
Using Ontologies for Extracting Product
Features from Web Pages�

Wolfgang Holzinger, Bernhard Krüpl, and Marcus Herzog

Database and Artificial Intelligence Group, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Wien, Austria

{holzing, kruepl, herzog}@dbai.tuwien.ac.at

Abstract. In this paper, we show how to use ontologies to bootstrap
a knowledge acquisition process that extracts product information from
tabular data on Web pages. Furthermore, we use logical rules to reason
about product specific properties and to derive higher-order knowledge
about product features. We will also explain the knowledge acquisition
process, covering both ontological and procedural aspects. Finally, we
will give an qualitative and quantitative evaluation of our results.

1 Introduction

The World Wide Web is an excellent source for product information. Product
descriptions are posted on numerous Web sites, be it manufacturer Web sites,
review portals, or online shops. However, product presentations on the Web are
primarily designed for a human audience. Product features are not encoded in a
way that they can be automatically processed by machines. In this paper, we in-
vestigate the task of extracting product features, i.e., attribute name-value pairs,
from Web pages. The extraction process is assumed to work fully autonomous,
given some seed knowledge about a product domain of interest. We will use the
digital camera domain to illustrate our approach.

Due to the very nature of the World Wide Web, information about the same
product is often spread over a large number of Web sites and is presented in quite
different formats. However, technical product information tends to be presented
in a more structured way, usually in some form of list or table structure. Still,
the presentation variety of this semi-structured information is enormous. In the
AllRight project, we strive for distilling knowledge about products and their
features from the product descriptions found on large numbers of Web sites.
This project is also part of a larger research initiative that deals with various
aspects of data extraction from Web pages [2].

We assume that the product descriptions are posted on “regular” Web pages
that are not semantically annotated in any way. It is therefore part of our task to
annotate to these Web data as much relevant semantics as possible. Semantics

� This research is supported in part by the Austrian Federal Ministry for Transport,
Innovation and Technology under the FIT-IT contract FFG 809261 and by the REW-
ERSE Network of Excellence.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 286–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Using Ontologies for Extracting Product Features from Web Pages 287

is always a matter of perspective: when examined from different points of view,
completely different properties of a subject matter may become important. For
most technical products, though, a common understanding about the relevance
of features exists. It is exactly this feature set that manufacturers, dealers, and
reviewers list when they post product descriptions on the Web. We exploit this
common feature set when we retrieve information about products. For each
product, we build a feature space and populate it with instance data extracted
from Web pages.

Related work. Table extraction from Web documents has been addressed in a
number of publications [4,6] and has been used as a basis for the more general
notion of knowledge extraction [13,1] from the Web by the way of constructing
ontologies from tables [10,11]. In most of these approaches however ontologies
are only used for storing the knowledge gathered from the extraction process
performed by conventional procedural algorithms.

In [3], the authors describe the use of a domain ontology to create a wrap-
per for data extraction from Web tables. They use data integration techniques
to match the extracted data to the domain description. In the same line, our
approach tries to integrate table extraction with table interpretation [6], but
uses the classification capabilities of the OWL reasoner Pellet [8] to resolve the
gap between tabular presentation and the domain model’s semantics, without
resorting to external matching algorithms.

The OntoGenie system [9] populates a given ontology with instances using the
linguistic WordNet ontology as an interpretative bridge between the unstructured
data from the Web and the target ontology. Our system has the same goal of in-
stantiating a domain ontology, but relies on structural information about the data
in the form of tabular arrangement and a small domain specific vocabulary.

We believe that migrating parts of the logic to OWL reasoning helps building
a modular system with easily exchangeable logical table and domain models.
The logic needed to build higher level semantic concepts can be formulated in a
natural declarative manner, which helps development and elaboration of these
concepts. The procedural components in the process are decoupled from each
other, with each component having a clear purpose and responsibility. Usage of
OWL as a glue representation between them helps keeping the whole system
transparent and eases debugging and evaluation.

