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Abstract. An important issue, in open environments like the web, is guarantee-
ing the interoperability of a set of services. When the interaction scheme that the
services should follow is given (e.g. as a choreography or as an interaction proto-
col), it becomes possible to verify, before the interaction takes place, if the inter-
active behavior of a service (e.g. a BPEL process specification) respects it. This
verification is known as “conformance test”. Recently some attempts have been
done for defining conformance tests w.r.t. a protocol but these approaches fail
in capturing the very nature of interoperability, turning out to be too restrictive.
In this work we give a representation of protocol, based on message exchange
and on finite state automata, and we focus on those properties that are essential
to the verification of the interoperability of a set of services. In particular, we
define a conformance test that can guarantee, a priori, the interoperability of a
set of services by verifying properties of the single service against the protocol.
This is particularly relevant in open environments, where services are identified
and composed on demand and dynamically, and the system as a whole cannot be
analyzed.

1 Introduction

In this work we face the problem of verifying the interoperability of a set of peers by
exploiting an abstract description of the desired interaction. On a hand, we will have
an interaction protocol (possibly expressed by a choreography), capturing the global
interaction of a desired system of services; on the other, we will have a set of service
implementations which should be used to assemble the system. The protocol is a speci-
fication of the desired interaction, as thus, it might be used for defining several systems
of services [3]. In particular, it contains a characterization of the various roles played
by the services [6]. In our view, a role specification is not the exact specification of a
process of interest, rather it identifies a set of possible processes, all those whose evo-
lutions respect the dictates given by the role. In an open environment, the introduction
of a new peer in an execution context will be determined provided that it satisfies the
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protocol that characterizes such an execution context; as long as the new entity satisfies
the rules, the interoperability with the other components of the system is guaranteed.

In the literature it is possible to find works that tackle the composition of specific
entities (or services). In this context the issue of verifying that the desired services
can actually interact is crucial. For instance, in [20] the aim is to verify the existence
of a partner that is able to interact with a service of interest. This property is called
“controllability”. In [9], instead, the problem that is faced consists in verifying if there
is a composition of certain web services that respects a partial sequence of actions given
by a client. Works in this line of research differ from ours in the fact that we consider
the choreography, which is given a priori, as a model. This allows the distribution of
the verification in time and among the various candidate players. A candidate player
can autonomously check its conformance to the model independently from the others
because it only compares its behavior to the role that it means to play. To do this it
is not necessary to have the implementations of the other roles. In our framework, the
verification of the correctness of the model is supposed to preceed the verification of the
interoperability of the various players. This modularity meets the requirements given
by interaction protocol engineering: in fact, the expected properties of the composition
are captured by the model, defined at design time, which preceeds the verification of
the conformance of the peers to be composed. On the contrary, in works where the
compatibility of a set of peers is studied, the verification of the designer’s specifications
is to be done after the composition is made.

The computational model of web services shows some analogies with of method-
invocation over objects [17], in the sense that as an object cannot refuse to execute a
method, which is invoked on it and that is contained in its public interface, a service
cannot refuse to execute over an invocation that respects its public interface (although
it can refuse the answer). This, however, is not the only possible model of execution. In
multi-agent systems, for instance, an agent sending a request message to another agent
cannot be certain that it will ever be answered, unless the interaction is ruled by a proto-
col. The protocol plays, in a way, the role of the public interface: an agent conforming
to a protocol must necessarily answer and must be able to handle messages sent by
other agents in the context of the protocol itself. The difference between the case of
objects and the case of protocols is that the protocol also defines an “execution context”
in which using messages. Therefore, the set of messages that it is possible to use varies
depending on the point at which the execution has arrived. In a way, the protocol is a
dynamic interface that defines messages in the context of the occurring interaction, thus
ruling this interaction. On the other hand, the user of an object is not obliged to use all
of the methods offered in the public interface and it can implement more methods. The
same holds when protocols are used to norm the interaction. Generally speaking, only
part of the protocol will be used in an entity’s interaction with another, moreover, an
entitycan understand more messages than the one forseen by the protocol. Moreover,
we will assume that the initiative is taken from the entity that plays as a sender, which
will commit to sending a specific message out of its set of alternatives. The receiver
will simply execute the reception of the message. Of course, the senders should send
a message that its counterpart can understand. For all these reasons, performing the
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conformance test is analogous to verifying at compilation time (that is, a priori) if a
class implements an interface in a correct way and to execute a static typechecking.

