
Towards Unifying Rules and Policies for Semantic Web Services

Nima Kaviani1, Dragan Gašević1, Marek Hatala1, David Clement2, Gerd Wagner3

1
Simon Fraser University Surrey, Canada

2
Visiphor Corporation, Canada

3
Brandenburg University of Technology at Cottbus, Germany

{nkaviani, dgasevic, mhatala}@sfu.ca, david.clement@visiphor.com, wagnerg@tu-cottbus.de

Abstract

Simplifying the discovery of web services on one hand

and protecting them from misuse on the other hand has

initiated several lines of research in the area of policy-

aware semantic web services. However, the diversity of

approaches, ontologies and languages chosen for

defining Semantic Web services and policies has made

the research area cluttered. It is now ambiguous how

different registries and agents with different policy

languages and Semantic Web service ontologies would

share their information. In this paper we try to solve

the problem of exchanging information between the

registries by defining an interchange framework to

transform business rules and concepts from one

language to another using a third intermediary

language called R2ML. The expressivity of the new

framework exempts any service provider or service

requester from the difficulties it may encounter during

the process of transformation from one business rule

language to the other. It also guarantees that

information loss during transformation would be

minimal.

1. Introduction

Semantic Web services (SWS), as the augmentation
of Web service descriptions through Semantic Web
annotations, facilitate the higher automation of service
discovery, composition, invocation, and monitoring on
the Web [17]. Semantic Web ontologies and its
ontology languages (OWL and RDF(S)) are recognized
as the main means of knowledge representation for
Semantic Web services [20]. Such ontology-enriched
Web service descriptions are later used in the
negotiation process between service clients and service
provides, which is defined by a set of abstract protocols
of Semantic Web Service Architecture (SWSA) [6].

However, the current proposed standards for
describing Semantic Web services (i.e. OWL-S [14],
WSDL-S [1], Web Service Modeling Ontology [7],
and Semantic Web Service Language – SWSL [2])
demonstrate that it is important to use a rule language
in addition to ontologies. This allows run-time
discovery, composition, and orchestration of Semantic
Web services by defining preconditions or post-
conditions for all Web service messages exchanged
[13]. For example, OWL-S recommends using OWL
ontologies together with different types of rule
languages (SWRL, KIF, or DRS), WSMO uses F-
Logic, while WSDL-S is fully agnostic about the use of
a vocabulary (e.g., UML, ODM, OWL) or rule
language (e.g., OCL, SWRL, RuleML). Usually,
Semantic Web service descriptions use only parts of
rules representing logical formulas that may have a
Boolean result. It is important to point out that there is
no agreement upon which rule language to use for
Semantic Web services or what type of reasoning (open
or closed world assumption) should be supported.

Besides satisfying clients goals when using
Semantic Web services, trust is another important
aspect that should be established between a client and
service. Addressing this problem, researchers proposed
the use of policy languages. A policy is a rule that
specifies under which conditions a resource (or another
policy) might be disclosed to a requester [16]. To
define polices on the Semantic Web, various policy
languages have been proposed such as PeerTrust [16],
KAoS [21], Rei [12], and PROTUNE [4]. As [16]
reports, trust management policies are also defined as
parts (most commonly preconditions) of Semantic Web
service descriptions.

It is obvious that besides various Semantic Web
services description languages, we have various policy
languages and various rule languages. All these
languages are based on different syntactic
representations and formalisms with no explicitly

defined mapping between them. This hampers the use
of Semantic Web services from two different
perspectives. One perspective is automatic negotiation
between service client agents and service provides and
automatic matchmaking, where agents and
matchmakers should be able to “understand” various
rule/policy/service web service description languages.
Another perspective is that of a knowledge
management worker who needs to be able to express
the rules and policies in a single form rather than in a
broad variety of forms. To attempt to represent the
same rules and policies in many forms is cumbersome,
time consuming and error prone but it is the only
choice currently available if a broad base of
interoperability is required.

 In the paper, we start from the presumption that
rules encoded in policies and semantic web services are
parts of business rules [23] [4], and that we should be
able to share them by using the same representation.
Such a rule language should enable modeling different
types of rules such as reaction rules considering the
event-driven nature of Web services (or so-called
Event-Condition-Action Rules), derivation rules
considering the importance of inferring new facts (such
as RuleML), and integrity rules considering the
deontic, i.e. “must”, nature of policy languages.
Unfortunately, current Web rule markup languages
such as RuleML and SWRL are unable to express all
these types of rules.

