
Scalable Matchmaking for a Semantic Web Service based Architecture

Nicola Henze and Daniel Krause
Distributed Systems Institute, Semantic Web Group, University of Hannover

Appelstraße 4, 30167 Hannover, Germany
{henze,krause}@kbs.uni-hannover.de

Abstract

We propose a two-step matchmaking procedure for a
Web Service oriented architecture to cope with scalability
problems if a large amount of Web Services has to be pro-
cessed. We distinguish between domain-aware and domain-
independent matchmaking, and show how such a two-step
matchmaking process can be realized. We discuss the ap-
proach within the Personal Reader architecture which en-
ables the use of Web Service based applications to person-
alize Semantic Web content.

1. Introduction

While more and more data became machine readable
over the last years, the Semantic Web Stack [1] does not
include any kind of application layer that uses these data to
base applications on them.
At this point of time the usage of Web Services is the most
promising approach to fill up this gap in the Semantic Web
Stack. The main advantages of Web Services are their plat-
form and location independence. Web Services are accessed
via standardized Hypertext Transfer Protocol and therefor
can be stored and used on every web server in the world.
Web Services can build up their functionality utilizing Se-
mantic Web content or other Web Services. By combining
and syndicating different Web Services which offer basic
functionalities, the realization of more complicate processes
is possible. As every Web Service can physically be located
on any web server in the world, the definition of the inter-
faces that need to be implemented require most attention.

Furthermore, as Web Services encapsulate functionali-
ties, the reuse of functionalities – encapsulated in the Web
Services – becomes feasible. The reuse of functionality
by accessing Web Services is based on the assumption that
Web Services are long-term available. But experiences from
the WWW show that a network where many different peo-
ple can interact in by creating own Web Services, is a quick
changing environment. In the Semantic Web not only con-

tent changes quickly, but also Web Services that process the
content might appear and disappear in a frequent manner.
Combining Web Services in such a dynamic environment
requires that the combination process itself has to be dy-
namic. This means that Web Services have to discover
other Web Services automatically, and need to be able to de-
tect those Web Services that offer the momentarily required
functionality. To support such a dynamic combination, the
functionality of the Web Service has to be described seman-
tically in a way that enables an automatic matchmaking be-
tween the requested and the offered functionalities.
In this paper we present the Personal Reader architecture
that offers different kinds of Web Services: Syndication
Services provide application features (like user interfaces
and data syndication), Personalization Services provide per-
sonalization functionality (like e.g. the provision of contex-
tual information, recommendations, etc.) in the Semantic
Web. For describing the semantics of invocation and re-
sponse parameters we introduce configurable descriptions
which enable a two-step matchmaking to discover appro-
priate Web Services with a high efficiency and scalability.

2. The Personal Reader Architecture

Our approach for a Semantic Web architecture offers
users a uniform entry point to access the Semantic Web,
and in particular to Web services in the Semantic Web. It
has been realized as part of the Personal Reader Frame-
work [2, 3] which offers an environment for designing, im-
plementing and realizing Web content readers in a service-
oriented manner (see Figure 1):

• Web services deliver personalized recommendations
for content, extracted and obtained from the Semantic
Web. Using Semantic Web techniques they describe
their offered functionality in a machine processable
format. Optionally, they can return visualization tem-
plates that can be used to create user interface snippets
for presenting the results of the Web services. We call
these kind of Web services Personalization Services,



CService

PService

Connector PersonalizationContent Syndication and
user interface provision

PService

Meta-
PService

SynService
User

Interface

User

SynService

UMService

RDF RDF

access policies

User
Interface

Figure 1. Overview of Personal Reader archi-
tecture

PServices for short.

• Meta PServices can be employed to have single entry
points to cooperating or concurrent PServices. Meta
PServices offer the technical platform in the Personal
Reader architecture to orchestrate simple and generic
PServices to model even complicated domains or rela-
tionships.

• For syndicating the results of PServices and for cre-
ating appropriate user interfaces, Syndication Services
(SynServices for short), are responsible for displaying
the results of several PServices and/or Meta PServices
to the user. Each SynService provides at least one user
end point (that is also called user interface) to a certain
domain or task, and allows the user to benefit from
many PServices simultaneously, which are selected,
combined and customized as the user wishes. SynSer-
vices can be realized as RDF browsers, can implement
their own RDF processing interface, or they can make
use of visualization templates provided by the different
PServices / Meta PServices.

• User interfaces are responsible for the interaction with
the user. They receive XML or RDF messages from
the SynService and visualize them according to the
display device. Every user interface deals with one
special class of devices, for example PCs, PDAs or mo-
bile phones which means that device adaption is dealt
with by the user interfaces. Therefore, one SynService
can have many different user interfaces.
The user can interact with the user interface by gener-
ating events, like clicking on a button, entering text in a
form etc. These events are sent back to the SynService
that processes these events.

