existing ontologies.

137

Figure 3. Sample Ontology

5.4 Service Directory Agent

The Service Directory Agent in the collaborative system is used to maintain a ser-
vice directory where service provider agents will publish their services. This will
facilitate other agents in the collaborative system, especially VE agents, to access the
available services and use them to process the user agent’s input. Oracle UDDI regis-
try is used as the service directory in this collaborative system. Oracle UDDI registry
comes along with the Oracle Application Server 10g. In this UDDI registry, instead of
saving normal WSDL descriptions for services, OWL-S descriptions of services are
saved. Requests from other agents for available services in the UDDI registry are
made through this service directory agent. A service directory plug-in is developed for
the agent to accomplish this task. The plug-in is developed with methods to connect to
the service directory, publish OWL-S services in the service directory and inquire for
available services. A screen shot of oracle UDDI registry is shown with some sample
services is shown in Figure 4.

5.5 Service Provider Agent

Real business services in the collaborative system are provided by the service pro-
vider agents. Services provided by these agents range from software resources to ac-
tual physical implementation. Along with describing the service capabilities, the con-
figurations of actual physical implementations are also described using OWL. A sam-

OWL :
THING

Area

Manufac-
turing

Micro
Assembly

Micro
Devices

Micro
Assembly

Tech-

Micro
Assembly

Lifecycle

Micro
Manipulators

Micro
Positioners

Life Cy-
cle

Design Process
Planning

Imple-
mentation

138

ple OWL description of a physical work cell can be accessed at
http://128.123.245.156:9090/ontology/Device.owl

Figure 4. Oracle UDDI registry showing sample services for the collaborative system

This allows the Virtual Enterprise agent to know more about the actual hardware

implementation of devices. The collaborative system contains multiple service provid-
ers who will serve the needs of a user agent. Publication of services by these agents is
accomplished through the service directory plugin, which provides methods for pub-
lishing the services into the UDDI registry.

6 Example Scenario

In this section, an example scenario is provided from the Micro Assembly domain
to the collaborative system. Micro Assembly is considered as an alternative to MEMS
based product development, where it is difficult to manufacture a product with differ-
ent parts having varying properties. As explained in previous sections, it is completely
a new area of product development where business vendors have limited number of

139

sophisticated infrastructures and resources to accomplish a complete micro assembly
based product development. In this application scenario, a user agent wants to assem-
ble various micron sized parts (for eg. cams) on micron sized pins. Here, the goals of
user agent are identification and formation of partnerships with potential business
vendors and execution of their associated services.

Figure 5. Interactions among the agents in the collaborative system

Possible interactions that will happen in this collaborative framework are listed be-
low (refer to figure 5) and are elaborated subsequently.

1. Interactions between Service Directory Agent and Service Provider Agents.
2. Interactions between Virtual Enterprise Agent and Ontology Agent.
3. Interactions between Virtual Enterprise Agent and Service Directory Agent.
4. Interactions between User Agent and Virtual Enterprise Agent.
5. Interactions between Service Provider Agents and User Agent.

6.1 Service Directory Agent �������� Service Provider Agents

To demonstrate this interaction, a set of service provider agents have been designed
and implemented. These include service directory agents capable of providing

1. Services based on software applications such as assembly sequence generators,
3D path planners and virtual prototyping and analysis Environments
2. Services based on actual physical resources such as micro assembly work cells.

140

A brief description of some of these resources is provided along with their OWL
and OWL-S descriptions.

In order to assemble micron sized parts on micron sized pins, two micro assembly
work cells as shown in figure 6, having different assembling capabilities are designed
and developed. An ontology is developed to describe the capabilities in terms of work
cell specifications. For example, work cell 1 is developed with gripper having the
capability of assembling pins and cams in the size range of 100 – 200 microns (diame-
ter) and a few millimeters in length. Due to the page limit, all OWL descriptions and
grounding files necessary for the operation of the example are omitted. They are ac-
cessible from http://web.nmsu.edu/~gobinath/file.htm.

The maximum and minimum gripping force exerted by the gripper on its target
object and its operating conditions are also described by an OWL element. The type
of parts that the gripper can handle is given by the following OWL element

<parts_it_handle rdf:resource="#Cams"/>
<parts_it_handle rdf:resource="#Pins"/>

Similar to first micro assembly work cell, the second micro assembly work cell
with tweezers is also described using OWL. This can be accessed at the URL
http://128.123.245.156:9090/mawc2.owl. Figure 6 display two work cells used in our
experiment. �

�

Figure 6. Micro Assembly Work Cells (Left: Work Cell 1, Right: Work Cell 2)

The assembly services of these two micro assembly work cells are made available
as web services. As the assembly service requires physical components (cams and pins
in this case) to be assembled, a software validation program is developed to validate
the dimensions of input components with the capability of the respective micro as-
sembly work cell. For example, in micro assembly work cell 1, the validation program
validates the input by comparing the dimensions of the gripper and the parts to be
assembled. If the validation program returns the positive results, further steps will be
taken to ship the parts to the respective work cell location. This validation program is
also made available as web services whose grounding information in OWL-S format is
given in the above mentioned URL.

W ork p iece
Suppo rting
platen

M icro stages

G ripper unit

W ork p iece
Suppo rting
platen

M icro stages

G ripper unit

141

Apart from the work cells, virtual prototyping environments have been developed
which form part of the VE resources. Figure 7 provides a snapshot of two virtual
environments, which can be used to study alternates assembly and path plans, etc. �

�

Figure 7. Different Virtual Environments (Virtual Environment 1, Virtual Environment 2)

These virtual environments are also accessible via web services. Service grounding
information for one of the these VEs is described in OWL-S format and is available at
http://web.nmsu.edu/~gobinath/file.htm.

Some of the software resources within the collaborative framework include micro
assembly sequence generators as well as 3D path planners. Grounding information for
one of the micro assembly sequence generators (determining an optimal sequence of
assembling a target set of micro parts) using Genetic Algorithm is detailed below in
3APL format.

Sample message transfers that will take place during the interaction between a ser-
vice provider agent (say, Micro Assembly Work Cell Provider) and the service direc-
tory (SD) agent while publishing a service are listed below:

Send(SD_Agent, inform, publish ()),
Send(SD_Agent, inform, serviceName (Micro Assembly Work Cell)),
Send(SD_Agent, inform,
 serviceDescription (http://128.123.245.156:9090/ontology/Implementer.owl))
Send(SD_Agent, inform, requires (path planning))
Send(SD_Agent, inform, requires (simulation))

After receiving these messages from the service provider agent, service directory
agent publishes the service in the Oracle UDDI registry.

6.2 User Agent �������� Virtual Enterprise Agent

In this interaction, the user agent sends the input requirements to the virtual enter-
prise agent. Below are some sample input requirements to the VE agent:

142

Send (VE_Agent, inform, domain (Micro_Assembly)),
Send (VE_Agent, inform, input ()),
Send (VE_Agent, inform, radius (pin1, 0.5)),
Send (VE_Agent, inform, radius (pin2, 0.5)),
Send (VE_Agent, inform, radius (pin3, 0.5)),
Send (VE_Agent, inform, radius (cam1, 0.6)),
Send (VE_Agent, inform, radius (cam2, 0.6)),
Send (VE_Agent, inform, radius (cam3, 0.6)),
Send (VE_Agent, inform, goal ()),
Send (VE_Agent, inform, on (cam1, pin1)),
Send (VE_Agent, inform, on (cam2, pin2)),
Send (VE_Agent, inform, on (cam3, pin3))

This sequence of message states that the user would like to assemble three pins (pin1,
pin2, pin3) of radius 0.5 into three cams of radius 0.6 by placing pin1 on cam1, pin2
on cam2, and pin3 on cam3.

6.3 Virtual Enterprise Agent �������� Ontology Agent

For the VE agent to process users’ request, it needs to create a plan for doing it and
who can provide the necessary services required to execute this plan. This information
is available in the meta-information managed by the Ontology agent. The VE agent
first queries the Ontology agent for meta-information about the services available in
the system and devises a plan to achieve the goals of the users (as done in [10]).

In our experimental scenario, ontology for the Micro Assembly domain is devel-
oped and deployed in a Tomcat Application Server (refer to Figures 2 and 3). Some
sample 3APL messages for this interaction are given below

Send (Ontology_Agent, inform, queryForMeta (Micro_Assembly))
Send (Ontology_Agent, inform, whatis (pin1))
Send (Ontology_Agent, inform, whatis (cam1))

Once the Ontology Agent receives the input from the VE agent, the Ontology

Agent processes the input to find the corresponding ontology (in this case the ontology
of Micro Assembly domain) and queries the ontology to find possible relationships
between the input and the concepts it contained using the ontology plug-in. For sample
input messages from VE agent, the ontology agent responds by sending the following
messages,

Send (VE_Agent, inform, metaInfo (Micro_Assembly))
Send (VE_Agent, inform, steps ())
Send (VE_Agent, inform, physical_implementation ())
Send (VE_Agent, inform, planning ())
Send (VE_Agent, inform, simulation ())
Send (VE_Agent, inform, isObject (pin1, true))
Send (VE_ Agent, inform, isObject (cam1, true))

143

6.3 Virtual Enterprise Agent �������� Service Directory Agent

With the meta information and the original input, the VE agent now requests the
service directory agent for service providers. The sample messages of this interaction
are given below.

Send (SD_Agent, inform, serviceProviderfor (physical_implementation))
Send (SD_Agent, inform, serviceProviderfor (planning))
Send (SD_Agent, inform, serviceProviderfor (simulation))

After receiving these messages, the service directory agent searches the UDDI reg-

istry for available service providers. In a UDDI registry, there may be more than one
service provider who can serve the user agent’s input request. Those service providers
are known as potential partners in VE context. From the list of potential service pro-
viders, the service directory agent should choose one best service provider for the user
agent. Before the selection of a best service provider, the Service directory agent will
check for the requirements for each of the potential service providers. The require-
ments for a service provider may be correct inputs or even some services from other
service providers. If all the requirements of a service provider are satisfied and it also
satisfies the requirements of user agent, the service directory agent will announce the
service provider as best partner. If user agent’s requirement does not match with the
service providers’ requirements, then service directory agent will announce the un-
availability of service providers. After finding the service providers, the service direc-
tory agent returns the access point URLs of each of the identified business vendors to
the VE agent. Message transfers during this interaction are

Send (VE_Agent, inform,
accessPointURL (http://128.123.245.156:9090/ontology/Implementer.owl)),

Send (VE_Agent, inform,
accessPointURL (http://128.123.245.156:9090/ontology/planning.owl)),

Send (VE_Agent, inform,
accessPointURL (http://128.123.245.156:9090/ontology/simulator.owl)),

The resulting access point URLs are then sent to User Agent for execution.

6.5 Service Directory Agent �������� User Agent

After obtaining the access point URLs of service provider agents, the User agent
executes the services available at the service provider sites.

144

7 Conclusion and Future Work

In this paper, a collaborative system is developed to form a Virtual Enterprise for
the domain of Micro Assembly. 3APL language is used to develop the agents which
constitute the collaborative system. Ontology for Micro Assembly domain is devel-
oped to provide a common ground to share the information contained in it among the
agents. Although it is still an ad-hoc development, this prototypical system demon-
strates that agent technologies can be very useful in VE development, a rather new
area to agent researchers. In the future, we would like to study and develop method-
ologies for a systematic development of VE in the Micro Assembly domain.

References
1. Bandara, A., Payne, T., Roure, D., Clemo, G., An Ontological Framework for Semantic

Description of Devices, ISWC 2004, Poster Session, Hiroshima, Japan, 7 - 11 Nov 2004.

2. Borgo, S., P. Leitão, The Role of Foundational Ontologies in Manufacturing Domain
Applications, R. Meersman, Z. Tari et al. (eds.) OTM Confederated International Confer-
ences, ODBASE 2004, Ayia Napa, Cyprus, 2004, LNCS 3290, pp. 670-688.

3. Camarinha-Matos, L. M., Asfarmanesh, H., Virtual Enterprise Modeling and Support
Infrastructures: Applying Multi-Agent System Approaches in Multi- agent Systems and
Applications, in LNAI 2086, Springer, July 2001.

4. Hardwick, M., Spooner, D. L., Rando, T., and Morris, K. C. 1996. Sharing manufacturing
information in virtual enterprises. Commun. ACM 39, 2 (Feb. 1996), 46-54.
http://doi.acm.org/10.1145/230798.230803

5. Hindriks, K. V., De Boer, F. S., Van Der Hoek, W., and Meyer, J.-J. Ch. Agent Pro-
gramming in 3APL, Autonomous Agents and Multi-Agent Systems, ACM, 2:4, 357–401,
1999.

6. Genesereth, M. R. and Fikes, R. E. Knowledge Interchange Format (KIF) Version 3.0,
Reference Manual.

7. Munindar P. Singh. Agent Communication Languages: Rethinking the Principles, Com-
puter, vol. 31, no. 12, pp. 40-47, December, 1998.

8. Petersen, S. A., Gruninger, M., An Agent-based Model to Support the Formation of Vir-
tual Enterprises, Int. ICSC Symposium on Mobile Agents and Multi-Agent in Virtual Or-
ganizations and E-Commerce (MAMA ‘2000), in Australia, 11-13 Dec. 2000.

9. Petersen, S. A., Rao, J., Matskin, M., AGORA Multi-agent Architecture for Implementing
Virtual Enterprises, Norsk Informatikkonferanse NIK2003, Oslo, Norway, 2003.

10. McIlraith, S., Son, T. C., and Zeng, H. Semantic Web Services, IEEE Intelligent Systems,
vol. 16, no. 2, pp. 46-53, March/April, 2001.

11. The OWL Services Coalition, “OWL-S: Semantic Markup for Web Services”,
http://www.daml.org/services/owl-s/1.0/owl-s.html.

12. Wilbur, S., Computer Support for Co-operative Teams: Applications in Concurrent Engi-
neering, IEEE Colloqium on Current Development in Concurrent Engineering Method-
ologies and Tools, June 1994.

13. M. Grüninger and C. Menzel. The Process Specification Language (PSL) Theory and
Applications, AAAI Magazi, 63-74, Fall 2000.

145

A Modelling Framework for Generic Agent Interaction
Protocols

Jośe Ghislain QUENUM2, Samir AKNINE1, Jean-Pierre BRIOT1, and
Shinichi HONIDEN2

1 Laboratoire d’Informatique de Paris 6,
8 rue du Capitaine Scott, 75015 Paris, France

2 National Institute of Informatics
2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

Abstract. This paper presents a framework to represent generic protocols. We
call generic protocols, agent interaction protocols where only a general behaviour
of the interacting entities can be provided. Our framework is grounded onthe
AUML graphical formalism. From this formalism, we identified five fundamental
concepts on top of which we defined the formal specifications for the framework.
We address a lack in protocol representation by emphasising the description of
actions performed in the course of interactions based on generic protocols. The
framework is formal, expressive and of practical use. It helps decouple interaction
concerns from the rest of agent architecture. Several application levels exist for
our framework. First, we used it to address two issues faced in the design of agent
interactions based on generic protocols. At a more concrete level, this framework
can be used to publish the protocols agent interactions are based on in a multi-
agent system.

1 INTRODUCTION

Interaction is one of the key aspects in agent-oriented design. It allows agents to put
together the necessary actions in order to perform complex tasks collaboratively. The
coordination mechanism needed for a safe execution of theseactions is often governed
by a sequence of message exchanges: interaction protocols.Usually, only a general
description of how agents should behave during the interactions is provided. Such pro-
tocols are called generic protocols. An issue in open and heterogeneous multi-agent
systems (MAS) is concerned with the description of generic protocols, especially with
respect to their correct interpretation. A subsequent issue is the need to decouple inter-
action concerns from the rest of agent architecture.