Sticking to a specification, on the other hand, does not mean that the service must
do all that the role specification defines; indeed, a role specification is just a formal
definition of what is lawful to say or to expect at any given moment of the interaction.
Taking this observation into account we need to define some means for verifying that a
single service implementation comforms to the specification of the role in the protocol
that it means to play [16]. The idea is that if a service passes the conformance test it will
be able to interact with a set of other services, equally proved individually conformant
to the other roles in the protocol, in a way that respects the rules defined in the protocol
itself.

A typical approach to the verification that a service implementation respects a role
definition is to verify whether the execution traces of the service belong to the protocol
[1,14,7]. This test, however, does not consider processes with different branching struc-
tures. Another approach, that instead takes this case into account, is to apply bisimula-
tion and say that the implementation is conformant if it is bisimilar to its role or, more
generally, that the composition of a set of policies is bisimilar to the composition of
a set of roles [10,24]. Bisimulation [21], however, does not take into account the fact
that the implementor’s decisions of cutting some interaction path not necessarily com-
promise the interaction. Many services that respect the intuitions given above will not
be bisimilar to the specification but it would be very restrictive to say that they are not
conformant (see Section 3.1). Thus, in order to perform the conformance test we need a
softer test, a test that accepts all the processes contained in a space defined by the role.
Moreover, (bi)simulation does not take into account the asymmetry between messages
that are sent (outgoing messages) and messages that are, instead, received (incoming
messages) [5]. In this work we provide such a test (Section 3). This proposal differs
from previous work that we have done on conformance [7,8] in various aspects. First
of all, we can now tackle protocols that contain an arbitrary (though finite) number of
roles. Second, we account also for the case of policies and roles which produce the same
interactions but have different branching structures. This case could not be handled in
the previous framework due to the fact that we based it exclusively on a trace semantics.

2 Protocols, Policies, and Conversations

A conversation policy is a program that defines the communicative behavior of an in-
teractive entity, e.g. a service, implemented in some programming language [3]. A con-
versation protocol specifies the desired communicative behavior of a set of interactive
entities. More specifically, a conversation protocol specifies the sequences of messages
(also called speech acts) that can possibly be exchanged by the involved parties, and
that we consider as lawful.

In languages that account for communication, speech acts often have the form m(as,
ar, l), where m is the kind of message, or performative, as (sender) and ar (receiver)
are two interactive entities and l is the message content. In the following analysis it
is important to distinguish the incoming messages from the outgoing messages w.r.t a
role of a protocol or a policy. We will write m? (incoming message) and m! (outgoing
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message) when the receiver or the utterer and the content of the message is clear from
the context or they are not relevant. So, for instance, m(as, ar, l) is written as m?
from the point of view of ar, and m! from the point of view of the sender. By the term
conversation we will, then, denote a sequence of speech acts that is a dialogue of a set
of parties.

Both a protocol and a policy can be seen as sets of conversations. In the case of the
protocol, it is intuitive that it will be the set of all the possible conversations allowed
by its specification among the partners. In the case of the single policy, it will be the
set of the possible conversations that the entity can carry on according to its imple-
menting program. Although at execution time, depending on the interlocutor and on
the circumstances, only one conversation will actually be expressed, in order to verify
conformance a priori we need to consider them all as a set. It is important to remark be-
fore proceeding that other proposal, e.g. [2], focus on a different kind of conformance:
run-time conformance, in which only the ongoing conversation is checked against a
protocol. In this line also [23] where data mining techniques are used to compare event
logs to a desired business process.