Architecture. The overall knowledge acquisition process is outlined in Figure 1.
In a first step, the table extraction algorithm analyzes an input HTML page for
tabular structures, given a specific table ontology T . The output of this step is an
instantiated table ontology I(T ) resembling the information found in a tabular
structure on the HTML page. Note that the tabular structure on the HTML
page is not necessarily encoded in HTML table elements, but only needs to
look like a table. This will be explained in more detail later.

In the next step, a content spotter algorithm analyzes the instantiated table
ontology I(T ) for occurrences of specific domain dependent concepts. The con-
tent spotter algorithm utilizes keywords and expressions defined in the domain



288 W. Holzinger, B. Krüpl, and M. Herzog

Fig. 1. The knowledge acquisition process, covering both ontological and procedural
aspects

ontology D and annotates the content found in the table structure with the re-
spective concepts. The output of this step is the combination of both the instanti-
ated table ontology I(T ) and the instantiated domain ontology I(D), containing
enough basic facts to allow for derivation of higher level concepts in D.

The final step interprets the instantiated ontologies using a standard OWL
reasoner which classifies the instances present in terms of the higher level con-
cepts of the domain ontology. The relevant product information is extracted and
stored externally for further processing.

In the following section we will describe how we use OWL ontologies to formal-
ize knowledge about both table structures and product features, as well as how
we represent intermediate and final results of the knowledge acquisition process.
Section 3 describes in detail the process depicted in Figure 1, covering the ta-
ble extraction algorithm, the content spotting algorithm, and the derivation of
higher-level domain concepts from pure facts extracted from the Web pages. Sec-
tion 4 presents a quantitative and qualitative evaluation of our process. Finally,
in Section 5 we discuss our main findings and discuss further ideas and potential
improvements.

2 Ontologies

We use two separate ontologies to represent different aspects in our problem
domain: knowledge about table structures, i.e., rows and columns, and knowledge
about product features, i.e., product attribute keyword–value pairs. We use OWL
to represent the ontologies. Moreover, we use the Pellet [8] OWL reasoner to
reason about concepts in our ontologies.



Using Ontologies for Extracting Product Features from Web Pages 289

(a) Table ontology (b) Meta domain ontology

(c) Digicam ontology

Fig. 2. The two base ontologies and a sample domain ontology

2.1 Modeling

Figure 2a shows our ontological modeling of tables. The most concise concept is
the table cell, represented as concept Cell, which contains a textual unformatted
string value modeled as an OWL datatype property. Cells are grouped into
rows and columns, which is reflected by the contains–relation and the concepts
Row and Column. This table model can represent the most basic table type, the
rectangular grid table [6] and is adequate in modelling the tables found in the
digital camera domain.

The meta domain ontology (Figure 2b) is our basic schema for the description
of products. This ontology represents a product as a flat list of attributes, where
each attribute is associated with a set of keywords and a typed attribute value.
For the description of specific products, we subclass the concepts in the meta do-
main ontology 2b and fill it with domain specific information, i.e., domain specific
attributes. Figure 2c shows an extension of the base ontology for digital cameras
(only 3 attributes of the 23 modelled are shown.) For each feature of the cam-
era, we provide an appropriately named attribute. Each attribute is associated



290 W. Holzinger, B. Krüpl, and M. Herzog

with a matching keyword and value concept. Keyword concepts are basically sin-
gleton concepts with only one instance representing the keyword. However, as seen
on the instance kw sensorsize in Figure 2c, this single instance can have multiple
independent string representations, allowing for various syntactic variants of the
keyword. In this way, the domain dictionary is integrated in the domain ontology.
Attribute values contain a reference to a type concept which denotes the allowed
attribute types. Besides simple numerical types like RatioType and ProductType
that have no further elaborated description in the domain ontology, enumera-
tion types are described in the ontology in a way similar to keywords. For in-
stance, the SensorTypeValueof a digital camera can be either v sensortype ccd
or v sensortype cmos, which are tagged with the respective strings "ccd"
and "cmos".

2.2 Reasoning: The ”Containment Forms Context” Assumption

Up to this point, we have two distinct ontologies that are not related to each
other. To make a successful interpretation of the content of a table with the
semantics defined by the domain model, we have to provide a way to integrate
those two ontologies.

