
Personalized Access to Web Services in the
Semantic Web

Nicola Henze and Daniel Krause

IVS - Semantic Web Group, University of Hannover,
Appelstr. 4, D-30167 Hannover, Germany
{henze,krause}@kbs.uni-hannover.de

Abstract. We propose a Semantic Web browser which enables users
to discover, select and personalize Web services in the Semantic Web.
We discuss how such a Semantic Web browser can offer domain specific
visualization, and investigate solutions for supporting individual users
in finding appropriate Web services, in tailoring Web services to their
needs, and in accessing and administering their favorite Web services. As
a proof-of-concept, we show the realization of a Semantic Web browser,
the personal podcast syndication service MyEar, which collects and filters
data from various providers of podcast feeds.

keywords: semantic web, semantic web browser, personalization, web services

1 Motivation

The Semantic Web aims at enabling a huge, dynamic and federated network of
media entities and information, enriched with machine-processable semantics.
Many of today’s research initiatives in the Semantic Web focus on developing
technologies, languages, reasoning languages and tools for realizing an appropri-
ate backbone for the Semantic Web vision. While these enabling technologies
are being developed, the question of how to assist users to benefit from the
emerging Semantic Web, thus on how to realize the second part of the vision
by T. Berners-Lee et al. [2]: ”better enabling computers and people to work in
cooperation“ currently receives less attention.

To realize one of the most promising advantages of the Semantic Web –
the possibility to personalize output according to user’s needs – Semantic Web
services have to cope with three user-centered issues:

– allowing users to specify their needs (customization)
– optimizing result evaluation according to explicit and implicit needs of the

user (adaptation; explicit needs are directly obtained during a particular
interaction, implicit needs are derived from previous interactions and are
interpreted and consolidated by aid of a user modeling component)

– presenting their results in a way that
• user-side applications can visualize the results



• transparency and controllability of the result-determining processes and
the adaptation steps are guaranteed.

The paper is organized as follows: In section 2 we briefly review related
work. Afterwards, we present the architecture of our approach for Semantic
Web browsing and describe the different stakeholder within the architecture and
their interplay. As a proof-of-concept of our approach, we describe our current
prototype of a Personal Music Syndicator which facilitates personalized access
to podcasts. Finally, a discussion of our approach, and summary and outlook on
current work end the paper.

2 Related Work

Currently, we can distinguish two main strategies for creating Semantic Web
browsers: The first strategy visualizes RDF documents without taking into ac-
count any particularities of the RDF documents. Examples are Piggy Bank,
Longwell1 or Brownsauce2. These browsers are, more appropriately, called RDF
browsers.

The second strategy for creating Semantic Web browsing is focusing on a
certain domain, which might be narrow (as in the case of DynamicView [4] or
mSpace [12]) or broad (Haystack [11] or SEAL [5]). These approaches’ archi-
tectures are all based on a domain-specific fundament requiring considerable
modifications for applying them in other domains. At this time there exists no
approach that copes with both issues at the same time: Being generic enough to
handle any application domain while offering a domain optimized user interface.

Personalizing the access to Web content is a large area of research, which we
cannot describe in this paper with sufficient detail. Instead, we want to point
out one particular problem that arose in the recent years in the area of adap-
tive interactive systems: the open corpus problem [3]. The open corpus problem
states that today’s adaptive systems code require information for the personal-
ization process within the corpus of documents with the effect that the complete
corpus of documents must be known (and thus fixed!) during the design time
of the system. One very important effect of the open corpus problem is the
limited re-usability of adaptive functionality, which might be one of the rea-
sons why personalized systems have not been so prominent in the Web as might
have been expected. For the e-Learning domain, we have shown that the separa-
tion of personalization-specific information and the document corpus is possible
[7]. Based on these results, we started to develop several Web services for the
e-Learning domain, which offer encapsulated and re-usable adaptation function-
ality for e-Learning, and generalized our concept for the realization of Web ser-
vices which offer personalization functionality in other domains like publication
viewing or music recommendation.

1 http://simile.mit.edu/longwell/
2 http://brownsauce.sourceforge.net/



Finally, related work to our approach can be found in projects which apply
Web services in the Semantic Web. Current research here focuses more on en-
abling technologies like Web services discovery, composition and orchestration
(cf. [9, 10]) and less on usability and user-centered visualization.