To date, there has been some endeavour to develop new protocol representation for-
malisms. The formalisms developed thus far have several drawbacks. They usually fo-
cus on data exchange through a communication channel (Promela/SPIN [7]). Some oth-
ers are either informal (or semi-formal) (e.g., AUML [1]) ordemand advanced knowl-
edge in logics (e.g., the formal framework in [10]). Therefore, there is an obvious need
for a formal, yet practical and expressive generic protocolrepresentation framework.
Additionally, such a framework should provide the buildingblocks to help decouple the

146

interaction concerns from the rest of agent architecture. We address this need in this
paper.

The solution we arrived at is a framework for the descriptionof generic protocols.
It complies with most of the criteria required of a conversation policy in [6]. The phi-
losophy of our framework is to start from AUML, which is a wellestablished agent in-
teraction representation formalism. But we depart from AUML by addressing the lacks
and incompleteness which limit it. A common trend in protocol representation con-
sists of describing only the sequence of message exchanges.However, some actions are
needed to produce these messages and handle them when received. As we will see later,
some actions might be executed beyond the communication level during an interaction.
Thus, in addition to the description of message exchange, our framework introduces the
description of actions needed in the course of an interaction. This provides us with the
ability of describing the behaviour agents will exhibit while playing a role in a protocol.
A particular aspect in our framework is our focus on generic protocols. This keeps us
from providing a complete representation for actions. We introduced action categories
to fix this weakness.

Our framework offers several advantages. It builds on the graphical representation
in AUML, which eases the message exchange perception for human designers. In ad-
dition, it offers the means to depict what happens beyond themessage exchange level.
The framework is expressive, formal and of practical use forprotocol representation.
Particularly, we offer at least the same expressiveness as in AUML (and its extensions)
without introducing new control flows. Rather, we only use event description and (if
necessary) three connectors:and, or andxor. We also ease the implementation of pro-
tocols in our framework by providing a XML representation. As an application, we
used our framework to address two issues in agent interaction design of open and het-
erogeneous MAS: (1) an automatic derivation of agent interaction model from generic
protocol specifications, in order to address the issue of consistency during interactions
based on generic protocols in an heterogeneous MAS; and (2) an analysis of generic
protocol specifications in order to enable agents to dynamically select protocols when
they have to perform a task in collaboration. A more practical usage of our framework
is the possibility to publish protocol specifications for agent interactions in a MAS.

The remainder of this paper is organised as follows. Section2 discusses some re-
lated work. Section 3 introduces the fundamental concepts we use in the framework and
presents both the specifications and their semantics. Section 4 discusses some properties
one can check for a protocol represented following this framework. Finally, section 5
concludes the paper.

2 RELATED WORK

Several formalisms have been developed to represent interaction protocols. In this sec-
tion, we discuss the most suitable ones for agent interaction.

AUML [1] and its extensions are graphical frameworks for protocol diagram rep-
resentation. These frameworks, though practical and easy to use, are informal (or semi
formal). It is then hard to check properties or even define thesemantics of a protocol
represented in these formalisms. [15] and [2] automate the translation process from

147

AUML to a textual description, which is more machine readable. The advantage of this
automatic translation, though undebatable, is weakened bymany other AUML original
limitations, f.i., the lack of emphasis on action representation in protocol representation.

Some formal frameworks have been proposed for protocol representation. [14] de-
fined a framework using concepts similar to ours. However, inour case agents are not
represented in protocol specifications. They are expected to play (in a protocol config-
uration and instantiation standpoint) roles at runtime. [10] made significant advances
in the area of protocol representation for agent interaction. This work developed a for-
mal framework which combines Propositional Dynamic Logic and belief and intention
modalities (PDL-BI). The framework covers a broad spectrumof issues related to agent
interactions. However, it requires advanced knowledge in logics. In our opinion, logics
is useful to define the semantics and check some properties for protocols. But due to the
complexity it may introduce, we believe that it should be hidden at the specifications
stage, as usually done in programming languages. Additionally, PDL-BI focuses on the
messages exchange. But, as we showed above, agent interaction protocols demand more
than message exchange.

IOM/T [3] is a more recent language for interaction representation. Our work,
though sharing some similarities with IOM/T, departs from it on the following points.
Firstly, we focus on generic protocols, where we consider generic actions. Secondly,
the behaviour of the agents in IOMT/T (the actions they perform) is not associated with
the events which occur in the MAS. Thirdly, the language is Java-like. However, we
believe that a protocol description language is supposedlya declarative one. Especially
for open and heterogeneous MAS. We address this need in this paper by developing a
formal framework for generic protocols representation. Our framework is a declarative
language and offers expressiveness as well as ease of use.

3 THE FRAMEWORK

We introduce the fundamental concepts our framework is based on. Then, we present
the specifications and the semantics of these concepts.

3.1 FUNDAMENTAL CONCEPTS

Our framework is based on the AUML protocol diagram. Thereof, we identified five
fundamental concepts:protocol, role, event, actionandphase. A graphical illustration
of these concepts is given in Fig. 1.

Definition 1. Protocol
A protocol is a sequence of message exchanges between at least two roles. The ex-

changed messages are described following an Agent Communication Language (ACL)
e.g., FIPA ACL [5], KQML [9].

More formally, a protocol consists of a collection of rolesR, which interact with
one another through message exchange. The messages belong to a collectionM and
the exchange takes place following a sequence,Ω. A protocol also has some intrinsic
propertiesΘ (attributes and keywords) which are propositional contents that provide

148

protocol

role: R1 role: R2

message1

message2

.

.

.

phase

action

event: message

 reception

message3

Fig. 1.Graphical illustration of concepts in generic protocols.

a context for further interpretation of the protocol. We note p
def
=< Θ,R,M,Ω >. In

Ω, the message exchange sequence, each element is denoted byrı
mk−−−−−−→

aα,mk−1

r, to be

interpreted as “the rolerı sends the messagemk to r, and thatmk is generated after
actionaα’s execution and the prior exchange ofmk−1”. Additional elements may be
introduced in this representation, but we do not discuss them in this paper.

Definition 2. Generic Protocol
A generic protocol is a protocol wherein the actions which are taken, to handle,

produce the contents of exchanged messages, etc. cannot be thoroughly described. A
complete description of these actions depends on the architecture of each agent playing
a role in the protocol.

Note that the attributes and keywords we use in the current version have been
identified from our experimentations. Currently, we only use three attributes:class,
return valueandparticipantscount. classis the type of processing performed through
the execution of an interaction based on this protocol (e.g., we userequestto denote
that the participant performs some task on behalf of the initiator). return value, when
any, depicts how the final result is represented.participantscountis the number of dis-
tinct participant roles in the protocol. As for keywords, several ones can be used in the
current version. For example,IncrementalProcessmeans that some partial results may
be considered for the ongoing process. Some more experiments are needed to extend
these attributes and keywords.

Each of the communicating entities is called a role. Roles are understood as stan-
dardised patterns of behaviour required of all agents playing a part in a given functional
relationship in the context of an organisation [4].

Definition 3. Role In our framework, a role consists of a collection of phases. As we
will see later in Section 3.2, a role may also have global actions (which are executed
outside all phases) and some data other than message content, variables.

∀r ∈ R, r
def
=< Θr,Ph,Ag,V >, whereΘr corresponds to the role’s intrinsic prop-

erties (e.g., cardinality) which are propositional contents that help further interpret the

149

role,Ph the set of phases,Ag the set of global actions andV the set of variables. The
roles can be of two types: (1)initiator, the unique role of the protocol in charge of
starting its execution; (2)participant, any role partaking in an interaction based on the
protocol.

The behaviour of a role is governed by events. An event is an atomic change which
occurs in the environment of the MAS. An informal description of the types of events
we consider in our framework is given in Table 1. A more formalinterpretation of these
events is discussed in Section 3.3. The behaviour a role adopts once an event occurs is
described through actions.

Event Type Description

Change The content of a variable has been changed.
Endphase The current phase has completed.
Endprotocol The end of the protocol is reached.
MessagecontentThe content of a message has been constructed.
Reception A new message has been received.
VariablecontentThe content of a variable has been constructed.
Custom Particular event (error control or causality).

Table 1.Event Types.

Definition 4. Action
An action is an operation a role performs while executing. This operation trans-

forms the whole environment or the internal state of the agent currently playing this
role. An action has a categoryν, a signatureΣ and a set of events it reacts to or pro-

duces. We notea
def
=< ν,Σ,E >.

Since our framework focuses on generic protocols, we can only provide a general
description for the actions which are executed in these protocols. Hence, we introduced
action categories to ease the definition of a semantics for these actions. Table 2 contains
an informal description of these categories. We discuss their semantics in Section 3.3.

Definition 5. PhaseSome successive actions sharing direct links can be groupedto-
gether. Each group is called a phase. Two actions share a direct link if the (or only a
part of them) input arguments of one are generated by the other (f.i. when asendaction
sends the message generated in a prior action).

3.2 FORMAL SPECIFICATIONS

The formal specifications are defined through a EBNF grammar.Only essential parts of
this grammar are discussed in this section. A thorough description of this grammar is
given in Appendix A. In sake of easy implementation of generic protocols, we represent

150

Action Type Description

Append Adds a value to a collection.
Remove Removes a value from a collection.
Send Sends a newly generated message.
Set Sets a value to a variable.
Update Updates the value of a variable.
Compute Computes a new information.

Table 2.Action categories.

them in XML in our framework. However, as XML is too verbose, asimpler (bracket-
based) representation will be used for illustration in thispaper.

RUNNING EXAMPLE We will use the Contract Net Protocol (CNP) [13] to illustrate
the specifications we present. The sequence diagram (protocol diagram in AUML) of
this protocol is given in Fig. 2. The labels placed on messageexchange arrows in the
figure are not performatives, but message identifiers.

ParticipantInitiator

X

X

X

Failure

Inform−Done

Inform−Ref

Cfp

Not−Understood

Refuse

Propose

Reject−Proposal

Accept−Proposal

[deadline]

Fig. 2.The Contract Net Protocol.

The rationale of the CNP consists of an initiator having someparticipants perform
some processing on its behalf. But beforehand, the participants which will perform the

151

processing are selected on the basis of the bids they proposed, in-reply to the initiator’s
call for proposals. When the selected participants are done with their processing, each
of them notifies the initiator agent of the correct execution(or error occurrence) of the
part it committed in performing.

PROTOCOL The following production rules define a protocol:
<protocol>:=<protproperties><roles><messagepatterns>

<protproperties>:=<protdescriptors><protattributes><protkeywords?>
<protdescriptors>:=<identifier><title><location>
<protattributes>:=<class><participantcount><return>
<protkeywords>:=<protkeyword+> <protkeyword>:=“IncrementalProcess”|...
An illustration of these rules is given as follows.

(protocol
(protocolproperties
(protocoldesc ident=’cnpprot’ title=’ContractNet’ location=’KqmlCnp.xml’)
(protocolattr class=’Request’ participantcount=’1’ return=’operationresult)
(protkeyws ’...’))

(roles ...)
(messagepatterns ...))

As one can see from these rules, the exchange sequenceΩ is not explicitly specified.
Actually, it is described throughsendactions in each role. When several messages can
be sent, we use connectorsand, or andxor to compose them.

ROLE Protocol diagrams only show the communication flow between roles. However,
there may be some information beyond the communication level. For example, in the
CNP, the action an initiator executes in order to make a decision upon the participants’
bids is hidden behind the communication flow. Actually, thisaction exploits information
from different participants of the protocol. Moreover, information like the deadline for
bidding, cannot be extracted from any message content. Then, we introduced a global
area for each role where we describe actions which are beyondthe communication flow,
as well as data which cannot be extracted from any message content. Note that actions
relevant to the global area are no more associated with any phase. The production rules
hereafter define a role.
<roles>:=<role><role>|<roles><role>
<role>:=<roleproperties><variables?><actions?><phases>
<roleproperties>:=<roledescriptors><roleattributes><rolekeywords?>
<roledescriptors>:=<identifier><name>
<roleattributes>:=<cardinality>
<variables>:=<variable+> <variable>:=<ident><type>
<actions>:=<action+>
Each role is described through its intrinsic properties (f.i., name and cardinality), its
variables (pieces of information the role handles which arenot extracted from any mes-
sage content), its global actions and the phases the non global actions are grouped in.

In the example below, theinitiator role of the CNP has three variables:deadline,
bidsCol anddeliberations. deadline contains the time when bidding should

152

stop.bidsCol is a collection where participants’ bids are stored.deliberations
contains the decision (accept or reject) the initiator madeupon each bid. Each variable
has an identifier and the type of the data it contains. The content of a variable is charac-
terised using some abstract data types. We also use these data types to represent message
content and action signature. String, Number and Char are some examples of the data
types we use in our framework. The description of these typesis out of the scope of this
paper. The only global action in this role is namedDeliberate. Through this action,
the initiator makes a decision upon the participants’ bids.Global actions are described
in the same way like local (located in a phase) ones: category, signature and events. The
description ofDeliberate explains itself from the example. The special wordeven-
tref is used here to refer to an event defined elsewhere (changeevent which occurred
against thebidsCol variable). As we will see later, this word sometimes introduces
causality between actions.

(role ident=’initiator’
(roleproperties (roledescriptors ident=’initiator’ name=’Initiator’)
(roleattributes cardinality=’1’))

(variables (variable ident=’bidsCol’ type=’collection’)
(variable ident=’deliberations’ type=’map’)
(variable ident=’deadline’ type=’date’))

(actions(action category=’compute’ description=’Deliberate’
(signature (arg type=’date’ dir=’in’)
(arg type=’collection’ dir=’in’)(arg type=’map’ dir=’out’))

(events (event type=’change’ dir=’in’ object=’deadline’ ident=’evt0’)
(eventref dir=’in’ ident=’evt5’)
(event type=’change’ dir=’out’ object=’deliberations’ ident=’evt1’))))

(phases ...))

PHASE As stated above, each phase is a sequence of actions that share some direct
links. We use the following rules to define a phase:
<phases>:=<phase+>
<phase>:=<actions>
<action>:=<category><description?><signature><events>
For example, in the initiator role of the CNP, the first phase consists of producing
and sending thecfp message. This phase contains two actions:prepareCFP and
sendCFP. prepareCFP produces thecfp message. It is followed bysendCFP
which sends the message to each identified participant.

(phase ident=’phs1’
(actions (action category=’compute’ description=’prepareCFP’

(signature(arg type=’date’ dir=’in’)(arg type=’any’ dir=’out’))
(events (event type=’variablecontent’ dir=’in’ object=’deadline’)
(event type=’messagecontent’ dir=’out’ object=’cfp’ ident=’evt2’)))

(action category=’send’ description=’sendCFP’
(signature (message ident=’cfp’))
(events(eventref dir=’in’ ident=’evt2’)
(eventref type=’custom’ dir=’out’ ident=’cus01’)
(event type=’endphase’ dir=’out’ ident=’evt3’)))))

MESSAGE Though we did not define messages as a concept, we use them in the
formal specifications because they contain part of the information manipulated during

153

interactions. The concept of message is well known in ACL, and their semantics is
defined accordingly.

We propose an abstract representation of messages, which wecall message patterns.
A message pattern is composed of the performative and the content type of the message.
We also offer the possibility to define the content pattern, aUNIX-like regular expres-
sion which depicts the shape of the content. Note that at runtime, these messages will
be represented with all the fields as required by the adopted ACL. In our framework,
we represent all the message patterns once in a block and refer to them in the course
of the interaction when needed. In our opinion, it sounds to constrain to the use of only
one ACL all along a single protocol description. The following rules define message
patterns.
<messagepatterns>:=<acl><messagepattern+>
<acl>:=’fipa’ |’kqml’
<messagepattern>:=<performative><identifier><content>
<content>:=<type><pattern?>
The example below describes the message patterns used in theCNP.

(messagepatterns acl=’Kqml’
(messagepattern performative=’achieve’ ident=’achmsg’
(content type=’any’ pattern=’...’))