Let us then introduce a formal representation of policies and protocols. We will use
finite state automata (FSA). This choice, though simple, is the same used by the well-
known verification system SPIN [18], whose notation we adopt. FSA will be used for
representing individual processes that exchange messages with other processes. There-
fore, FSA will be used both for representing the roles of a protocol, i.e. the abstract
descriptions of the interacting parties, as well as for representing the policies of spe-
cific entities involved in the interaction. In this work we do not consider the translation
process necessary to turn a protocol (e.g. a WS-CDL choreography) or an entity’s policy
(e.g. a BPEL process) in a FSA; our focus is, in fact, conformance and interoperability.
It is possible to find in the literature some works that do this kind of translations. An
example is [14].

Definition 1 (Finite State Automaton). A finite state automaton is a tuple (S, s0, L, T,
F ), where S is a finite set of states, s0 ∈ S is a distinguished initial state, L is a finite
set of labels, T ⊆ (S × L × S) is a set of transitions, F ∈ S is a set of final states.

Similarly to [18] we will denote by the “dot” notation the components of a FSA, for
example we use A.s to denote the state s that belongs to the automaton A. The definition
of run is taken from [18].

Definition 2 (Runs and strings). A run σ of a FSA (S, s0, L, T, F ) is an ordered,
possibly infinite, set of transitions (a sequence) (s0, l0, s1), (s1, l1, s2), (s2, l2, s3), . . .
such that ∀i ≥ 0, (si, li, si+1) ∈ T , while the sequence l0l1 . . . is the corresponding
string σ.

Definition 3 (Acceptance). An accepting run of a finite state automaton (S, s0, L, T, F )
is a finite run σ in which the final transition (sn−1, ln−1, sn) has the property that sn ∈
F . The corresponding string σ is an accepted string.

Given a FSA A, we say that a state A.s1 ∈ A.S is alive if there exists a finite run
(s1, l1, s2), . . . , (sn−1, ln−1, sn) and sn ∈ A.F . Moreover, we will write A1 ⊆ A2 iff
every string of A1 is also a string of A2.



A Priori Conformance Verification 343

In order to represent compositions of policies or of individual protocol roles we need
to introduce the notions of free and of synchronous product. These definitions are an
adaptation to the problem that we are tackling of the analogous ones presented in [4]
for Finite Transition Systems.

Definition 4 (Free product). Let Ai, i = 1, . . . , n, be n FSA’s. The free product A1 ×
· · · × An is the FSA A = (S, s0, L, T, F ) defined by:

– S is the set A1.S × · · · × An.S;
– s0 is the tuple (A1.s0, . . . , An.s0);
– L is the set A1.L × · · · × An.L;
– T is the set of tuples ((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′
1, . . . , An.s′n)) such

that (Ai.si, li, Ai.s
′
i) ∈ Ai.T , for i = 1, . . . , n; and

– F is the set of tuples (A1.s1, . . . , An.sn) ∈ A.S such that si ∈ Ai.F , for i =
1, . . . , n.

We will assume, from now on, that every FSA A has an empty transition (s, ε, s) for
every state s ∈ A.S. When the finite set of labels L used in a FSA is a set of speech
acts, strings will represent conversations.

Definition 5 (Synchronous product). Let Ai, i = 1, . . . , n, be n FSA’s. The synchro-
nous product of the Ai’s, written A1 ⊗· · ·⊗An, is the FSA obtained as the free product
of the Ai’s containing only the transitions ((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′
1,

. . . , An.s′n)) such that there exist i and j, 1 ≤ i �= j ≤ n, li = m!, lj = m?, and for
any k not equal to i and j, lk = ε.

The synchronous product allows a system that exchanges messages to be represented.
It is worth noting that a synchronous product does not imply that messages will be
exchanged in a synchronous way; it simply represents a message exchange without any
assumption on how the exchange is carried on.