3 A Service-based Architecture for Realizing Personalized
Semantic Web Browsing

Our approach for a Semantic Web browsing offers users a uniform entry point
to access the Semantic Web, and in particular to Web services in the Semantic
Web. It has been realized as part of the Personal Reader Framework [1, 6] which
offers an environment for designing, implementing and realizing Web content
readers in a service-oriented manner (see Figure 1):

CService

PService

Connector PersonalizationContent Syndication and
user interface provision

PService

Meta-
PService

SynService
User

Interface

User

SynService

UMService

RDF RDF

access policies

User
Interface

Fig. 1. Overview of Personal Reader architecture

– Web services deliver personalized recommendations for content, extracted
and obtained from the Semantic Web. Using Semantic Web techniques they
describe their offered functionality in a machine processable format. Option-
ally, they can return visualization templates that can be used to create user
interface snippets for presenting the results of the Web services. We call these
kind of Web services Personalization Services, PServices for short.

– Meta PServices can be employed to have single entry points to cooperating
or concurrent PServices. For example, a music recommender Meta Personal-
ization Service orchestrates different PServices delivering personalized music
recommendations. In an internal processing step the music Meta-Web service



filters and orders all the resulting recommendations of the different PServices
into one single result.

– For syndicating the results of PServices and for creating appropriate user
interfaces, Syndication Services (SynServices for short), are responsible for
displaying the results of several PServices and/or Meta PServices to the
user. Each SynService provides such an user end point to a certain domain
or task, and allows the user to benefit from many PServices simultaneously,
which are selected, combined and customized as the user wishes. SynServices
can be realized as RDF browsers, can implement their own RDF processing
interface, or they can make use of visualization templates provided by the
different PServices / Meta PServices.
The MyEar Music Syndicator is an example of such a SynService, which
provides the user end point to specify requests for podcasts. Throughout the
paper, we use the MyEar Music Syndicator to illustrate our ideas of browsing
information in the Semantic Web. Other examples of SynServices provide a
user end point for viewing learning objects in an embedding context (where
each aspect of this embedding context – like recommendations for quizzes, for
examples, for further details with respect to the learning object’s content,
etc., is provided by different PServices), or a user end point for browsing
scientific publications of a large European project [1].

– For enabling the whole process, a core information provider – a user mod-
eling service, UMService for short, deriving appropriate user profiles – is
essential. In our architecture, the UMService realizes a centralized approach
for user modeling, maintaining and protecting information about a user on
behalf of this user. The main reason for choosing a centralized approach is to
realize privacy protection: the user has full control about his user profile, and
can define policies on which parts of this user profile might be public, or are
available to trusted parties only. One central instance for all this information
makes it possible to create awareness about stored information, and on real-
izing policy-protected access. Furthermore, this central UMService receives
updates from SynServices or PServices in different domains, and allows for
cross-domain re-use of user profile information (if the user wants that).

– From a technical point of view, another component is required to maintain
the communication between the SynServices providing the user interface,
the PServices, and the UMService. This is the so-called Connector Service
(CService for short) which harvest Web service brokers, collects information
about detected PServices (for discovery, selection, customization, and invo-
cation), and for organizing the communication between all involved parties,
including requests to the UMService.

3.1 Using the Personal Reader Framework

First, the user has to specify his current request by formulating a query. For the
matchmaking between user’s query and provided functionality of detected PSer-
vices, the CService offers functionality for the required matching as e.g. described
in [8]. The goal is to discover PServices that can incorporate and adapt best to



the provided user data from both, the actual user’s request and user profile data.
N.B.: Not all PServices need to receive the same user profile data, as some of
them might be trusted more than others. The necessary negotiation based on
the user-defined policies in the UMService and credentials of the PServices have
to be executed beforehand.

The discovery is done as following: First, the Syndicator searches for Web
services having the required input and output parameters (exact match). This
search is send as a request to the CService, which executes the search. If the
exact match does not return any results, the CService can do a plug-in match,
returning Web services that require more input parameters than given. These
additional parameters have to be entered by the user in the second step, the
configuration step. If the plug-in match cannot find appropriate Web services,
subsumed match, subsumed-by match or a best-match can be performed. Which
of the matching strategies shall be applied, and which order is preferred, is of
course user dependent, the default process will take the order exact – plug-in –
subsumed – subsumed-by – best.

Afterwards, all matching PServices will be displayed to the user who can
choose which Web service(s) shall be invoked. With this selection step, it is en-
sured that only Web services are invoked that a user trusts, and negotiations
about user profile credentials can be controlled by the user if necessary. Af-
terwards, PServices’ customization parameters – if PServices offer them – are
displayed to the user who can adjust them according to his requirements.