(messagepattern performative=’sorry’ ident=’refuse’
(content type=’null’ pattern=’...’))

(messagepattern performative=’tell’ ident=’propose’
(content type=’any’ pattern=’...’))

(messagepattern performative=’deny’ ident=’reject’
(content type=’null’ pattern=’...’))

(messagepattern performative=’tell’ ident=’accept’
(content type=’string’ pattern=’...’)) ...)

DESIGN GUIDELINE As a guideline for protocol design and description in our
framework, we recommend several design rules. They guarantee the correctness of a
protocol represented in our framework. We introduce some ofthem here.

Proposition 1. For each role of a protocol, there should be at least one action which
drives into the terminal state. Every such action should be reachable from the role’s
initial state.

Corollary 1. From their semantics, roles can be represented as graphs. And for every
path in this graph, there should be an action which drives to aterminal state.

Proposition 2. When two distinct transitions can be fired from a state, the set of events
which fire each one of the transitions, though intersect-able, should be distinguishable.

Proposition 3. When an action produces a message, it should be immediately followed
by asendaction, which will be responsible for sending the message.

3.3 SEMANTICS OF THE CONCEPTS

EVENT As we saw, an event informs of an atomic change. It may have to do with the
notified role’s internal state. But usually, the notification is about other roles’ internal

154

state. Therefore, events are the grounds for roles coordination. Due to space constraints,
we only discuss the semantics of two types of events in this section.

change: this event type notifies of a change of the value of a variable. Let v be
this variable,change(v) denotes this event. In order to define the semantics of our con-
cepts, we introduce some expressions in a meta-language, which we call primitives.
These primitives are functions and predicates.value is one of these primitives (actu-
ally a function). It returns the value of a data at a given time. Let T be the time space,
andd andt a data and a time respectively (t ∈ T), V alue(d, t) denotes this function.
Value(d, t) = ∅ means that the datad does not exist yet at timet. We interpret the
changeevent as follows:∃ (t1, t2) ∈ T × T :

(t1 6= t2) ∧ (Value(v, t1) 6= ∅) ∧ (Value(v, t1) 6= Value(v, t2))

endprotocol: this event type notifies of the end of the current interaction. For each
role, all the phases have either completed or are unreachable. Also any global action of
each role is either already executed or unreachable. A phaseis unreachable if none of its
actions is reachable. Actually, if the initial action is unreachable, the phase it belongs to
will also be unreachable. Again, we introduced three new primitives:Follow, Executed
andUnreachable. Follow is a function which returns all the immediate successors of
a phase. Letp1 andp2 be two phases,p1 immediately followsp2, if any of the input
events of the initial action ofp1 refers to a prior event generated by one of the actions
(usually the last one) ofp2. Unreachableis a predicate which means that the required
conditions for the execution of an action do not hold. Therefore, this action cannot be
executed. Finally,Executedis a predicate which means that an action has already been
executed. LetPr be the set of phases andApkr

the set of executable actions for phase
pkr in a roler. Let alsoAGr

be the set of global actions for roler. We interpret the
endprotocolevent as follows:∀r ∈ R,∀aα ∈ AGr

,

(Unreachable(aα)∨Executed(aα))∧(∀pkr ∈ Pr, (Follow(pkr) = ∅)∨(∀ai ∈ Apkr
, Unreachable(ai)))

ACTION Actions are executed when events occur. And once executed, they may pro-
duce some new change in the MAS. Events are therefore considered asPre andPost
conditions for actions’ execution. Here again, we only discuss the semantics of theap-
pendandsendaction categories.

Let E be the set of all the event types we consider in our framework.We defineE ′

as a subset ofE : E ′ = E − {endphase, endprotocol}.
append: this action adds a data to a collection. Letai be such an action,

Pre=
∨

j ej , whereej ∈ E ′

Post=
∨

j ej ,∃k ek =′ change′ ∧ (∃(t1, t2) ∈ T × T ,∃d, v ∈ args(ai),

(t1 < t2) ∧ (isElement(v, d, t1) = false) ∧ (isElement(v, d, t2)))

isElement()is a predicate which returns true when a data belongs to a collection at a
given time.args()returns the arguments of an action.

155

send: this action sends a message. It is effective both at the sender and the receiver
sides. Letai be such an action. We interpret it as follows: at the sender side:

Pre=
∨

j ej , where∀mj ∈ arguments(ai),∃ k, ek = messagecontent(mj)

Post= (Trans(mj) = true)

at the receiver side:

Pre= ∅
Post=

∨
j e′j , where∀mj ∈ arguments(ai),∃! k, e′k = reception(mj)

ACL usually define the semantics of their performatives by considering the belief
and intention of the agents exchanging (sender and receiver) these performatives. This
approach is useful to show the effect of a message exchange both at the sender and the
receiver sides. In our framework, we adopt a similar approach when an action produces
or handles a message. We use the knowledge the agent performing this action has with
respect to the message. Hence, we introduce a new predicate,Know(φ, ag), which we
set to true when the agentag has the knowledgeφ. Know is added to the post conditions
of the action when the latter produces a message. It is ratheradded to the pre conditions
of the action when it handles a message. Note thatφ is the (propositional) content of
the message. Moreover, when an action ends up a phase or the whole protocol, its Post
condition is extended with theendphaseandendprotocolevents respectively.

PHASE The semantics of a phase is that of a collection of actions sharing some causal-
ity relation. The direct links between actions of a phase areaugmented with a causality
relation introduced by events. We noteph

def
=< A,≺ >, whereA is a set of actions and

≺ a causality relation which we define as follows (|A| is the cardinality ofA):
∀aı,a ∈ A,aı 6= a,aı ≺ a ⇐⇒ |A| > 1 ∧ ∃e ∈ Post(aı), e ∈ Pre(a).

Proposition 4. Letaı anda be elements ofPh, such thataı always precedesa,

(aı ≺ a) ∨ (∃ap, . . . ,ak,aı ≺ ap . . . ≺ ak ≺ a)

ROLE An event generated at the end of a phase can be referred to in other phases.
Thus, the causality relation between actions of phases can be extended to interpret roles.
We consider a role as a labelled transition system having some intrinsic properties.
r

def
=< Θr,S,Λ,−→ > where:

– Θr are the intrinsic properties of the role;
– S is a finite set of states;
– Λ contains transitions labels. These are the actions the roleperforms while running;
– −→ ⊆ S × Λ × S is a transition function.

As an illustration, we give part of the semantics of the initiator role of the CNP,
which we callr0. r0 =< Θr0 ,S,Λ,−→ >, with:

– Θr0 =′ cardinality = 1 ∧ isInitiator = true . . .′;

156

– S = {S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11};
– Λ = {a0,a1,a2,a3,a4,a5,a6,a7};
– −→ = {(S0,a0,S1), (S1, send[m0],S2), (S2,a1,S7), (S2,a2,S3), (S3,a4,S4), (S4,a3,S5),

(S5, send[m3],S11), (S5, send[m4],S6), (S6,a5,S8), (S6,a6,S9), (S6,a7,S10)}

m0, m3 andm4 belong to the set of messages exchanged during the protocol.

PROTOCOL The semantics of a protocol is a combination of the semanticsof its in-
trinsic properties, that of each role and finally the semantics of the coordination mech-
anism. Recall that the coordination mechanism, in our case,is the sequence of mes-
sage exchanges. The sequence of messages actually exchanged during the interaction is
known only at runtime. This raises up one of the limitations of the work concerned with
agent interaction protocols semantics. They usually proposeda priori semantics for
protocols. However, as protocols generally offer several possible exchange sequences,
several possible semantics may coexist for an interaction based on a protocol. [8] pro-
poseda posteriorisemantics through a platform calledProtocol Operational Semantics
(POS). We build on this platform and adopta posteriorisemantics for protocols in our
framework. Two main reasons account for such an approach. Firstly, the messages ex-
change sequence can be mapped to a graph of possibilities forexchanged messages.
Therefore, the semantics of an interaction based on this protocol consists of a path in
this graph. Secondly, the semantics of communicative acts defined in ACL is not enough
to define the semantics of a protocol. The executed actions’ semantics should also be
included. However, apart from send actions, all the other actions can only have general
characterisation before the execution of the interaction.A more precise semantics of
these actions can only be known at runtime.

As an illustration, let us assume that the semantics of each role of the CNP is
known, we define that of the whole protocol as follows.p =< Θ,R,M,Ω >, where
R = {r0, r1} andM = {m0,m1, . . .m7}. m0 corresponds tocfp, m1 corresponds
to refuse, etc. (see Fig. 2).Ω = Ω1|Ω2|Ω3|Ω4|Ω5|Ω5|Ω6. Ω6 is the case where
everything went correctly and the participant notifies the initiator of the correct perfor-
mance of the task.Ω6 =< r0

m0−−→
a0

r1, r1
m2−−−−→

a8,m0

r0, r0
m3−−−−→

a3,m2

r1, r1
m7−−−−→

a10,m4

r0 >

4 PROPERTIES

4.1 LIVENESS

Proposition 5. For every role of a protocol, events will always occur and firesome
transition until the concerned role enters a terminal state.

Proof. Each role is a transition system. And from the description oftransition systems,
unless an error occurs, an event will always occur and require to fire a transition until
the role enters a terminal state, where the execution stops.

157

4.2 SAFETY

We consider two safety properties:consistent messages exchangeand Unambiguous
protocol execution.

Proposition 6. Consistent messages exchangeMessages exchange is consistent in our
framework. Precisely, any message a role sends is received and handled at least by one
role. By the same token, any message a role receives has a sender (generally another
role).

Proof. We prove both parts of the proposition.

1. The sequence of message exchangesΩ is described as follows:
Ω =< r0

m0−−→
a0

r1, r1
m2−−−−→

a8,m0

r0, . . . >. This representation shows that any message

sent is received and handled by at least one role.
2. Any received message has been generated elsewhere, sinceits identifier exists. Ad-

ditionally, from proposition 3, any message generated is automatically sent. Hence,
any message received is sent by a role.

Proposition 7. Unambiguous protocol executionFor each action a role can take,
there is an unambiguous set of events which fire its execution.

Proof. The proof follows from the direct application of proposition 2 and is omitted
here because of space constraints.

4.3 TERMINATION

Proposition 8. Each role of a protocol represented in our framework always termi-
nates.

Proof. From Proposition 1, each role has at least an action which brings that role to a
terminal state. Once this terminal state is reached, the interaction stops for the concerned
role. When all the roles enter a terminal state, the whole interaction definitely stops.

This proof is insufficient when there are several alternatives or loops in the protocol.
Corollary 1 addresses this case. Actually, only one path of the graph (with respect to the
transition system) corresponding to the current role will be explored. And as this path
ends up with an action driving to a terminal state, the role will terminate.

5 CONCLUSION

We believe that a special care is needed in representing generic protocols, since only
partial information can be provided for them. Therefore, Wedeveloped a framework to
represent generic protocols for agent interactions. Our framework puts forth the descrip-
tion of the actions performed by the agents during interactions, and hence highlights
their behaviour during protocols execution. In this, we depart from the usual protocol
representation formalisms which only focus on exchanged messages descriptions. Our
framework is based on a graphical formalism, AUML. It is formal, at least as expressive

158

as AUML (and its extensions) and of practical use. As we discussed in the paper, this
framework has been used to address issues in agent interaction design.

Since actions in generic protocols can be described only in ageneral way, a more
precise description of these actions is dependent on the architecture of the agent about
to perform them in the context of an interaction. This is usually done by hand by agent
designers when they have to configure agent interaction models. Doing such a con-
figuration by hand may lead to inconsistent message exchangein an heterogeneous
MAS. We address this issue by developing some mechanisms to automatically carry
this configuration out. These mechanisms consist of lookingfor similarities between
the functionalities from agent architecture and actions ofprotocols. These mechanisms
are presented in [12].

Protocol selection is another issue we faced while designing agent interactions
based on generic protocols. Usually, agent designers select the protocols their agents
will use to interact during the performance of collaborative tasks. But this static pro-
tocol selection severely limits interaction in open and heterogeneous MAS. Thus, we
developed some mechanisms to enable agents to dynamically select the protocol they
will use to interact. These mechanisms require some reasoning about the specifications
of the protocols. Again, we used this framework, since it enables us to reason about
the mandatory coordination mechanisms for the performanceof collaborative tasks. We
described part of the mechanisms we proposed in [11].

References

1. B. Bauer and J. Odell. UML 2.0 and Agents: How to Build Agent-based Systems with the
new UML Standard.Journal of Engineering Applications of Artificial Intelligence, 18:141–
157, 2005.

2. G. Casella and V. Mascardi. From AUML to WS-BPEL. Technical report, Computer Science
Department, University of Genova, Italy, 2001.

3. T. Doi, Y. Tahara, and S. Honiden. IOM/T: an Interaction DescriptionLanguage for Multi-
agent Systems. InProceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 778–785, 2005.

4. M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Arcos. On the Formal Specifi-
cation of Electronic Institutions. InAgent-mediated Electronic Commerce (The European
AgentLink Perspective). 2001.

5. FIPA. FIPA Communicative Act Library Specification. Technical report, Foundation for
Intelligent Physical Agents, 2001.

6. M. Greaves, H. Holmback, and J. Bradshaw. Waht is a Conversation Policy? InProceedings
of the Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents
1999, 1999.

7. G.J. Holzmann. The Model Checker Spin.IEEE Transactions on Software Engineering,
23:279–295, 1997.

8. J-L Koning and P-Y Oudeyer. Introduction to POS: A Protocol Operational Semantics.
International Journal on Cooperative Information Systems, 10(1 2):101–123, 2001. Special
Double Issue on Intelligent Information Agents: Theory and Applications.

9. Y. Labrou and T. Finin. A proposal for a new KQML Specification. Technical report, Uni-
versity of Maryland Baltimore County (UMBC), 1997.

159

10. S. Paurobally, J. Cunningham, and N. R. Jennings. A Formal Framework for Agent Interac-
tion Semantics. InProceedings. 4th International Joint Conference on autonomous Agents
and Multi-Agent Systems, pages 91–98, Utrecht, The Netherlands, 2005.

11. J. G. Quenum and S. Aknine. A Dynamic Joint Protocols Selection Method to Perform
Collaborative Tasks. In P. Petta M. Pechoucek and L.Z. Varga, editors, 4th International
Central and Eastern European Conference on Multi-Agent Systems (CEEMAS 2005), LNAI
3690, pages 11–20, Budapest, Hungary, September 2005. Springer Verlag.

12. J. G. Quenum, A. Slodzian, and S. Aknine. Automatic Derivation of Agent Interaction
Model from Generic Interaction Protocols. In P. Giorgini, J. P. Muller, and J. Odell, editors,
Proceedings of the Fourth International Workshop on Agent-Oriented Software Engineering.
Springer Verlag, 2003.

13. G. Smith. The Contract Net Protocol: High-level Communication and Control in a Dis-
tributed Problem Solver.IEEE Trans. on Computers, 29(12):1104–1113, 1980.

14. C. Walton. Multi-agent Dialogue Protocols. InProceedings of the Eight Int. Sympossium on
Artificial Intelligence and Mathematics, 2004.

15. M. Winikoff. Towards Making Agent UML Practical: A Textual Notationand Tool. InProc.
of the First Int. Workshop on Integration of Software Engineering and Agent Technology
(ISEAT), 2005.