In our approach, we propose the use of REWERSE
Rule Markup Language (R2ML) [22], which addresses
almost all use-cases and requirements for a Rule
Interchange Format (RIF) [8], along with a set of
transformations between Semantic Web service
description (e.g., WSDL-S), rule, and trust
management policy languages. We illustrate the
benefits of our approach using a Semantic Web Service
Architecture example where R2ML is used to share
Semantic Web service descriptions and policies in the
process of matchmaking and trust negotiation. In the
next section, we motivate our research by describing an
example based on the present solutions to Semantic
Web services.

2. Motivation

Semantic Web service registries are usually used
together with matchmakers to help the requesting
entities find their desired service providers based on
the defined constraints and needs. Involving policies in
the process of discovering relevant service providers
would help both the requesting entity and the service
provider to check their constraints before starting a
negotiation process, protect sensitive information, and

prevent from information leakage before going through
the negotiation. In this case the policy constraints are
placed in the Semantic Web service description for
every single service available in the registry. The
policies are also embedded in the SOAP messages sent
by the requesters while seeking for the desired services.

In [16], the authors suggest three different
architectures for service provider discovery, namely
trusted matchmaking at registry side, trusted
matchmaking at client side, and distributed
matchmaking using a middle agent. In these suggested
architectures they try to address the security concerns
of both peers of negotiation, i.e. the requester and the
service provider, and especially protect their sensitive
policies and information. Figure 1 shows the third
architecture which has been considered as the most
promising one by the authors.

Regardless of the architecture used in service
provider discovery, what seems to be totally missing in
the proposed solutions is the communication language
between the entities involved in the process of service
discovery. [16] assumes that both the requester agent
and the service provider have defined their policies in
PeerTrust and their Semantic Web service description
in WSMO. [12] gives another suggestion in which Rei,
as the policy language, is used together with OWL-S as
the Semantic Web service description ontology to
describe the service.

However, it is not reasonable to assume that all the
registries and the service requesters around the world
would admit the same policy and description languages
for their services. As it is shown in Figure 1 different
service providers, even those placed in a single
registry, may have been using different semantic web
services with different policy languages. The proposed
architectures and solutions does not deal with how to
matchmake the requests and advertisements where the
policy languages and the semantic web service
descriptions do not match.

In the current proposals, the requestors, the broker
agents, the registries, and the service providers must
have different transformers from each policy language
or Semantic Web service language to the others. This is
hard to achieve due to the vast variety of these
languages is really hard to achieve. Moreover, as the
flexibility of a mapping from one language to another
has not been considered in defining policy and web
description languages, chances are that we encounter
some information loss during transformation from one
language to another which may result in unwanted
changes in the policies of either of the peers and
compromise their privacy. In order to solve the
problem, the focus should be on finding an interchange

format language with the highest possible degree of
interoperability to cope with different available
semantic Web Service languages and policy languages.
In the rest of the paper we propose a new solution to
interchange the policy languages and semantic web
service description languages, from one to another,
with as less information loss as possible.

Figure 1. Distributed Architecture for Registry and

MatchMaker

3. Background

3.1 Semantic Web Service Description

Considering the main feature of Semantic Web
services of semantically enriching Web service
descriptions, researchers have so far proposed several
solutions to this problem. Here we briefly touch the
submitted solutions to W3C.

OWL-S is an OWL-based ontology for describing
Semantic Web services. The ontology consists of three
main parts: the service profile for advertising and
discovering services; the process model for detailed
descriptions of services’ operation; and the grounding,
for providing details on how to interoperate with a
service via messages [14]. Some of functionalities that
OWL-S provides are: annotating types of input and
output parameters of services with OWL-ontology
concepts, defining preconditions and effects of input
and output messages by logical expressions encoded as
literals and XML literals, and specifying different types
of composite services (e.g. sequence, split, and join-
split).

Web Service Modeling Ontology (WSMO) consists
of ontologies for defining terminology; Web service
functional and behavioral descriptions, user goals, and
mediators that automatically handles interoperability
between different WSMO element. Comparing to the
OWL-S, WSMO defines its own ontology language,

while it also defines its own rule language for defining
logic expressions. That language has backward
compatibility with F-Logic. It is important to note that
WSMO introduces postconditions, besides
preconditions and effects that are also present in OWL-
S. Postconditions cover the data output while effects
specify general state changes [9].

Semantic Web Service Ontology (SWSO) is a
conceptual model for describing Web services [2]. The
complete axiomatization is given in first-order logic,
using the Semantic Web Service Language consisting
of SWSL-FOL (First Order Logic) and SWSL-Rules.
In fact, SWSO presents a first-order ontology for Web
services, expressed in SWSL-FOL and its partial
translation expressed in SWSL-Rules. SWSO also
includes material about grounding its process models
with WSDL. It is important to say that SWSL-FOL and
SWSL-Rules language are serialized by using RuleML.

