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Abstract

We establish a declarative theory of forgetting for disjunc-
tive logic programs. The suitability of this theory is justi-
fied by a number of desirable properties. In particular, one of
our results shows that our notion of forgetting is completely
captured by the classical forgetting. A transformation-based
algorithm is also developed for computing the result of for-
getting. We also provide an analysis of computational com-
plexity. As an application of our approach, a fairly general
framework for resolving conflicts in inconsistent knowledge
bases represented by disjunctive logic programs is defined.
The basic idea of our framework is to weaken the preferences
of each agent by forgetting certain knowledge that causes in-
consistency. In particular, we show how to use the notion of
forgetting to provide an elegant solution for preference elici-
tation in disjunctive logic programming.

Introduction
Forgetting (Lin & Reiter 1994; Lang, Liberatore, & Mar-
quis 2003) is a key issue for adequately handle a range of
classical tasks such as query answering, planning, decision-
making, reasoning about actions, or knowledge update and
revision. It is, moreover, also important in recently emerg-
ing issues such as design and engineering of Web-based on-
tology languages. Suppose we start to design an ontology
of Pets, which is a knowledge base of various pets (like
cats, dogs but not lions or tigers). Currently, there are nu-
merous ontologies on the Web. We navigated the Web and
found an ontology Animals which is a large ontology on
various animals including cats, dogs, tigers and lions. It is
not a good idea to download the whole ontology Animals.
The approach in the current Web ontology language standard
OWL1 is to discard those terminologies that are not desired
(although this function is still very limited in OWL). For ex-
ample, we may discard (or forget) tigers and lions from the
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ontology Animals. If our ontology is only a list of relations,
we can handle the forgetting (or discarding) easily. However,
an ontology is often represented as a logical theory, and the
removal of one term may influence other terms in the ontol-
ogy. Thus, more advanced methods are needed.

Disjunctive logic programming (DLP) under the answer
set semantics (Gelfond & Lifschitz 1990) is now widely
accepted as a major tool for knowledge representation and
commonsense reasoning (Baral 2002). DLP is expressive in
that it allows disjunction in rule heads, negation as failure
in rule bodies and strong negation in both heads and bodies.
Studying forgetting within DLP is thus a natural issue, and
we make in this paper the following contributions:
• We establish a declarative, semantically defined notion of

forgetting for disjunctive logic programs, which is a gen-
eralization of the corresponding notion for nondisjunctive
programs proposed in (Wang, Sattar, & Su 2005). The
suitability of this theory is justified by a number of de-
sirable properties.

• We present a transformation-based algorithm for comput-
ing the result of forgetting. This method allows to obtain
the result of forgetting a literal l in a logic program via
a series of program transformations and other rewritings.
In particular, for any disjunctive program P and any lit-
eral l, a syntactic representation forget(P, l) for forgetting
l in P always exists. The transformation is novel and does
not extend a previous one in (Wang, Sattar, & Su 2005),
which as we show is incomplete.

• Connected with the transformation algorithm, we settle
some complexity issues for reasoning under forgetting.
They provide useful insight into feasible representations
of forgetting.

• As an application of our approach, we present a fairly
general framework for resolving conflicts in inconsistent
knowledge bases. The basic idea of this framework is to
weaken the preferences of each agent by forgetting cer-
tain knowledge that causes inconsistency. In particular,
we show how to use the notion of forgetting to provide
an elegant solution for preference elicitation in DLP.

Preliminaries
We briefly review some basic definitions and notation used
throughout this paper.



A disjunctive program is a finite set of rules of the form

a1 ∨ · · · ∨ as ← b1, . . . , bm,not c1, . . . ,not cn, (1)

s,m, n ≥ 0, where a, b’s and c’s are classical literals in a
propositional language. A literal is a positive literal p or a
negative literal ¬p for some atom p. An NAF-literal is of the
form not l where not is for the negation as failure and l
is a (ordinary) literal. For an atom p, p and ¬p are called
complementary. For any literal l, its complementary literal
is denoted l̃.

To guarantee the termination of some program transfor-
mations, the body of a rule is a set of literals rather than a
multiset.

Given a rule r of form (1), head(r) = a1 ∨ · · · ∨
as and body(r) = body+(r) ∪ not body−(r) where
body+(r) = {b1, . . . , bm}, body−(r) = {c1, . . . , cn}, and
not body−(r) = {not q | q ∈ body−(r)}.