In order to represent a protocol, we use the synchronous product of the set of FSA’s
associated with its roles (each FSA represents the communicative behavior of the role).
Moreover, we will assume that the automata that compound the synchronous product
have some “good properties”, which meet the commonly shared intuitions behind proto-
cols. In particular, we assume that for the set of such automata the following properties
hold:

1. any message that can possibly be sent, at any point of the execution, by a role to
another, will be handled by that interlocutor;

2. whatever point the conversation has reached, there is a way to bring it to an end.

An arbitrary synchronous product of n FSA’s might not meet these requirements, which
can, however, be verified by using automated systems, like SPIN [18].

Note that protocol specification languages, like UML sequence (activity) diagrams
and automata [22], naturally follow these requirements: an arrow starts from the lifeline
of a role, ending into the lifeline of another role, and thus corresponds to an outgoing
or to an incoming message depending on the point of view. Making an analogy with the
computational model of distributed objects, one could say that the only messages that
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are sent are those which can be understood. Moreover, usually protocols contain finite
conversations.

We will say that a conversation is legal w.r.t. a protocol if it respects the specifications
given by the protocol, i.e. if it is an accepted string of the protocol.

3 Interoperability and Conformance Test

We are now in position to explain, with the help of a few simple examples, the intuition
behind the terms “conformance” and “interoperability”, that we will, then, formalize.
By interoperability we mean the capability of a set of entities of actually producing a
conversation when interacting with one another [5]. Interoperability is a desired prop-
erty of a system of interactive entities and its verification is fundamental in order to
understand whether the system works. Such a test passes through the analysis of all
the entities involved in the interaction. In an open system, however, it is quite unlikely
to have a global view of the system either because it is not possible to read part of
the necessary information (e.g. some services do not publish their behavior) or because
the interactive entities are identified at different moments, when necessary. Protocols
are adopted to solve such problems, in fact, having an interaction schema allows the
distribution of the tests in time, by checking a single entity at a time against the role
that it should play. The protocol, by its own nature guarantees the interoperability of
the roles that are part of it. One might argue why we do not simply verify the system
obtained by substituting the policy in place of its corresponding role within the protocol
and, then, check whether any message that can be sent will be handled by some of the
interlocutor roles, bringing to an end the conversations. Actually, this solution presents
some flaws, as the following counter-example proves. Let us consider a protocol with
three roles: A1 sends m1 to A2, A2 waits for m1 and then waits for m2, and A3 sends
m2 to A2. Let us know substitute to role A2 the policy which, first, waits for m2 and
then it waits for m1. The three partners will perfectly interoperate and successfully
conclude their conversations but the conversation that is produced is not legal w.r.t. the
protocol. In protocol-based systems, the proof of the interoperability of an entity with
others, obtained by checking the communicative behavior of the entity against the rules
of the system (i.e. against an interaction protocol itself), is known as conformance test.
Intuitively, this test must guarantee the following definition of interoperability.

Definition 6 (Interoperability w.r.t. an interaction protocol). Interoperability w.r.t.
an interaction protocol is the capability of a set of entities of producing a conversation
that is legal w.r.t. the protocol.

Let us now consider a given service that should play a role in a protocol. In order to
include it in the interaction we need to understand if it will be able to interact with the
possible players of the other roles. If we assume that the other players are conformant
to their respective roles, we can represent them by the roles themselves. Roles, by the
definition of protocol, are interoperable. Therefore, in order to prove the interoperability
of our service, it will be sufficient to prove for it the “good properties” of its role. First
of all, we should prove that its policy does not send messages that the others cannot
understand, which means that it will not send messages that are not accounted for by
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the role. Moreover, we should prove that it can tackle every incoming message that the
other roles might send to it, which means that it must be able to handle all the incoming
messages handled by the role. Another important property is that whatever point of
conversation has been reached, there is a way to bring it to an end. In practice, if a role
can bring to an end a conversation in which it has been engaged, so must do the service.
To summarize, in order to check a service interoperability it will be sufficient to check
its conformance w.r.t. the desired role and this check will guarantee that the service will
be able to interact with services equally, and separately, proved conformant to the other
roles. This, nevertheless, does not mean that the policy of the service must be a precise
“copy” of the role.

m2!

m3!

m1?