Our method is based on the observation that individuals that belong to a
certain concept in one ontology, e.g. being a Cell in the table ontology, can at
the same time belong to another unrelated concept in a different ontology, i.e.,
being the value of a specific attribute in the product ontology.

The crucial point is what we call the ”containment forms context” assumption.
We use the hierarchical containment relation between texts and cells and rows
and columns that is present in the table model to decide on the context that a
cell is in. The fact that a cell c belongs to a row r establishes a common context
on all the members ci of r.

Consider the attribute value SensorSizeValue. We want to classify a cell as
a valid sensor size value, iff its text contains both a numerical value and a length
unit (like ”in” or ”cm”). Any cell containing both text fragments binds this two
fragments into a common context that we call SensorSizeValue:

SensorSizeValue == ∃.contains NumericalType ∩ ∃.contains LengthUnit

In the same way, we recognize an individual to be an sensor dimension at-
tribute, iff it contains both a sensor dimension attribute keyword and a sensor di-
mension attribute value. Any individual that contains both a SensorSizeValue
and SensorSizeValue should become a SensorSizeAttribute also:

SensorSizeAttribute == ∃.contains SensorSizeValue

∩ ∃.contains SensorSizeValue

At present all definitions of values and attributes follow this simple schema.
However, we perceive it to be one of the strong points of our approach that those
simple definitions can easily be replaced by more intricate ones if the need arises,



Using Ontologies for Extracting Product Features from Web Pages 291

without having to modify any other part of the system, because the handling of
these rules is encapsulated in the ontology reasoner.

3 The Knowledge Acquisition Process

In the following we will give a detailed description of the knowledge acquisi-
tion process as introduced in Section 1. Once started, this process works au-
tonomously until a specified number of product descriptions are harvested from
the Web.

3.1 Table Extraction

Typical tasks that cannot be handled efficiently by ontological means only are
the location and recognition [6] of tabular data regions on Web pages. While
table location aims at finding tables in a document, the task of table recognition
is to identify the spatial properties of a table. For these tasks we rely on an
algorithmic approach that is described in this section. Our approach to table
extraction [7] is quite different from previously described ones: we do not operate
on the DOM tree or any other incarnation of the HTML source code, but rely
on the visual rendition of the Web page. (See [5] for a different variant where
they also use positional information of non-text nodes.)

Figure 3 through Figure 5 visualize the process of table extraction, starting
from the input HTML page and ending at the output table structure that con-
tains the unlabeled product features. The extraction algorithm detects a prod-
uct feature table on a Web page, and extracts the spatial features of the table
structure along with its content. The result is an explicit representation of the
table structure derived from the interpretation of the spatial table features. Note
that we do not rely on the structural properties of the HTML source code, e.g.
<table> elements, to interpret the table structure, but instead utilize visual fea-
tures that are also accessible to a typical human reader, i.e., word positions and
styles. No matter how a table was realized in the HTML source code, whatever
looks like a table, i.e., follows certain alignment conditions, will be interpreted
as a table.

The table extraction algorithm first groups adjacent words into larger cells
(➀), thus working in a bottom-up manner starting from the bounding boxes of
individual words in a table. Next, the algorithm tries to identify possible table
columns (➁). We consider a possible table column a set of vertically neighboring
cells that are aligned either on the left-hand side, right-hand side, or at the
middle. If any cells are found that interrupt the sequence of directly neighboring
cells within an identified column candidate, we check if these cells could be
intermediate table headings by also testing against an alignment hypothesis (➂).
Such headings can be important for the further processing because they can give
an important context for the cells below the headings.

Once all possible columns were found, the table extraction algorithm tries to
identify the column combinations that actually form tables. The strategy looks
for adjacent columns that share a common row structure (➃): All gaps between



292 W. Holzinger, B. Krüpl, and M. Herzog

Fig. 3. Sample
HTML page

L C R

L C R

L C R

1

1

2 2
3

4

4

4

Fig. 4. Schema of table extraction
algorithm

...
...

Image Ratio 3:2
Sensor size 8.4 x 5.2 mm
Sensor type CMOS
ISO rating 100,200,400
...