A rule r of the form (1) is normal or non-disjunctive, if
s ≤ 1; positive, if n = 0; negative, if m = 0; constraint, if
s = 0; fact, if m = 0 and n = 0, in particular, a rule with
s = n = m = 0 is the constant false.

A disjunctive program P is called normal program (resp.
positive program, negative program), if every rule in P is
normal (resp. positive, negative).

Let P be a disjunctive program and let X be a set of
literals. A disjunction a1 ∨ · · · ∨ as is satisfied by X , de-
noted X |= a1 ∨ · · · ∨ as if ai ∈ X for some i with
1 ≤ i ≤ s. A rule r in P is satisfied by X , denoted
X |= r, iff ”body+(r) ⊆ X and body−(r) ∩ X = ∅ im-
ply X |= head(r)”. X is a model of P , denoted X |= P if
every rule of P is satisfied by X .

An interpretation X is a set of literals that contains no
pair of complementary literals.

The answer set semantics The reduct of P on X is de-
fined as PX = {head(r)← body+(r) | r ∈ P, body−(r) ∩
X = ∅}. An interpretation X is an answer set of P if X
is a minimal model of PX (by treating each literal as a new
atom). AS(P ) denotes the collection of all answer sets of
P . P is consistent if it has at least one answer set.

Two disjunctive programs P and P ′ are equivalent, de-
noted P ≡ P ′, if AS(P ) = AS(P ′).

As usual, BP is the Herbrand base of logic program P ,
that is, the set of all (ground) literals in P .

Forgetting in Logic Programming
In this section, we want to define what it means to forget
about a literal l in a disjunctive program P . The idea is to
obtain a logic program which is equivalent to the original
disjunctive program, if we ignore the existence of the literal
l. We believe that forgetting should go beyond syntactic re-
moval of rules/literals and be close to classical forgetting and
answer set semantics (keeping its spirit) at the same time.
Thus, the definition of forgetting in this section is given in
semantics terms, i.e., based on answer sets, and naturally
generalizes the corresponding one in (Wang, Sattar, & Su
2005).

In propositional logic, the result of forgetting forget(T, p)
about a proposition p in a theory T is conveniently de-

fined as T (p/true) ∨ T (p/false). This way cannot be di-
rectly generalized to logic programming since there is no
notion of the ”disjunction” of two logic programs. However,
if we examine the classical forgetting in model-theoretic
point of view, we can obtain the models of forget(T, p) in
this way: first compute all models of T and remove p from
each model if it contains p. The resulting collection of sets
{M \ {p} | M |= T} is exactly the set of all models of
forget(T, p).

Similarly, given a consistent disjunctive program P and
a literal l, we naively could define the result of forgetting
about l in P as an extended disjunctive program P ′ whose
answer sets are exactly AS(P ) \ l = {X \ {l} | X ∈
AS(P )}. However, this notion of forgetting cannot guaran-
tee the existence of P ′ for even simple programs. For ex-
ample, consider P = {a ← . p ∨ q ←}, then AS(P ) =
{{a, p}, {a, q}} and thusAS(P )\p = {{a}, {a, q}}. Since
{a} ⊂ {a, q} and, as well-known, answer sets are incom-
parable under set inclusion, AS(P ) \ p cannot be the set of
answer sets of any disjunctive program.

A solution to this problem is a suitable notion of minimal
answer set such that the definition of answer sets, minimal-
ity, and forgetting can be fruitfully combined. To this end,
we call a set X ′ an l-subset of a set X , denoted X ′ ⊆l X ,
if X ′ \ {l} ⊆ X \ {l}. Similarly, a set X ′ is a strict l-subset
of X , denoted X ′ ⊂l X , if X ′ \ {l} ⊂ X \ {l}. Two sets
X and X ′ of literals are l-equivalent, denoted X ∼l X ′, if
(X \X ′) ∪ (X ′ \X) ⊆ {l}.
Definition 1 Let P be a consistent disjunctive program, let
l be a literal in P and let X be a set of literals.

1. For a collection S of sets of literals, X ∈ S is l-minimal if
there is no X ′ ∈ S such that X ′ ⊂l X . minl(S) denotes
the collection of all l-minimal elements in S.

2. An answer set X of disjunctive program P is an l-answer
set if X is l-minimal in AS(P ). ASl(P ) consists of all
l-answer sets of P .