A EBNF Grammar

<protocol>:=<protproperties><roles><messagepatterns>
<protdescriptors>:=<protdescriptors><protattributes><protkeywords?>
<protdescriptors>:=<identifier><title><location>
<protattributes>:=<class><participantcount><return>
<protocolkeywords>:=<protocolkeyword+>
<protocolkeyword>:="containsconcurrentroles"|"iterativeprocess"|

"incrementalprocess"|"subscriptionrequired"|
"alterableservicecontent"|"alterableproposalcontent"

|"dividableservice"
<title>:=<word>
<class>:=<word>
<location>:=<locationheader><path>
<locationhearder>:="http://www."|"http://"|"file://"|"ftp://ftp."
<path>:=<directory+><word>’’.’’<word>
<directory>:=<word>
<participantcount>:=<digit+>|"n"
<return>:="operationresult"|"information"|"agentaddress"
<roles>:=<role><role>|<roles><role>
<messagepatterns>:=<acl><messagepattern+>
<role>:=<roleproperties><variables?><actions?><phases>
<roledescriptors>:=<roledescriptors><roleattributes><rolekeywords?>
<roledescriptors>:=<identifier><name>
<roleattributes>:=<cardinality><concurrentparticipants?>
<concurrentparticipantset>:=<identifier+>
<rolekeywords>:=<rolekeyword+>
<rolekeyword>:=<word>

160

<name>:=<word>
<cardinality>:=<digit+>|"n"
<variables>:=<variable+>
<variable>:=<identifier><type>
<type>:="number"|"string"|"char"|"boolean"|"date"|

"collection"|"null"|"any"|"map"
<identifier>:=<letter+> "id" <digit+>
<letter>:="a"|"b"|"c"|..."z"
<digit>:="0"|"1"|"2"|...|"9"
<word>:=<letter+>
<space>:=""
<actions>:=<action+>
<phases>:=<phase+>
<phase>:=<identifier><actions>
<action>:=<category><description?><signature?><events>
<description>:=(<word><space?>)*
<category>:="append"|"custom"|"remove"|"send"|"set"|"update"
<signature>:=<arguments>|<messages>
<arguments>:=(<argset>|<argdesc>)+
<argset>:=<settype>(<argset>|<argdesc>)+
<argdesc>:=<identifier><type><direction>
<direction>:="in"|"out"|"inout"
<messages>(<message>|<messageset>)+
<message>:=<identifier>
<messageset>:=<settype>(<messageset>|<message>)+
<settype>:="and"|"or"|"xor"
<events>:=(<event>|<eventref>|<eventset>)+
<eventset>:=<settype>(<event>|<eventref>|<eventset>)+
<event>:=<identifier?><eventtype><object>
<eventtype>:="change"|"custom"|"emission"|"endphase"|

"endprotocol"|"messagecontent"|"reception"|"variablecontent"
<object>:=<message>|<variableid>
<variableid>:=<identifier>
<eventref>:=<identifier>
<messagepattern>:=<identifier><performative><content>
<performative>:=<fipaperformative>|<kqmlperformative>
<kqmlperformative>:="ask-all"|"ask-one"|"ask-if"|"stream-all"|...
<acl>:="fipa"|"kqml"
<content>:=<type><pattern?>
<pattern>:=<word*><space>

161

Plan Generation and Plan Execution in Agent
Programming

M. Birna van Riemsdijk and Mehdi Dastani

Institute of Information and Computing Sciences
Utrecht University
The Netherlands

{birna, mehdi}@cs.uu.nl

Abstract. This paper presents two approaches for generating and ex-
ecuting the plans of cognitive agents. They can be used to define the
semantics of programming languages for cognitive agents. The first ap-
proach generates plans before executing them while the second approach
interleaves the generation and execution of plans. Both approaches are
presented formally and their relation is investigated.

1 Introduction

Various programming languages have been proposed to implement cognitive
agents [14,2,8,6,9,12,5,7,11]. These languages provide data structures to repre-
sent the agent’s mental attitudes such as beliefs, goals and plans. Beliefs describe
the state of the world the agent is in, goals describe the state the agent wants
to reach and plans are the means to achieve these goals.

Most of these programming languages can be viewed as inspired in some way
by the Procedural Reasoning System (PRS) [6]. This system was proposed as
an alternative to the traditional planning systems [13], in which plans to get
from a certain state to a goal state are constructed by reasoning about the re-
sults of primitive actions. PRS and most of today’s cognitive agent programming
languages, by contrast, use a library of pre-specified plans.1 The goals for the
achievement of which these plans can be selected, are part of the plan specifi-
cation. Further, plans might not consist of primitive actions only, but they can
also contain subgoals. If a subgoal is encountered during the execution of a plan,
a plan for achieving this subgoal should be selected from the plan library, after
which it can be executed. An agent can for example have the plan to take the
bus into town, to achieve the subgoal of having bought a birthday cake, and
then to eat the cake.2 This subgoal of buying a birthday cake will have to be
fulfilled by selecting and executing in turn an appropriate plan of for example
which shops to go to, paying for the cake, etc., before the agent can execute
1 The language ConGolog [7], in which the agent reasons about the result of the

execution of its actions, is an exception.
2 Assuming that both taking the bus into town and eating cake are primitive actions

that can be executed directly.

162

the action of eating the cake. Plans containing subgoals are called partial plans,
while plans containing only primitive actions are called total.

An important advantage of PRS and similar systems over traditional plan-
ning systems is that they do not require search through potentially large search
spaces. A disadvantage of PRS-like systems has to do with the fact that most of
these systems allow for multiple plans to be executed concurrently, i.e., the agent
may pursue multiple goals simultaneously. These plans can conflict, as they, for
example, can require the same resources. In PRS-like systems, in which plans
for subgoals are selected during execution of the plan, it is difficult to predict
whether plans will conflict. If a plan containing subgoals is selected, it is not yet
known how the subgoals of this plan will be achieved. It is therefore difficult to
assess whether this plan will conflict with other plans of the agent.

One way to approach this issue, is to use a representation of plans that
contains information that can be used to detect possible conflicts among plans,
as proposed by Thangarajah et al. [16,15]. Once these conflicts are detected,
plans can be scheduled in such a way that conflicts do not occur during execution
of the plans.

In this paper, we take a slightly different approach. That is, in order to be
able to compare an approach in which information about conflicting plans is
taken into account with an approach of plan execution in the PRS style, we take
an operational approach to the former, which we call plan generation. The idea
of plan generation is to use pre-specified partial plans to generate total plans
offline, i.e., before the plans are executed. Since conflicts among plans generally
depend on the primitive actions within the plans, the generation of total plans
provides for the possibility to check whether plans are conflicting. We assume
that a specification of conflicts among plans is given, e.g., in a way comparable
with the work of Thangarajah et al.

In order to compare plan generation with plan execution, we first introduce
a framework for plan generation (Section 2). This framework defines how non-
conflicting sets of plans can be generated on the basis of a plan library (i.e.,
rules for selecting plans to achieve (sub)goals), a set of top-level goals, and a set
of initial partial plans. These definitions are inspired by default logic. In default
logic, various so-called extensions, which consist of consistent sets of first-order
formulas, can be derived on the basis of possibly conflicting default rules, and
an initial set of facts. The fact that default rules might conflict, gives rise to
the possibility of deriving multiple extensions on the basis of a single default
theory. We adapt the notion of extension as used in default logic, to the context
of conflicting plans. An extension then consists of a set of non-conflicting plans.
The idea of adapting the notion of extension as used in default logic to the
context of plans, is inspired by the BOID framework [2]. It was however not
worked out in detail in the cited paper.

The language we use as an example of a PRS style framework, is a simplified
version of the cognitive agent programming language 3APL [8,3], and is pre-
sented in Section 3. We assume that a specification of conflicts among plans is
given. Ways of specifying conflicts have been investigated in the literature (see,

163

e.g., [16]), and further research along these lines is beyond the scope of this pa-
per. We show in Section 4 that, for any total plan in an extension of a so-called
plan generation agent, there is a corresponding initial plan in the execution set-
ting, which has the same semantics. If one would assume that in an offline plan
generation context, a single extension is chosen for execution, one could say that
the behavior of a plan generation agent is “included” in the behavior of a plan
execution agent. This is intuitive, since the incorporation of a notion of conflict
among plans restricts the set of plans which can be executed concurrently.

2 Plan Generation

In this section, we present a framework for plan generation that is based on [2].
In that paper, a non-standard approach to planning is taken, in which rules are
used to specify which plan can be adopted for a certain goal. This is in contrast
with planning from first principles, in which action specifications are taken as
the basis, and a sequence of actions is sought that realizes a certain goal state
according to the action specifications, given an initial situation. In [2] and in the
current paper, it is the job of the agent programmer to specify which (composed)
plan (or plan recipe) is appropriate for which goal.

Throughout this paper, we assume a language of propositional logic L with
negation and conjunction, with typical element φ. The symbol |= will be used
to denote the standard entailment relation for L.

Below, we define the language of plans. A plan is a sequence of basic ac-
tions and achieve(φ) statements, the latter representing that the goal φ is to be
achieved. In correspondence with the semantics of 3APL, basic actions change
an agents beliefs when executed. This will be defined formally in Section 3. One
could add a test statement and non-deterministic choice, but we leave these out
for reasons of simplicity. A total plan is a plan containing only basic actions.

Definition 1 (plans) Let BasicAction with typical element a be a set of basic
actions and let φ ∈ L. The set of plans Plan with typical element π is then
defined as follows.

π ::= a | achieve(φ) | π1;π2

The set of total plans TotalPlan is the subset of Plan containing no achieve(φ)
statements. We use ε to denote the empty plan and identify ε;π and π; ε with π.

Before we define the notion of an agent, we define the rules that represent which
plan can be adopted to achieve a certain goal. These plan generation rules have a
propositional formula as the head, representing the goal, and a plan as the body.
In principle, plan generation rules can be extended to include a belief condition
in the head, indicating that the plan in the body can be adopted if the agent has
a certain goal and a certain belief. The belief condition could then be viewed as
the precondition of the plan. For reasons of simplicity, we however define rules
as having only a condition on goals.

164

Definition 2 (plan generation rule) The set of plan generation rules RPG is
defined as follows: RPG = {φ ⇒ π | φ ∈ L, π ∈ Plan}.

A plan generation agent is a tuple consisting of a belief base, a goal base, a
plan base and a rule base. The belief base and goal base are consistent. The
rule base consists of a set of plan generation rules and may not contain multiple
rules for the same goal. This prevents that multiple plans for the same goal can
be adopted, which could be considered undesirable. The plans base contains the
initial set of plans of the agent.

Definition 3 (plan generation agent) A plan generation agent3, typically de-
noted by A, is a tuple 〈σ, γ, Π,PG〉 where σ ⊆ L is the belief base, γ ⊆ L is the
goal base, Π ⊆ Plan is the plan base and PG ⊆ RPG is a set of rules. Further,
σ 6|= ⊥ and γ 6|= ⊥ and all sets σ, γ, Π and PG are finite. Finally, PG does not
contain multiple rules with an equivalent head, i.e., if φ ⇒ π ∈ PG, there is not
a rule φ′ ⇒ π′ ∈ PG such that φ ≡ φ′.

When generating plans, we want to take into account conflicts, for example with
respect to resources, that may arise among plans. For this, we assume a notion
of coherency of plans. A plan π being coherent with a set of plans Π will be
denoted by coherent(π,Π). We assume that once a (partial) plan is incoherent
with a set of plans, this plan cannot become coherent again by refining the plan,
i.e., by replacing a subgoal with a more concrete plan.

We are now in a position to define how a coherent set of plans is generated
on the basis of an agent 〈σ, γ, Π,PG〉. A natural way in which to define this plan
generation process, is an approach inspired by default logic. In default logic,
consistent sets of formulas or extensions are generated on the basis of a possibly
conflicting set of default rules, and a set of formulas representing factual world
knowledge. Here, we generate sets of coherent plans on the basis of an initial set
of plans Π, a goal base γ, and a set of plan generation rules PG.

The idea is that we take the plan base Π of the agent, which may contain
partial plans, as the starting point. These partial plans in Π are refined by means
of applying plan generation rules from PG. If π1; achieve(φ);π2 is a plan in Π
and φ ⇒ π is a rule in PG, then this rule can be applied, yielding the plan
π1;π;π2. This process can continue, until total plans are obtained. Further, a
plan generation rule φ ⇒ π can be applied if φ follows from the goal base γ. In
that case, a new plan π is added to the existing set of plans, which can in turn
be refined through rule applications.

The plans that are generated in this way should however be mutually co-
herent. A plan can thus only be added to the existing set of plans through
refinement or plan addition, if this plan is coherent with already existing ones.
Different choices of which plan to refine or to add may thus have different out-
comes in terms of the resulting set of coherent plans: the addition of a plan may
prevent the addition of other plans that are incoherent with this plan.

3 In this section we take the term “agent” to mean “plan generation agent”.

165

Differing from [2], we define the notion of an extension in the context of plans
through the notion of a process. This is based on the concept of a process as used
in [1] to define extensions in the context of default logic. A process is a sequence
of sets of plans, such that each consecutive set is obtained from the previous by
applying a plan generation rule. A process can formally be defined in terms of a
transition system which is a set of transition rules that indicate the transitions
between consecutive sets of plans.

Given a set of plans Ei and an agent 〈σ, γ, Π,PG〉, a rule φ ⇒ π ∈ PG can
be applied if φ follows from γ. The plan π is then added to Ei, that is, if π 6∈ Ei

and coherent(π,Ei). This rule can also be applied if there is a plan of the form
π1; achieve(φ);π2 in Ei.4 In that case, the plan π1;π;π2 is added to Ei, again
only if the plan is not already in Ei and it is coherent with Ei. One could also
remove the original plan π1; achieve(φ);π2 from Ei, but addition of the refined
plan is more in line with the definition of processes and extensions in default
logic. It would be more useful if a plan of the form π1; achieve(φ);π2 could be
refined by a rule φ′ ⇒ π if φ ≡ φ′, but we omit this extra clause to simplify our
definitions. The first element of a process of an agent is the plan base Π of the
agent.

Definition 4 (process) Let A = 〈σ, γ, Π,PG〉 be an agent. A sequence of sets
E0, . . . , En with Ei ⊆ Plan is a process of A iff E0 = Π and it holds for all
Ei with 0 ≤ i ≤ n − 1 that Ei → Ei+1 is a transition that can be derived in
the transition system below. Let φ ⇒ π ∈ PG be a plan generation rule. The
transition rule for plan addition is then defined as follows:

γ |= φ π 6∈ E coherent(π,E)
E → E′

where E′ = E∪{π}. The transition rule for plan refinement is defined as follows:

π1; achieve(φ);π2 ∈ E π1;π;π2 6∈ E
coherent(π1;π;π2, E)

E → E′

where π1, π2 ∈ Plan and E′ = E ∪ {π1;π;π2}.

We assume that the plan generation rules of an agent are such that no infinite
processes can be constructed on the basis of the corresponding transition system.

The notion of an extension is defined in terms of the notion of a closed
process. A process is closed iff no rules are applicable to the last element of the
process. This is formalized in the definitions below. Note that not all processes
are closed. A closed process can be viewed as a process that has terminated,
i.e., there are no transitions possible from the last element in the process. It is
however the case that we assume that any process can become a closed process.

4 Note that, for example, a plan achieve(φ) is also of this form, as π1 and π2 can be
the empty plan ε (see Definition 1).

166

Definition 5 (applicability) A plan generation rule φ ⇒ π is applicable to a
set E ⊆ Plan iff a transition E → E′ can be derived in the transition system
above on the basis of this rule.

Definition 6 (closed process) A process E0, . . . , En of an agentA = 〈σ, γ, Π,PG〉
is closed iff there is not a plan generation rule δ ∈ PG such that δ is applicable
to En.

Definition 7 (extension) A set E ⊆ Plan is an extension of A = 〈σ, γ, Π,PG〉
iff there is a closed process E0, . . . , En of A such that E = En.

The execution of a plan generation agent is as follows. An extension of the agent
is generated. This extension is a coherent set of partial and total plans. The
total plans can then be executed according to the semantics of execution of
basic actions as will be provided in Section 3.