WSDL-S is a rather evolutionary approach to
Semantic Web services that only introduces a few
WSDL extensions, and thus preserves the full
compatibility with the standard WSDL [1]. WSDL-S is
fully ontology and rule language agnostics meaning
that one can annotate WSDL XML schema types with
any vocabulary language (e.g., OWL or UML) and
define preconditions and effects (there is not
postconditions) with any rule language (e.g., OCL or
R2ML).

3.2 Policy Language

As mentioned earlier, there are several policy
languages proposed so far with the goal of protecting
the privacy of information and authorizing requesters
by providing different levels of access to the available
resources and information. The syntax of these
languages varies from rigid ordinary logic languages
such as Cassandra [3], which is based on Constraint
Language Programming, PeerTrust [16] and PROTUNE

[4], which use a Prolog meta-interpreter, to more
relaxed markup languages such as KAoS [21] and Rei
[Kagal & Joshi, 2003] Referring to all of the available
policy languages is beyond the purpose of this paper
and here we just mention the most important ones.

PeerTrust is a trust negotiation engine for semantic
web and P2P networks [16]. PeerTrust’s language is
based on first order Horn rules (definite Horn clauses),
i.e. rules of the form:

lit0← lit1, …,litn

where each liti is a positive literal of the form Pj(t1, …,

tn), Pj is a predicate symbol, and ti (i=1..n) are the
arguments of this predicate. It can be combined with
WSMO to define policy-aware web services as it is
proposed in [16].

Cassandra is another policy-based language based
on CLP [3]. It uses a policy language based on Datalog
with constraints and its expressiveness can be adjusted
by changing the constraint domain. Policies are
specified using the following predicates which govern
access control decisions: permits(e, a) specifies who
can perform which action; canActivate(e, r) defines
who can activate which role (e is a member of r);
hasActivated(e, r) defines who is active in which role;
canDeactivate(e, r) specifies who can revoke which
role; isDeactivated(e, r) is used to define automatically
triggered role revocation. Although aggregation of
Cassandra with Semantic Web service descriptions has
not been proposed yet, its declarative nature makes it
suitable to combine it with some of the available
semantic web services, such as WSMO.

Rei is a policy framework that permits specification,
analysis and reasoning about declarative policies
defined as norms of behavior [Kagal & Joshi, 2003].
Rei adopts a rule-based approach to specify semantic
policies. Rei policies restrict domain actions that an
entity can/must perform on resources in the
environment, allowing policies to be developed as
contextually constrained deontic concepts, i.e., right,
prohibition, obligation and dispensation. The current
version of Rei (2.0) adopts OWL-Lite to specify
policies and can reason over any domain knowledge
expressed in either RDF or OWL.

KAoS is a framework that provides policy and
domain management services for agent and other
distributed computing platforms [21]. It has been
deployed in a wide variety of multi-agent and
distributed computing applications. KAoS policy
services allow for the specification, management,
conflict resolution and enforcement of policies within
agent domains. KAoS adopts an ontology-based
approach to semantic policy specification. In fact,
policies are mainly represented in OWL as ontologies
which make it possible to combine them with Semantic
Web Services and then use them to define the policies
of a web service provider.

3.3 Semantic Web Service Policies

As we discussed earlier in the motivation section,
policies and semantic web service description
ontologies are combined to provide a policy-aware
specification of semantic web services. The most
prominent efforts in this area have been done in [12]
and [16]. In [12], OWL-S and Rei have been chosen as
web service ontology and policy language respectively.
The main reason in selecting OWL-S seems to be the
syntactical consistency between OWL-S and Rei.

In [16] the authors have chosen WSMO as their
description for semantic web services and mixed it with
PeerTrust to add policies. WSMO has been selected
because it allows the use of arbitrary logical
expressions in the description of the service
functionality which gives the authors more complete
way of expressing their terms as compared to other
approaches. It also uses F-Logic to describe the logical
expressions used in the description of the services
which in turn makes it possible to align the trust
policies described in PeerTrust with functionality
descriptions in WSMO.

3.4 Web rule languages

The current Semantic Web standards cover defining
vocabularies and ontologies by using Resource
Description Framework Schema (RDFS) and Web
Ontology Language. However, there is no standard for
defining and sharing rules on the Semantic Web. The
most important initiative is called Rule Interchange
Format (RIF) [8], which defines a set of requirements
and use cases for sharing rules on the Web. It is
important to point out, that the purpose of this language
is to serve as an intermediary language between various
rule languages, but it should not provide a formally
defined semantic foundation for reasoning on the Web
such as OWL for ontologies. Here we name two most
prominent rule languages and briefly describe their
characteristics.