To make AS(P ) − p incomparable, we could take either
minimal elements or maximal elements from AS(P ) − p.
However, selecting minimal answer sets is in line with se-
mantic principles to minimize positive information.

For example, P = {a ← . p ∨ q ←}, has two answer
sets X = {a, p} and X ′ = {a, q}. X is a p-answer set of
P , but X ′ is not. This example shows that, for a disjunctive
program P and a literal l, not every answer set is an l-answer
set.

In the rest of this paper, we assume that P is a consis-
tent program. The following proposition collects some easy
properties of l-answer sets.
Proposition 1 For any consistent program P and a literal l
in P , the following four items are true:

1. An l-answer set X of P must be an answer set of P .
2. For any answer set X of P , there is an l-answer set X ′ of

P such that X ′ ⊆l X .
3. Any answer set X of P with l∈X is an l-answer set of P .
4. If an answer set X of P is not an l-answer set, then (1)

l 6∈ X; (2) there exists an l-answer set Y of P such that
l ∈ Y ⊂l X .



Having the notion of minimality about forgetting a literal,
we are now in a position to define the result of forgetting
about a literal in a disjunctive program.

Definition 2 Let P be a consistent disjunctive program and
l be a literal. A disjunctive program P ′ is a result of forget-
ting about l in P , if P ′ represents l-answer sets of P , i.e.,
the following conditions are satisfied:

1. BP ′ ⊆ BP \ {l} and
2. For any set X ′ of literals with l /∈X ′, X ′ is an answer

set of P ′ iff there is an l-answer set X of P such that
X ′ ∼l X .

Notice that the first condition implies that l does not appear
in P ′. An important difference of the notion of forgetting
here from existing approaches to updating and merging logic
programs is that only l and possibly some other literals are
removed. In particular, no new symbol is introduced in P ′.

For a consistent extended program P and a literal l, some
program P ′ as in the above definition always exists (cf. Al-
gorithm 1 for details). However, different such programs P ′

might exist. It follows from the above definition that they are
all equivalent under the answer set semantics.

Proposition 2 Let P be a disjunctive program and l a literal
in P . If P ′ and P ′′ are two results of forgetting about l in P ,
then P ′ and P ′′ are equivalent.

We use forget(P, l) to denote a possible result of forgetting
about l in P .

Example 1 1. If P1 = {q ← not p}, then forget(P1, q) =
∅ and forget(P1, p) = {q ←}.

2. If P2 = {p ∨ q ←}, then forget(P2, p) = ∅.
3. P3 = {p∨ q ← not p. c← q} has the unique answer set
{q, c} and forget(P3, p) = {q ← . c←}.

4. P4 = {a ∨ p ← not b. c ← not p. b ←}. Then
forget(P4, p) = {c← . b←}.

We will explain how to obtain forget(P, l) in the next sec-
tion. The following proposition generalizes Proposition 2.

Proposition 3 Let P and P ′ be two equivalent disjunc-
tive programs and l a literal in P . Then forget(P, l) and
forget(P ′, l) are also equivalent.

However, forgetting here does not preserve some spe-
cial equivalences of logic programs stronger than ordi-
nary equivalence like strong equivalence (Lifschitz, Tang, &
Turner 1999) or uniform equivalence (Eiter & Fink 2003).
This will be discussed elsewhere.

Proposition 4 For any consistent program P and a literal l
in P , the following items are true:

1. AS(forget(P, l)) = {X \ {l} | X ∈ ASl(X)}.
2. If X ∈ ASl(X) with l 6∈ X , then X ∈ AS(forget(P, l)).
3. For any X ∈ AS(P ) such that l ∈ X , X \ {l} ∈
AS(forget(P, l)).

4. For any X ′ ∈ AS(forget(P, l)), either X ′ or X ′ ∪ {l} is
in AS(P ).

5. For any X ∈ AS(P ), there exists X ′ ∈ AS(forget(P, l))
such that X ′ ⊆ X .

6. If l does not appear in P , then forget(P, l) = P .

Let |=s and |=c be the skeptical and credulous reasoning de-
fined by the answer sets of a disjunctive program P , respec-
tively: for any literal l,

P |=s l iff l ∈ S for every S ∈ AS(P ).
P |=c l iff l ∈ S for some S ∈ AS(P ).

