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Abstract 
 

Simplifying the discovery of web services on one hand 

and protecting them from misuse on the other hand has 

initiated several lines of research in the area of policy-

aware semantic web services. However, the diversity of 

approaches, ontologies and languages chosen for 

defining Semantic Web services and policies has made 

the research area cluttered. It is now ambiguous how 

different registries and agents with different policy 

languages and Semantic Web service ontologies would 

share their information. In this paper we try to solve 

the problem of exchanging information between the 

registries by defining an interchange framework to 

transform business rules and concepts from one 

language to another using a third intermediary 

language called R2ML. The expressivity of the new 

framework exempts any service provider or service 

requester from the difficulties it may encounter during 

the process of transformation from one business rule 

language to the other. It also guarantees that 

information loss during transformation would be 

minimal. 
 

1. Introduction 
 

Semantic Web services (SWS), as the augmentation 
of Web service descriptions through Semantic Web 
annotations, facilitate the higher automation of service 
discovery, composition, invocation, and monitoring on 
the Web [17]. Semantic Web ontologies and its 
ontology languages (OWL and RDF(S)) are recognized 
as the main means of knowledge representation for 
Semantic Web services [20]. Such ontology-enriched 
Web service descriptions are later used in the 
negotiation process between service clients and service 
provides, which is defined by a set of abstract protocols 
of Semantic Web Service Architecture (SWSA) [6].  

However, the current proposed standards for 
describing Semantic Web services (i.e. OWL-S [14], 
WSDL-S [1], Web Service Modeling Ontology [7], 
and Semantic Web Service Language – SWSL [2]) 
demonstrate that it is important to use a rule language 
in addition to ontologies. This allows run-time 
discovery, composition, and orchestration of Semantic 
Web services by defining preconditions or post-
conditions for all Web service messages exchanged 
[13]. For example, OWL-S recommends using OWL 
ontologies together with different types of rule 
languages (SWRL, KIF, or DRS), WSMO uses F-
Logic, while WSDL-S is fully agnostic about the use of 
a vocabulary (e.g., UML, ODM, OWL) or rule 
language (e.g., OCL, SWRL, RuleML). Usually, 
Semantic Web service descriptions use only parts of 
rules representing logical formulas that may have a 
Boolean result. It is important to point out that there is 
no agreement upon which rule language to use for 
Semantic Web services or what type of reasoning (open 
or closed world assumption) should be supported. 

Besides satisfying clients goals when using 
Semantic Web services, trust is another important 
aspect that should be established between a client and 
service. Addressing this problem, researchers proposed 
the use of policy languages. A policy is a rule that 
specifies under which conditions a resource (or another 
policy) might be disclosed to a requester [16]. To 
define polices on the Semantic Web, various policy 
languages have been proposed such as PeerTrust [16], 
KAoS [21], Rei [12], and PROTUNE [4]. As [16] 
reports, trust management policies are also defined as 
parts (most commonly preconditions) of Semantic Web 
service descriptions.  

It is obvious that besides various Semantic Web 
services description languages, we have various policy 
languages and various rule languages. All these 
languages are based on different syntactic 
representations and formalisms with no explicitly 



defined mapping between them. This hampers the use 
of Semantic Web services from two different 
perspectives. One perspective is automatic negotiation 
between service client agents and service provides and 
automatic matchmaking, where agents and 
matchmakers should be able to “understand” various 
rule/policy/service web service description languages. 
Another perspective is that of a knowledge 
management worker who needs to be able to express 
the rules and policies in a single form rather than in a 
broad variety of forms.  To attempt to represent the 
same rules and policies in many forms is cumbersome, 
time consuming and error prone but it is the only 
choice currently available if a broad base of 
interoperability is required. 

 In the paper, we start from the presumption that 
rules encoded in policies and semantic web services are 
parts of business rules [23] [4], and that we should be 
able to share them by using the same representation. 
Such a rule language should enable modeling different 
types of rules such as reaction rules considering the 
event-driven nature of Web services (or so-called 
Event-Condition-Action Rules), derivation rules 
considering the importance of inferring new facts (such 
as RuleML), and integrity rules considering the 
deontic, i.e. “must”, nature of policy languages. 
Unfortunately, current Web rule markup languages 
such as RuleML and SWRL are unable to express all 
these types of rules.   

In our approach, we propose the use of REWERSE 
Rule Markup Language (R2ML) [22], which addresses 
almost all use-cases and requirements for a Rule 
Interchange Format (RIF) [8], along with a set of 
transformations between Semantic Web service 
description (e.g., WSDL-S), rule, and trust 
management policy languages. We illustrate the 
benefits of our approach using a Semantic Web Service 
Architecture example where R2ML is used to share 
Semantic Web service descriptions and policies in the 
process of matchmaking and trust negotiation. In the 
next section, we motivate our research by describing an 
example based on the present solutions to Semantic 
Web services.  
 

2. Motivation 
  

Semantic Web service registries are usually used 
together with matchmakers to help the requesting 
entities find their desired service providers based on 
the defined constraints and needs. Involving policies in 
the process of discovering relevant service providers 
would help both the requesting entity and the service 
provider to check their constraints before starting a 
negotiation process, protect sensitive information, and 

prevent from information leakage before going through 
the negotiation. In this case the policy constraints are 
placed in the Semantic Web service description for 
every single service available in the registry. The 
policies are also embedded in the SOAP messages sent 
by the requesters while seeking for the desired services. 

