
A Logic-Based Approach to Model
Supervisory Control Systems

Pierangelo Dell’Acqua∗†, Anna Lombardi∗, and Lúıs Moniz Pereira†

∗ Department of Science and Technology - ITN
Linköping University, 601 74 Norrköping, Sweden

{pier,annlo}@itn.liu.se
† Centro de Inteligência Artificial - CENTRIA

Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt

Abstract. We present an approach to model supervisory control sys-
tems based on extended behaviour networks. In particular, we employ
them to formalize the control theory of the supervisor. By separating the
reasoning in the supervisor and the action implementation in the con-
troller, the overall system architecture becomes modular, and therefore
easily changeable and modifiable.

1 Introduction

Hybrid control systems [8] typically arise from the interaction of discrete plan-
ning algorithms and continuous processes and they represent the basic structure
of discrete event supervisory controllers for continuous systems. Hybrid con-
trol systems have been object of research for more than a decade and there
are well-established results. Several approaches to hybrid control systems have
been defined in the literature, see e.g. [1, 6, 7] where examples of the most com-
mon structures are given. In supervisory control [5], the system (both plant and
controller) consists of a family of subsystems that can be actuated at different
time instants. Controller selection is carried out by means of logic-based switch-
ing. Switching among candidate controllers is performed by a high-level decision
maker called a supervisor. In this way one level of abstraction is introduced
making explicit the reasoning performed by the supervisor. The task of the con-
troller is to execute the action selected by the supervisor and accordingly steer
the plant.

Behaviour networks were introduced by Pattie Maes [9, 10] to address the
problem of action selection in environments that are dynamic and too complex
to be entirely predictable, and where the system has limited computational re-
sources and time resources1. Therefore, the action selection problem cannot be
completely rational and optimal. Maes adopted the stance suggestive of building

1 See pp. 244-255 in [4] for a summary introduction.



intelligent systems as a society of interacting, mindless agents, each having its
own specific competence [2, 11]. The idea is that competence modules cooperate
in such a way that the society as a whole functions properly. Such an architec-
ture is very attractive because of its distributiveness, modular structure, emer-
gent global functionality and robustness [9]. The problem is how to determine
whether a competence module should become active (i.e., selected for execution)
at a certain moment. Behaviour networks addressed this problem by creating a
network of competence modules and by letting them activate and inhibit each
other along the links of the network. Global parameters were introduced to guide
the activation/inhibition dynamics of the network. Behaviour networks combine
characteristics of traditional AI and of the connectionist approach by using a
connectionist computational model on a symbolic, structured representation. In
a previous paper [3] we adapted the formalism of behaviour networks to make
it possible to model hybrid control systems.

This paper proposes the use of extended behaviour networks to formalize the
control theory of the supervisor in supervisory control systems. The reason for
doing so is a consequence of the following observation. Extended behaviour net-
works are used in [3] to implement the controller itself. The resulting structure of
the controller is rather complex as the controller has both the task of reasoning
and the task of implementing the selected action. By separating the reasoning
in the supervisor and the action implementation in the controller, the overall
architecture becomes modular and therefore can be easily changed and/or ex-
tended. For example, if one new rule is introduced the only module that must
be changed is the supervisor while the controller does not need any change.

2 Behaviour Networks

In this section we recap the approach to extended behaviour networks introduced
in [3]. This approach extends the original framework of behaviour network pro-
posed by Pattie Maes [9, 10] to allow rules containing variables, internal actions,
integrity constraints, and modules (sets of atoms and rules).

A behaviour network is characterized by six modules: R, P, H, C, G and
E. The module R is a set of rules formalizing the behaviour of the network,
P is a set containing the global parameters, H is the internal memory of the
network, C its integrity constraints, G its goals/motivations, and E the module
that receives the input from the environment. We call the state of the network
the tuple S=(R, P, H, C, G, E). We assume given a module Math containing the
axioms of elementary mathematics.

2.1 Language

A term is a constant c or a variable x. Given a predicate symbol q of arity n
and the terms t1, . . . , tn, then q(t1, . . . , tn) is an atom. When the arity of q is
0, we write the atom as q. To express that an atom belongs to a module, we
employ the notion of indexed atoms. In the following, we name the modules of

2



the network by using small letters. Thus, we name the modules R, P, H, C, G,
E and Math as r, p, h, c, g, e and math. Let α be any arithmetic expression.
Given a module m and an atom A, an indexed atom has the form m:A or m÷A.
The first states that A belongs to m, while the second states that A does not
belong to m. We write sequences of indexed atoms by separating them with the
symbol ’,’, and we write ε to indicate the empty sequence.