RuleML is a markup language for publishing and
sharing rule bases on the World Wide Web [10].
RuleML builds a hierarchy of rule sublanguages upon
XML, RDF, XSLT, and OWL. The current RuleML
hierarchy consists of derivation (e.g., SWRL, FOL) and
production rules (e.g., Jess). RuleML is based on
Datalog. RuleML rules are defined in the form of an
implication between an antecedent and consequent,
with the meaning whenever the logical expression in
the antecedent holds, then the consequent must also
hold. However, an important constraint of RuleML is
that it can not fully represent all the constructs of
various languages such as OCL or SWRL.

The Semantic Web Rule Language (SWRL) is a
proposed rule language based on the W3C Web
ontology language OWL [11]. Similar to RuleML
rules, a SWRL rule is also in the form of an implication
and is considered another type of an axiom on top of
the other OWL axiom types. This means that SWRL
rules are usually used for defining integrity constraints
similar to OCL in UML. Both consequent and
antecedent are collections (i.e., conjunctions) of atoms.
We should say that the purpose of SWRL is not to be a
universal rule syntax for interchanging rules, as it can

not represent many linguistic constructs of other rule
languages (e.g., F-Logic, Rei, or OCL) utilized in
Semantic Web service descriptions.

4. Our approach

We propose using one general rule representation
language with the syntactical capacity to represent
various rule constructs mentioned in the previous
section. More specifically, we propose using the R2ML
language [22]. R2ML is a general purpose rule
interchange language that possesses expressivity for
representing four types of rules, namely, integrity,
derivation, reaction, and production rules. Besides
rules, R2ML has its own set of constructs for
representing vocabularies and domain ontologies
similar to UML or OWL. Having in mind such an
expressivity, we can use R2ML to represent the
following artifacts related to Semantic Web services
discussed in the previous section:
- R2ML reaction rules can be used to model Semantic

Web service descriptions such as WSDL-S, WSMO,
and OWL-S.

- R2ML integrity and derivation rules can be used to
represent trust management policy rules such as the
ones defined in Rei, PeerTrust, PROTUNE and KAoS.

- R2ML vocabularies that are used for annotating types
of Semantic Web services can be used for
representing domain vocabularies expressed as UML
class diagrams or OWL ontologies.

- R2ML itself can be used to represent other rule
languages used in Semantic Web applications such as
RuleML, SWRL, or OCL.

Along with R2ML, a set of bi-directional
transformations between R2ML and all the languages
discussed in Section 4 need to be developed for our
proposed solution. Given such as a set of
transformations, we can transform SWRL rules (via
R2ML) into OCL, or a UML vocabulary into OWL
ontology [15]. In the rest of this section we give a brief
overview of R2ML.

4.1 R2ML: A brief overview

R2ML is a general rule interchange language that
tries to address all RIF requirements [8]. Its current
version is 0.4 [18]. The abstract syntax of the R2ML
language is defined with a metamodel by using OMG’s
Meta-Object Facility (MOF). This means that the
whole language definition can be represented by using
UML diagrams, as MOF uses UML’s graphical
notation. The full description of R2ML in the form of
UML class diagrams is given in [18], while more
details about the language can be found in [22]. In

Figure 2, we give an excerpt of the metamodel that
defines derivation (a) and reaction rules (b) which we
will use in Sections 5 and 6.

a)

conditions

*

EventExpression

triggeringEvent

1

postcondition

0..1

producedAction1

{OR}

ReactionRule

ActionExpression

AndOrNafNegFormula

b)

Figure 2. The R2ML definition of derivation and

reaction rules

A derivation rule has conditions and a conclusion
(see Figure 2a) with the ordinary meaning that the
conclusion can be derived whenever the conditions
hold. While the conditions of a derivation rule are
instances of the AndOrNafNegFormula formula class,
representing quantifier-free logical formulas with
conjunction, disjunction and negation; conclusions are
restricted to quantifier-free disjunctive normal forms
without NAF (Negation as Failure, i.e. weak negation).
An example of an integrity rule is:

Example 1. If reservation date of a rental is five

days in advance of the rental start date then rental

discount is 10.
A reaction rule, also called an Event-Condition-

Action (ECA) rule, consists of a triggering event, a list
of conditions, a triggered action and an optional post-
condition, which formalizes the state change after the
execution of the action. