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Abstract. In this paper, we analyze a recent trend in software engineer-
ing (SE), test driven development, and discuss how it can be adapted to
define self validating rule bases. We argue that test cases can be used to
specify the semantics of rules, and that the presence of these test cases
safeguards the life cycle of rules. We introduce an abstract conceptual
framework, in the tradition of Tarski, that allows us to cover a wide range
of adequate logics for rule-based representation. We investigate how the
concept of test coverage can be adapted to quantify the quality of test
cases. We discuss the implementation of these ideas, which includes a dis-
cussion on how Semantic Web rule languages can be extended to serialize
self validating sets of rules.

Key words: Verification and Validation (V&V), Test-driven Develop-
ment, Test Cases, Test Coverage, Software Engineering

1 Introduction: Lessons learned from Extreme
Programming

Extreme programming [2, 1] and similar approaches to ”agile” software engineer-
ing have been very successful in recent years. Superficially, extreme programming
seems to neglect formal analysis and design, negating established wisdom that
only thorough formal modeling (particularly the adoption of process models such
as the rational unified process RUP and modeling languages such as UML) can
lead to high quality software delivered within time and cost estimates. How-
ever, the experiences made in the last decade support the fact that extreme
programming does work well for small and medium sized projects and leads to
better software quality and customer satisfaction than heavyweight approaches
[10]. One of the key propositions of agile software engineering is test driven de-
velopment: whenever new features are added, test cases are written first. Test
cases are written in the target programming language. A certain code infras-
tructure is required to write those test cases, this is facilitated by programming
language features such as abstract classes and interfaces, and common design
patterns such as Factory [6]. The combination of interfaces and test cases is the
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model produced in extreme programming, and much of the success of extreme
programming can be attributed to the fact that these models are semantically
richer than the models produced using modeling techniques like UML.

The main outcome of UML modeling are visual models describing the in-
teraction of classes, their instances and other artifacts. The internal behavior is
somehow constraint by those visual models. For instance, the classes that can be
referenced by a class are restricted by the associations modeled, and additional
constraints can be added using the object constraint language (OCL) and nar-
rative descriptions. In practice, OCL is rarely used for various reasons. Firstly,
people in charge of domain modeling are often reluctant to use any formal lan-
guage. Secondly, tool support (editors and runtime validation tools) for OCL is
poor. Thirdly, many constraints apply only in a certain context (for instance,
in a certain network environment), and it is difficult or impossible to make as-
sertions about such an environment in OCL. Constraints expressed in natural
language are weak by nature as they cannot be automatically validated.

Using the programming language to write the constraints which describe the
intended model gives software engineers a more expressive modeling language,
and makes programs self validating: by definition, the program is correct if and
only if the integrated test cases succeed. Changing requirements and detected
faults (bugs) are first translated into new test cases, rendering the software in-
correct with respect to the new set of test cases. The program is then modified
until the old and the new test cases succeed. Test cases are significantly simpler
than the code they describe: they represent a black box view on the program.
Test cases are an abstraction from programs, and there are many possible pro-
grams validating against a given set of test cases. This makes test cases models.
For instance, to describe the semantics of a complex arithmetic algorithm that
computes integers from given integers, only pairs of integer numbers have to be
provided. While there is no guarantee that this description is complete, test case
driven development defines a process that will eventually approach a complete
description. While test cases are usually written by software engineers, they can
easily be communicated to domain experts. Yet another advantage is that test
cases do not use artifacts that have no direct counterpart in the programming
language.

There are several other technologies to facilitate test driven development.
Test coverage metrics can be used to quantify the completeness of test cases.
Most metrics and tools are based on the idea that tests should visit all branches
of the source code tree (AST). In our terminology, coverage measures the quality
of the model. In the arithmetic example used above, test coverage metrics would
measure whether each IF and each ELSE branch in the algorithms at least
visited once when the test cases are executed. Newer test frameworks like JUnit
4 [8] facilitate a very tight integration of tests into code, particularly employing
annotations. The model becomes an aspect of the software. The problem of
increasingly complex system environments that are necessary to perform tests
is addressed by mock object frameworks: proxies simulating the aspects of the
environment relevant to perform a certain test.
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2 On Testing Rules

Rule based systems have been investigated comprehensively in the realms of
declarative programming and expert systems over the last two decades. Using
rules has several advantages: reasoning with rules is based on a semantics of
formal logic, usually a variation of first order predicate logic, and it is relatively
easy for the end user to write rules. The basic idea is that users employ rules
to express what they want, the responsibility to interpret this and to decide
on how to do it is delegated to an interpreter (e.g., an inference engine or a
just in time rule compiler). In recent years rule based technologies have expe-
rienced a remarkable come back namely in two areas: business rule processing,
and reasoning in the context of the semantic web.

The first trend is caused by the need to accelerate the slow and expensive
software development life cycle. The vision of treating program logic as data is
particularly interesting for businesses with rapidly changing business logic, like
the telecommunication industry (which has been subject to deregulation in many
countries and has become very competitive in the last few years), insurance, and
investment banking.

The second trend is related to the semantic web initiative of the W3C. New
standards such as RDF (http://www.w3.org/RDF/) and OWL (http://www.w3.
org/2004/OWL) aim to turn the web into a huge database of cross referenced,
machine processable knowledge, and rules can be used to extract and process this
knowledge in a platform independent manner. Emerging standards for rules oper-
ating in the context of the semantic web include RuleML (http://www.ruleml.org/)
and SWRL (http://www.w3.org/Submission/SWRL/).

A general advantage of using rules is that they are usually represented in a
platform independent manner, often using XML. This fits well into nowadays
distributed, heterogeneous system environments. Rules represented in standard-
ized formats can be discovered and invoked at runtime, and interpreted and
executed on any platform. The weakness of this approach is the assumption
that rules are easy to understand for users (both end users or average software
engineers). It appears that rule systems that are useful for practical purposes
are of significant complexity. The first source of complexity is simply quantity.
There are deployed expert systems with more than 10000 rules [3]. Secondly,
there is complexity caused by the structure of the rule languages used. Factors
contributing to the complexity of rules include:

1. The number of primitives in the rule language (e.g., number of connectives used).

2. The depth of the syntax tree (e.g., the depth is restricted for logic programs without
function symbols, but unrestricted if connectives and terms can be nested).

3. Restrictions in the rule language (e.g., no negations in rule heads).

4. Non-standard language elements and procedural elements (e.g., priorities, cut, dif-
ferent flavors of logical and procedural conjunctions as used in Java and similar
languages, procedural attachments).

5. Different language elements with a similar meaning (e.g., weak and strong negation,
OR and XOR).
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6. Polymorphic language elements (e.g., one negation that is interpreted as a weak
or strong negation depending on the predicate symbol of the negated atom).

7. The lack of a standard interpretation for certain language elements. In particular,
this is a problem in many flavors of modal logic, or for logic using negation as
failure. Even in the academic community there is no consensus on issues like what
the canonical semantics for negation as failure or deontic modalities is. Therefore,
it can not be expected from the end user to fully comprehend the effects certain
rules may have.

8. Cross-references between rules. (e.g., loops in the dependency graph between pred-
icate symbols).

These conditions can easily be checked, and can be considered as a suite of
complexity metrics that can be used to quantify and compare the complexity of
rule languages. There is an obvious tradeoff between simplicity and expressive-
ness of rule languages. On the other hand, simplicity should be seen as a primary
design goal for languages in order to make them accessible for a wide audi-
ence. This resembles the requirement for code simplicity in software engineering
measured with metrics such as cyclomatic complexity [12], or the requirement
for simplicity of text measured using readability tests like Flesch-Kincaid. We
propose to address this problem by separating the two roles rules have - the
specification of an intended model and the implementation of this model.

Rules define a set of intended models by selecting models from a set of pos-
sible models. Model is here used in a very abstract sense as a set of entities
(worlds), following Tarski’s tradition. This includes true-false mappings as mod-
els for classical propositional logic (CPL), the models used in predicate logic,
and Kripke style models for modal logic. For instance, the presence of the single
rule A→ B restricts models as follows:

Σ(M0, {A→ B}) = {m ∈M0|m |= A⇒ m |= B}

Σ is the model selection function that defines intended models. Model selec-
tion functions have been comprehensively studied in the area of non-monotonic
reasoning[13, 11, 9]. But as discussed before, we do not believe that rules are
suitable means for users to describe their intended models. Hence, we are look-
ing for alternatives to describe these models which are significantly simpler than
rules. Tests can help here. In analogy to test cases in agile software engineering,
we consider a test to consist of two parts: a set of assertions that sets up a test
environment, and an expected outcome. The set X ⊆ L consists of formulas from
L, it is the fact base of the test. The expected outcome of the test is a formula
A ∈ L plus a label. The label can be either + or −. If the label is + then the
test case is called positive, if the label is − then the label is called negative. A
set of tests is called a test suite. Let Mod be the function that associates sets of
formulas with sets of models, and let Σ be a model selection function. We define
a compatibility relation |=TC between Σ and test cases as follows:

M0 |=TC (X, A,+) iff ∀m ∈M0 : m ∈ Σ(Mod(X), R)⇒ m ∈Mod(A)
M0 |=TC (X, A,−) iff ∃m ∈M0 : m ∈ Σ(Mod(X), R)⇒ m /∈Mod(A)
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We call a set of models compatible with a test suite iff it is compatible with
all tests in the test suite. There can be different model selection functions that
are compatible with the same test suite, checking compatibility ensures that the
selection function meets the constraints defined by the test cases. Executing a
test case means to check the following conditions: A ∈ CR(X) for positive test
cases (X, A,+), and A /∈ CR(X) for negative test cases (X, A,−), respectively.
CR(X) is the deductive closure of X. Here we assume that the semantics con-
sisting of Σ and Mod is equivalent to an inference operator CR that is based on
formal proofs. This is, that completness and correctness can be shown, and that
CR is decidable.

Tests are inherently simple as they represent a black box view on rule base
system: no rules have to be created in order to write tests. Furthermore, we
can assume that only a sublanguage of the rule language is used in tests. For
instance, if the logic used is a flavor of predicate logic, test cases should neither
contain function symbols nor variable symbols, neither in the fact base nor in
the expected outcome (the query). The complexity conditions listed above make
this relative simplicity quantifiable.

Like rules, tests are constraints on the set of possible models and therefore
describe an approximation of the intended model(s). We do not expect many
situations where tests describe exactly one model. But the approximation defines
the quality of the rules - to which degree they are supposed to approximate the
intended model(s). Automated validation against a test suite checks whether
Σ(Mod(X), R) is compatible with the test suite.

The experience with extreme programming has shown that it is not only
important to use test cases to automatically validate software, but to define a
process that ensures that the quality of validation and software is permanently
improved. This reflects two important issues which equally apply to rules-based
systems: firstly, the knowledge of users about what is to be modeled is usually
incomplete and the iterative process supports the acquisition of this knowledge.
Secondly, the realities of project management and budgeting often do not allow
the complete specification of the problem. Modeling is only done as thoroughly as
possible under the current circumstances, and empirical data shows that that a
good approximation can be achieved with a rather small investment. In software
engineering, this situation is often described by the famous Pareto principle of
80-20 rule.

One particularly interesting use case for automated validation through tests
is the refactoring of rule bases [4]. In analogy to refactoring in software engineer-
ing [5], refactoring aims at improving the structure but retaining the behavior.
In particular, this is achieved by simplifying rules, or removing redundancies
from rules. For rules, refactoring can be defined as follows: in a strict sense,
a refactoring is a transformation of sets of rules that satisfies the condition
Σ(M0, R0) = Σ(M0, refact(R0)) for all M0 ∈ 2M and R0 ∈ 2R. I.e., refactorings
preserve the intended models. In the presence of a test suite ts, a mapping refact
is called a refactoring with respect to ts iff the following holds: if Σ(Mod(X), R)
is compatible with ts then Σ(Mod(X), refact(R)) is also compatible with ts.
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I.e., refactorings with respect to a set of test cases may change the intended
model, but the intended model of refactored rule base satisfies the constraints
defined by the test suite. Note that we do not consider refactorings that change
the test suite itself, such as renaming of predicate symbols. There are some re-
sults in the context of logic programming on refactorings in the strong sense
[15].

In the next section we focus on one of the prominent representatives of rule
KRs, namely declarative logic programming, and refine the test-driven approach
with the notion of test coverage to assess the quality and completeness of test
cases for logic programs (LPs).

3 Measuring the Quality of Tests for Logic Programs

Following the definition of the abstract test framework introduced in the last
section, a test case T for a NLP P consists of test input assertions being the
set of temporarily asserted test input facts (or meta test rules) X, one or more
test queries Qn? : qn(t1, ..tn)? where qn ∈ rule(P ), n > 0 and rule(P ) is the
set of literals (positive or negative atoms) being the heads of rules, since only
rules need to be tested, and the intended possibly empty output result sets An

for each test query Qn? with either a positive +, negative − or unknown ?
label (to support 3-valued semantics e.g. well-founded semantics). The expected
output result set An for a test query Qn? and a test input X on a program P
is the set of specializations of Qn?, i.e. the variable bindings of the computed
answers derived e.g. by SLD(NF)-refutations of Qn? ∪ P . An might be empty
either because the test query is ground and hence the test case only succeeds if
the answer of the query corresponds to the label or because the free test query
fails, i.e. no answers can be derived for the variables and the test case fails in
case of a positive expected answer label. Accordingly, a test case for a NLP P
is a triple TP = {X, Qn, An} where n > 0.

An important task in test-driven validation of rule bases is test coverage de-
termination to evaluate the quality of the actual test cases and improve it in an
iterative development process. The coverage feedback highlights aspects of the
rule program which may not be adequately tested and which require additional
testing. This loop will continue until coverage of the intended models meets an
adequate approximation level by the test cases / test suites. In a nutshell, test
coverage is vital to know how well the tests actually test the rule code, to know
whether there has been enough testing in place and to maintain the test quality
over the lifecycle of the rules. However, differences between the declarative logic
programming and imperative (procedural) programming paradigm directly im-
pact the development of a test coverage measure. Conventional testing methods
for imperative languages rely on the control flow graph as an abstract model of
the program or the explicitly defined data flow and use coverage measures such
as branch or path coverage. This is not directly applicable in logic programming
(LP). Here the procedural semantics is based on resolution with backtracking
and unification, i.e. no explicit control flow exists and the data flow due to the
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globally defined rules and the central concept of unification is different from an
imperative program. Hence, coverage measure for a LP should take this unifica-
tion based execution model into account where test goals (queries) are used to
specialize the rules, leading to specializations of these rules . Using the goal re-
ductions as sub-goals for further derivations leads to more specific specializations
on the next level and to an specialization order (H ← B) ≥ (H ← B)′ ≥ ...,
whereas ≥ denotes the level relation ”more general as”. Accordingly, a test covers
a logic program P , if the test queries (goals) lead to a least general specialization
of each rule in P , such that the full scope of terms of each literal in each rule is
investigated by the test queries.

Inductively deriving general information from specific knowledge is a task which
is approached by inductive logic programming (ILP) techniques which allow
computing the least general generalization (lgg) i.e. the most specific clause (e.g.
w.r.t. theta subsumption) covering two input clauses. A lgg is the generalization
that keeps an anti-unified term t as special as possible so that every other general-
ization would increase the number of possible instances of t in comparison to the
possible instances of the lgg. Basically, anti-unification works as follows: It takes
two terms as input and the anti-unification algorithm returns a list containing the
lggs of the terms and the bindings to transform each input-term into a lgg. The
algorithm can fail only in the case the top-symbols (predicate name/functor) or
the length of the two terms are different (number of arguments). Efficient algo-
rithms based on syntactical anti-unification with θ-subsumption ordering for the
computation of the (relative) lgg(s) exist and several implementations have been
proposed in ILP systems such as GOLEM, or FOIL. θ-subsumption introduces
a syntactic notion of generality: A rule (clause) r (resp. a term t) θ-subsumes
another rule r′, if there exists a substitution θ, such that r ⊆ r′, i.e. a rule r
is as least as general as the rule r′ (r ≤ r′), if r θ-subsumes r′ resp. is more
general than r′ (r < r′) if r ≤ r′ and r′ � r. (see e.g. [14]) Using the concepts
of θ-subsumption and least general generalization we now refine our initial test
coverage notion. In order to determine the level of coverage the specializations
of the LP rules on the top level are computed via specializing the rules with
the test queries by standard unification. Then via generalizing these special-
izations under θ-subsumption ordering, i.e. computing the lggs of all successful
specializations, a reconstruction of the original LP is attempted. The number of
successful ”recoverings” then gives the level of test coverage, i.e. the level de-
termines those statements (rules) in a LP that have been executed/investigated
through a test run and those which have not. In particular, if the complete LP
can be reconstructed via generalization of the specialization then the test fully
covers the LP. Formally we express this as follows:
Let T be a test with a set of test queries T := {Q1?, .., Qn?} for a program P ,
then T is a cover for a rule ri ∈ P , if the lgg(r′