In [16], the authors suggest three different 
architectures for service provider discovery, namely 
trusted matchmaking at registry side, trusted 
matchmaking at client side, and distributed 
matchmaking using a middle agent. In these suggested 
architectures they try to address the security concerns 
of both peers of negotiation, i.e. the requester and the 
service provider, and especially protect their sensitive 
policies and information. Figure 1 shows the third 
architecture which has been considered as the most 
promising one by the authors. 

Regardless of the architecture used in service 
provider discovery, what seems to be totally missing in 
the proposed solutions is the communication language 
between the entities involved in the process of service 
discovery. [16] assumes that both the requester agent 
and the service provider have defined their policies in 
PeerTrust and their Semantic Web service description 
in WSMO. [12] gives another suggestion in which Rei, 
as the policy language, is used together with OWL-S as 
the Semantic Web service description ontology to 
describe the service. 

However, it is not reasonable to assume that all the 
registries and the service requesters around the world 
would admit the same policy and description languages 
for their services. As it is shown in Figure 1 different 
service providers, even those placed in a single 
registry, may have been using different semantic web 
services with different policy languages. The proposed 
architectures and solutions does not deal with how to 
matchmake the requests and advertisements where the 
policy languages and the semantic web service 
descriptions do not match. 

In the current proposals, the requestors, the broker 
agents, the registries, and the service providers must 
have different transformers from each policy language 
or Semantic Web service language to the others. This is 
hard to achieve due to the vast variety of these 
languages is really hard to achieve. Moreover, as the 
flexibility of a mapping from one language to another 
has not been considered in defining policy and web 
description languages, chances are that we encounter 
some information loss during transformation from one 
language to another which may result in unwanted 
changes in the policies of either of the peers and 
compromise their privacy. In order to solve the 
problem, the focus should be on finding an interchange 



format language with the highest possible degree of 
interoperability to cope with different available 
semantic Web Service languages and policy languages. 
In the rest of the paper we propose a new solution to 
interchange the policy languages and semantic web 
service description languages, from one to another, 
with as less information loss as possible. 

 
Figure 1. Distributed Architecture for Registry and 

MatchMaker 
 

3. Background  
 

3.1 Semantic Web Service Description 
 

Considering the main feature of Semantic Web 
services of semantically enriching Web service 
descriptions, researchers have so far proposed several 
solutions to this problem. Here we briefly touch the 
submitted solutions to W3C.  

OWL-S is an OWL-based ontology for describing 
Semantic Web services. The ontology consists of three 
main parts: the service profile for advertising and 
discovering services; the process model for detailed 
descriptions of services’ operation; and the grounding, 
for providing details on how to interoperate with a 
service via messages [14]. Some of functionalities that 
OWL-S provides are: annotating types of input and 
output parameters of services with OWL-ontology 
concepts, defining preconditions and effects of input 
and output messages by logical expressions encoded as 
literals and XML literals, and specifying different types 
of composite services (e.g. sequence, split, and join-
split).  

Web Service Modeling Ontology (WSMO) consists 
of ontologies for defining terminology; Web service 
functional and behavioral descriptions, user goals, and 
mediators that automatically handles interoperability 
between different WSMO element. Comparing to the 
OWL-S, WSMO defines its own ontology language, 

while it also defines its own rule language for defining 
logic expressions. That language has backward 
compatibility with F-Logic. It is important to note that 
WSMO introduces postconditions, besides 
preconditions and effects that are also present in OWL-
S. Postconditions cover the data output while effects 
specify general state changes [9]. 

Semantic Web Service Ontology (SWSO) is a 
conceptual model for describing Web services [2]. The 
complete axiomatization is given in first-order logic, 
using the Semantic Web Service Language consisting 
of SWSL-FOL (First Order Logic) and SWSL-Rules. 
In fact, SWSO presents a first-order ontology for Web 
services, expressed in SWSL-FOL and its partial 
translation expressed in SWSL-Rules. SWSO also 
includes material about grounding its process models 
with WSDL. It is important to say that SWSL-FOL and 
SWSL-Rules language are serialized by using RuleML.  

WSDL-S is a rather evolutionary approach to 
Semantic Web services that only introduces a few 
WSDL extensions, and thus preserves the full 
compatibility with the standard WSDL [1]. WSDL-S is 
fully ontology and rule language agnostics meaning 
that one can annotate WSDL XML schema types with 
any vocabulary language (e.g., OWL or UML) and 
define preconditions and effects (there is not 
postconditions) with any rule language (e.g., OCL or 
R2ML). 
 

3.2 Policy Language 
 

As mentioned earlier, there are several policy 
languages proposed so far with the goal of protecting 
the privacy of information and authorizing requesters 
by providing different levels of access to the available 
resources and information. The syntax of these 
languages varies from rigid ordinary logic languages 
such as Cassandra [3], which is based on Constraint 
Language Programming, PeerTrust [16] and PROTUNE 

[4], which use a Prolog meta-interpreter, to more 
relaxed markup languages such as KAoS [21] and Rei 
[Kagal & Joshi, 2003] Referring to all of the available 
policy languages is beyond the purpose of this paper 
and here we just mention the most important ones.  

PeerTrust  is a trust negotiation engine for semantic 
web and P2P networks [16]. PeerTrust’s language is 
based on first order Horn rules (definite Horn clauses), 
i.e. rules of the form: 

lit0← lit1, …,litn 

where each liti is a positive literal of the form Pj(t1, …, 

tn), Pj is a predicate symbol, and ti (i=1..n) are the 
arguments of this predicate. It can be combined with 
WSMO to define policy-aware web services as it is 
proposed in [16].  