Every selected and customized PService is executed and returns its content,
plus optionally one or several visualization templates. The visualization tem-
plates enable the SynServices to reach a high usability by providing domain–
optimized visualization. Default visualization strategies are always available by
using a RDF browser. The user can interact with the PServices by clicking on
links or completing forms in the generated user interface. As these interactions
are sent back to the PService it can adapt it’s content more precise to the user’s
requirements and deliver more personalized content, for example displaying a
higher level of detail of the relevant informations.

If a PService detects patterns of usage from the user interaction or certain
user requirements, it can send an update request to the UMService. Again, not
all PServices are allowed to update the user profile, and the update requests are
distinguished according to the overall credentials of a PService, and the creden-
tials of the reasoning process used by a PService to interpret user information.
The UMService can allow or deny update requests on behalf of the user. Again,
the centralized approach shows its benefits, and approved user profile updates are
available immediately to not only the current SynService but to all SynServices
for further, user-optimized presentation of Web content.

3.2 Visualization and Interface

All user interaction is realized via the Personal Music Syndicator SynService. It
provides the interface for searching and configuring Web services, as described
above. After Web services were selected, configured and invoked, the SynService



displays the results of all PServices which have been invoked and returned results.
This separation of content collection and syndication / visualization ensures an
easy processing of the PServices’ output, and it allow the SynServices to adjust
visualization according to user devices’ capabilities and limitations, or further
user preferences.

By delivering visualization templates, every PService can optimize visual-
ization and usability, as certain domain-specific information can be taken into
account for creating the user interface.

4 Proof–of–Concept: Personalized access to Podcasts via
the Semantic Web

As a proof–of–concept of our approach, we present the MyEar Syndication Ser-
vice, our current prototype of a Personal Music Syndicator, which provides rec-
ommendations for music podcast:

Assume a user who searches for podcasts in the Web. He enters a query and
receives a list of appropriate podcast delivery services. He specifies which of these
services he wants to launch. The user gets a list of all mandatory and optional
parameters which can be used to tailor the services – the MyEar Syndication
Service tries to fill all these parameters according to the information it has about
the user’s preferences. The user can change or simply approve these parameters,
eventually the user is requested to enter information that the MyEar Syndication
Service was not able to provide. Finally, the user gets the syndicated output
of all the services he launched, displayed in his personal Web interface. The
appropriate visualization is chosen with respect to the currently used display
device of the user.

4.1 Current State of Implementation

In our vision, the user can select detected and appropriate PServices which match
his query. As we currently lack a sufficient amount of PServices, the procedures
which later will execute the matching process between the user request and the
PServices is simply returning all available PServices. The user selects which Web
services to use, as depicted in Figure 2).

In the second step, the user can configure selected PServices. For example,
the MyEar Syndication Service allows the user to specify keywords, duration
and iTunes category of the podcasts he wants to listen to. The description of
these customization parameters is provided by the PServices. The user profiling
which enables the automatic configuration of the PServices is at the moment a
simple one: It stores the parameters the user has entered the last time he used
this Web service, and returns them as the default selection in the configuration
dialog (figure 3).

After configuration, the MyEar Syndication Service is invoked with the spec-
ified parameters. This invocation is passed - via the connector - to the corre-
sponding PServices and MyEar receives the determined content (coded as RDF),



Fig. 2. Dialog for Selecting Personalization Services

as well as visualization templates. Only one visualization template is currently
available, which displays the RDF document on PCs within a Web browser, as
can be seen in figure 4. The possibility to provide visualization templates by the
PServices allows for domain-specific optimization of the user interface, which is
not realizable with general-purpose RDF browsing approaches. In the case of the
MyEar Syndication Service, for example drag and drop operations are available
for selecting podcasts and controlling the audio together with further, music
domain-specific gadgets.

4.2 Discussion

A very important issue for improving the usability of Semantic Web browsers
is adequate and intuitive visualization of content and it’s access. A common
approach in today’s Semantic Web browsers is to visualize raw RDF files while
disregarding the domain and purpose of the RDF document. Therefore, usability
of such domain independent Semantic Web browsers is weak. Other approaches
focus on some specific domain, and may obtain high usability for this single
domain. This procedure has the disadvantage that domain spanning-browsing
or domain-spanning content processing is not possible. Consequently, the user
has to switch browsers whenever he switches between domains. Synergy effects
based on a single user interface and domain spanning user profiling cannot be
achieved.