i) ' ri under θ − subsumption,
where ' is an equivalence relation denoting variants of clauses/terms and the r′

i

are the specializations of ri by a query Qi ∈ T . It is a cover for a program P ,
if T is a cover for each rule ri ∈ P . With this definition it can be determined
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whether a test covers a LP or not. The coverage measure for a LP P is then
given by the number of covered rules ri divided by the number k of all rules in
P , i.e. the relative number of rules covered by T is measured:

coverP (T ) : −
Pk

i=1 coverri
(T )

k

For example consider a program P with following rules:

father(Y,X):-son(X,Y), male(Y).
son(X,Y):-parent(Y,X), male(X), male(Y).
son(X,Y):-parent(Y,X), male(X), female(Y).
mother(Y,X):-son(X,Y),female(Y).

and the following facts:

male(adrian). male(uwe). male(hans). female(hariet). female(babara).
parent(uwe,adrian). parent(hariet,adrian). parent(hans,uwe). parent(babara,uwe).

Let T = {father(uwe, adrian)?, father(hans, uwe)?, son(adrian, uwe),
son(uwe, hans)?} be a test with four test queries. The set of specializations are:

father(uwe,adrian) :- son(adrian,uwe), male(uwe).
father(hans,uwe):- son(uwe,hans), male(hans).
son(uwe,hans):-parent(hans,uwe),male(uwe),male(hans).
son(adrian,uwe):-parent(uwe,adrian),male(adrian),male(uwe).

The lggs are:

father(Y,X):-son(X,Y),male(Y).
son(X,Y):-parent(Y,X), male(X), male(Y).

Accordingly, the first two rules are covered and the overall coverage is 50%.
Hence, we need more tests to investigate all rules and their terms in the LP.
We extend T with the following additional test goals mother(hariet, adrian)?,
mother(babara, uwe)?, son(adrian, hariet)? and son(uwe, babara). This leads
to four new specializations:

mother(hariet,adrian):-son(adrian,hariet),female(hariet).
mother(babara,uwe):-son(uwe,babara), female(babara).
son(adrian,hariet):-parent(hariet,adrian),male(adrian),female(hariet).
son(uwe,babara):-parent(babara,uwe),male(uwe),female(babara).

The additional lggs are then:

mother(Y,X) :- son(X,Y), female(Y).
son(X,Y) :- parent(Y,X), male(X), female(Y).

The test now covers P , i.e. coverage = 100%.

The coverage measure determines how much of the general information expressed
by the rules in the program is already covered by the actual tests and highlights
those rules which may not be adequately tested and which require additional
testing. The actual lggs give feedback how to extend the set of test goals in
order to increase the coverage level. Moreover, repeatedly measuring the test
coverage each time when the rule base becomes updated (e.g. when new rules
are added) keeps the test suites (set of test cases) up to acceptable testing stan-
dards and one can be confident that there will be only minimal problems during
runtime of the LP, because the rules do not only pass their tests but they are also
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well tested. In contrast to other computations of the least general generalizations
such as implication (i.e. a stronger ordering relationship), which becomes unde-
cidable if functions are used, θ-subsumption has nice computational properties
and it works for simple terms as well as for complex terms, e.g. p() : −q(f(a))
is a specialization of p : −q(X). Although, it must be noted that the resulting
clause under generalization with θ-subsumption ordering may turn out to be
redundant, i.e. it is possible to find an equivalent one which is described more
shortly, this redundancy can be reduced and since we are only generalizing the
specializations on the top level this reduction is computationally adequate. So
θ-subsumption and least general generalization qualify to be the right framework
of generality in the application of our test coverage notion.