Cassandra is another policy-based language based 
on CLP [3]. It uses a policy language based on Datalog 
with constraints and its expressiveness can be adjusted 
by changing the constraint domain. Policies are 
specified using the following predicates which govern 
access control decisions: permits(e, a) specifies who 
can perform which action; canActivate(e, r) defines 
who can activate which role (e is a member of r); 
hasActivated(e, r) defines who is active in which role; 
canDeactivate(e, r) specifies who can revoke which 
role; isDeactivated(e, r) is used to define automatically 
triggered role revocation. Although aggregation of 
Cassandra with Semantic Web service descriptions has 
not been proposed yet, its declarative nature makes it 
suitable to combine it with some of the available 
semantic web services, such as WSMO. 

Rei is a policy framework that permits specification, 
analysis and reasoning about declarative policies 
defined as norms of behavior [Kagal & Joshi, 2003]. 
Rei adopts a rule-based approach to specify semantic 
policies. Rei policies restrict domain actions that an 
entity can/must perform on resources in the 
environment, allowing policies to be developed as 
contextually constrained deontic concepts, i.e., right, 
prohibition, obligation and dispensation. The current 
version of Rei (2.0) adopts OWL-Lite to specify 
policies and can reason over any domain knowledge 
expressed in either RDF or OWL. 

KAoS is a framework that provides policy and 
domain management services for agent and other 
distributed computing platforms [21]. It has been 
deployed in a wide variety of multi-agent and 
distributed computing applications. KAoS policy 
services allow for the specification, management, 
conflict resolution and enforcement of policies within 
agent domains. KAoS adopts an ontology-based 
approach to semantic policy specification. In fact, 
policies are mainly represented in OWL as ontologies 
which make it possible to combine them with Semantic 
Web Services and then use them to define the policies 
of a web service provider. 
 

3.3 Semantic Web Service Policies  
 

As we discussed earlier in the motivation section, 
policies and semantic web service description 
ontologies are combined to provide a policy-aware 
specification of semantic web services. The most 
prominent efforts in this area have been done in [12] 
and [16]. In [12], OWL-S and Rei have been chosen as 
web service ontology and policy language respectively. 
The main reason in selecting OWL-S seems to be the 
syntactical consistency between OWL-S and Rei. 

In [16] the authors have chosen WSMO as their 
description for semantic web services and mixed it with 
PeerTrust to add policies. WSMO has been selected 
because it allows the use of arbitrary logical 
expressions in the description of the service 
functionality which gives the authors more complete 
way of expressing their terms as compared to other 
approaches. It also uses F-Logic to describe the logical 
expressions used in the description of the services 
which in turn makes it possible to align the trust 
policies described in PeerTrust with functionality 
descriptions in WSMO. 
 

3.4 Web rule languages 
 

The current Semantic Web standards cover defining 
vocabularies and ontologies by using Resource 
Description Framework Schema (RDFS) and Web 
Ontology Language. However, there is no standard for 
defining and sharing rules on the Semantic Web. The 
most important initiative is called Rule Interchange 
Format (RIF) [8], which defines a set of requirements 
and use cases for sharing rules on the Web. It is 
important to point out, that the purpose of this language 
is to serve as an intermediary language between various 
rule languages, but it should not provide a formally 
defined semantic foundation for reasoning on the Web 
such as OWL for ontologies. Here we name two most 
prominent rule languages and briefly describe their 
characteristics.    

RuleML is a markup language for publishing and 
sharing rule bases on the World Wide Web [10]. 
RuleML builds a hierarchy of rule sublanguages upon 
XML, RDF, XSLT, and OWL. The current RuleML 
hierarchy consists of derivation (e.g., SWRL, FOL) and 
production rules (e.g., Jess). RuleML is based on 
Datalog. RuleML rules are defined in the form of an 
implication between an antecedent and consequent, 
with the meaning whenever the logical expression in 
the antecedent holds, then the consequent must also 
hold. However, an important constraint of RuleML is 
that it can not fully represent all the constructs of 
various languages such as OCL or SWRL.   

The Semantic Web Rule Language (SWRL) is a 
proposed rule language based on the W3C Web 
ontology language OWL [11]. Similar to RuleML 
rules, a SWRL rule is also in the form of an implication 
and is considered another type of an axiom on top of 
the other OWL axiom types. This means that SWRL 
rules are usually used for defining integrity constraints 
similar to OCL in UML. Both consequent and 
antecedent are collections (i.e., conjunctions) of atoms. 
We should say that the purpose of SWRL is not to be a 
universal rule syntax for interchanging rules, as it can 



not represent many linguistic constructs of other rule 
languages (e.g., F-Logic, Rei, or OCL) utilized in 
Semantic Web service descriptions.  
 

4. Our approach 
 

We propose using one general rule representation 
language with the syntactical capacity to represent 
various rule constructs mentioned in the previous 
section. More specifically, we propose using the R2ML 
language [22]. R2ML is a general purpose rule 
interchange language that possesses expressivity for 
representing four types of rules, namely, integrity, 
derivation, reaction, and production rules. Besides 
rules, R2ML has its own set of constructs for 
representing vocabularies and domain ontologies 
similar to UML or OWL. Having in mind such an 
expressivity, we can use R2ML to represent the 
following artifacts related to Semantic Web services 
discussed in the previous section:  
- R2ML reaction rules can be used to model Semantic 

Web service descriptions such as WSDL-S, WSMO, 
and OWL-S.  