...

Fig. 5. Tabular data struc-
ture for product features

the column rows must also be found in the adjacent column. By loosening this
requirement to hold only in one direction, we can also allow for rows where
a cell in one column corresponds to many cells in another column. We call
that procedure comb alignment of columns. The strategy also allows for the
identification of top, centre, and bottom aligned cells within any table row.
Tables that fulfill the comb alignment criterion for columns are returned for
further processing.

3.2 Applying the Table Ontology

In the next step, we express the structural relationships of the identified tables
by means of our table ontology. To this means we translate the spatial properties
from the bounding box model into a qualitative model. Consider Figure 5, show-
ing four rows from a typical table describing the features of some digital camera.
Applying the table ontology will derive the shown facts about the table, where
r1 refers to the first row, c1 to the left-hand side cell in the first row, and c2 to
the right-hand cell in the first row. Furthermore, Row and Cell are concepts of
the table ontology, and contains and stringValue are relations defined in the
table ontology. The result is an instance of the table ontology expressing facts
about the structural properties of tables produced by analyzing the Web page
by means of the table extraction algorithm.

r1 a Row. c1 a Cell. c2 a Cell.
r1 contains c1. r1 contains c2.
c1 stringValue "Image Ratio". c2 stringValue "3:2".

3.3 Content Spotting

Once the structure of a table is represented in the table domain ontology, we turn
to the content within the table cells to derive the meaning of the table, i.e., to
interpret the table structure in terms of product features represented as attribute



Using Ontologies for Extracting Product Features from Web Pages 293

name-value pairs. We utilize content spotters for this task. Content spotters are
small programs with the purpose to recognize certain semantic concepts in texts.
A content spotter is equipped with the necessary knowledge to detect an instance
of the concept it represents and, more importantly, to name it and to state the
fact in an OWL statement.

Table 1. Type spotters detect values with distinctive formatting

NumberType 2,453
ProductType 8.4 x 5.2 mm
TripleProductType 3.9 x 8.4 x 5.2 in
FractionType 1/400
RatioType 1:2.8

Presently we employ two types of content spotters: keyword spotters and type
spotters. Keyword spotters detect the presence of a particular word or phrase in
a number of alternative syntactic representations. Keyword spotters utilize the
domain ontology by accessing the regular expressions associated with instances
of the various keywords concepts. The keyword spotter remembers the most
specific concept for each keyword and will use this concept when it detects the
regular expression in a text.

Type spotters contain more intrinsic knowledge than keyword spotters. While
keyword spotters are only able to detect a limited number of alternative expres-
sions, type spotters are able to detect a whole class of expressions that follow a
common schema. Table 1 shows a number of type spotters and the kind of values
they typically detect.

Both kinds of content spotters operate by matching a text to a regular expres-
sion. Content spotters fetch their regular expressions from the domain ontology.
If a substring of the text matches the regular expression of a content spotter,
that substring is extracted and annotated with the reference to the annotating
spotter.

3.4 Applying the Domain Ontology

Once the content spotters have annotated the content within the table cells, the
domain ontology can be employed to derive additional facts. Given the table
ontology instance as described in Subsection 3.2 and the annotated content, the
application of the product ontology can derive the following facts:

c1 contains kw_imageratio. c2 contains v1. v1 a TypeRatio.
c3 contains kw_sensorsize. c4 contains v2. v2 a DoubleProduct.
c4 contains u_mm.

Since cell c2 contains an individual that is of type RatioType, the definition
given for the concept ImageRatioValue is triggered: cell c2 is classified accord-
ingly as an attribute value. Moreover, row r1 contains c1, which in turn contains



294 W. Holzinger, B. Krüpl, and M. Herzog

the keyword kw imageratio. Row r1 also contains c2, which in turn contains a
value of the matching type TypeRatio. Therefore it is concluded that r1 is an
ImageRatioAttribute according to the product ontology. The following facts
are added to the domain knowledge:

c2 a ImageRatioValue.
r1 a ImageRatioAttribute.

In this way, table rows are successively identified as instances of product
attributes.