4 Integrating Test Cases into Rule Markup Languages

In this section we propose an abstract syntax for rule tests as a MOF metamodel
(See figure 1) and a concrete XML syntax, which is validated with help of a W3C
XML Schema. We argue that our metamodel can be used for testing rule bases,
expressed in different markup languages. We give examples of rule base tests in
RuleML and SWRL.

In order to test a rule base we define a concept of a test suite. We assume
that one rule base may have several test suites and test suites may be distributed
and refer to a rule base via URI. A test suite has an optional URI reference to
a testing rule base.

A test suite consists of several tests. A test has a testing purpose, which is
expressed informally by means of an attribute purpose. A purpose is, for instance,
a testing of one predicate or one rule.

We define an abstract concept of an AbstractTest to allow test suites to be
composed of mixed sets of other test suites and tests. This follows the design by
Gamma and Beck used in several XUnit’s. A test suite may contain ignored tests,
which are excluded from the test run. A test consists of test assertions, which
are ground formulas without Negation As Failure in a hosting rule language,
and a semantics of an inference engine. A class InferenceEngineSemantics can be
instantiated by different concrete semantics, for instance, stable model semantics,
well-founded semantics, etc. This is to take into account that the outcome of a
test run depends not only on the rules but also on the inference algorithm used.

A test refers to at least one test item, which consists of a formula in the
hosting rule language as a test query. A test item refers to a list of results as
expected results of a test query, using test assertions of a corresponding test.

A result consists of variable-value pairs, defining a substitution of each vari-
able by the corresponding term as a value.

A test item has an optional purpose and expected answer attribute with
possible values yes/no/unknown. If result set is non-empty, then the answer
must be ”yes”.
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TestSuite
ruleBase[0..1]
engine[0..1]

Test
purpose[1]

1

1..*

TestItem
id[0..1]
expectedAnswer[1] : IfAnswerValue
purpose[0..1]

*
1..*

Result

testQuery1

VariableValuePair

Variable
type[0..1]

*

1

Term

* value1

1 *

expectedResults

*«enumeration»
IfAnswerValue
yes
no
unknown

1
testAssertions0..*

{testAssertions are ground 
formulas without NAF}

AbstractTest
id[0..1]

Formula

*

ignored

*

InferenceEngineSemantics1

1

{complete, disjoint}

stable

minimal

well-founded

instanceOf

{if not expectedResults->isEmpty()
then expectedAnswer=IfAnswerValue::yes}

Fig. 1. Rule Test Metamodel

The concrete XML syntax for RuleML can be obtained from the metamodel,
depicted on Figure 1, by applying the following principles of the XML Schema
development:

Every model class is represented in the schema by an XML element, whose
name is the class name, as well as a complex type, the name of which is the
class name. If the class is abstract, the corresponding element is also abstract.
The corresponding XML element, contains XML attributes for each data-valued
property (attribute) from the model class. Our metamodel contains only optional
or required attributes which are mapped to optional, respectively required
attribute in the XML Schema. The metamodel does not contain any object
valued attribute.

A functional association is mapped as a part of the content model of the
class referencing this association in a form of XML attribute. If a role name is
presented, then this name is used as an XML attribute name. If the role name is
not presented then referenced class name is used as an XML attribute name. For
instance, the functional association between the class VariableValuePair and the
class Variable does not provide a role and therefore the referenced class name in
the schema definition is used.

Composite and multivalued properties are always serialized using XML ele-
ments. A non-functional association is mapped as a part of the content model of
the class referencing this association in a form of XML element. If a role name
is provided, then this name is used for the corresponding element name. If a role
is undefined, then the referenced class name is used. Let’s consider, for exam-
ple, the association between Test class and Formula class. Since a role name is
provided (i.e. testAssertions ) an element with this name is defined as a content
part of the element Test.
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Let’s consider a sample RuleML rule base, which consists of two rules, defin-
ing well-known concepts of a brother and an uncle. We use Prolog-like syntax to
express these rules.
brother(X, Y):-parent(Z,X), parent(Z,Y).
uncle(X,Y):-parent(Z,Y),parent(X,Z).