- R2ML integrity and derivation rules can be used to 
represent trust management policy rules such as the 
ones defined in Rei, PeerTrust, PROTUNE and KAoS. 

- R2ML vocabularies that are used for annotating types 
of Semantic Web services can be used for 
representing domain vocabularies expressed as UML 
class diagrams or OWL ontologies. 

- R2ML itself can be used to represent other rule 
languages used in Semantic Web applications such as 
RuleML, SWRL, or OCL. 

Along with R2ML, a set of bi-directional 
transformations between R2ML and all the languages 
discussed in Section 4 need to be developed for our 
proposed solution. Given such as a set of 
transformations, we can transform SWRL rules (via 
R2ML) into OCL, or a UML vocabulary into OWL 
ontology [15]. In the rest of this section we give a brief 
overview of R2ML. 

 

4.1 R2ML: A brief overview 
 

R2ML is a general rule interchange language that 
tries to address all RIF requirements [8]. Its current 
version is 0.4 [18]. The abstract syntax of the R2ML 
language is defined with a metamodel by using OMG’s 
Meta-Object Facility (MOF). This means that the 
whole language definition can be represented by using 
UML diagrams, as MOF uses UML’s graphical 
notation. The full description of R2ML in the form of 
UML class diagrams is given in [18], while more 
details about the language can be found in [22]. In 

Figure 2, we give an excerpt of the metamodel that 
defines derivation (a) and reaction rules (b) which we 
will use in Sections 5 and 6. 

 
a) 

conditions

*

EventExpression

triggeringEvent

1

postcondition

0..1

producedAction1

{OR}

ReactionRule

ActionExpression

AndOrNafNegFormula

 
b) 

Figure 2. The R2ML definition of derivation and 

reaction rules 
 

A derivation rule has conditions and a conclusion 
(see Figure 2a) with the ordinary meaning that the 
conclusion can be derived whenever the conditions 
hold. While the conditions of a derivation rule are 
instances of the AndOrNafNegFormula formula class, 
representing quantifier-free logical formulas with 
conjunction, disjunction and negation; conclusions are 
restricted to quantifier-free disjunctive normal forms 
without NAF (Negation as Failure, i.e. weak negation). 
An example of an integrity rule is:  

Example 1. If reservation date of a rental is five 

days in advance of the rental start date then rental 

discount is 10. 
A reaction rule, also called an Event-Condition-

Action (ECA) rule, consists of a triggering event, a list 
of conditions, a triggered action and an optional post-
condition, which formalizes the state change after the 
execution of the action. Here we give an example of a 
reaction rule:  

Example 2. On customer book request, if the book 

is available, then approve order and decrease amount 

of books in stock by order quantity. 
The next component of R2ML is a textual concrete 

syntax defined by an XML schema (so called R2ML 
XML). The purpose of this schema is to enable sharing 
R2ML rules among different applications by using 
XML. Another (but graphical) concrete syntax is a 
UML-based Rule Language (URML) that extends the 
UML metamodel with rule concepts (e.g., derivation 
rules) from R2ML, while URML represents 
vocabularies by using standard UML classes and their 
relationships. In Figure 3, we give a URML 
representation for the reaction rule from Example 2. 
We should point out that there is a plug-in for Fujaba (a 
well-known UML tool), called Strelka, for modeling 



rules by using URML. Strelka serializes URML models 
in the R2ML XML format. 

 
Figure 3. An example of reaction rule 

 

Several transformations between R2ML and other 
languages (e.g., RuleML, F-Logic, OWL/SWRL, Jess, 
and UML/OCL) have been implemented. These 
transformations have been implemented with XSLT or 
the ATLAS Transformation Language (ATL) [19]. In 
the rest of the paper, we show how this set of 
transformations can be extended by providing 
transformations between R2ML and Semantic Web 
service description languages and R2ML and trust 
policy management languages.  
 

5. Mapping R2ML and Semantic Web 

Service Descriptions 
 

In this section, we describe how R2ML reaction 
rules are mapped to Semantic Web service 
descriptions, logical formulas used in their 
descriptions, and ontology vocabularies referred to 
from such descriptions. The approach is demonstrated 
on WSDL-S, while differences with OWL-S and 
WSMO are discussed later in the section. In a nutshell, 
WSDL-S [1] has the following features:  

• It is defined as an extension of the standard WSDL 
with the goal to be fully compatible with standard 
Web service specifications and tools; 

• It enables annotating datatypes using domain 
ontologies through the modelReference and 
schemaMapping attributes, but still data types are 
defined by using XML Schema. 

• Precondition XML element defines a set of assertions 
that must be met before a Web service operation can 
be invoked; 

• Effect XML element can make statements about what 
changes in the state are expected to occur upon 
invocation of the service; 

• It is fully agnostic about the language used for 
defining domain ontologies, referred to in 
modelReference (e.g., UML, ODM, and OWL) and 
rules used in precondition and effect elements  (e.g., 
OCL, SWRL, RuleML, R2ML). 

As can be seen from the listed features of WSDL-S, 
this language has many concepts similar to the concepts 
of reaction rules described above. A WSDL interface 
operation corresponds to an R2ML reaction rule in the 
following way: 

• A WSDL input element is mapped to an incoming 
message that represents the triggering event of an  
R2ML reaction rule; 

• A WSDL output element is modeled as an outgoing 
message representing the triggered action of an 
R2ML reaction rule; 

• R2ML reaction rule conditions and post-conditions 
are mapped to the WSDL-S preconditions and 
WSDL-S effects, respectively; 

• A WSDL outfault element is mapped to an alternative 
action (in the form of an outgoing message) bound to 
a corresponding error condition in a reaction rule of 
the form ON-IF-THEN-ELSE. 