To conclude, we started from an HTML page, identified the tabular structure
containing text fragments, annotated the text fragments with simple semantic
concepts according to the domain ontology, and finally derived from those basic
building blocks high–level product attributes. The following section gives an
evaluation of the quality of both the intermediate and the final derived concepts.

4 Evaluation

The automatic, unsupervised identification and extraction of product attributes
from Web pages is our ultimate goal. We perform the evaluation of our approach
in two steps:

– Firstly, we provide an analysis of the performance of the content spotters
that we described in Section 3.3.

– Secondly, we analyze the performance of the whole system by comparing the
automatically generated results with manually generated ground truth.

4.1 Content Spotter Evaluation

We used the AllRight crawler [2] to automatically locate and retrieve about 6400
Web pages. The crawler searches for pages that, with a high likelihood, contain
tables representing the technical specification of digital cameras. The pages orig-
inated from manufacturer, dealer and review sites. Due to space constraints, we
will not present the AllRight crawler in detail here. It is worth mentioning,
though, that the crawling process runs completely unsupervised. The table ex-
traction algorithm we described in Section 3.1 was used to extract 1955 product
specification tables from the crawled pages. These 1955 Web pages were then
used as candidate pages for the content spotting process.

Figure 6a shows the distribution of the number of rows in the candidate
pages along with the distribution of recognized keywords in those tables. The
distributions are of similar form, with about 35% of the rows showing an attribute
match. The mean value of the identified table rows is 50.4, whereas the mean
value for the number of identified attributes is 17.8

Figure 7 shows an overview of how many times each of the keywords matched
within the textual content of a table, measuring the ambiguity a of the keyword.
There is a clear distinction between keywords appearing with relative high fre-
quency, which also have a tendency to generate outliers — matching extremely



Using Ontologies for Extracting Product Features from Web Pages 295

Fig. 6. Attribute distribution and quality

often in a table —, and low frequency keywords that seldom match and never
produce excessive multiple matches.

Closely related to Figure 7 is Table 2, showing the number of candidate tables
in which each keyword matched at least once, measuring the coverage c of a
keyword. Again, the distinction between frequent and infrequent matchers is
clearly visible: most keywords either match on more than 80% of the tables, or
they match in less than 5%. The keyword p weight matched in 94% of all tables,
and produced on average 1.5 matches per table. It is our prime example for a
perfect attribute: matching in almost every case, and matching with minimum
ambiguity. We strive for high coverage of a keyword to be of maximum use
in every case, and we need low ambiguity of the keyword to achieve precise
classification.

We measured keyword quality using the simple formula q = c
a , where quality

is proportional to coverage and inversely proportional to ambiguity. Figure 6b,
displaying keyword qualities in descending order, shows that keyword quality

Fig. 7. Keyword ambiguity (see table 2 for keyword names)



296 W. Holzinger, B. Krüpl, and M. Herzog

decreases exponentially. Therefore, the top 1/3 keywords are responsible for most
of the semantic annotation, while the remaining keywords are almost useless.
This is a hint that those attributes were either underspecified in the domain
knowledge, or that these attributes are really so infrequently mentioned to make
them negligible. In any case, they should be used with caution in subsequent
evaluations of the generated data.

Table 2. Keyword coverage

1 p rechargeable 649 2 p resolution 1380
3 p batterytype 1465 4 p denomination 242
5 p pixels 1669 6 p display size 4
7 p movieclips 1620 8 p firewire 688
9 p weight 1850 10 p guarantee 140
11 p vendor 11 12 p internal memory 11
13 p lcd display 3 14 p brand 895
15 p optical finder 1432 16 p price 866
17 p productdescription 27 18 p slrcamera 5
19 p storagemedia 1805 20 p usb 1854
21 p videoout 7 22 p zoomfactor digital 7
23 p zoomfactor optical 6

4.2 Evaluation Against Ground Truth

As explained in a previous section, the extraction stage is fed by a retrieval
component that automatically retrieves domain relevant pages containing semi-
structured data. We randomly selected 30 of these retrieved pages for manual
annotation by a human domain expert. To make the annotation process less
time consuming and error prone, we devised a ground truth annotation tool
that we use to annotate relevant Web pages. We do not try to annotate all of
the information on a page, but cover only a fraction of it by selecting a set of 5
attributes. We assume that the extraction quality for the other attributes will
be comparable.