The RuleML test suite for testing this rule base is:
1 <TestSuite ruleBase="SampleBase.xml">
2 <Test id="ID001" purpose="...">
3 <testAssertions>
4 <RuleMLFormula>
5 <ruleml:And>
6 <ruleml:Atom>
8 <ruleml:Rel>parent</ruleml:Rel>
9 <ruleml:Ind>John</ruleml:Ind>
10 <ruleml:Ind>Mary</ruleml:Ind>
11 </ruleml:Atom>
12 ...

</ruleml:And>
13 </RuleMLFormula>
14 </testAssertions>
15 <TestItem expectedAnswer="yes">
16 <testQuery>
17 <RuleMLFormula>
18 <ruleml:Atom closure="universal">
21 <ruleml:Rel>uncle</ruleml:Rel>
22 <ruleml:Ind>Mary</ruleml:Ind>
23 <ruleml:Var>Nephew</ruleml:Var>
24 </ruleml:Atom>
25 </RuleMLFormula>
26 </testQuery>
27 <expectedResults>
28 <VariableValuePair>
29 <ruleml:Var>Nephew</ruleml:Var>
30 <ruleml:Ind>Tom</ruleml:Ind>
31 </VariableValuePair>
32 <VariableValuePair>
33 <ruleml:Var>Nephew</ruleml:Var>
34 <ruleml:Ind>Irene</ruleml:Ind>
35 </VariableValuePair>
36 </expectedResults>
37 </TestItem>
38 <InferenceEngineSemantics>minimal
39 </InferenceEngineSemantics>
40 </Test>
41 </TestSuite>

This test suite has one test (line 2). The test assertions of the test (lines
3-14) are ground facts for rules in the RuleML rule base in RuleML language.
Lines 8-10 describe a ground fact: John is a parent of Mary. We assume that
the test assertions of the test also contain the following ground facts: John is
a parent of Paul, Paul is a parent of Tom, Paul is a parent of Irene. We have
omitted representation of these facts in the XML above due to space limitations.
The test has one test item (line 15-37) with one test query as a RuleML formula
(lines 17-25). The query is Who are the nephews of Mary?. Expected results
(lines 27-36) of the query consist of two variable value pairs: Nephew is Tom
(lines 28-31) and Nephew is Irene (lines 32-35). The test query from the above
XML (lines 16-26) can be expressed using also SWRL:
<swrlx:individualPropertyAtom swrlx:property="uncle">
<owlx:Individual owlx:name="Mary">
<ruleml:var>Newphew</ruleml:var>

</swrlx:individualPropertyAtom>
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It is possible to define a test item in the test with a query without expected
results. For instance, the query Who are the nephews of John? must produce no
results when applying rules from the rule base.

<TestItem expectedAnswer="no">
<testQuery>
<RuleMLFormula>
<ruleml:Atom closure="universal">
<ruleml:Rel>uncle</ruleml:Rel>
<ruleml:Ind>John</ruleml:Ind>
<ruleml:Var>Nephew</ruleml:Var>

</ruleml:Atom>
</RuleMLFormula>

</testQuery>
</TestItem>

As can be seen from these examples, the only rule language specific part is
the abstract class Formula (Figure 1). This class corresponds to the following
definition in the XML Schema:

<xs:complexType name="Formula.Type">
<xs:choice>
<xs:element ref="RuleMLFormula"/>
<xs:element ref="SWRLFormula"/>

</xs:choice>
</xs:complexType>

Elements RuleMLFormula and SWRLFormula are defined in the schema as
well.

In order to support some other rule language, XML Schema redefine in-
struction should be used to redefine complex type Formula.Type. Thus, the
presented metamodel can be used for writing test in different rule languages.