• For enabling the whole process, a core information
provider – a user modeling service, UMService for
short, deriving appropriate user profiles – is essential.

In our architecture, the UMService realizes a central-
ized approach for user modeling, maintaining and pro-
tecting information about a user on behalf of this user.
The main reason for choosing a centralized approach is
to realize privacy protection: the user has full control
about his user profile, and can define policies on which
parts of this user profile might be public, or are avail-
able to trusted parties only. One central instance for
all this information makes it possible to create aware-
ness about stored information, and on realizing policy-
protected access. Furthermore, this central UMService
receives updates from SynServices or PServices in dif-
ferent domains, and allows for cross-domain re-use of
user profile information (if the user wants that).

• From a technical point of view, another component
is required to maintain the communication between
the SynServices providing the user interface, the PSer-
vices, and the UMService. This is the so-called Con-
nector Service (CService for short) which harvest Web
service brokers, collects information about detected
PServices (for discovery, selection, customization, and
invocation), and for organizing the communication be-
tween all involved parties, including requests to the
UMService.

2.1. Usage Scenario

To describe the relationship between the different kind of
web services we point out which steps need to be performed
until the user gets his personalized content visualized in the
user interface:
First, the user logs in at the UMService, using his username
and password. Then UMService creates a session ID (SID
for short) which will be valid during the whole session, and
can only be traced back to the user at the UMService (real-
ized via public-private-key encryptions). After logging in,
the user accesses an entry point. The SynService , that be-
longs to the entry point, calls the CService and receives a
list of available SynServices, a human readable description
and the URL of the user interface that is appropriate to the
user’s display device. Entry points can give different levels
of support to make the selection of the SynServices more
easy for the user. Possible entry points are:

• The entry point can be an agent and ask the user what
task he wants to fulfil and to recommend SynServices
that cope with this issues.

• Another entry point can build a hierarchical organized
portal, grouping similar SynServices.

• A third entry point may just returns an unordered list
of all available SynService.



The user selects the SynService that fits his tasks best and
is redirected to the URL of the user interface that belongs to
the selected SynService which is able to visualize the con-
tent according to the user’s display device. Furthermore,
by accessing the user interface, the SID is passed to it and
along to the SynService. The SynService requests a list of
available PServices from the CService. In this request the
SynService also submits which Ontologies it is able to han-
dle. The CService does the first step of the matchmaking
and returns PService candidates. In the second step of the
matchmaking, the SynService selects PServices according
to their description of offered functionality.
To invoke the selected PServices the SynService requires
invocation parameters to personalize the results of the dif-
ferent PServices according to the user’s preferences. These
invocation parameters can be gained in two different ways:

• The SynService asks the UMService if it has stored
information how the user has specified a value for a
parameter beforehand. It is used in the confidence that
this previous value will be valid for the current invoca-
tion. If the confidence is too low or there are no values
stored until now, the user is asked directly.

• The SynService asks the user directly via the user in-
terface to define a value for the required invocation pa-
rameter.

If both ways fail, for example if no information is stored
in the UMService and the user rejects to enter a value,
and the invocation parameter is marked as “required” in
the description of the PService, this PService is omitted
by the SynService. Afterwards, the SynService invokes
the remaining PServices by sending an invocation request
to the CService. The CService invokes every PService
synchronous. The PServices use the invocation parameters
and additionally, can send requests to the UMService to
get more user specific data. Afterwards, they return the
results to the CService that combines all single responses
to one response and sends it back to the SynService. The
SynService combines, filters and enriches the response and
formats it in a way that user interfaces can easily visualize
the response. This response is sent from the SynService to
the user interface and is displayed to the user.
In an iterative manner the user or the SynService now can
alter and refine invocation parameters to receive different
or better results.

2.2. User Modeling

As illustrated in the previous chapter two types of Web
Services interact with the user: The SynService as it gets
input from the user via events and the PService that gets

personalized invocation parameter. This enables both types
of Web Services to derive properties about the user with the
help of different user modeling techniques. As both types
of Web Services operate in one special domain they both
should have detailed knowledge of the domain that they can
take into account when modeling the user.

2.3. Semantic Web Services

To enable automatic matchmaking we require a
machine-readable description of the functionality of our
Web Services. Our approach relays on a semantic ab-
straction of a datatype-based description: instead of us-
ing datatypes like strings, integer, etc. to describe sin-
gle parameters we group these parameters into semantic
parameters that are described by Ontologies in a Con-
figurable Description: For example, some parameters
keyword1, keyword2,..., keywordn build the

semantic parameter query that is stored in the Config-
urable Description. By defining the ontology, that is used
for the Configurable Description, precise enough, invoca-
tion and response parameters are sufficient to describe the
functionality of the whole Web Service. Furthermore, as
the Configurable Description contains the vocabulary that
the Web Service is able to process, it is the groundwork for
our two-step matchmaking.