We need to provide ground truth to be able to verify results at different stages
in our process: the location of tables on a page, the recognition of the table, and
the interpretation of the function of table cells. Therefore, ground truth has to
provide information about: left top and right bottom corners of the table, which
word tokens in the table form a table cell, and the functional relations of table
cells.

Several table models have been proposed in the literature [4,6,12]. We restrict
our analysis to those table types that only contain a single level of table nesting,
i.e., the nesting that is defined by intermediate headings. In addition to reducing
the complexity of the problem, we can give more arguments for this restriction:
Our system is not an isolated experiment in the table extraction field, but has
to link the table interpretation results into our domain ontology. This ontology
is centered around the concepts of products and attributes. If there are more



Using Ontologies for Extracting Product Features from Web Pages 297

complex structural relationships contained in a particular table, it is very likely
that these relationships, or the table as a whole, just are not appropriate for our
extraction task.

The notion of subjectivity is an important factor in our considerations. When
we want to extract product information from tables, we want it to be aligned
with our (subjective) domain ontology, therefore we need to find those tables on
the Web that share the same conceptualization basics. If an author describes a
product from a completely unique perspective, this document cannot be included
in our analysis, even when it is semi-structured. This is due to the fact that a
common ontological understanding is missing in this case.

The ground truth generation tool we devised lets the user operate on the
visual rendition of a Web page. We implemented an extension for the Mozilla
Firefox browser that can be invoked for any Web page displayed in the browser.
If activated, the user will be able to select any word on the page by pointing
the mouse cursor over it; the selected word can then be annotated as a certain
attribute keyword or value by performing some key strokes. In addition, there is
a mode to indicate which of the word tokens belong together to form a functional
unit. The results of the annotation process are stored in instances of an OWL
ontology that allows for an easy comparison with the automatically generated
results of our system.

Table 3. Results of evaluation against ground truth

Average number of Average number
(per document) (per document)
ground truth identified

keywords values attributes keywords values attributes
5.13 6.78 4.82 3.22 4.02 3.38

Recall Precision
keywords values attributes keywords values attributes

62.8% 59.3% 70.1% 65.8% 41.6% 92.4%
F-measure

keywords values attributes
64.27% 48.90% 79.72%

4.3 Results

We asked different users to annotate 30 documents with 5 concepts from our
domain ontology. We quickly found out that the annotation heavily depends on
qualification of the user in the domain: Identifying CCD sensor sizes in docu-
ments is very difficult for users who do not have an appropriate background. On
the other hand, even within the group of domain experts, there were differences
in what users considered being related to a domain concept or not (e.g. in the
case of sensor resolutions). For us, this proves our assumption that subjectivity
plays a key role in the extraction process that has been underestimated so far.



298 W. Holzinger, B. Krüpl, and M. Herzog

Table 3 summarizes the results. The section “average number of ground truth”
gives the average numbers for annotated keywords, values and attributes
within a document. Keyword and value denote the respective parts of a keyword-
value pair. Together, these elements form an attribute, i.e., a product feature.
Note that the total number of keywords, values, and attributes is not equal.
This is due to the fact that multiple values can exist for a single keyword, and
attributes must comprise both a keyword and a value. The “average number
identified” section gives the average numbers for the automatically identified
attributes over all documents examined. For both recall and precision we get
significantly better values for attributes than for keywords and values alone,
showing the benefit of the effort to derive higher level domain concepts.

5 Conclusions and Outlook

We presented a system that uses ontology reasoning to integrate table extraction
and table interpretation. A first evaluation has shown that the classification work
done by the reasoner can significantly increase precision and recall of high level
semantic product information.

Presently, the content spotters use regular expressions to match keywords
and types. Experience has shown that tables frequently contain phrases that are
not easily recognizable by regular expressions. Recognizing only simple phrases
and assembling them with complex ontology concepts is computationally expen-
sive. Simple grammars with a limited capability of recognizing natural language
phrases could be used in place of the regular expressions.

Our current rectangular table model, while capturing the essential informa-
tion, does not make use of the additional structural information that is present
in more complex layouts. For example, many tables in our testing set used col-
umn spanning rows as sub–headers to segment a long table. The information in
these sub–headers can give valuable context information to the interpretation of
the row–attributes. We are currently working on an extended table model that
can represent segmented nested tables. Such a model requires generalizing the
containment–context axiom to multiple levels.

References

1. Harith Alani, Sanghee Kim, David E. Millard, Mark J. Weal, Wendy Hall, Paul H.
Lewis, and Nigel R. Shadbolt. ”Automatic Ontology-Based Knowledge Extraction
from Web Documents” In IEEE Intelligent Systems, Vol. 18, No. 1, pages 14–21,
2003.

2. Julien Carme, Michal Ceresna, Oliver Frölich, Georg Gottlob, Tamir Hassan, Mar-
cus Herzog, Wolfgang Holzinger, and Bernhard Krüpl. ”The Lixto Project: Explor-
ing New Frontiers of Web Data Extraction” In Proc. of the 23rd British National
Conf. on Databases, 2006.

3. David W. Embley, Cui Tao, Stephen W. Liddle. ”Automatically Extracting On-
tologically Specified Data from HTML Tables of Unknown Structure” In Proc. of
the 21st Int. Conf. on Conceptual Modeling (ER02), Tampere, Finland, 2002.



Using Ontologies for Extracting Product Features from Web Pages 299

4. David W. Embley, Daniel Lopresti, and George Nagy. ”Notes on Contemporary
Table Recognition” In Proc. of the 2nd IEEE Int. Conf. on Document Image
Analysis for Libraries, 2006.

5. Wolfgang Gatterbauer and Paul Bohunsky. Table Extraction Using Spatial Rea-
soning on the CSS2 Visual Box Model In Proc. of the 21st National Conf. on
Artificial Intelligence, 2006.

6. Matthew Hurst. ”Layout and Language: Challenges for Table Understanding on
the Web” In Proc. of the 1st Int. Workshop on Web Document Analysis, 2001.

7. Bernhard Krüpl and Marcus Herzog. Visually Guided Bottom-Up Table Detection
and Segmentation in Web Documents. In Proc. of the 15th Int. World Wide Web
Conf., 2006.

8. Bijan Parsia, Evren Sivrin, Mike Grove, and Ron Alford. Pellet OWL Reasoner,
2003. Maryland Information and Networks Dynamics Lab
http://www.mindswap.org/2003/pellet/ (as of May 2006).

9. Chintan Patel, Kaustubh Supekar, and Yugyung Lee. ”Ontogenie: Extracting On-
tology Instances from WWW” In Human Language Technology for the Semantic
Web and Web Services, ISWC’03, Sanibel Island, Florida, 2003.

10. Masahiro Tanaka and Toru Ishida. ”Ontology Extraction from Tables on the Web”
In Proc. of the Int. Symposium on Applications on Internet, 2006.

11. Yuri A. Tijerino, David W. Embley, Deryle W. Lonsdale, and George Nagy. ”Ontol-
ogy Generation from Tables” In Proc. of the Fourth Int. Conf. on Web Information
Systems Engineering, 2003.

12. Xinxin Wang. ”Tabular Abstraction, Editing, and Formatting” PhD thesis, Univ.
of Waterloo, 1996.

13. Alan Wessman, Stephen W. Liddle, and David W. Embley. ”A Generalized Frame-
work for an Ontology-Based Data-Extraction System” In Proc. of the 4th Int. Conf.
on Information Systems Technology and its Applications, pages 239–253, 2005.


	Introduction
	Ontologies
	Modeling
	Reasoning: The "Containment Forms Context" Assumption

	The Knowledge Acquisition Process
	Table Extraction
	Applying the Table Ontology
	Content Spotting
	Applying the Domain Ontology

	Evaluation
	Content Spotter Evaluation
	Evaluation Against Ground Truth
	Results

	Conclusions and Outlook