5 Related Works

Verification and Validation (V&V) of knowledge base systems (KBS) and in par-
ticular rule based systems such as logic programs with Prolog interpreters have
received much attention from the mid ’80s to the early ’90s, see e.g. [17]. Criteria
for verification and validation range from e.g. structural checks for relevance, re-
dundancy and reachability to semantics tests for completeness and consistency.
For a survey see [16]. Several verification and validation methods have been pro-
posed, such as:
Methods based on operational debugging [31] via instrumenting the rule base and ex-
ploring the execution trace using break points in the rule program (e.g., between the
expand and branch steps of the debugging algorithm using trance and spy commands
in Prolog). However, these methods presuppose a deep understanding of the inference
processes by the user to detect the inconsistencies.
Tabular methods, e.g. [19], which pairwise compare the rules of the rule base to detect
relationships among premises and conclusions. Comparing only pairs of rules excludes
detection of inconsistencies in rule chains with several rules.
Methods based on Graphs, e.g. [20, 21], using formal graph theory to detect inconsis-
tencies by simulating the execution of the system for every possible initial fact base,
which might be very costly.
Methods based on Petri Nets, e.g. [22] which model the rule base as a Petri net and
test the complete models starting with all possible initial states, which is very costly.
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Methods based on declarative debugging [32] which build an abstract model represent-
ing the execution trace and elicit feedback from an oracle (e.g. the user) to navigate
through the model till the inconsistency/error is reached.
Methods based on algebraic interpretation, e.g. [23] transform a KB into an algebraic
structure, e.g. a boolean algebra which is then used to verify the KB. This approach
can not applied to expressive rule bases with variables, object-valued functions or meta
predicates and non-monotonic negations.
While this approaches mainly focus on monotonic reasoning, there are also some ap-
proaches on verifying non-monotonic rule bases such as [24] which analyzes rule bases
expressed in default logic or [25] which tests rule bases with production rules. For fur-
ther details concerning inconsistency checking techniques see e.g. [26]. Much research
has been directed at the automated refinement of rule bases, e.g. [28, 27], and on the
automatic generation of test cases, e.g. [29]. For an overview on rule base debugging
tools see e.g. [30]. Test coverage of imperative programs has been intensively investi-
gated in the past decades [7], but there are only a few attempts addressing test coverage
measurement for test cases of backward-reasoning rule based programs [33, 36, 35] or
forward-reasoning production rule systems [34].

6 Conclusion

Rules are often being used as a declarative programming language to describe real-world
decision logic and create production systems upon. For this reason, it is important to
support testing mechanisms, that can help rule programmers to determine the relia-
bility of the results produced by their rule systems. Test cases for V&V of rule bases
are particular well-suited when rule applications grow larger and more complex and
are maintained (possibly distributed) by different people. They help to capture rule
engineer’s intended meaning of a rule-based program and safeguard the evolution of
the intensional knowledge base, i.e. facilitate updates and extensions of the rule base
in order to adapt the rule logic to changing requirements. In this paper we have at-
tempted to bridge the gap between the test-driven techniques developed in the Software
Engineering community, on one hand, and the declarative rule based programming ap-
proach for engineering high level decision logic, on the other hand. Although various
V&V approaches of rule bases have been introduced in literature, most of these ap-
proaches have a rather practical nature and are depending on the syntactical structure
of a particular rule representation language which constrains them to carry out only
partial tests of the properties of the rule base. In this paper we have introduced an ab-
stract conceptual framework, in the style of Tarski, which allows treating a wide range
of model theoretic semantics and developed a test-driven validation methodology upon,
which treats test cases as constraints on the set of possible models, i.e. they describe an
approximation of the intended model(s) which can be automatically validated against
the derived models (the rule programs’ output) via a set of inference operations. This
leads to a well-defined and more general semantical basis, independent of the particular
syntactical representation of the various rule base properties and their logical relation-
ships that can be tested. We have given a concrete instantiation of these unifying
abstract framework in logic programming using LP-based test cases based on a set of
test queries and have elaborated on a LP-based test coverage measure for determining
the quality of a test case. Testing methodologies delivering quality data for rule based
reliability models have not been investigated very often. The coverage notion defined
in this paper is a type of structural coverage, but it is not based on control flow as
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common imperative measures. In fact, it is more related to code-based test adequacy
criteria based on data flow coverage. Finally, we have present an abstract syntax for
rule tests as a MOF metamodel and a concrete RuleML-based syntax, semantics and
implementation of the metamodel. Although a lot of work still needs to be done, the
findings about the application of test-driven development for self-validating rule bases
and the proposed testing methodologies and techniques give enough reason to make a
relevant contribution and simultaneously motivate further research in this field.
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