3 Plan Execution

In this section, we present a variant of the agent programming language 3APL,
which suits our purpose of comparing the language with the plan generation
framework of the previous section. An important component of 3APL agents
that we need in this paper, is the so-called plan revision rules which have a plan
as the head and as the body. During execution of a plan, a plan revision rule
can be used to replace a prefix of the plan, which is identical to the head of the
rule, by the plan in the body. If the agent for example executes a plan a; b; c and
has a plan revision rule a; b ⇒ d, it can apply this rule, yielding the plan d; c.

Here we do not need the general plan revision rules that can have a composed
plan as the head. We only need rules with statements of the form achieve(φ) as
the head and a plan as the body.

Definition 8 (plan revision rule) The set of plan revision rules RPR is defined
as follows: RPR = {achieve(φ) ⇒ π | φ ∈ L, π ∈ Plan}.

An agent in this context is similar to the plan generation agent of Definition 3,
with a rule base consisting of a set of plan revision rules. The rule base may not
contain multiple rules for the same achieve(φ) statement. We also introduce a
function T that takes a belief base σ and a basic action a and yields the belief
base resulting from executing a in σ. This function is needed in order to define
the semantics of plan execution. We use Σ = ℘(L) to denote the set of belief
bases.

Definition 9 (plan execution agent) Let T : (BasicAction×Σ) → Σ be a func-
tion specifying the belief update resulting from the execution of basic actions. A
plan execution agent, typically denoted by A′, is a tuple 〈σ, γ, Π,PR, T 〉, where
σ ⊆ L is the belief base, γ ⊆ L is the goal base, Π ⊆ Plan is the plan base
and PR ⊆ RPR is a set of plan revision rules. Further, σ 6|= ⊥ and γ 6|= ⊥ and

167

all sets σ, γ, Π and PR are finite. The rule base PR does not contain multiple
rules with an equivalent head, i.e., if achieve(φ) ⇒ π ∈ PR, there is not a rule
achieve(φ′) ⇒ π′ ∈ PR such that φ ≡ φ′.

We can now move on to defining the semantics of plan execution. As it will
become clear, we only need the semantics of individual plans for the relation
between plan generation and plan execution that we will establish in Section 4.
The semantics of executing a plan base containing a set of plans can be defined
by interleaving the semantics of individual plans (see [8]).

The semantics of a programming language can be defined as a function taking
a statement (plan) and a state (beliefbase), and yielding the set of states resulting
from executing the initial statement in the initial state. In this way, a statement
can be viewed as a transformation function on states. There are various ways
of defining a semantic function and in this paper we are concerned with the
so-called operational semantics [4].

The operational semantics of a language is usually defined using transition
systems [10]. A transition system for a programming language consists of a set
of axioms and derivation rules for deriving transitions for this language. A tran-
sition is a transformation of one configuration into another and it corresponds
to a single computation step. A configuration is here a tuple 〈π, σ〉, consisting
of a plan π and a belief base σ. Below, we give the transition system TransA′

that defines the semantics of plan execution. This transition system is specific
to agent A′.

There are two kinds of transitions, i.e., transitions describing the execution
of basic actions and those describing the application of a plan revision rule. The
transitions are labelled to denote the kind of transition. A basic action at the
head of a plan can be executed in a configuration if the function T is defined for
this action and the belief base in the configuration. The execution results in a
change of belief base as specified through T and the action is removed from the
plan.

Definition 10 (TransA′) Let A′ be a plan execution agent with a set of plan
revision rules PR and a belief update function T . The transition system TransA′ ,
consisting of a transition rule for action execution and one for rule application,
is defined as follows. Let a ∈ BasicAction.

T (a, σ) = σ′

〈a;π, σ〉 →exec 〈π, σ′〉

Let achieve(φ) ⇒ π ∈ PR.

〈achieve(φ);π′, σ〉 →apply 〈π;π′, σ〉

Note that the goal base is not used in this semantics. Based on this transition
system, we define the operational semantic function below. This function takes
an initial plan and belief base. It yields the belief base resulting from executing
the plan on the initial belief base, as specified through the transition system.

168

Definition 11 (operational semantics) Let xi ∈ {exec, apply} for 1 ≤ i ≤ n.
The operational semantic function OA′

: Plan → (Σ → Σ) is a partial function
that is defined as follows.

OA′
(π)(σ) =

σn if 〈π, σ〉 →x1 . . . →xn
〈ε, σn〉 is a finite sequence of

transitions in TransA′

undefined otherwise

The result of executing a plan is a single belief base, as plan execution as defined
in this paper is deterministic: in any configuration, there is only one possible next
configuration (or none). See for example [17] for a specification of the semantics
of plan execution in case of non-determinism.

4 Relation between Plan Generation and Plan Execution

In this section, we will investigate how these two are related. In order to do this,
we first define a function f , which transforms plan generation rules into plan
revision rules of a similar form.

Definition 12 (plan generation rules to plan revision rules) The function f :
℘(RPG) → ℘(RPR), transforming plan generation rules into plan revision rules,
is defined as follows: f(PG) = {achieve(φ) ⇒ π | φ ⇒ π ∈ PG}.

The theorem we prove, relates the operational semantics of the total plans of
an extension of a plan generation agent, to the plans in the initial plan base
of a corresponding plan execution agent. It says that for any total plan α in
the extension, there is a plan π in the plan base of the plan execution agent,
such that the operational semantics of α and π are equivalent. The plan α is
a plan from the plan generation agent and we have not defined an operational
semantics in this context. We however take for the operational semantics of α
the operational semantics for plans as defined in the context of plan execution
agents. Note though that, for the semantics of α, only the exec transition of the
transition system on which the operational semantics is based, is relevant.5

The intuition as to why this relation would hold, is the following. The gen-
eration of a total plan α from a partial plan π under a set of plan generation
rules PG, corresponds with the execution of π, under a set of plan revision rules
f(PG). The plan revision rules applied during execution of π have a plan gen-
eration counterpart that is applied during generation of α. Further, the basic
actions that are executed during the execution of π, are precisely the basic ac-
tions of α (in the same order). Because of this, the operational semantics of α
and π are equivalent, as the execution of basic actions completely determines
the changes to the initial belief base, and therefore the belief base at the end of
the execution.
5 We could have defined a new transition system for total plans, only containing

the exec transition of the system of Definition 10, and a corresponding operational
semantics. This is straightforward, so we omit this.

169

If A = 〈σ, γ, Π,PG〉 is a plan generation agent, the rule base of the corre-
sponding plan execution agent A′ should thus be f(PG). For the belief base and
goal base of A′, we take σ and γ, respectively. As for the plan base of A′, we
cannot just take Π, for the following reason. A total plan α in an extension of A
can be generated either from a partial plan π that was already in Π, or from a
plan π that has been added by applying a plan generation rule to the goal base
(through a plan addition transition in the process). If the latter is the case, we
have to make sure that π is in the plan base of A′, as this is the plan of which
the semantics is equivalent with α. We thus define that the plan base of A′ is
Π ∪ {π | achieve(φ) ⇒ π ∈ f(PG), γ |= φ}. We now have the following theorem.

Theorem 1 Let A = 〈σ, γ, Π,PG〉 be an agent and let E be an extension of A.
Let A′ = 〈σ, γ, Π ′, f(PG), T 〉 where Π ′ = Π∪{π | achieve(φ) ⇒ π ∈ f(PG), γ |=
φ} and let α ∈ TotalPlan. We then have the following.

∀α ∈ E : ∃π ∈ Π ′ : OA′
(α)(σ) = OA′

(π)(σ)

In order to prove this theorem, we need a number of auxiliary definitions and
lemmas. The first is the notion of an extended process. The idea is, that we
want to derive from a given process p and a given total plan α in the extension
corresponding with p, those steps in p that lead from some initial partial plan π
to α. For this, we give each plan in the plan base of the agent a unique number.
Then, we associate with each step in the process the number of the plan that is
being refined. If a plan is added through a plan addition transition, we give this
new plan a unique number and associate this number with the transition step.

The elements of the sets of an extended process are thus pairs from Plan×N.
A pair (π, i) ∈ (Plan×N) will be denoted by πi. We use the notion of a natural
number i being fresh in E to indicate uniqueness of i in E: i is fresh in E if there
is not a plan πi in E.6 Further, a rule φ ⇒ π can only be applied to refine a plan
π1; achieve(φ);π2, if achieve(φ) is the leftmost achieve statement of the plan,
i.e., if π1 is a total plan. This corresponds more closely with the application of
plan revision rules in plan execution, as during execution always the first (or
leftmost) achieve statement of a plan is rewritten.

Definition 13 (extended process) Let A = 〈σ, γ, Π,PG〉 be a plan generation
agent and let I(Π) be Π where each plan in Π is assigned a unique natural num-
ber. A sequence of sets, alternated with natural numbers, E0, i1, E1, . . . , in, En

with Ei ⊆ Plan and ij ∈ N with 1 ≤ j ≤ n is an extended process of A
iff E0 = I(Π) and it holds for all triples Ek, i, Ek+1 in this sequence that
Ek →i Ek+1 is a transition that can be derived in the transition system be-
low.

Let φ ⇒ π ∈ PG be a plan generation rule. The transition rule for plan
addition is then defined as follows:

γ |= φ π 6∈ E coherent(π,E)
E →i E′

6 We refer to the pairs πi as plans and we will from now on take the set Plan as
including both ordinary plans π and pairs πi.

170

where E′ = E ∪ {πi} with i fresh in E. The transition rule for plan refinement
is defined as follows:

(α1; achieve(φ);π2)i ∈ E (α1;π;π2)i 6∈ E
coherent(α1;π;π2, E)

E →i E′

where α1 ∈ TotalPlan, π2 ∈ Plan and E′ = E ∪ {(α1;π;π2)i}.

The notion of a closed process (Definition 6) as defined for processes in Definition
4, is applied analogously to extended processes.

We will prove theorem 1 using the notion of an extended process. Theorem 1
is however defined in terms of an extension, which is defined in terms of ordinary
processes, rather than extended processes. We thus have to show that extended
processes and processes are equivalent in some sense. We show that for any closed
process there is a closed extended process that has the same final set of plans,
with respect to the total plans in this set. We only provide a brief sketch of the
proof.

Lemma 1 (process equivalence) Let A be a plan generation agent and let
t : ℘(Plan) → ℘(TotalPlan) be a function yielding the total plans of a set of plans.
The following then holds: there is a closed process E0, . . . , En of A, iff there is
a closed extended process E′

0, i1, E
′
1, . . . , in, E′

n of A such that t(En) = t(E′
n)

(modulo superscripts of plans).

Sketch of proof: (⇐) If a transition E →i E′ can be derived in the transition
system of Definition 13, then a transition E → E′ can be derived in the system
of Definition 4 (modulo superscripts). (⇒) This is proven by viewing the plan
generation rules as the production rules of a grammar and the total plans that
can be generated by these rules as the language of this grammar. The formulas φ
and the statements achieve(φ) are considered the non-terminals of the grammar
and the set of basic actions BasicAction the terminals. The plans of the first
element of an (extended) process can be viewed as the start symbols of the
grammar, together with those plans that are added through the transition rule
for plan addition.

It is the case that for any derivation of a string (or total plan) in the grammar,
an equivalent leftmost derivation, in which at each derivation step the leftmost
non-terminal is rewritten, can be constructed. Derivations in an extended pro-
cess correspond with leftmost derivations, from which the desired result can be
concluded. 2

Given a closed extended process p with En as its final element, and a total plan
αi ∈ En, we are interested in those steps of p that lead to the derivation of αi.
In other words, we are interested in those steps that are labelled with i. For this,
we define the notion of an i-process of an extended process. This consists of a
sequence of pairs of sets of plans, where each pair corresponds with a derivation
step that is labelled with i, in the original extended process.

171

Given the i-process pi of an extended process p, we define the notion of the i-
derivation of pi. The i-derivation of pi is the sequence of singleton sets of plans,7

that is yielded by subtracting for each pair (E,E′) occurring in pi, the set E
from the set E′. An i-derivation is thus a sequence πi

1, π
i
2, . . . , π

i
m,8 in which

each plan is labelled with i. The sequence can be viewed as the derivation of the
plan πi

m from the initial plan πi
1, as each step from πi

j to πi
j+1 in this sequence

corresponds with the application of a plan generation rule to πi
j , yielding πi

j+1.

Definition 14 (i-derivation) Let A = 〈σ, γ, Π,PG〉 be a plan generation agent
and let p = E0, i1, E1, . . . , in, En be a closed extended process of A. The i-process
pi of p is then defined as a sequence of pairs (E′

0, E
′
1), . . . , (E

′
m−1, E

′
m) such that

the following holds: (E,E′) occurs in pi iff E, i, E′ occurs in p and for any two
consecutive pairs (Ej , Ej+1), (Ej+2, Ej+3) occurring in pi it should hold that
Ej+1 ⊆ Ej+2.

Let pi = (E0, E1), . . . , (Em−1, Em) be the i-process of a closed extended
process p. The i-derivation of pi is then defined as follows: (E1 \ E0), . . . , (Em \
Em−1).

We want to associate the semantics of a total plan α in some extension of a plan
generation agent, with the semantics of a corresponding plan π in the initial plan
base of a plan execution agent. We do this by showing that the basic actions
executed during the execution of π, correspond exactly with the basic actions
of α. For this, we define a variant of the transition system of Definition 10, in
which the configurations are extended with a third element. This element, which
is a total plan, represents the basic actions that have been executed so far in the
execution. Further, we define the execution of a sequence of basic actions in one
transition step. This is convenient when proving lemma 2.

Definition 15 (Trans′A′) Let A′ be a plan execution agent with a set of plan
revision rules PR and a belief update function T . The transition system Trans′A′ ,
consisting of a transition rule for action execution and one for rule application,
is defined as follows.

Let α ∈ TotalPlan be a sequence of basic actions and let T ′ : (TotalPlan ×
Σ) → Σ be the lifting of T to sequences of actions, i.e.,
T ′(a;α)(σ) = T ′(α)(T (a)(σ)). Further, let α′ ∈ TotalPlan be a sequence of
basic actions, representing the actions that have already been executed.

T ′(α, σ) = σ′

〈α;π, σ, α′〉 →exec 〈π, σ′, α′;α〉

Let achieve(φ) ⇒ π ∈ PR.

〈achieve(φ);π′, σ, α〉 →apply 〈π;π′, σ, α〉
7 It is a sequence of singleton sets, as each pair in an i-process corresponds with a

derivation step in the original process. In a derivation step from E to E′, exactly
one plan is added to E.

8 We omit curly brackets.

172

It is easy to see that an operational semantics O′ can be defined9 on the basis
of this transition system that is equivalent with the operational semantics of
Definition 11, i.e., such that O′(π)(σ) = O(π)(σ) for any plan π and belief base
σ. The initial configuration of any transition sequence in Trans′A′ should be of
the form 〈π, σ, ε〉, as the third element represents the sequence of actions that
have been executed, which are none in the initial configuration.

In the proof of lemma 2, we use the notion of a maximum prefix of a plan.

Definition 16 (maximum prefix) Let α ∈ TotalPlan and let π ∈ Plan. We then
say that α is a maximum prefix of π iff α = π or π = α; achieve(φ);π′. Note
that π′ can be ε.

Lemma 2 says the following. Let αi be a total plan in a closed extended process
of a plan generation agent, and let πi

1 be the first plan of the i-derivation of αi.
It is then the case that the actions executed during the execution of π1 (given
an appropriate set of plan revision rules), are exactly the actions of α (in the
same order).

Lemma 2 Let A = 〈σ, γ, Π,PG〉 be a plan generation agent and let p =
E0, i1, E1, . . . , in, En be a closed extended process of A. Let αi ∈ En where
α ∈ TotalPlan. Further, let πi

1, . . . , α
i be the i-derivation of the i-process pi of p.

Let A′ = 〈σ, γ, Π ′, f(PG), T 〉 be a plan execution agent where Π ′ = Π ∪ {π |
achieve(φ) ⇒ π ∈ f(PG), γ |= φ}. Further, let T ′(α)(σ) be defined and let
xi ∈ {exec, apply} for 1 ≤ i ≤ m− 1. The following then holds.