No!
m2!

m1?
Ok!

m2?

m3?

m1!

Ok!
m2?

m1!

m2!
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�≤
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�≤

Policy Protocol role

No! Missing edge

Fig. 1. A set of cases that exemplifies our expectations about a conformant policy: cases (b) and
(c) do not compromise interoperability, hence they should pass the conformance test; cases (a)
and (d) instead should not pass the conformance test

3.1 Expectations for Interoperability

Let us now discuss some typical cases in which a policy and a role specification that
differ in various ways are compared in order to decide if the policy conforms to the
role so as to guarantee its interoperability with its future interlocutors that will play the
other roles in the protocol. With reference to Figure 1, let us begin with considering the
case reported at row (a): here, the service can possibly utter a message m3 that is not
foreseen by the role specification. Trivially, this policy is not conformant to the protocol
because the service might send a message that cannot be handled by any interlocutor
that conforms to the protocol. The symmetric case in which the policy accounts for
less outgoing messages than the role specification (Figure 1, row (b)) is, instead, legal.
The reason is that at any point of its conversations the entity will anyway always utter
only messages that the entities playing the other roles will surely understand. Hence,
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interoperability is preserved. The restriction of the set of possible alternatives (w.r.t. the
protocol) depends on the implementor’s own criteria.

Let us now consider the case reported in Figure 1, row (c). Here, the service policy
accounts for two conversations in which, after uttering a message m1, the entity expects
one of the two messages m2 or m3. Let us also suppose that the protocol specification
only allows the first conversation, i.e. that the only possible incoming message is m2.
When the entity will interact with another that is conformant to the protocol, the mes-
sage m3 will never be received because the other entity will never utter it. So, in this
case, we would like the a priori conformance test to accept the policy as conformant to
the specification.

Talking about incoming messages, let us now consider the symmetric case (Figure 1,
row (d)), in which the protocol specification states that after an outgoing message m1,
an answer m2 or m4 will be received, while the policy accounts only for the incoming
message m2. In this case, the expectation is that the policy is not conformant because
there is a possible incoming message (the one with answer m4) that can be enacted by
the interlocutor, which, however, cannot be handled by the policy. This compromises
interoperability.
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m1!

m1!
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Fig. 2. A set of cases that exemplifies our expectations about a conformant policy: differently
than in Figure 1, for every row, the policy and the role produce the same conversations but the
structure of their implementations differ

To summarize, at every point of a conversation, we expect that a conformant policy
never utters speech acts that are not expected, according to the protocol, and we also
expect it to be able to handle any message that can possibly be received, once again
according to the protocol. However, the policy is not obliged to foresee (at every point
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of conversation) an outgoing message for every alternative included in the protocol but
it must foresee at least one of them if this is necessary to proceed with the conversation.
Trivially, in the example of row (b), a policy containing only the conversation m1? (not
followed either by m2! or by m4!) would not be conformant.

Let us now consider a completely different set of situations, in which the “structure”
of the policy implemented and the structure of the role specification are taken into
account. These situations are taken from the literature on communicating processes
[15]. Figure 2 reports a set of cases in which the role description and the policy allow
the same conversations but their structure differs: in rows (a) and (c) the policy decides
which message to send (receive, respectively) after m1 from the very beginning, while
in the protocol this decision is taken after m1 is sent. In row (b) and (d) the situation is
inverted.

The case of row (a) does not compromise conformance in the same way as the case
reported at row (b) of Figure 1 does not: after a non-deterministic choice the set of
alternative outgoing messages is restricted but in both cases only legal messages that
can be handled by the interlocutor will be sent. The analogous case reported in row (c),
concerning incoming messages, instead, compromises the conformance. In fact, after
the non-deterministic step the policy might receive a message that it cannot handle,
similarly to row (d) of Figure 1.