Proposition 5 Let l be a specified literal in disjunctive pro-
gram P . For any literal l′ 6= l,

1. P |=s l′ iff forget(P, l) |=s l′.
2. P |=c l′ only if forget(P, l) |=c l′.

This proposition says that, if l is ignored, forget(P, l) is
equivalent to P under skeptical reasoning, but weaker un-
der credulous reasoning (i.e., inferences are lost).

Similar to the case of normal programs, the above defini-
tions of forgetting about a literal l can be extended to forget-
ting about a set F of literals. Specifically, we can similarly
define X1 ⊆F X2, X1 ∼F X2 and F -answer sets of a dis-
junctive program. The properties of forgetting about a single
literal can also be generalized to the case of forgetting about
a set. Moreover, the result of forgetting about a set F can be
obtained one by one forgetting each literal in F .

Proposition 6 Let P be a consistent disjunctive program
and F = {l1, . . . , lm} be a set of literals. Then

forget(P, F ) ≡ forget(forget(forget(P, l1), l2), . . .), lm).

We remark that for removing a proposition p entirely from a
program P , it is suggestive to remove both the literals p and
¬p in P (i.e., all positive and negative information about p).
This can be easily accomplished by forget(P, {p,¬p}).

Let lcomp(P ) be Clark’s completion plus the loop formu-
las for an ordinary disjunctive program P (Lee & Lifschitz
2003; Lin & Zhao 2004). Then X is an answer set of P iff
X is a model of lcomp(P ).

Now we have two kinds of operators forget(, ) and
lcomp(). Thus for a disjunctive program and an atom p, we
have two classical logical theories lcomp(forget(P, p)) and
forget(lcomp(P ), p) on the signature BP \ {p}. It is natu-
ral to ask what the relationship between these two theories
is. Intuitively, the models of the first theory are all minimal
models while the models of the second theory may not be
minimal 2. Let P = {p ← not q. q ← not p}. Then
lcomp(forget(P, p)) = {¬q} and forget(lcomp(P ), p) =
{T ↔ ¬q ∨ F ↔ ¬q} ≡ T, which has two models {q}
and ∅.

However, we have the following result.

Theorem 1 Let P be a logic program without strong nega-
tion and p an atom in P . Then X is an answer set of
forget(P, p) if and only if X is a minimal model of the result
of classical forgetting forget(lcomp(P ), p). That is,

AS(forget(P, p)) = MMod(forget(lcomp(P ), p))

Here MMod(T ) denotes the set of all minimal models of a
theory T in classical logic.

2Thanks to Esra Erdem and Paolo Ferraris for pointing this out
to us.



Thus forget(P, p) can be characterized by forgetting in clas-
sical logic. Notice that it would not make much sense if we
replace lcomp(P ) with a classical theory which is not equiv-
alent to lcomp(P ) in Theorem 1. In this sense, the notion of
forgetting for answer set programming is unique.

We use forgetmin(T, p) to denote a set of classical
formulas whose models are the minimal models of the
classical forgetting forget(T, p). Then the conclusion of
Theorem 1 is reformulated as lcomp(forget(P, p)) ≡
forgetmin(lcomp(P ), p).

The result is a nice property, since it means that one can
”bypass” the use of an LP engine entirely, and represent also
the answer sets of forget(P, p) in terms of a circumscription
of classical forgetting, applied to lcomp(P ).

Theorem 2 Let P be a logic program without strong nega-
tion and p an atom in P . Then S′ is an answer set of
forget(P, p) if and only if either S = S′ or S = S′ ∪ {p} is
a model of Circ(BP \ {p}, {p}, lcomp(P )).

Computation of Forgetting
As we have noted, forget(P, l) exists for any consistent dis-
junctive program P and literal l. In this section, we discuss
some issues on computing the result of forgetting.

Naive Algorithm
By Definition 2, we can easily obtain a naive algorithm for
computing forget(P, l) using some ASP solvers for DLP,
like DLV (Leone et al. 2004) or GnT (Janhunen et al. 2000).
Algorithm 1 (Computing a result of forgetting)
Input: disjunctive program P and a literal l in P .
Procedure:

Step 1. Using DLV compute AS(P );
Step 2. Remove the literal l from every element ofAS(P )

and denote the resulting collection as A′

Step 3. Obtain A′′ by removing non-minimal elements
from A′.

Step 4. Construct P ′ whose answer sets are exactly A′′:
Let A′′ = {A1, ..., Am} and for each Ai, Pi = {l′ ←
not Āi | l′ ∈ Ai}. P ′ = ∪1≤i≤nPi. Here Āi = BP \Ai.