Both goals and integrity constraints are sequences of indexed atoms. A goal
(motivation) expresses some condition to be achieved, while an integrity con-
straint represents a condition that must not hold. A rule2 is a tuple of the form:

〈prec; del; add; action; α〉
where prec, del and add are sequences (possibly empty) of indexed atoms. prec
denotes the preconditions that have to be fulfilled before the rule can become
executable. del and add represent the internal effect of the rule in terms of a
delete and add sequence of indexed atoms. When both del and add are empty
(i.e., ε), then the rule has no internal effects. We assume that del and add contain
only indexed atoms of the form m:A with m 6= e and m 6= math. The reason for
this restriction is that the modules E and Math cannot be updated. In contrast,
prec can contain any indexed atom.

The atom action represents the external effect of the rule: an action that
must be executed. We employ ’noaction’ to indicate that the rule does not have
any external effect. Finally, each rule has a level α of strength3. Variables in a
rule are universally quantified over the entire rule.

At every state S, a rule in R must be selected for execution. To do so, one
needs to find all the rules that are executable and select one. A framework of
rule selection for behaviour network is discussed in [3].

3 Case study: modelling an artificial animat

In this section we illustrate how to model a virtual animat by means of a super-
visory control system. The supervisor of the system, on the basis of the input
and output signals of the process, chooses which action to execute. Then the
system activates the controller implementing the action selected by the supervi-
sor. Thus, selecting an action to be executed corresponds in supervisory control
system terms to select and activate a controller. We employ behaviour networks
as a formalism (for the supervisor) to describe controller selection.

Scenario

Consider a virtual marine world inhabited by a variety of fish [12]. They au-
tonomously explore their dynamic world in search for food. Fishes are situated
within the environment, and sense and act over it. For simplicity, the behaviour
of a fish is reduced to eating food, flocking and escaping from predators and is
determined by the motivation of it being safe and satiated.
2 In [10] rules are called competence modules.
3 This value is used to calculate the activation level of the rules.

3



Supervisor

At every time instant tk the supervisor receives information on the state of the
fish, for example hungry(tk), fear(tk) and distance obstacle(tk). Some of the ac-
tions that the supervisor can select are: searchFor(food): to search for food when
it is hungry; flee: to run away from danger; and flock : to move in a flock. As-
sume that there exists a constraint C={e:fear(x),math:x>5,h:searching(food)}
needed to prevent the fish to start searching for food in dangerous situations. The
module G is {h:safe, h:satiated}, and R contains (among others) the following
rules.

〈e:fear(x),m:x<0.2,h÷safe; ε; h:safe; noaction; 0.4〉

〈e:fear(x),m:x>0.5,h:flocking; h:safe,h:flocking; fleeing; flee(x*2);

x*2〉

〈e:fear(x),m:x>0.5,h:alone; h:safe,h:searching(food); fleeing; flee(x*5);

x*5〉

The first rule represents an internal action. It states that if the fish does not have
fear, then it will add to its mental state that it is in a safe condition. Instead,
the next two rules state that if the fish has fear, then it will flee with different
values depending on whether it is flocking or alone. The level of strength of the
last two rules is directly proportional to the amount of fear. The next three rules
characterize the behaviour of the fish in case it gets hungry, and when it decides
to flock.

〈e:hungry(x),m:x>0.5; h:satiated; h:searching(food); search(food); 0.5〉

〈e:hungry(x),m:x<0.2; h:searching(food); h:satiated; noaction; 0.5〉

〈h÷searching(food); h:alone; h:flocking; flock; 0.4〉

The last rule above has a non-monotonic flavour (via ÷). It says that if the
fish is not searching for food, then it will start flocking. This is needed to give
continuity to the fish behaviour.

Controller

The controller module contains all the controllers. Each controller implements
an action selected by the supervisor. In the fish scenario, depending on the
chosen action, the controller calculates the direction and velocity of the fish.
For example, if the supervisor selects a rule whose action is flee(0.6), then the
corresponding controller can be described as:

flee(fleeFactor) {
−→v = fleeFactor *

∑N
n=1

−→x fish−−→x n

‖−→x fish−−→x n‖;
return −→v ; }

4



where N is the total number of visible predators, and −→x n is the vector of the
position of the n-th predator. We write ‖−→x ‖ to indicate the norm of a vector−→x . When a predator comes too close to the fish, the controller flee makes
the fish flee in the opposite direction. The new direction is calculated wrt. the
visible predators. fleeFactor determines the strength of the willing of the fish
to escape. The velocity −→v is then passed to the plant where the new position
will be calculated.