Our approach combines domain specific visualization on the one hand, and a
single user interface creation and user profile maintenance on the other. There-



Fig. 3. Configuration of the MyEar Syndication Service

fore, we out-source visualization from the Semantic Web browser to the PSer-
vices by letting the PServices specify domain-specific and optimized visualization
strategies, available via visualization templates. Visualization templates are used
by SynServices for creating the final user interface, and – additionally – can op-
timize the user interface to match the constraints of the currently used device
and user specific preferences. To ensure that also results of PServices, which do
not provide some visualization template, can be displayed, each SynService im-
plements a generic visualization of RDF documents based on a RDF browser like
Piggy Bank3. With this dual approach, a domain-optimized user interface will be
provided whenever possible, and, as a fall-back solution, general-purpose RDF
visualization is possible. This approach has the advantage that domain modeling
has not to be done twice (in the Semantic Web browser and in the PServices);
furthermore, changes in the output or the visualization of the PService do not re-
quire changes in the Semantic Web browser. The user directly interacts with the
visualization from the PService, thus PService-specific interactions are enabled,
too.

A further advantage of the architecture of the Personal Readers is that access
to the user profile can be restricted to trustworthy instances only. This enables
high usability as the same information do not need to be given manually to
every single Web service, and privacy protection strategies can be facilitated
under the full control of the user. By enabling user profile updates from PSer-

3 http://simile.mit.edu/piggy-bank/



Fig. 4. Visualization of the MyEar Syndication Service

vices, domain-specific user modeling techniques can and should be implemented
in the PServices. The very same argument as in the case of visualization also
applies here: domain-specific information should be maintained by those parties
which naturally have access to it, other approaches always require duplication
or at least exchange of domain models which is error-prone, and at least time
consuming.

5 Conclusion and Future Work

We have presented our idea for personalized browsing of Semantic Web data, and
presented – as one development of the Personal Reader Project – the MyEar
Music Syndication Service. Our approach to a Semantic Web browser offers
domain-spanning and personalized access to Web services in the Semantic Web.
We have enhanced Web services to deliver – beside content – customization
and visualization information. Our approach enables domain-optimized usability
as user interfaces can be designed on a per Web service base. Combined with
a generic RDF browser this approach is simultaneously general and domain-



specific, allowing the use of a single user interface and a single user profile to
access distributed and personally syndicated Web content.

Our future work will focus on adding more Web services offering person-
alization for testing the proposed matchmaking strategies within a real world
setting.

6 Acknowledgment

We would like the Personal Reader Team at the University of Hannover, and
especially Fabian Abel for his engagement in developing the MyEar Syndication
Service for the Personal Reader project. This work has been partially supported
by the European Network of Excellence ”REWERSE - Reasoning on the Web
with Rules and Semantics”.

References

1. Abel, F., Baumgartner, R., Brooks, A., Enzi, C., Gottlob, G., Henze, N.,
Herzog, M., Kriesell, M., Nejdl, W., and Tomaschewski, K. The personal
publication reader, semantic web challenge 2005. In 4th International Semantic
Web Conference (nov 2005).

2. Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific
American (May 2001).

3. Brusilovsky, P. Adaptive Hypermedia. User Modeling and User-Adapted Inter-
action 11 (2001), 87–110.

4. Gao, Z., Qu, Y., Zhai, Y., and Deng, J. Dynamicview: Distribution, evolution
and visualization of research areas in computer science. In Proceeding of Interna-
tional Semantic Web Conference (2005).

5. Hartmann, J., and Sure, Y. An infrastructure for scalable, reliable semantic
portals. IEEE Intelligent Systems 19, 3 (2004), 58–65.

6. Henze, N., and Kriesell, M. Personalization Functionality for the Semantic
Web: Architectural Outline and First Sample Implementation. In 1st Interna-
tional Workshop on Engineering the Adaptive Web (EAW 2004) (Eindhoven, The
Netherlands, 2004).

7. Henze, N., and Nejdl, W. Adaptation in Open Corpus Hypermedia. IJAIED
Special Issue on Adaptive and Intelligent Web-Based Systems 12 (2001).

8. Klusch, M., Fries, B., and Sycara, K. Automated semantic web service discov-
ery with owls-mx. In Proceedings of 5th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS) (2006), ACM Press.

9. McIlraith, S., Son, T., and Zeng, H. Semantic web services. Intelligent Systems
16, 2 (2001), 46–52.

10. Motta, E., Domingue, J., and Cabral, L. Irs-ii: A framework and infras-
tructure for semantic web services. In Proceedings of the 2 Intl. Semantic Web
Conference (Florida, USA, 2003).

11. Quan, D., and Karger, D. How to make a semantic web browser. In Proceedings
of the 13th International Conference on World Wide Web (2004), pp. 255–265.

12. Shadbolt, N. R., Gibbins, N., Glaser, H., Harris, S., and schraefel, m. c.
CS AKTive space or how we stopped worrying and learned to love the semantic
web. IEEE Intelligent Systems 19, 3 (2004).