Step 5. Output P ′ as forget(P, l).

This algorithm is complete w.r.t. the semantic forgetting
defined in Definition 2.

Theorem 3 For any consistent disjunctive program P and
a literal l, Algorithm 1 always outputs forget(P, l).

Basic Program Transformations
In this subsection, we develop an algorithm for computing
the result of forgetting in P using program transformations
and other modifications. Here we use the set T∗

WFS of pro-
gram transformations investigated in (Brass & Dix 1999;
Wang & Zhou 2005). In our algorithm, an input program
P is first translated into a negative program and the result
of forgetting is represented as a nested program (under the
minimal answer sets defined by Lifschitz et al. (1999)).
Elimination of Tautologies: P ′ is obtained from P by the
elimination of tautologies if there is a rule r: head(r) ←

body+(r),not body−(r) in P such that head(r) ∩
body+(r) 6= ∅ and P ′ = P \ {r}.
Elimination of Head Redundancy P ′ is obtained from P
by the elimination of head redundancy if there is a rule r in
P such that an atom a is in both head(r) and body−(r) and
P ′ = P \ {r} ∪ {head(r)− a← body(r)}.

The above two transformations guarantee that those rules
whose head and body have common literals are removed.
Positive Reduction: P ′ is obtained from P by the
positive reduction if there is a rule r: head(r) ←
body+(r),not body−(r) in P and c ∈ body−(r) such
that c 6∈ head(P ) and P ′ is obtained from P by remov-
ing not c from r. That is, P ′ = P \ {r} ∪ {head(r) ←
body+(r),not (body−(r) \ {c})}.
Negative Reduction: P ′ is obtained from P by neg-
ative reduction if there are two rules r: head(r) ←
body+(r),not body−(r) and r′: head(r′)← in P such that
head(r′) ⊆ body−(r) and P ′ = P \ {r}.
Definition 3 Let r and r′ be two rules. We say that r′ is an
s-implication of r if r′ 6= r and at least one of the following
two conditions is satisfied:

1. r′ is an implication of r: head(r) ⊆ head(r′), body(r) ⊆
body(r′) and at least one inclusion is proper; or

2. r can be obtained by changing some negative body literals
of r′ into head atoms and removing some head atoms and
body literals from r′ if necessary.

Elimination of s-Implications: P2 is obtained from P1 by
elimination of s-implications if there are two distinct rules r
and r′ of P1 such that r′ is an s-implication of r and P2 =
P1 \ {r′}.
Unfolding: P ′ is obtained from P by unfolding if there is a
rule r such that

P ′ = P \ {r} ∪ {head(r) ∨ (head(r′)− b)←
(body+(r) \ {b}),not body−(r),not body(r′)) |
b ∈ body+(r),∃r′ ∈ P s.t. b ∈ head(r′)}.

Here head(r′)− b is the disjunction obtained from head(r′)
by removing b.

Since an implication is always an s-implication, the fol-
lowing result is a direct corollary of Theorem 4.1 in (Brass
& Dix 1999).

Lemma 1 Each disjunctive program P can be equivalently
transformed into a negative program N via the program
transformations in T∗

WFS, such that on no rule r in N , a
literal appears in both the head and the body of r.

Transformation-Based Algorithm
Algorithm 2 (Computing a result of forgetting)
Input: disjunctive program P and a literal l in P .
Procedure:

Step 1. Fully apply the program transformations in T∗
WFS

on program P and then obtain a negative program N0.
Step 2. Separate l from head disjunction via semi-shifting:

For each (negative) rule r ∈ N0 such that head(r) = l ∨ A



and A is a non-empty disjunction, it is replaced by two rules:
l ← not A, body(r) and A ← not l, body(r). Here not A
is the conjunction of all not l′ with l′ in A. The resulting
disjunctive program is denoted N .

Step 3. Suppose that N has n rules with head l:
rj : l ← not lj1, ...,not ljmj where n ≥ 0, j = 1, . . . , n

and mj ≥ 0 for all j.
If n = 0, then let Q denote the program obtained from N

by removing all appearances of not l.
If n = 1 and m1 = 0, then l ← is the only rule in N

having head l. In this case, remove every rule in N whose
body contains not l. Let Q be the resulting program.