Plant

The artificial fish is modelled by several state variables representing the stimuli
of the fish: e.g., the stimuli of hunger and fear. They are represented as variables
with values in the range [0 1] with higher values indicating a stronger desire to
eat or to avoid predators [12]:

– hunger : it expresses how hungry the fish is and it is approximated by:

H(t) = min {∆T · α, 1} (1)

where ∆T denotes the time since the last meal, and α indicates the appetite
of the fish.

– fear : it quantifies the fear of the fish by taking into account the distance
d(t) of the fish to a predator:

D(t) = min {D0/d(t), 1} (2)

where D0 indicates how brave the fish is: if the fish is brave, it can take some
risk by coming close to the danger, for example to reach the food.

Any time the plant receives the velocity −→v from a controller, the new position
of the fish is calculated:

−→x fish(t + h) = −→x fish(t) +−→v · h

where h is the time interval between two computations. Finally, the new values
for the fish stimuli are updated wrt. the new position −→x fish(t + h).

4 Future Work

An interesting extension to the language L of the behaviour network would be
to allow variables to occur in the strength levels of rules. This will allow defining
the strength of a rule as a function of state.

One may also consider the possibility of including preference rules into a
behaviour network with the aim of contributing to the action selection process.
The idea being to compute all the executable rules whose activation level is
above a certain threshold, and then to use preference reasoning to select the one
that becomes active (and not just the one with greatest activation). This will

5



allow for additional flexibility, via a new threshold parameter, and an extra level
of control by means of context sensitive preferences.

Our method affords a clear declarative, modular, and updatable rule based
enactment of control, both at definitional and implementation levels, by separat-
ing rules for controller choice from the controllers themselves and the setting of
their parameters. Flexibility and strategic leverage is gained in so doing, paving
the way for controller monitoring, rule and parameter self-updating, and multi-
level control. Furthermore, behaviour networks permit a more reactive or more
deliberative form of controller choice, depending on the combination of the rela-
tive strengths of top-down and bottom-up ”energy” propagations. In the future,
meta-rules for updating the controller choice rules will be possible, either ex-
plicitly given or formed on the basis of learning or of pro-activeness through
simulation.

References

1. Panos J. Antsaklis and Anil Nerode. Hybrid control systems: An introductory dis-
cussion to the special issue. IEEE Transactions on Automatic Control, 43(4):457–
460, April 1998. Guest Editorial.

2. R. A. Brooks. A robust layered control system for a mobile robot. IEEE J. of
Robotics and Automation, 2(1):14–23, 1986.

3. P. Dell’Acqua, A. Lombardi, and L. M. Pereira. Modelling Hybrid Control Systems
with Behaviour Networks. In J. Filipe, J.-L. Ferrier, and J. A. Cetto, editors, 2nd
Int. Conf. on Informatics in Control, Automation and Robotics (Icinco05). Procs.
Intelligent Control Systems and Optimization Vol.1, pages 98–105. INSTICC Press.
ISBN:972-8865-29-5, 2005.

4. Stan Franklin. Artificial Minds. MIT Press, 1995.
5. Joao P. Hespanha, Daniel Liberzon, and A. Stephen Morse. Overcoming the limi-

tations of adaptive control by means of logic-based switching. Systems and Control
Letters. To appear.

6. W. Kohn and A. Nerode. Models for hybrid systems: automata, topologies, con-
trollability and observability. In R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors, Hybrid Systems, LNCS 736, pages 317–356, Berlin, 1993.
Springer-Verlag.

7. W. Kohn and A. Nerode. Multiple agent hybrid control architecture. In R. L.
Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, LNCS
736, pages 297–316, Berlin, 1993. Springer-Verlag.

8. Feng Lin. Robust and adaptive supervisory control of discrete event systems. IEEE
Transactions on Automatic Control, 38(12):1848–1852, December 1993.

9. Pattie Maes. How to do the right thing. Connection Science Journal, Special Issue
on Hybrid Systems, 1(3):291–323, 1989.

10. Pattie Maes. A bottom-up mechanism for behavior selection in an artificial crea-
ture. In J. A. Meyer and S. Wilson, editors, Proceedings of the first International
Conference on Simulation of Adaptive Behavior. MIT Press, 1991.

11. M. Minsky. The Society of Mind. Simon and Schuster, New York, 1986.
12. Xiaoyuan Tu. Artificial Animals for Computer Animation: Biomechanics, Locomo-

tion, Perception, and Behavior. PhD thesis, ACM Distinguished Ph.D Dissertation
Series, LNCS 1635, 1999.

6