Since WSDL-S does not have any presumption 
about rule language that will be used in its 
preconditions and effects, we can transform R2ML 
conditions and postconditions onto WSDL-S 
preconditions and effects, respectively, to be expressed 
in any rule language for which there are 
transformations implemented with R2ML (e.g., 
RuleML, SWRL, OCL, and F-Logic). The same is 
applied to the opposite direction of transformations 
(i.e., from WSDL-S to R2ML). Our recommendation is 
that WSDL-S preconditions and effects should be 
represented in R2ML and then, based on the need in a 
specific situation, translated to a target rule language. 
However, there is one constraint in WSDL-S caused by 
the XML schema definition of WSDL-S about 
precondition and effect XML elements. Both these 
elements have the expression attribute for defining 
logical conditions, which can only be set in the form of 
a text-based syntax (e.g., OCL or F-Logic). This means 
that we can not used an XML format (e.g., SWRL and 
R2ML) that will be wrapped by, for example, the effect 
XML element of WSDL-S. So, the R2ML conditions 
can only be addressed by using XPath referring to 
specific parts of rules defined in R2ML XML 
documents (arrow 1 in Figure 4). Another approach is 
to change the definition of the WSDL-S precondition 
and effect XML elements (having in mind that it is still 
only a W3C member submission), so that they can also 
wrap in an XML literal like it is shown with arrow 2 in 
Figure 4. 



 
Figure 4. Mappings between reaction rules represented in the R2ML XML format (a) and WSDL-S (b)

We can also apply similar mappings between R2ML 
and OWL-S. Definition of OWL-S preconditions and 
effects can be both literal and XML literals, which is 
fully compatible with two alternatives discussed for 
WSDL-S (arrows 1 and 2 in Figure 4). Furthermore, 
vocabularies can be defined in different ontology 
languages, thus R2MlL transformation can increase the 
interoperability level. However, OWL-S contains the 
Process ontology that is used for modeling atomic and 
composite (e.g., sequence, split, split+join, and any-
order) processes. These different types of process 
execution are represented in R2ML reaction rules by 
using EventExpressions – see Figure 2 (e.g., 
SequenceEventExpression or ChoiceEventExpression). 
A similar situation is with mappings between WSMO 
and R2ML. R2ML vocabulary elements fully capture 
WSMO ontologies, while WSMO rules that are based 
on F-Logic are also fully captured by R2ML rules. 
Actually, there is already a transformation between 
R2ML and F-Logic [19]. However, when mapping 
WSMO service descriptions to R2ML, there is one 
difference compared to mappings between R2ML and 
WSDL-S and between R2ML and OWL-S. It is related 
to output messages where WSMO has two properties, 
effect and post-condition. Post-conditions are related to 
the data output, whereas effects are used to define 
general state changes caused by the execution of the 
output. We can say that R2ML, OWL-S, and WSDL-S 
do not distinguish between these two different types of 
output conditions and both of them are captured with 

OWL-S and WSDL-S effect and R2ML post condition. 
However, to provide automatic transformations 
between R2ML and WSMO, R2ML should be slightly 
be extended to distinguish between data only and 
general state change conditions.   
 

6. Policy languages and R2ML 
 

In the previous section we showed that SWS 
description languages can be modeled using reaction 
rules. The last step in providing a powerful interchange 
format between different policy-aware SW services is 
to map policy rules from a source policy language to 
R2ML and from R2ML to the target policy language. 

Policies for semantic web services are generally 
divided into privacy policies, in which the global 
constraints over accessing a service are defined, and 
authentication policies in which certain privileges are 
given to each user in accordance to the credentials s/he 
provides. Privacy policies can be perfectly modeled as 
integrity rules in R2ML. Each integrity rule is a 
sequence of logical predicates which through resolution 
process can eventually hold a value of either true or 
false. This logical value can be neatly evaluated as a 
privacy policy to determine whether or not the process 
of information exchange can happen after resolving the 
constraints of the integrity rule. Authentication policies 
on the other hand can be efficiently modeled as 
derivation rules. Providing a set of credentials by a 
peer may satisfy the sequence of constraints in the 

 
 
 
<r2ml:RuleSet> 
 <r2ml:Vocabulary> 
  <r2ml:Class r2ml:classID=”Item”><!--…--></r2ml:Class> 
  <r2ml:Class r2ml:classID=”Customer”><!--…--></r2ml:Class> 
 </r2ml:Vocabulary> 
 <r2ml:ReactionRule r2ml:id=“BookOrder" xmlns:srv="http://www.example.org/">   
  <r2ml:triggeringEvent> 
   <r2ml:SOAPMessage r2ml:sender=""  
     r2ml:startTime="2006-03-21T09:00:00" 
     ml:duration="P0Y0M0DT0H0M0S" 
     ml:eventTypeID="BookOrder"> 
    <r2ml:arguments> 
     <r2ml:ObjectVariable r2ml:name="x" r2ml:classID="srv:Item"/> 
     <r2ml:DataVariable r2ml:name="y" r2ml:dataTypeID="xsd:integer"/> 
     <r2ml:ObjectVariable r2ml:name="z" r2ml:classID="srv:Customer"/> 
    </r2ml:arguments> 
   </r2ml:SOAPMessage> 
  </r2ml:triggeringEvent> 
  <r2ml:conditions> 
   <r2ml:ObjectClassificationAtom r2ml:classID="srv:AvailableItem"> 
    <r2ml:ObjectVariable r2ml:name="x"/> 
   </r2ml:ObjectClassificationAtom> 
   <r2ml:EqualityAtom> 
    <r2ml:AttributeFunctionTerm r2ml:attributeID="srv:quantityInStock"> 
     <r2ml:contextArgument> 
      <r2ml:ObjectVariable r2ml:name="x" r2ml:classID="srv:Item"/> 
     </r2ml:contextArgument> 
    </r2ml:AttributeFunctionTerm> 
    <r2ml:DataVariable r2ml:name="y" r2ml:dataTypeID="xsd:integer"/> 
   </r2ml:EqualityAtom> 
  </r2ml:conditions> 
  <r2ml:producedAction> 
   <!-- …--> 
  </r2ml:producedAction> 
  <r2ml:postcondition> 
   <!-- …--> 
  </r2ml:postcondition> 
 </r2ml:ReactionRule> 
</r2ml:RuleSet> 