A transition sequence of the form
〈π1, σ, ε〉 →x1 . . . →xm−1 〈ε, σm, α〉

can be derived in Trans′A′ . (4.1)

Sketch of proof: We say that a plan πi corresponds with a configuration
〈π′, σ, α〉 iff π = α;π′. Let πi

k and πi
k+1 be two consecutive plans in the i-

derivation of pi, where πi
k is of the form α2; achieve(φ2);π2 and πi

k+1 is of the
form α2;π;π2. This corresponds with the application of plan generation rule
φ2 ⇒ π. Let π be of the form α3; achieve(φ3);π3. We then have that the following
transition sequence can be derived in Trans′A′ .

〈achieve(φ2);π2, σ, α2〉 →apply

〈α3; achieve(φ3);π3;π2, σ, α2〉 →exec

〈achieve(φ3);π3;π2, σ
′, α2;α3〉 (4.2)

This pair of transitions is correspondence and maximum prefix preserving. If
π1 (transition sequence (4.1)) is of the form α1; achieve(φ1);π, we can derive
a transition in which α1 is executed. This yields a configuration of the form

9 We omit superscript A′.

173

〈achieve(φ1);π, σ′, α1〉, which corresponds with πi
1 and for which it holds that

α1 is a maximum prefix of π1. From this configuration, a sequence of apply
and exec transitions can be derived, given that we have (4.2) for every pair
πi

k and πi
k+1 occurring in the i-derivation. From the fact that this sequence of

transitions is correspondence and maximum prefix preserving, we can conclude
that the final configuration 〈πm, σm, αm〉 of the sequence must be of the form
〈ε, σm, α〉 (observe that αi is the final plan of the i-derivation, which should
correspond with 〈πm, σm, αm〉). 2

We are now in a position to prove theorem 1.

Proof of theorem 1 (sketch): We do not repeat the premisses of the theorem.
Let α ∈ E be a total plan in E. By lemma 1, we then have that there is a closed
extended process with a final set En such that αi ∈ En for some natural number
i. Let πi

1, . . . , α
i be the corresponding i-derivation. The plan π1 was either added

in the process through a plan addition transition, or it was already in Π. From
this we can conclude that π1 ∈ Π ′.

If T ′(α)(σ) is defined, we have by lemma 2 that a transition sequence of
the form 〈π1, σ, ε〉 →x1 . . . →xm−1 〈ε, σm, α〉 can be derived in Trans′A′ . We thus
have OA(π1)(σ) = σm. From the fact that only action executions may change
the belief base, and the fact that α are the actions executed over the transition
sequence, we can then conclude that OA(α)(σ) = σm. A similar line of reasoning
can be followed if T ′(α)(σ) is not defined. 2

5 Conclusion and Future Research

In this paper, we presented two formal approaches for generating and executing
the plans of cognitive agents and discussed their characteristics. We explained
how these approaches can be used to define the semantics of programming lan-
guages for cognitive agents in terms of operational semantics. The relation be-
tween these approaches is investigated and formally established as a theorem.
The presented theorem shows that the behavior of plan generation agents is
“included” in the behavior of plan execution agents.

However, for reasons simplicity, many simplifying assumptions have been in-
troduced which make the presented approaches too limited to be applied to
real cognitive agent programming languages. Future research will thus concern
extending the results to more elaborate versions of the presented agent pro-
gramming frameworks. Also, the characteristics of special cases will have to be
investigated such as the case where there is only one extension of a plan gener-
ation agent. Finally, the notion of coherence between plans is not explored and
left for future research.

References

1. G. Antoniou. Nonmonotonic Reasoning. Artificial Intelligence. The MIT Press,
Cambridge, Massachusetts, 1997.

174

2. M. Dastani and L. van der Torre. Programming BOID-Plan agents: deliberating
about conflicts among defeasible mental attitudes and plans. In Proceedings of the
Third Conference on Autonomous Agents and Multi-agent Systems (AAMAS’04),
pages 706–713, New York, USA, 2004.

3. M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Ch. Meyer. A programming
language for cognitive agents: goal directed 3APL. In Programming multiagent
systems, first international workshop (ProMAS’03), volume 3067 of LNAI, pages
111–130. Springer, Berlin, 2004.

4. J. de Bakker. Mathematical Theory of Program Correctness. Series in Computer
Science. Prentice-Hall International, London, 1980.

5. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of
dMARS. In ATAL ’97: Proceedings of the 4th International Workshop on Intel-
ligent Agents IV, Agent Theories, Architectures, and Languages, pages 155–176,
London, UK, 1998. Springer-Verlag.

6. M. Georgeff and A. Lansky. Reactive reasoning and planning. In Proceedings of
the Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677–682,
1987.

7. G. d. Giacomo, Y. Lespérance, and H. Levesque. ConGolog, a Concurrent Pro-
gramming Language Based on the Situation Calculus. Artificial Intelligence, 121(1-
2):109–169, 2000.

8. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming in 3APL. Int. J. of Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

9. F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time rea-
soning and system control. IEEE Expert, 7(6):34–44, 1992.

10. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

11. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a BDI reasoning engine. In
R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-
Agent Programming: Languages, Platforms and Applications. Springer, Berlin,
2005.

12. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In W. van der Velde and J. Perram, editors, Agents Breaking Away (LNAI 1038),
pages 42–55. Springer-Verlag, 1996.

13. R.E.Fikes and N.J.Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

14. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.
15. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and avoiding interference

between goals in intelligent agents. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003), 2003.

16. J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer. Avoiding resource
conflicts in intelligent agents. In F. van Harmelen, editor, Proceedings of the 15th
European Conference on Artifical Intelligence 2002 (ECAI 2002), Lyon, France,
2002.

17. M. B. van Riemsdijk, F. S. de Boer, and J.-J. Ch. Meyer. Dynamic logic for
plan revision in intelligent agents. In J. A. Leite and P. Torroni, editors, Com-
putational logic in multi-agent systems: fifth international workshop (CLIMA’04),
volume 3487 of LNAI, pages 16–32, 2005.

175

A Functional Program for Agents, Actions, and
Deontic Specifications?

Adam Zachary Wyner

King’s College London
London, UK

adam@wyner.info

Abstract. We outline elements of the Abstract Contract Calculator, a
prototype language implemented in Haskell (a declarative programming
language) in which we simulate agents executing abstract actions rela-
tive to deontic specifications. The deontic specifications are prohibition,
permission, and obligation. The concepts of deontic specifications are de-
rived from Standard Deontic Logic and Dynamic Deontic Logic. The con-
cepts of abstract actions are derived from Dynamic Logic. The logics are
declarative, while the implementation is operational. In contrast to other
implementations, we have articulated and productive violation and fulfill-
ment markers. Our actions are given with explicit action preconditions
and postconditions, and we have deontic specification of complex ac-
tions. We implement inference in the Contrary-to-Duty Obligations case,
which has been a central problem in Deontic Logic. We also distinguish
Contrary-to-Duty Obligations from obligations on sequences, which has
not previously been accounted for in the literature. The language can
be used to express a range of alternative notions of actions and deontic
specification. We use it to to model and simulate multi-agent systems
in which the behavior of an agent is guided by deontic specifications on
actions.

1 Introduction

We present an overview of the Abstract Contract Calculator (ACC) written in
Haskell, which is a functional programming language (cf. Wyner (2006) for the
code and documentation for the ACC). The ACC processes the deontic notions
of prohibition, permission, and obligation applied to complex, abstract actions.
As an intuitive example, suppose Bill is obligated to leave the room. We have a
deontic specification “obligated” applying to an agentive action “Bill’s leaving
the room”. We call sets of such expressions Contract States. Informally, were
Bill to leave the (given) room, he would have violated the obligation to leave the

? Copyright c©2006 Adam Zachary Wyner. This paper was prepared while the author
was a postgraduate student at King’s College London under the supervision of Tom
Maibaum and Andrew Jones, which was funded by a studentship from Hewlett-
Packard Research Labs, Bristol, UK. The author thanks Tom, Andrew, and HP
Labs for their support and advice. Errors rest with the author.

176

room. Consequences may follow from the fact that he has violated his obligation.
For example, he may then be obligated to pay a fine. The objective of the
implementation is to abstractly model deontic specification of agentive actions
as well as to simulate the behavior of agents executing actions relative to a
contract state.

It is outside the scope of this paper to provide the complete implementation or
formalization. Rather, we introduce basic, crucial elements and invite the reader
to investigate the language further. In addition, actions and deontic notions have
been extensively discussed in the Deontic Logic and Dynamic Logic literature (cf.
Lomuscio and Nute (2004) and Wieringa and Meyer (1993), Harel (2000), Meyer
(1988), and Khosla and Maibaum (1987)). We indicate some of our key sources.
However, in contrast to these declarative works, we focus on operationalizing
the notions. Therefore, we do not outline the logics. Indeed, in Wyner (2006),
we have identified a range of fundamental questions with some of these logics.

The outline of the paper is as follows. We first discuss the context of our
research as well as central issues along with how we address them. We turn to
the implementation, which is largely presented conceptually and with fragments
of Haskell code. The implementation has two aspects. First, it is a programming
tool in that it allows alternative notions of deontic specification on agentive ac-
tions to be systematically examined and animated. Thus, one can develop and
focus on a preferred interpretion of the deontic concepts. Second, having fixed
an interpretation, the tool enables one to abstractly simulate environments in
which agents behave relative to actions, sets of deontic specifications on actions,
and how such sets change. It is intended to be used for simulation and mod-
elling of Multi-Agent systems where deontic specifications govern the behavior
of individuals or collectives of agents (see Gilbert and Troitzsch (2005) for a
discussion of social science simulations). In the final two sections, we touch on
other proposals for implementing deontic notions, and then we mention several
aspects of the implementation which were not discussed in this paper as well as
mention several aspects left for future research.

2 Background Context

The intial objective of our study was to define a formal language which is suitable
for the formation, execution, and monitoring of legal contracts in a multi-agent
system. Thus, our approach keeps in mind applied and empirical issues. Among
the key issues, we wanted to simulate the behavior of agents with respect to
deontic specifications on actions. In addition, we wanted to model how deontic
specifications can change over time. For instance, if we have a deontic speci-
fication such as Bill is obligated to deliver five pizzas, we want to be able to
determine the conditions under which Bill violates or fulfills this obligation. In
addition, we want to determine what follows in either case. Furthermore, we
want to define under what conditions can we eliminate Bill’s obligation. In gen-
eral, how could we operationalize deontic specifications on actions such that they

177

could be used to guide agentive behavior? Thus, the research is an application
of deontic reasoning.

For a theoretical underpinning, we focussed on the analyses of deontic no-
tions, particularly those with a dynamic component (cf. Meyer (1988), Khosla
and Maibaum (1987), but cf. Carmo and Jones (2001) for a non-dynamic the-
ory). Strictly put, the implementation does not implement a particular deontic
logic. We found available logics to be unsuitable for a variety or reasons (cf.
Wyner (2006)). Instead, we provide a language in which different logics could
be operationalized, though we make some specific suggestions.

We have implemented our system in Haskell, which is a functional program-
ming language. Speaking broadly, functional programming languages implement
the Lambda Calculus. It is a programming language which is particularly well
suited to computational semantics (cf. Doets and van Eijck (2004) and van Eijck
(2004). For a comparison to Prolog, see Blackburn and Bos (2005)).

3 Driving Issues

The implementation is driven by four interlocking issues: compositional and
productive flags which signal violation or fulfillment of a deontic specification;
negation of an action as antonym or opposite; complex actions, particularly
sequences; and the Contrary-to-Duty paradox. In the following, we briefly outline
the problems and our solutions, which we find again in the implementation.

3.1 Violability

In our view, the key concept of the deontic notions is that of violability. Logical or
operational representations ought then to have violation (or fulfillment) markers
in the formal language such that one can reason further with them (either for
recovery or other processes). Thus, bad behavior is marked and reasoned with
rather than ruled out (cf. Anderson and Moore (1957), Meyer (1988), and Khosla
and Maibaum (1987)). We do not adopt the approach of recent proposals which
use the deontic notions to filter out or to prioritize actions (cf. Garcia-Camino
et. al. (2005) and Aldewereld et. al. (2005)).

In recent proposals of Standard Deontic Logic (Carmo and Jones (2001)) or
Dynamic Deontic Logic (Khosla and Maibaum (1987) and Meyer (1988)), we find
a distinguished proposition which is used to mark that a deontic specification
has been violated. We use the marker for further reasoning or reactive behavior.
The richer the structure of the marker, the subtler the ways it can be used
(for logical proposals along these lines, cf. van den Meyden (1996, Meyer and
Wieringa (1993), and Kent, Maibaum, and Quirk (1993)).

In Wyner (2006), we have argued that the markers for deontic specification
on complex actions have to be productively and compositionally derived from the
agent, the deontic specification, the input actions, and the mode of combination
of the actions. We also argued that in order to calculate the conditions under
which an obligation is violated, we need a lexical semantic function to calculate

178

action negation. We discuss this in the next section. We should also mention
that in Wyner (2006), we argue that temporal specifications are not essential to
deontic specifications on actions. To our knowledge, these claims and supporting
arguments are novel. They serve to distinguish our analysis and implementation.

3.2 Action Opposition and Deontic Specification

One key component of our analysis is the calculation of actions in opposition.
Suppose Bill is obligated to deliver pizzas for an hour. It is intuitively clear
that some actions count toward fulfilling the obligation and some other actions
count towards violating the obligation. Furthermore, not just any activity which
is not itself an action of delivering pizzas counts toward a violation. Indeed,
some actions which Bill executes are deontically underspecified. If this were not
the case, then anything Bill does other than delivering pizzas leads to a violation.
More formally, set-theoretic complementation is not the appropriate notion for
action negation in our domain of application, for it would imply that at any
one time, the agent can either violate the obligation or fulfill it. There would be
no actions which are deontically underspecified. This is unreasonable for agents
executing contracts over time. Instead, we need some means to calculate the
opposite actions with respect to the particular input action, leaving other actions
underspecified.

In general, we want to be able to calculate the relevant opposite of an action,
if there is one. While action opposition in natural language is rather unclear,
we use abstract actions with respect to which we can define action opposition.
Suppose α, β, and γ are abstract actions; we make these clearer in the imple-
mentation. For an action, say α, from the domain of actions, we can calculate
the opposite action (given well-formedness conditions), say it is β. We can say
that γ is not in any relation of opposition to either α or β. Thus, if a complex
action is obligatory, we can determine what specific actions fulfill the obligation,
what actions violate it, and what actions are deontically underspecified.

Other problems arise where we deontically specify complex actions. For in-
stance, suppose we have the complex action combinator for sequence, where one
action follows another. (α;β) represents α followed by an execution of β. Let
us make this sequence obligatory: Obligated(α;β). Of this obligation, we want
to know: What is the mark of violation or fulfillment of this obligation? Under
what conditions do the marks appear? Intuitively, the mark of violation ought
to indicate that the sequence per se has been violated (similarly for fulfillment).
Thus, we need some means to define for any well-formed sequence of actions the
violation marker for that sequence. Similar points can be made with respect to
the other complex action combinators. In addition, we have to consider when
the violation marker arises. For example, the sequence is violated where α is first
executed, and then β is not executed, but not necessarily where β is executed
before the execution of α.

In general, we have to be able to productively calculate, for any well-formed
complex action, the compositional value of the violation (or fulfillment) marker.
In turn, this implies that we have to calculate the opposite of any complex

179

action. Thus, the lexical semantic rules must apply productively; it is not feasible
to have a listing of every complex action and its opposite. Productivity and
compositionality are also crucial to handle novel actions, which are new basic
action that we introduce to a particular system. We do not want reasoning and
action execution to hang when it is fed novel input.

So far as we know, the importance of productivity, compositionality, or lexical
semantic opposition have not been recognized in the deontic logic literature.