For n ≥ 1 and m1 > 0, let D1, . . . , Ds be all possible
conjunctions (not not l1k1 , · · · ,not not lnkn

) where 0 ≤
k1 ≤ m1, ..., 0 ≤ kn ≤ mn. Replace in N each occurrence
of not l in N by all possible Di. Let Q be the result.

Step 4. Remove all rules with head l from Q and output
the resulting program N ′.

Some remarks: (1) This is only a general algorithm. Some
program transformations could be omitted for some special
programs and various heuristics could also be employed to
make the algorithm more efficient; (2) In this process, a re-
sult of forgetting is represented by a logic program allowing
nested negation as failure. This form seems more intuitive
than using ordinary logic programs; (3) In the construction
of Di, not not lij cannot be replaced with lij (even for
a normal logic program). As one can see, if they are re-
placed, the resulting program represents only a subset of
ASl(P ) (see Example 2). This also implies that Algorithm
1 in (Wang, Sattar, & Su 2005) is incomplete in general.
(4) Algorithm 2 above essentially improves the correspond-
ing algorithm (Algorithm 1) in (Wang, Sattar, & Su 2005) at
least in two ways: (i) our algorithm works for a more expres-
sive class of programs (i.e. disjunctive programs) and (ii) the
next result shows that our algorithm is complete under the
minimal answer set semantics of nested logic programs.

Theorem 4 Let P be a consistent disjunctive program and
l a literal. Then X is an answer set of forget(P, l) iff X is a
minimal answer set of N ′.

Example 2 Consider P4 = {c ← not q. p ← not q.
q ← not p}. Then, by Algorithm 2, forget(P4, p) is the
nested program {c ← not q. q ← not not q}, whose min-
imal answer sets are exactly the same as the answer sets
of forget(P4, p). Note that Algorithm 1 in (Wang, Sattar, &
Su 2005) outputs a program N ′ = {c ← not q. q ← q}
which has a unique answer set {c}. However, forget(P4, p)
has two answer sets {c} and {q}. This implies that the algo-
rithm there is incomplete.

The above algorithm is worst case exponential, and might
also output an exponentially large program. As follows from
complexity considerations, there is no program P ′ that rep-
resents the result of forgetting which can be constructed in
polynomial time, even if auxiliary literals might be used
which are projected from the answer sets of P ′. This is a
consequence of the complexity results below. However, the
number of rules containing l may not be very large and some
conjunctions Di may be omitted because of redundancy.

Resolving Conflicts in Multi-Agent Systems
In this section, we present a general framework for resolving
conflicts in multi-agents systems, which is inspired from the
preference recovery problem (Lang & Marquis 2002). Sup-
pose that there are n agents who may have different prefer-
ences on the same issue. In many cases, these preferences (or
constraints) have conflicts and thus cannot be satisfied at the
same time. It is an important issue in constraint reasoning
to find an intuitive criteria so that preferences with higher
priorities are satisfied. Consider the following example.

Example 3 (Lang & Marquis 2002) Suppose that a group of
four residents in a complex tries to reach an agreement on
building a swimming pool and/or a tennis court. The prefer-
ences and constraints are as follows.

1. Building a tennis court or a swimming pool costs each
one unit of money.

2. A swimming pool can be either red or blue.
3. The first resident would not like to spend more than one

money unit, and prefers a red swimming pool.
4. The second resident would like to build at least one of

tennis court and swimming pool. If a swimming pool is
built, he would prefer a blue one.

5. The third resident would prefer a swimming pool but ei-
ther colour is fine with him.

6. The fourth resident would like both tennis court and swim-
ming pool to be built. He does not care about the colour
of the pool.

Obviously, the preferences of the group are jointly inconsis-
tent and thus it is impossible to satisfy them at the same time.

In the following, we will show how to resolve this kind of
preference conflicts using the theory of forgetting.

An n-agent system S is an n-tuple (P1, P2, . . . , Pn) of
disjunctive programs, n > 0, where Pi represents agent i’s
knowledge (including preferences, constraints).

As shown in Example 3, P1 ∪ P2 ∪ · · · ∪ Pn may be in-
consistent. The basic idea in our approach is to forget some
literals for each agent so that conflicts can be resolved.

Definition 4 Let S = (P1, P2, . . . , Pn) be an n-agent
system. A compromise of S is a sequence C =
(F1, F2, . . . , Fn) where each Fi is a set of literals. An agree-
ment of S on C is an answer set of the disjunctive pro-
gram forget(S, C) where forget(S, C) = forget(P1, F1) ∪
forget(P2, F2) ∪ · · · ∪ forget(Pn, Fn).