<definitions> 
  <types>  
    <xs:schema> 
      <xs:complexType name=" BookOrderRequest">  
           <xs:sequence>  
               <xs:element name="x" type="xsd1:Item“  
                 wssem:modelReference=“svr:Item”/> 
       <xs:element name="y” type="xs:integer"  
                 wssem:modelReference="svr:quantity”/>  
       <xs:element name="z" type="xsd1:Customer“  
                wssem:modelReference=“svr:Custormer”/>  
           </xs:sequence>  
          </xs:complexType>  
      </xs:schema>  
  </types> 
  <interface name="BookOrderInterface"> 
 <operation name=“BookOrder" pattern="wsdl:in-out"> 
  <input messageLabel ="BookOrderRequest" element="BookOrderRequest"/> 
  <output messageLabel =“BookOrderRespond" element="BookOrderRespond"/> 
  <wssem:precondition name="BookOrderPrecondition"  
                        expression = “/r2ml:RuleSet/r2ml:ReactionRule[@r2ml:id = 
                        ‘BookOrder’]/r2ml:conditons”/> 
  <wssem:effect name="BookOrderPrecondition"> 
   <r2ml:EqualityAtom> 
    <r2ml:AttributeFunctionTerm r2ml:attributeID="srv:quantityInStock"> 
     <r2ml:contextArgument> 
      <r2ml:ObjectVariable r2ml:name="x" r2ml:classID="srv:Item"/> 
     </r2ml:contextArgument> 
    </r2ml:AttributeFunctionTerm> 
    <r2ml:DataOperationTerm r2ml:operationID="minus"> 
     <r2ml:contextArgument> 
      <r2ml:ObjectVariable r2ml:name="x" r2ml:classID="srv:Item"/> 
     </r2ml:contextArgument> 
     <r2ml:arguments> 
      <r2ml:DataVariable r2ml:name="y"/> 
      <r2ml:DataVariable r2ml:name="quantity"/> 
     </r2ml:arguments> 
    </r2ml:DataOperationTerm> 
   </r2ml:EqualityAtom> 
  <wssem:effect/> 
 </operation>  
  </interface>  
</definitions> 

b) a) 

1 
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condition part of a derivation rule and consequently a 
series of privileges are given to the peer. 

To give the reader a clear understanding of how the 
policy rules can be exchanged using R2ML, we provide 
some mappings from policy languages to R2ML and 
vice versa. However, due to the length limitations in 
the paper, we limit our samples to authentication 
policies which are more general than privacy policies 
in the sense of dealing with conditions and 
consequences. We choose Rei and PeerTrust to define 
policies, we consider the same scenarios mentioned in 
[12] and [16], then we convert them to identical R2ML 
definitions and discuss the similarities of the results. 

The first scenario based on [16] defines an 
authentication policy in which a discount is given to a 
buyer only if s/he proves that s/he is a student in a valid 
university (Figure 5). As it is obvious in Figure 5 the 
user should prove that s/he belongs to a valid university 
and the university must certify the validity of the 
student ID the user provides with regards to her/his 
name and information. It is worth mentioning that the 
object following “$” in PeerTrust illustrates the 
requester to whom the results will be returned and the 
object following “@” is the entity responsible for 
certifying the expression that appears before “@”. For 
example the last constraint in Figure 5 considers 
University as the certifying authority for the expression 
studentId(Buyer). The expressivity of R2ML enables us 
to define the above rule in several different ways; 
however, we finally chose the transformation in Figure 
6 as the most suitable one. 

 
 

discount(BookTitle) $ Buyer ← 
     studentId(Buyer) @ University @ Buyer, 
     validUniversity(University), 
     studentId(Buyer) @ University. 
 

Figure 5. An Authentication Policy in PeerTrust 
 

In Figure 6, we have mapped each predicate in 
PeerTrust to a GenericAtom in R2ML with the 
variables of each predicate defined as an 
ObjectVariable in R2ML. Certification authorities of a 
predicate in PeerTrust are also modeled as 
GenericFunctionTerms in which the FunctionID refers 
to the role of the authority and an ObjectVariable refers 
to the certifying authority itself. To increase the 
expressivity and flexibility of the mapping we have 
explicitly defined a certification authority for the 
second constraint of Figure 5 as “self” which is implicit 
in the original model defined in PeerTrust. “self” in 
PeerTrust, and correspondingly in our mapping, refers 
to the entity that is defining the policy. Digging into the 
sample provided above and our conventions in 
transforming the concepts, the reader may find it easy 

to transfer a similar concept from PeerTrust to R2ML 
and back. 