The case of row (b), Figure 2, compromises the conformance because after the non-
deterministic choice the role specification allows a single outgoing message with no
alternatives. The policy, instead, might utter one out of two alternative messages (sim-
ilarly to row (a) of Figure 1). Finally, the case of row (d) does not compromise the
conformance, following what reported in Figure 1, row (c).

3.2 Conformance and Interoperability

In this section we define a test, for checking conformance, that is derived from the ob-
servations above. A first consideration is that a conformance test is not an inclusion test
w.r.t. the set of possible conversations that are produced. In fact, for instance, in row
(d) of Figure 1 the policy produces a subset of the conversations produced by the role
specification but interoperability is not guaranteed. Instead, if we consider row (c) in
the same figure, the set of conversation traces, produced by the policy, is a superset of
the one produced by the protocol; despite this, interoperability is guaranteed. A second
consideration is that a conformance test is not a bisimulation test w.r.t. the role specifi-
cation. Actually, the (bi)simulation-based test defined in concurrency theory [21] is too
strict, and it imposes constraints, that would exclude policies which instead would be
able to interoperate, within the context given by the protocol specification. In particular,
all the cases reported in Figure 2 would not be considered as conformant because they
are all pairs of processes with different branching structures. Despite this, we would like
our test to recognize cases (a) and (d) as conformant because they do not compromise
interoperability.

The solution that we propose is inspired by (bi)simulation, but it distinguishes the
ways in which incoming and outgoing messages are handled, when a policy is compared
to a role. In the following, we will use “A1 ≤ A2” to denote the fact that A1 conforms
to A2. This choice might seem contradictory after the previous discussion, in fact, in



348 M. Baldoni et al.

general A1 ≤ A2 does not entail A1 ⊆ A2. However, with symbol “≤” we capture
the fact that A1 will actually produce a subset of the conversations forseen by the role,
when interacting with entities that play the other roles in the protocol (see Propositions
1 and 2). This is what we expect from a conformant policy and from our definition of
interoperability.

Definition 7 (Conformant simulation). Given two FSA’s A1 and A2, A1 is a confor-
mant simulation of A2, written A1 ≤ A2 iff there is a binary relation R between A1
and A2 such that

1. A1.s0RA2.s0;
2. for every outgoing message m! ∈ A1.L and for every state si ∈ A1.S, for every

sj ∈ A2.S such that siRsj and (si, m!, si+1) ∈ A1.T , then there is a state sj+1 ∈
A2.S such that (sj , m!, sj+1) ∈ A2.T and si+1Rsj+1;

3. for every incoming message m? ∈ A2.L and for every state sj ∈ A2.S, for every
si ∈ A1.S such that siRsj and (sj , m?, sj+1) ∈ A2.T , then there is a state si+1 ∈
A1.S such that (si, m?, si+1) ∈ A1.T and si+1Rsj+1.

Particularly relevant is the case in which A2 is a role in a protocol and A1 is a policy
implementation. Notice that, in this case, conformance is defined only w.r.t. the role that
the single policy implements, independently from the rest of the protocol. As anticipated
above, Definition 7 does not imply the fact that “A1 ≤ A2 entails A1 ⊆ A2”. Instead,
the following proposition holds.

Proposition 1. Let A1 ⊗ · · · ⊗ Ai ⊗ · · · ⊗ An be a protocol, and A′
i a policy such that

A′
i ≤ Ai, then A1 ⊗ · · · ⊗ A′

i ⊗ · · · ⊗ An ⊆ A1 ⊗ · · · ⊗ Ai ⊗ · · · ⊗ An.

This proposition catches the intuition that a conformant policy is able to produce a
subset of the legal conversations defined by the protocol but only when it is executed in
the context given by the protocol.

The above proposition can be generalized in the following way. Here we consider a
set of policies that have been individually proved as being conformant simulations of
the various roles in a protocol. The property states that the dialogues that such policies
can produce will be legal w.r.t. the protocol.