3.3 Contrary-to-Duty Obligations

Contrary-to-Duty (CTD) Obligations have been a central problem in Deontic
Logic (cf. Carmo and Jones (2001), which claims that it is the defining prob-
lem). Thus, an implementation ought to provide for it. CTDs are those cases
where a secondary obligation arises in a context where a primary obligation has
been violated. In other words, having violated one obligation, one incurs another
obligation. For example, if one is obligated to return a book by a specific time,
then (given the rules of a particular library), one may be obligated to pay a fine.
Such cases are key to legal reasoning and a case of context-dependent reasoning
(cf. Carmo and Jones (2001)). We have argued (Wyner (2006)) that violation
and fulfillment markers are key to distinguish a CTD case from the case where
the primary obligation changes. In other words, it is key that the action intro-
duces a violation marker. In virtue of this marker, the secondary obligation is
introduced.

3.4 Obligations on Sequences versus Sequences of Obligations

In Wyner (2006), we have argued for a distinction between obligations on se-
quences and sequences of obligations, contra Meyer (1988) who conflates them
(Khosla and Maibaum (1987 mention the distinction, but do not elaborate). For
example, a sequence of obligations is: one is obligated to do α and then one is
obligated to do β. In contrast, one could be obligated to do α followed by β. The
difference is in terms of the violation conditions. For a sequence of obligations,
each obligatory action introduces its own violation marker. For an obligation
on a sequence, failure to execute part of the sequence introduces a violation
marker on the sequence per se. This highlights the crucial role of productive,
compositional markers.

To create these richer markers, we provide a richer structure for complex
actions. For example, given a sequence of α;β, the structure distinguishes the
input actions α and β, the resultant action (suppose) γ, and the mode of for-
mation, which is the sequence operator. Given the definitions of basic actions,
the complex action operators are given functional definitions. With this, we may
define a deontic specification to apply to different parts of the complex action
relative to the complex action operator. This allows us to define families of de-
ontic specifications. For example, we can define three versions of obligations on
sequences: in one, the obligation distributes to each component action; in an-
other, the obligation applies to the collective action; in another, the obligation

180

applies so as to allow interruptable obligation specifications. We can map out
the logical space of possibilities. This allows us a very fine-grained, more accu-
rate analysis. From these alternatives, we can chose that which best suits the
purposes of the implementation. In our domain of application, the latter notion
seems most important, and it depends on complex markers which arise in a given
order.

4 An Overview of the Implementation

In the following subsections, we present highlights of the modules, necessarily
skipping many details. States of Affairs are lists of propositions along with in-
dices for worlds and times. Basic Actions are essentially functions from States
of Affairs to States of Affairs. Lexical Semantic Functions allow us to calculate
actions in specified lexical semantic relations such as opposite. These functions
help us define the consequences of deontically specified actions. Deontic Opera-
tors apply to actions to specify what actions lead to States of Affairs in which
fulfillment or violation is marked relative to the action and agent. We call such
a specification a Contract Flag State. We implement reasoning for Contrary-to-
Duty Obligations by modifying contract states relative to violation or fulfillment
flags. We end with a presentation of complex actions.

4.1 States of Affairs

We construct many of our expressions from basic Haskell types for strings
String, integers Int, and records, which are labels associated with values of
a given type. In terms of these, we have several derived types.

Definition 1. type PropList = [String]
type World = Int
type Time = Int
type SOA = Rec (properties :: PropList, time :: Time,

world :: World)
type DBSoas = [SOA]

Our atomic propositions are of type String such as prop1 and prop2. Pre-
fixing a string with neg- forms the negation of a proposition, and we have a
double negation elimination rule. Lists of propositions, of type PropList, form
the properties which define the properties which hold of a state of affairs. We
can filter the lists for consistency. This means that we remove from the model
any list of properties which has a proposition and its negation such as [prop1,
neg-prop1]. Filtering serves to constrain the logical space of models under con-
sideration and used for processing. For our purposes, we do not have complex
propositions other than negation. Nor do we address inference from propositions
at the level of contexts.

States-of-Affairs, which are of type SOA, are records comprised of a list of
properties along with indices for world and time. An example SOA is:

181

Example 1. (properties = [prop1, prop7, prop5, neg-prop3],
time = 2, world = 4)

Lists of expressions of type SOA are of type DBSoas. These can be understood
as alternative states of affairs or possible worlds.

4.2 Basic Actions

An action is of a record of type Action, which has fields for a label of type
String, preconditions xcond of type PropList, and postconditions ycond of type
PropList. An action is used to express state transitions from SOAs where the
preconditions hold to SOAs where the postconditions hold. An action with an
agent is of type AgentiveAction, which is a record with fields for an action and
an Agent of type String. A list of agentive actions is of type DBAgentiveAction.

Definition 2. type Action = Rec (label :: String,
xcond :: PropList,
ycond :: PropList)

type DBAction = [Action]
type Agent = String
type AgentiveAction = Rec (action :: Action,

agent :: Agent)
type DBAgentiveAction = [AgentiveAction]

An example of an agentive action is:

Example 2. (action = (label = Action6,
xcond = [prop1, prop7, prop5],
ycond = [prop3, neg-prop4, neg-prop6]),

agent = Jill)

This represents an abstract agentive action, which contrasts with agentive
actions found in natural language such as Jill leaves. We work exclusively with
abstract agentive actions since we can explicitly work with the properties which
exhaustively define them. It is harder to do so with natural language expressions
since it is not clear that we can either explicitly or exhaustively define them in
terms of component properties. Nonetheless, we can refer to the natural language
examples where useful.

The function doAgentiveAction in Definition 3 takes expressions of type
SOA and AgentiveAction and outputs an expression of type SOA.

Definition 3. type doAgentiveAction :: SOA → AgentiveAction → SOA

In the definition of the function (not provided), an action can be executed
so long as the preconditions of the action are a subset of the properties of the
SOA with respect to which the action is to be executed. Following execution of
the action, the postconditions of the action hold in the subsequent context, and
the time index of the resultant SOA is incrementally updated (in this paper,

182

we do not manipulate the world index). Further constraints on the execution of
the well-formed transitions are that the properties of the resultant SOA must
be consistent (no contradictions) and non-redundant (no repeat propositions).
In addition, we inertially maintain any properties of the input SOA which are
not otherwise changed by the execution of the action.

In (3), we have an example.

Example 3. input> doAgentiveAction
(properties = [prop1, neg-prop3, prop5, prop7],

time = 2, world = 4)
(action = (label = Action6,

xcond = [prop1, prop5, prop7],
ycond = [prop3, neg-prop4, neg-prop6]),
agent = Jill)

output> (properties = [prop1, prop3, neg-prop4,
prop5, neg-prop6, prop7],
time = 3, world = 4)

4.3 Lexical Semantic Functions

For the purposes of deontic specification on agentive actions, we define lexical se-
mantic functions. These functions allow us to functionally (in the mathematical
sense) determine actions in specified relationships. This is especially important
for the definition of obligation, where we want to determine which specific alter-
natives of a given action induce violation. One observation we want to account
for is the following. Informally, if it is obligatory for Jill to leave the room, then
Jill would violate the obligation by remaining in the room. On the other hand, if
it is obligatory for Jill to remain in the room, then Jill would violate the obliga-
tion by leaving the room. In other words, we see a reciprocal relationship between
actions in opposition. Furthermore, notice that if Jill’s leaving the room is oblig-
atory, then the action which fulfills the obligation and the action which violates
the obligation must both be executable in the same SOA. This means that the
actions have the same precondition properties. While the natural language case
provides the intuitions behind the functions, we implement them with respect to
our abstract actions. We only provide a sample of the lexical semantic functions
(see Wyner 2006 for further discussion).

Let us suppose a (partial) lexical semantic function findOpposites, which is
essentially a function from Action to Action. For processing, it takes a lexicon
and some constraints. For example, suppose findOpposites applied to the action
labelled Action6 yields Action7 and vice versa. While there are many potential
implementations of action opposition, we have defined the function findOpposites
such that it outputs an action which is the same as the input action but for the
negation of one of the postcondition propositions. This closely models the natural
language example of the opposition between leave and remain. As an illustration,
we have the following:

183

Example 4. input> findOpposites (label = Action6,
xcond = [prop1, prop7, prop5],
ycond = [prop3, neg-prop4, neg-prop6])

output> (label = Action7, xcond = [prop1, prop7, prop5],
ycond = [prop3, neg-prop4, prop6])

Three things are important about the function actionOpposites for our pur-
poses. First, we can calculate specific alternative actions which give rise to vi-
olations. As discussed earlier, it is unintuitive that just any action other than
the obligated action should give rise to violation. Second, as a calculation, we
can find an opposite for any action where the lexical structure allows one. For
the purposes of deontic specification, it need not be the case that every action
has an antonym (although one could define a function and lexical space to allow
this). Crucially, this holds for atomic as well as complex actions. And finally,
the function actionOpposites is defined so as to provide reciprocal actions; that
is, the opposite of Action6 is Action7 and vice versa. Thus, the function closely
models the natural language case discussed above.

4.4 Deontic Specifications

The previous three subsections are components of deontic specifications on ac-
tions, which we model on the following intuition. Suppose an agent Jill is obli-
gated to delivery a pizza. This implies that were she to deliver the pizza, in the
context after the delivery of the pizza, we would want to indicate that Jill has
delivered the pizza. Moreover, by doing so, she has fulfilled her obligation with
respect to her obligation to deliver the pizza. On the other hand, suppose Jill
were not to deliver the pizza, which is the opposite of delivering the pizza. In
this case, we should indicate in the subsequent context that Jill that has not de-
livered the pizza. Furthermore, by doing so, she has violated her obligation with
respect to delivering the pizza. We assume there are deontically underspecified
actions as well. For example, if Jill eats an apple, which she could do concur-
rently over the course of delivering the pizza or not delivering the pizza, it may
be that she does not incur a violation or fulfillment flag relative to that action.
While it is possible that we use a fixed list for some cases to determine when
violation markers arise, this will not work for complex actions or novel actions,
which are those actions that are not already prelisted in a lexicon.

To define the deontic specifications, we provide a type ContractFlag. This
type is a record having fields for: the action which is executed (indicated by
the label), the deontic specification on the action (i.e. obligated, permitted, or
prohibited), the action which is deontically specified (indicated by the label and
which can be distinct from the action that is executed), whether execution of the
action flags for violation or fulfillment, and the agent which executes the action.
Lists of contract flags are of type ContractFlagState.

Definition 4. type ContractFlag = Rec (actionDone::String,
deonticSpec::String, onSpec:: String,

184

valueFlag::String, agent::Agent)
type ContractFlagState = [ContractFlag]

The violation and fulfillment flags, which are String types that are values
of valueFlag, are key in reasoning what follows from a particular flag. In other
words, that an agent has violated an obligation on an action may imply that the
agent incurs an additional obligation. Indeed, such reasoning is central to legal
reasoning. This is further developed in the section below on Contrary-to-Duty
Obligations.

A deontic specifier such as obligated is essentially a function from an Agen-
tiveAction to a ContractFlagState. A list of actions DBAction and propositions
PropList are also input for the purposes of code development.

Definition 5. type obligatedCompFlag :: AgentiveAction →
DBAction → [PropList] → ContractFlagState

In Definition 6, we give a sample of Haskell code which calculates a Con-
tractStateFlag relative to an input agentive action inAgentiveAction (along with
a lexicon and compatibility constraints). Expressions of the form #label list re-
turn the value associated with given the label found in the list. Expressions of
the form [x | x ← P] are list comprehensions in Haskell; they are analogous to
the set-builder notation of set theory, where for S = {x + 2 | x ∈ {1,. . . ,5} ∧
odd(x)}, the result is S = {3, 5, 7}. List comprehension works much the same
way, but using lists rather than sets.

We discuss the code relative to the line numbers in Definition 6. Lines 1-2
constitute a guard on the function: if the action from the input agentive action
has an opposite (i.e. is a non-empty list), only then do we return a non-empty
ContractStateFlag list. Otherwise, we return the empty list (line 14). This reflects
the conceptual point that there can only be obligations on an action where the
obligation can be violated (cf. Wyner 2006). Thus, where we return a non-empty
list, there is some action in opposition to the input action. In lines 3-7, we create
a list of type ContractState which represents the fulfillment of the obligation on
the action. In lines 7-13, we find the opposite to the input action and use it to
create a list of type ContractState which represents the violation of the action.
We use ++ to conjoin these to lists to produce a list of type ContractFlagState.

Definition 6. obligatedCompFlag inAgentiveAction inDBAction inComp
1 | ((findOpposites (#action inAgentiveAction)
2 inDBAction inComp) /= []) =
3 ([(actionDone=(#label (#action inAgentiveAction)),
4 deonticSpec=”Obligated”,
5 onSpec=(#label (#action inAgentiveAction)),
6 valueFlag=”Fulfilled”,
7 agent=(#agent inAgentiveAction))] ++
8 [(actionDone=(#label x), deonticSpec=”Obligated”,
9 onSpec=(#label (#action inAgentiveAction)),
10 valueFlag=”Violated”,

185

11 agent=(#agent inAgentiveAction))
12 | x ← (findOpposites
13 (#action inAgentiveAction) inDBAction [])])
14 | otherwise = []

To illustrate, let us assume that when we apply obligatedCompFlag to an
agentive action labelled Action6 with agent Jill. The output is:

Example 5. [(actionDone = Action6, agent = Jill, deonticSpec = Obligated,
onSpec = Action6, valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill, deonticSpec = Obligated,
onSpec = Action6, valueFlag = Violated)]

This is of type ContractStateFlag. It indicates that were Jill to execute Ac-
tion6, then Jill would have fulfilled her obligation on Action6. On the other
hand, were Jill to execute Action7, then Jill would have violated her obligation
on Action6.

As lists of records, we can manipulate them. For example, we can add to
or subtract from contract states. For example, the following represents Jill’s
obligation with respect to Action6 and Bill’s prohibition with respect to Action9.

Example 6. [(actionDone = Action6, agent = Jill, deonticSpec = Obligated,
onSpec = Action6, valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill, deonticSpec = Obligated,
onSpec = Action6, valueFlag = Violated),

(actionDone = Action9, agent = Bill, deonticSpec = Prohibited,
onSpec = Action9, valueFlag = Violated)]

Manipulations of ContractStateFlag expressions are crucial for modelling con-
tract change, which is key to the analysis and implementation of Contrary-to-
Duty Obligations.

4.5 Contrary-to-Duty Obligations

To model reasoning for CTDs, we enrich our States-Of-Affairs to include ex-
pressions of type contractFlagState as well as histories of type history. Histories
are lists of records of what was done, when, by whom, and whether it counts as
a fulfillment or violation relative to a deontic specification. Such records are of
type HistoryFlag. They are much like ContractState expressions, but record the
world and time at which the action is executed. An important difference between
HistoryFlag and ContractStateFlag expressions is in how they are processed. This
is further developed below.

Definition 7. type HistoryFlag = Rec (actionDone::String,
deonticSpec::String, onSpec:: String,
valueFlag::String, agent::Agent,
world::World, time::Time)

type History = [HistoryFlag]

186

Our SOAs are enriched with both a ContractFlagState and a History.

Definition 8. type SOAHistorical = Rec (properties::PropList,
actionDone::String, history::History,
contractFlagState::ContractFlagState,
world::World, time::Time)

Actions are executed relative to a SOAHistorical. Action execution doAgen-
tiveActionSOAHist is essentially a function from SOAHistorical to SOAHistor-
ical. We illustrate this informally below.

Let us suppose the following is the input SOAHistorical to doAgentiveAc-
tionSOAHist. Notice that the history is empty, which means that there is no
evidence that an action has been executed.