Now that a transformation from a rule in PeerTrust 
to R2ML has been provided, we follow a completely 
different scenario mentioned in [12] for a policy 
defined in Rei. Figure 7a shows the sample scenario in 
Rei. 

 
<r2ml:DerivationRuleSet> 
<r2ml:DerivationRule xmlns:plcy="http://www.services.org/Policy/"> 
 
<r2ml:conditions> 
   <r2ml:ObjectClassificationAtom r2ml:classID="plcy:Buyer"> 
        <r2ml:ObjectVariable r2ml:name="buyer"/> 
   </r2ml:ObjectClassificationAtom> 
<!-- Similarly we define university and book as variables from classes University 
and Book respectively --> 
 
   <r2ml:GenericAtom r2ml:predicateID="plcy:Buyer:studentID"> 
        <r2ml:arguments> 
            <r2ml:ObjectVariable r2ml:name="buyer"/> 
            <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:isCertifiedBy"  
                 r2ml:typeCategory="order"> 
                <r2ml:arguments> 
                    <r2ml:ObjectVariable r2ml:name="buyer"/> 
                    <r2ml:ObjectVariable r2ml:name="university"/> 
                </r2ml:arguments> 
            </r2ml:GenericFunctionTerm> 
        </r2ml:arguments>     
   </r2ml:GenericAtom> 
 
   <r2ml:GenericAtom r2ml:predicateID="plcy:validUniversity"> 
       <r2ml:arguments>   
            <r2ml:ObjectVariable r2ml:name="university"/> 
            <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:isCertifiedBy"> 
                <r2ml:arguments> 
                    <r2ml:ObjectName r2ml:objectID="plcy:self" /> 
                </r2ml:arguments> 
            </r2ml:GenericFunctionTerm> 
       </r2ml:arguments>    
   </r2ml:GenericAtom> 
 
<!—The last predicate is similar to the others --> 
 
<r2ml:conclusion> 
    <r2ml:GenericAtom r2ml:predicateID="plcy:discount"> 
        <r2ml:arguments> 
            <r2ml:ObjectVariable r2ml:name="book"/> 
            <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:requester"> 
                <r2ml:arguments> 
                    <r2ml:ObjectVariable r2ml:name="buyer"/> 
                </r2ml:arguments>     
            </r2ml:GenericFunctionTerm> 
        </r2ml:arguments> 
    </r2ml:GenericAtom> 
</r2ml:conclusion> 
 
</r2ml:DerivationRule> 
</r2ml:DerivationRuleSet>\ 

Figure 6. Transformation from PeerTrust to R2ML 
 

In this example permission in using a service will be 
granted to the requesting entity in case the requester is 
working on the same project as the provider. Rei is 
built upon the concepts of OWL and RDF so the 
relationships are binary as opposed to PeerTrust which 
can have predicates of the form ternary or higher. 
Moreover, Rei does not address the certifying 
authorities as explicitly as PeerTrust and the authorities 
are dealt with again through defining the binary 
relationships between the constraints and the entities 
involved. Figure 7b is showing the transformation from 
the sample in Figure 7a to R2ML. 

 
 

 

`<!— Rei variables used —> <r2ml:DerivationRuleSet> 



 
    <entity:Variable rdf:ID=”ProviderVar”/> 
    <entity:Variable rdf:ID=”ProviderProject”/> 
    <entity:Variable rdf:ID=”RequesterVar”/> 
 
 
<!— Find provider of service —> 
    <constraint:SimpleConstraint rdf:ID=”FindProviderOfService” 
       constraint:subject=”&dcs;profile” 
       constraint:predicate=”&process;contactInformation” 
       constraint:object=”#ProviderVar”/> 
 
<!— Get Provider’s project —> 
<constraint:SimpleConstraint rdf:ID=”GetProviderProject” 
constraint:subject=”#ProviderVar” 
constraint:predicate=”&foaf;currentProject” 
constraint:object=”#ProviderProject”/> 
 
<!—Is Requester in the same project as Provider —> 
    <constraint:SimpleConstraint rdf:ID=”SameProjectAsProvider” 
      constraint:subject=”#RequesterVar” 
      constraint:predicate=”&foaf;currentProject” 
      constraint:object=”#ProviderProject”/> 
 
<!— combine first two constraints —> 
    <constraint:And rdf:ID=”FindProviderAndGetProject” 
      constraint:first=”#FindProviderOfService” 
      constraint:second=”#GetProviderProject”/> 
 
<!— combine remaining constraint —> 
    <constraint:And rdf:ID=”IsRequesterInSameProjectAsProvider” 
      constraint:first=”#FindProviderAndGetProject” 
      constraint:second=”#SameProjectAsProvider”/> 
 
<!— permission to use data computation service —> 
    <deontic:Permission rdf:ID=”ServicePermission”> 
        <deontic:actor rdf:resource=”#RequesterVar”/> 
        <deontic:action rdf:resource=”&dcs;service”/> 
        <deontic:constraint  
           rdf:resource=”#IsRequesterInSameProjectAsProvider”/> 
    </deontic:Permission> 
 
    <sws:AuthorizationPolicy rdf:ID=”AuthPolicy1”> 
        <policy:grants rdf:resource=”ServicePermission”/> 
    </sws:AuthorizationPolicy> 

<r2ml:DerivationRule> 
<r2ml:conditions> 
 
    <r2ml:ObjectClassificationAtom r2ml:classID="plcy:Provider"> 
        <r2ml:ObjectVariable r2ml:name="ProviderVar"/> 
    </r2ml:ObjectClassificationAtom> 
    <!-- Similarly we define RequesterVar and ProviderProject as variables from classes    
          Requester and Project respectively --> 
 