3. Matchmaking

In a Web Service oriented architecture matchmaking be-
tween descriptions of Web Services and requirements is al-
ways domain aware. That means, that programs that do the
matchmaking require domain knowledge. Thus, there are
two possible realizations for matchmaking:

• Centralized matchmaking: One programs knows all
domains that are used in the architecture.

• Decentralized matchmaking: For every single domain,
and for all domains which are commonly used to-
gether, there has to be an own matchmaking program.

The first solution would run into problems if new Ontolo-
gies appear, because every new Ontology determines an
update of the matchmaking system. Furthermore, this ap-
proach does not scale as more and more Ontologies appear,
the program will result in a more and more complicated sys-
tem which makes it unmaintainable.
The second solution scales very well in terms of the appear-
ance of new Ontologies as existing systems have not to be
changed but only new ones are added. The problem to cope
with in this solution is the number of Web Services: The
larger the number of available Web Services is, the longer
the matchmaking process takes.
Our solution for this problem is to introduce a two-step



Centralized Decentralized Two-step
matchmaking matchmaking matchmaking

adding
new difficult good good
domains
handling
large
amounts difficult difficult good
of Web
Services

Table 1. Comparison of different match-
making approaches

matchmaking: In the first step our central Web Service,
the CService, does a domain-independent matchmaking by
checking whether two Web Services can handle the same
Ontology. This is done by analyzing the Configurable De-
scription of the Semantic Web Services. All Web Services
that are able to handle the required Ontology are marked as
candidates and passed to the second step of the matchmak-
ing process. This first step is very efficient as it is not more
than a simple RDF database lookup in our Configurables
database.
In the second step of matchmaking, we use a domain-aware
matchmaking program like in the second realization. This
is done by the SynServices, that know best which function-
alities, expressed by the description of input and output pa-
rameters in the Configurable Description, are required.
This solutions scales in two ways: On the one hand the ap-
pearance of new Ontologies does not require changes on
the centralized component. On the other hand, the first step,
that scales very well in term of handling large amounts of
Web Services, slashes the amount of Web Service that are
passed to the second step. Therefore, the time that is re-
quired for the matchmaking process is little influenced by
adding new domains to the system.

4. Discussion of the approach and related
Work

The approach presented in this paper differs from com-
mon usage of Web Services, and shows how Web Services
can be used as first class citizens in a Semantic Web. In
our thinking, Web Services provide functionality snippets,
which shall be plugged together to support a user during the
task he is currently performing. Thus, Web Services provide
functionality in the Web for end users, and our approach
shows how user interfaces for accessing, plugging together,
syndicating and using Web Services can be realized. The
different stakeholder of the process are the Web Services
which take care on appropriate user interfaces (Syndication
Services), and those who provide the functionality snippets

(the Personalization Services). For performance and re-
usability issues, a communication facilitator has been em-
ployed (the Connector Service).

Related work to our approach can be found in projects
which apply Web services in the Semantic Web: Current
research here focuses more on enabling technologies like
Web services discovery, composition and orchestration (cf.
[4, 5]). However, approaches which focus on usability and
user-interfaces for accessing a Web Service-oriented Se-
mantic Web are today missing.

5. Conclusion and Further Work

In this paper, we have proposed an approach to realize
personalized access to Web Services in the Semantic Web.
We have identified the main challenges to overcome, and
especially discussed the influence of domain dependent vs.
domain independent discovery, selection and invocation of
Web Services. We are currently extending the architecture
of the Personal Reader Framework as discussed in the paper
to realize the full functionality of the configurable descrip-
tions and the matchmaking processes. A prototype showing
the applicability of the proposed solutions has already been
realized and demonstrates the syndication of various pod-
cast providers according to the music interests of users1.

References

[1] BERNERS-LEE, T. Semantic Web -
Keynote at XML 2000 Conference, 2000.
http://www.w3.org/2000/Talks/1206-xml2k-
tbl/slide10-0.html.

[2] HENZE, N., AND KRAUSE, D. Personalized access
to web services in the semantic web. In SWUI 2006 -
3rd International Semantic Web User Interaction Work-
shop, colocated with the 5th International Semantic
Web Conference (nov 2006).

[3] HENZE, N., AND KRIESELL, M. Personalization
Functionality for the Semantic Web: Architectural Out-
line and First Sample Implementation. In 1st Inter-
national Workshop on Engineering the Adaptive Web
(EAW 2004) (Eindhoven, The Netherlands, 2004).

[4] MCILRAITH, S., SON, T., AND ZENG, H. Semantic
web services. Intelligent Systems 16, 2 (2001), 46–52.

[5] MOTTA, E., DOMINGUE, J., AND CABRAL, L. Irs-
ii: A framework and infrastructure for semantic web
services. In Proceedings of the 2 Intl. Semantic Web
Conference (Florida, USA, 2003).

1The prototype can be accessed via www.personal-reader.de/agent/