Example 7. (contractFlagState =
[(actionDone = Action6, agent = Jill,

deonticSpec = Obligated, onSpec = Action6,
valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)],

history = [],
properties = [prop1, prop7, prop5, neg-prop4, neg-prop6],
time = 2, world = 7)

Suppose that Jill does execute Action7 with respect to this SOAHistorical.
This means that we should indicate that Jill has violated her obligation. Thus,
in the history of the subsequent SOAHistorical, we record that Jill executed
Action7. We also record that this action violates Jill’s obligation to execute
Action6, as well as the world and time stamp where the violation occurred.
We also see that the time of the SOAHistorical is updated. The properties are
updated as well.

Example 8. (contractFlagState =
[(actionDone = Action6, agent = Jill,

deonticSpec = Obligated, onSpec = Action6,
valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)],

history = [(actionDone = Action7, agent = Jill,

187

deonticSpec = obligated, onSpec = Action6,
time = 2, valueFlag = Violated, world = 7)],

properties = [prop1, prop7, prop5, prop3, neg-prop4, prop6],
time = 3, world = 7)

The next step in the implementation of CTDs is to allow contract state mod-
ification relative to actions which have been executed in the history. Recall from
the discussion of CTDs that we only want a secondary obligation to arise in a
context where some other obligation has been violated. In other words, if a par-
ticular violation of an obligation is marked in the History, we want a secondary
obligation to be introduced into (or subtracted from) the ContractStateFlag of
the SOAHistorical. For example, suppose Jill is obligated to leave the room. If Jill
violates this obligation (by remaining in the room), then she incurs a secondary
obligation to pay £5 to Bill. On the other hand, if Jill fulfills her obligation, then
she incurs a secondary permission to eat an ice cream. The secondary obligations
or permissions only arise in cases where a primary obligation has been violated
or fulfilled.

To implement this, we have to examine whether a particular violation marker
appears in the history. Second, we have to make that violation marker trigger
ContractStateFlag modification. For instance, suppose that it is marked in the
History that Jill has violated her obligation to do Action6 by doing Action7.
As a consequence of that, we modify the current contract state by removing
her previous obligation and introducing an obligation on Action11. In such an
operation, only the ContractStateFlag is modified. This gives the appearance of
inference in a state, for there is no state change marked by temporal updating.

We have a function doRDS, which implements action execution for relativized
deontic specifications; it is a function from AgentiveActions and SOAHistorical
to SOAHistorical. It incorporates modification of the ContractStateFlag. Where
we assume the steps just outlined to the ContractStateFlag in (7), a result is
along the following lines:

Example 9. (contractFlagState =
[(actionDone = Action11, agent = Jill,

deonticSpec = Obligated, onSpec = Action11,
valueFlag = Fulfilled),

(actionDone = Action15, agent = Jill,
deonticSpec = Obligated, onSpec = Action11,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)],

history = [(actionDone = Action7, agent = Jill,
deonticSpec = obligated, onSpec = Action6,
time = 2, valueFlag = Violated, world = 7)],

properties = [prop1, prop7, prop5, prop3, neg-prop4, prop6],
time = 3, world = 7)

188

The implementation captures the essence of the CTD problem. It models how
the execution of an action relative to a ContractFlagState induces a modification
of the ContractFlagState.

4.6 Deontic Specification on Complex Actions

We implement complex actions as records. Complex Actions have fields for the
input actions, the complex action operator, and the result of the application of
the operator to the input actions. We discuss here only the sequence operator,
as it raises the more complex and interesting problems for deontic specification.
We represent sequences schematically as follows.

Example 10. (inActionA = ActionA, inActionB = ActionB,
operator = SEQ, outAction = ActionC)

The outAction is, in this case, function composition of the input actions (pace
several restrictions on well-formedness): the preconditions of ActionC are the
preconditions of ActionA; the postconditions of ActionC are those of ActionB
together with those of ActionA which remain by inertia; the preconditions of
ActionB must be a subset of the postcondition properties of ActionA; and the
postcondition properties of ActionC must otherwise be consistent. Our decom-
position of actions into explicit preconditions and postconditions as well as our
explicit construction of complex actions relative to those conditions distinguishes
our approach from Dynamic Logic approaches, where there are basic actions.

In Meyer (1988), obligations on sequences are reduced to sequences of obliga-
tions on the component actions. In Khosla and Maibaum (1987), obligations on
sequences are irreducible to sequences of obligations, but rather are obligations
on the sequence per se. In Wyner (2006), we have further discussion of the sig-
nificance of the difference, particularly the CTD problem. Here, we simply point
out that the implementation provides ways to articulate these differences. For
example, suppose Jill is the agent of the sequence and ActionD is the opposite
of ActionA and ActionE is the opposite of ActionB. To provide the distributive
interpretation of obligation in Meyer (1988), Obldist, we need two components.
First, we have an initial contract state for the obligation on the first action:

Example 11. [(actionDone = ActionA, agent = Jill, deonticSpec = Obligated,
onSpec = ActionA, valueFlag = Fulfilled),

(actionDone = ActionD, agent = Jill, deonticSpec = Obligated,
onSpec = ActionA, valueFlag = Violated)]

In addition, we have a ContractStateModTrigger record which specifies that
in the context where the first action has been executed (checked in the history),
then the obligation on the second action of the sequence is introduced. This
results in the following contract state, which specifies the fulfillment and violation
cases for each of the component actions:

189

Example 12. [(actionDone = ActionA, agent = Jill, deonticSpec = Obligated,
onSpec = ActionA, valueFlag = Fulfilled),

(actionDone = ActionD, agent = Jill, deonticSpec = Obligated,
onSpec = ActionA, valueFlag = Violated),

(actionDone = ActionB, agent = Jill, deonticSpec = Obligated,
onSpec = ActionB, valueFlag = Fulfilled),

(actionDone = ActionE, agent = Jill, deonticSpec = Obligated,
onSpec = ActionB, valueFlag = Violated)]

We might say that the obligated sequence has been fulfilled where the obli-
gations on each action have been fulfilled and in the right order.

In contrast, we could represent Khosla and Maibaum’s interpretation (1987)
by applying the operator to ActionC with a collective interpretation of obliga-
tion, Oblcoll. We suppose that ActionF is the opposite of ActionC :

Example 13. [(actionDone = ActionC, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Fulfilled),

(actionDone = ActionF, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Violated),

The most interesting case is the interruptable notion of obligation on a se-
quence. In this case, there is a violation and fulfillment flag with respect to the
whole sequence, and the actions must apply in a given order. We assume the fol-
lowing initial contract state, where we emphasize that the marker for violation
is relative to the complex action per se and there is no marker for fulfillement
of the sequence:

Example 14. [(actionDone = ActionD, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Violated),

The second component is the ContractStateModTrigger, which specifies that
after execution of the first action ActionA, an obligation to execute the second
action arises such that fulfillment of this obligation marks fulfillment of the
obligation of the sequence, while violation of this obligation marks violation of
the obligation on the sequence. The resulting contract state looks like:

Example 15. [(actionDone = ActionD, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Violated),

(actionDone = ActionB, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Fulfilled),

(actionDone = ActionE, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Violated),

It is in such cases that a productive and compositional analysis comes to the
fore.

These examples show that there are alternative definitions which can be used
to define deontic specification on complex actions. The particular definitions
may be designed to suit particular purposes and interpretations. The language

190

is thus very expressive and can be used to implement different notions of values
applied to actions for the purposes of simulation in a multi-agent system. Further
discussion appears in Wyner (2006).

5 Some Comparisons

There have been several recent efforts to operationalize deontic specifications.
Some we have already discussed. For example, Garcia-Camino et. al. (2005) and
Aldewereld et. al. (2005) appear to use deontic specifications to filter out or sort
actions. We do not believe that this represents the essence of the deontic notions.
Sergot (2006) uses the event calculus and only considers permissions. While we
may eventually want to integrate deontic specifications into an event calculus,
we would want to be clear about deontic specifications themselves; it does not
seem necessary to add the additional and potentially obscuring components of
the event calculus. In addition, Sergot (2006) has neither complex actions nor
an analysis of the CTD problem. Boella and van der Torre (2006 present an
architecture for normative systems which is similar in that deontic specifications
add information to basic information. However, it is unclear how they implement
their design, integrate complex actions, or account for the CTD problem.

6 Other Elements of the Implementation and Future
Research

One key aspect of the implementation which we have not discussed here are con-
sistency constraints and implicational relations between deontic specifications.
For this, we define a notion of the negation of a deontic specification. We also
introduce lexical relations between positive and negative deontic specifications.
Further discussion appears in Wyner (2006).

We plan to enrich the structure of agents to give them some capacity to reason
with respect to their goals, preferences, and relationships to other agents. As we
want to model organizational behavior, we want to add roles, powers, a counts as
relation between actions, and organizational struture to the implementation. The
jural relations of rights and duties can also be incorporated into the language.
While the implementation provides a significant and novel advance in the field,
much yet remains to be done.

References

Aldewereld, et. al.: Designing Normative Behaviour by the Use of Landmarks. In G. Lin-
deman, et. al. (eds.) Proceedings of AAMAS-05 International Workshop on Agents,
Norms and Institution for Regulated Multi Agent Systems. Utrecht, (2005), 5-18.

Anderson, A., Moore, O.: The Formal Analysis of Normative Concepts. The American
Sociological Review. 22 (1957) 9-17

Boella, G., and v. d. Torre, L.: An Architecture of a Normative System. Proceedings
of AAMAS’06, May 8-12, 2006, Hakodate, Hoddaido, Japan (2006)

191

Garcia-Camino, et. al.: A Distributed Architecture for Norm-Aware Agent Societies.
In M. Baldoni et. al. (eds.) Declarative Agent Languages and Technologies III,
Third InternationalWorkshop, DALT 2005 Utrecht, The Netherlands, July 25, 2005.
London: Springer (2006)

Blackburn, P., Bos, J.: Representation and Inference for Natural Language: A First
Course in Computational Semantics, Palo Alto, CA: CSLI Publications, (2005)

Carmo, J., Jones, A.: Deontic Logic and Contrary-to-duties. In D. Gabbay and Franz
Guenthner (eds.) Handbook of Philosophical Logic, Dordrecht: Kluwer Academic
Publishers, (2001)

Carmo, J., Jones, A.: Deontic Database Constraints, Violation, and Recovery. Studia
Logica. 57 (1996) 139-165

d’Altan, P., Meyer, J.-J.Ch., Wieringa, M.: An integrated framework for ought–to–be
and ought–to–do constraints. Artificial Intelligence and Law. 4 (1996) 77–111

Doets, K., van Eijck, J.: The Haskell Road to Logic, Maths and Programming, London:
King’s College Publications, (2004)

Dowty, D.: Word Meaning and Montague Grammar. Dordrecht, Holldand: Reidel Pub-
lishing Company (1979)

van Eijck, J.: Computational Semantics and Type Theory. Website download –
http://homepages.cwi.nl/ jve/cs/, (2004)

Gilbert, N., Troitzsch, K.: Simulation for the Social Scientist, London, UK: Open Uni-
versity Press, (2005)

Harel, D., Kozen, D., and Tiuryn, J.: Dynamic Logic. Cambridge, MA: The MIT Press
(2000)

Jones, A., Sergot, M.: On the Characterisation of Law and Computer Systems: the
Normative Systems Perspective. In J.-J.Ch Meyer and R.J. Wieringa (eds.) Deontic
Logic in Computer Science – Normative System Specification. Wiley (1993), 275-
307

Kent, S., Maibaum, T., and Quirk, W.: Formally Specifying Temporal Contraints and
Error Recovery. In Proceedings of the IEEE International Symposium on Require-
ments Engineering, IEEE C.S. Press, 208-215

Khosla, S., Maibaum, T.: The Prescription and Description of State-Based Systems. In
B. Banieqbal, H. Barringer, and A. Pneuli (eds.) Temporal Logic in Specification.
Springer-Verlag (1987) 243-294

Lomuscio, A. and D. Nute (eds.): Deontic Logic in Computer Science: Proceedings of
the 7th International Workshop on Deontic Logic in Computer Science. R. Thoma-
son (ed.), London, Springer, (2004)

Makinson, D.: On a Fundamental Problem of Deontic Logic. In P. McNamara and H.
Prakken (eds.) Norms, Logics, and Information Systems. New Studies in Deontic
Logic and Computer Science. IOS Press 1999 29-53

Meyden, R. v. d.: The Dynamic Logic of Permission. Journal of Logic and Computation.
6 (1996) 465-479

Meyer, J.-J.Ch.: A Different Approach to Deontic Logic: Deontic Logic Viewed as a
Variant of Dynamic Logic. Notre Dame Journal of Formal Logic. 1 (1988) 109-136

Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. R. Thomason
(ed.), New Haven, Yale University Press, (1974)

Meyer, J.-J.Ch., Wieringa, R.J.: Actors, Actions, and Initiative in Normative System
Specification. Annals of Mathematics and Artificial Intelligence. 7 (1993) 289-346

Penner, J., Schiff, D., Nobles, R. (eds.): Introduction to Legal Theory and Jurispru-
dence: Commentary and Materials. London, Buttersworth Law (2002)

Royakkers, L.: Representing Legal Rules in Deontic Logic. Ph.D. Thesis, Katholieke
Universiteit Brabant, Tilburg (1996)

192

Sergot, M.: A Brief Introduction to Logic Programming and its Applications in Law.
In C. Walter (ed.) Computer Power and Legal Language. Quorum Books (1988)
25-39

Sergot, M.: The Representation of Law in Computer Computer Programs. In T.J.M.
Bench-Capon (ed.) Knowledge-Based Systems and Legal Applications. Academic
Press (1991) 3-67

Sergot, M. and Richards, R.: On the Representation of Action and Agency in the
Theory of Normative Positions. Fundamenta Informaticae. 48 (2001) 273-293

Sergot, M.: Normative Positions. In Henry Prakken and Paul McNamara (eds.) Norms,
Logics and Information Systems. New Studies in Deontic Logic and Computer
Science. IOS Press (1998) 289-310

Sergot, M.: A Computational Theory of Normative Positions. ACM Transactions on
Computational Logic. 2 (2001) 581-622

Sergot, M.: (C+)++: An Action Language for Modelling Norms and Institutions. tech-
nical report at http://www.doc.ic.ac.uk/research/technicalreports/2004/ DTR04-
8.pdf

Wieringa, R.J., Meyer, J.: Deontic Logic in Computer Science: Normative System Spec-
ification. John Wiley and Sons (1993)

Wyner, A.Z.: Violations and Fulfillments in the Formal Representation of Contracts.
ms King’s College London, Department of Computer Science, submitted for the
Ph.D. in Computer Science (2006)

Wyner, A.Z.: Maintaining Obligations on Stative Expressions in a Deontic Action
Logic. In A. Lomuscio and D. Nute (eds.) Deontic Logic in Computer Science.
Springer (2004), 258-274

193

Author Index

Aknine, Samir, 146
Albayrakr, Sahin, 82
Alechina, Natasha, 1

Baldoni, Matteo, V
Boella, Guido, 17
Bordini, Rafael H., 1, 65
Bourgne, Gauvain, 33
Briot, Jean-Pierre, 146

Cecil, Joe, 130

Dastani, Mehdi, 162

Endriss, Ulle, V

Governatori, Guido, 49
Groza, Adrian, 98

Hübner, Jomi F., 1, 65
Hirsch, Benjamin, 82
Honiden, Shinichi, 146

Jago, Mark, 1

Konnerth, Thomas, 82

Leite, João, 114
Letia, Ioan Alfred, 98
Logan, Brian, 1

Maudet, Nicolas, 33

Narayanasamy, Gobinath, 130
Nigam, Vivek, 114

Padmanabhan, Vineet, 49
Pinson, Suzanne, 33

Quenum, José Ghislain, 146

Singh, Munindar P., V
Son, Tran Cao, 130

van der Torre, Leendert, 17
van Riemsdijk, M. Birna, 162

Wooldridge, Michael, 65
Wyner, Adam Zachary, 176

194