    <r2ml:GenericAtom r2ml:predicateID="process:contactInformation"> 
        <r2ml:arguments> 
            <r2ml:ObjectName r2ml:objectID="dcs:profile"/> 
            <r2ml:ObjectVariable r2ml:name="ProviderVar"/> 
            <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:isCertifiedBy"> 
                <r2ml:arguments> 
                    <r2ml:ObjectName r2ml:objectID="plcy:self"/> 
                </r2ml:arguments> 
            </r2ml:GenericFunctionTerm> 
        </r2ml:arguments> 
    </r2ml:GenericAtom> 
 

    <r2ml:GenericAtom r2ml:predicateID="currentProject"> 
        <r2ml:arguments> 
            <r2ml:ObjectVariable r2ml:name="ProviderVar"/> 
            <r2ml:ObjectVariable r2ml:name="ProvierProject"/> 
            <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:isCertifiedBy"> 
                <r2ml:arguments> 
                    <r2ml:ObjectName r2ml:objectID="plcy:self"/> 
                </r2ml:arguments> 
            </r2ml:GenericFunctionTerm> 
        </r2ml:arguments>     
    </r2ml:GenericAtom> 
    <!—-There is also another GenericAtom to check the relationship between the  
            Requestor and the ProviderProject--> 
<r2ml:conclusion> 
    <r2ml:GenericAtom r2ml:predicateID="servicePermission"> 
        <r2ml:arguments> 
            <r2ml:ObjectName r2ml:objectID="dcs:service"/> 
            <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:requester"> 
                <r2ml:arguments> 
                    <r2ml:ObjectName r2ml:objectID="RequesterVar"/> 
                </r2ml:arguments> 
            </r2ml:GenericFunctionTerm> 
        </r2ml:arguments>     
    </r2ml:GenericAtom> 
</r2ml:conclusion> 
</r2ml:DerivationRule> 
</r2ml:DerivationRuleSet> 

Figure 7. Mapping between Rei and R2ML: a) A Rei policy and b) its counterpart in R2ML 
 

Finally it should be noticed that there are a variety 
of possible mappings from each policy language to 
R2ML, for example a SimpleConstraint in Rei (as it 
has been marked with 1 in Figure 7) can be easily and 
expressively mapped to a ReferencePropertyAtom in 
R2ML which is likely even more expressive than the 
format we have already come up with (Figure 8). 
However, transforming the derived R2ML definition to 
another language, say PeerTrust, is not easy as there is 
no room for the concept of certification authority in a 
ReferencePropertyAtom. 

 
 

<r2ml:ReferencePropertyAtom referencePropertyID="currentProject"> 
    <subject> 
        <r2ml:ObjectVariable r2ml:name="RequesterVar"/> 
    </subject> 
    <object> 
        <r2ml:ObjectVariable r2ml:name="ProviderProject"/> 
    </object> 
</r2ml:ReferencePropertyAtom> 

Figure 8. A Simple Constraint in Rei expressed as a 

ReferencePropertAton in R2ML 
 

7. Discussion and Conclusion 
 

In this paper we discussed how a comprehensive 
and general purpose rule markup language such as 

R2ML can be used as an intermediary language to 
transform different business rules, descriptions, and 
policies from one language to another. It was shown 
how the descriptions for a semantic web service written 
in WSDL-S or OWL-S can be mapped to and from 
R2ML. It was also illustrated how the policy languages 
defined in Rei or PeerTrust look similar after being 
converted to R2ML and how this similarity could ease 
the conversion from one language to the other. Our 
solution in designing an interchange format for 
Semantic Web services is completely independent of 
the architecture adopted for service discovery. 
Availability of transformations from each policy-aware 
Semantic Web service description to R2ML and back 
enables the brokers to surf the Web for the desired 
services regardless of the language they have been 
originally described in. 

Since there is a transformation engine from R2ML 
to F-Logic already developed, the problem of defining 
PeerTrust in F-Logic and integrating it with WSMO in 
order to enforce the policy rules to web services, as it 
has been discussed in [16], can be neatly covered and 
solved in our interchange format. 
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In our framework we can also exploit the graphical 
notation of URML due to coverage of all the concepts 
of URML by R2ML and availability of a serialization 
from URML to R2ML. The graphical notation of 
URML gives the users the opportunity of designing 
their Semantic Web service descriptions in a graphical 
UML-like environment without being familiar with the 
syntax of any of the policy languages or Semantic Web 
service ontologies. The designed URML model can 
then be transformed into R2ML and then into any of 
the previously mentioned languages for policy and 
Web service description. Ease of implementation and 
design is one of the main goals pursued in the 
community of software engineering and Semantic Web 
which is addressed in our proposal too. 

Despite all the positive points listed above, this 
paper should be regarded as the starting point for the 
whole framework we have in mind. This paper is 
mostly a conceptualization of the possibilities and most 
of the proposed ideas are targets of the future work. 
First and foremost, the amount of information loss 
during transformation from one language into R2ML 
and then into another language should be investigated 
more closely. Although we believe R2ML is capable of 
defining a wide variety of the concepts and although it 
is open to expansion, we still need to investigate which 
parts of the language need to expand. Our ultimate goal 
is to design a framework capable of conforming to the 
concepts in all business languages. This framework, 
when fully implemented, will provide an easy way to 
convert all rule languages to R2ML and then reason 
over their concepts. 
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