For a specific application, we may need to impose certain
conditions on each Fi.

Example 4 (Example 3 continued) The scenario can be en-
coded as a collection of five disjunctive programs (P0 stands
for general constraints): S = (P0, P1, P2, P3, P4) where

P0 = { red ∨ blue ← s. ← red , blue.
u1 ← not s, t. u1 ← s,not t.
u2 ← s, t. u0 ← not s,not t};

P1 = {u0 ∨ u1 ← . red ← s};
P2 = {s ∨ t← . blue ← s};
P3 = {s←}; and P4 = {s← . t←}.



Since this knowledge base is jointly inconsistent, each resi-
dent may have to weaken some of her preferences so that an
agreement is reached. Some possible compromises are:

1. C1 = (∅, F, F, F, F ) where F = {s, blue, red}: Every
resident would be willing to weaken her preferences on
the swimming pool and its colour. Since forget(S, C1) =
P0 ∪ {u0 ∨ u1 ← . t ←}, S has a unique agreement
{t, u1} on C1. That is, only a tennis court is built.

2. C2 = (∅, {blue, red}, ∅, ∅, {t}): The first resident can
weaken her preference on pool colour and the fourth res-
ident can weaken her preference on tennis court. Since
forget(S, C2) = P0 ∪ P2 ∪ P3 ∪ {u0 ∨ u1 ← . s ∨
t ← . s ←}, S has a unique agreement {s, blue, u1}
on C2. That is, only a swimming pool will be built and its
colour is blue.
As shown in the example, different compromises lead to

different results. We do not consider the issue of how to
reach compromises here, which is left for future work.

Computational Complexity
In this section we address the computational complexity of
forgetting for different classes of logic programs. Our results
show that for general disjunctive programs, (1) the model
checking of forgetting is Πp

2-complete; (2) the credulous rea-
soning of forgetting is Σp

3-complete. However, for normal
programs or negative disjunctive programs, the complexity
levels are lower: (1) the model checking of forgetting is co-
NP-complete; (2) the credulous reasoning of forgetting is
Σp

2-complete.

disjunctive negative normal
model checking Πp

2 co-NP co-NP
|=c Σp

3 Σp
2 Σp

2

Theorem 5 Given a disjunctive program P , a literal l, and
set of literals X , deciding whether X is an l-answer set of
P is Πp

2-complete.

Intuitively, in order to show that X is an l-answer set, we
have to witness that X is an answer set (which is coNP-
complete to test), and that there is no answer set X ′ of P
such that X ′ ⊂l X . Any X ′ disproving this can be guessed
and checked using an NP-oracle in polynomial time. Thus,
l-answer set checking is in Πp

2, as stated in Theorem 5.
The construction in the proof of Theorem 5 can be ex-

tended to show Σp
3-hardness of credulous inference.

Theorem 6 Given a disjunctive program P and literals l
and l′, deciding whether forget(P, l) |=c l′ is Σp

3-complete.
In Theorem 6 a suitable l-answer set containing l′ can be
guessed and checked, by Theorem 5 using Σp

2-oracle. Hence,
credulous inference forget(P, l) |=c l′ is in Σp

3. The match-
ing lower bounds, Πp

2- resp. Σp
3-hardness can be shown by

encodings of suitable quantified Boolean Formulas (QBFs).
In Theorems 5 and 6, the complexity is coNP- and Σp

2-
complete, respectively, if P is either negative or normal.
Theorem 7 Given a negative or normal program N , a lit-
eral l, and set of literals X . Then

1. Deciding X ∈ ASl(N) is co-NP-complete.

2. Deciding whether forget(N, l) |=c l′ is Σp
2-complete.

Conclusion
We have proposed a theory of forgetting literals in disjunc-
tive programs. Although our approach is purely declarative,
we have proved that it is coupled by a syntactic counterpart
based on program transformations. The properties of forget-
ting show that our approach captures the classical notion of
forgetting. As we have explained before, the approach in this
paper naturally generalizes the forgetting for normal pro-
grams investigated in (Wang, Sattar, & Su 2005). As an ap-
plication of forgetting, we have also presented a fairly gen-
eral framework for resolving conflicts in disjunctive logic
programming. In particular, this framework provides an ele-
gant solution to the preference recovery problem.
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