Proposition 2. Let A1 ⊗ · · · ⊗ An be a protocol and let A′
1, . . . , A

′
n be n policies such

that A′
i ≤ Ai, for i = 1, . . . , n, then A′

1 ⊗ · · · ⊗ A′
n ⊆ A1 ⊗ · · · ⊗ An

In order to prove interoperability we need to prove that our policies will actually pro-
duce a conversation when interacting, while so far we have only proved that if a con-
versation will be generated, it will be legal. By assumption, in a protocol it is always
possible to conclude a conversation whatever the point at which the interaction arrived.
We expect a similar property to hold also for a set of policies that have been proved con-
formant to the roles of a protocol. The relation ≤ is too weak, so we need to introduce
the notion of complete conformant simulation.

Definition 8 (Complete conformant simulation). Given two FSA’s A1 and A2 we
say that A1 is a complete conformant simulation of A2, written A1 � A2, iff A1 is a
conformant simulation of A2 under a binary relation R and
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– for all si ∈ A1.F such that siRsj , then sj ∈ A2.F ;
– for all sj ∈ A2.S such that sj is alive and siRsj , si ∈ A1.S, then si is alive.

Now, we are in the position to give the following fundamental result.

Theorem 1 (Interoperability). Let A1 ⊗· · ·⊗An be a protocol and let A′
1, . . . , A

′
n be

n policies such that A′
i�Ai, for i = 1, . . . , n. For any common string σ′ of A′

1⊗· · ·⊗A′
n

and A1 ⊗ · · · ⊗ An there is a run σ′σ′′ of the protocol such that σ′σ′′ is an accepted
string of A′

1 ⊗ · · · ⊗ A′
n.

Intuitively, whenever two policies, that have independently been proved conformant to
the two roles of a protocol, start an interaction, thanks to Proposition 2, they will be
able to conclude their interaction producing a legal accepted run. Therefore, Theorem 1
implies Definition 6 (interoperability).

4 Conclusions and Related Works

In this work we have given a definition of conformance and of interoperability that is
suitable to application in open environments, like the web. Protocols have been for-
malized in the simplest possible way (by means of FSA) to capture the essence of
interoperability and to define a fine-grain conformance test.

The issue of conformance is widely studied in the literature in different research
fields, like multi-agent systems (MAS) [11] and service-oriented computing (SOA). In
particular, in the area of MAS, in [7,5] we have proposed two preliminary versions of
the current proposal, the former, based on a trace semantics, consisting in an inclu-
sione test, the latter, disregarding the case of different branching structures. The second
technique was also adapted to web services [8]. Both works were limited to protocols
with only two roles while, by means of the framework presented in this paper we can
deal with protocols with an arbitrary finite number of roles. Inspired to this work the
proposal in [1]: here an abductive framework is used to verify the conformance of ser-
vices to a choreography with any number of roles. The limit of this work is that it does
not consider the cases in which policies and roles have different branching structures.
The first proposal of a formal notion of conformance in a declarative setting is due to
Endriss et al. [13], the authors, however, do not prove any relation between their defin-
itions of conformance and interoperability. Moreover, they consider protocols in which
two partners strictly alternate in uttering messages.

In the SOA research field, conformance has been discussed by Foster et al. [14], who
defined a system that translates choreographies and orchestrations in labeled transition
systems so that it becomes possible to apply model checking techniques and verify
properties of theirs. In particular, the system can check if a service composition com-
plies with the rules of a choreography by equivalent interaction traces. Violations are
highlighted back to the engineer. Once again, as we discussed, basing on traces can be
too much restrictive. In [10], instead, “conformability bisimulation” is defined, a variant
of the notion of bisimulation. This is the only work that we have found in which differ-
ent branching structures are considered but, unfortunately, the test is too strong. In fact,
with reference to Figure 1, it excludes the cases (b) and (c), and it also excludes cases
(a) and (d) from Figure 2, which do not compromise interoperability. A recent proposal,
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in this same line, is [24], which suffers of the same limitations. In other approaches, like
[19,12], bisimulation is used to check that an implementation respects its specification,
given at design time; in this case there is no reuse of software.
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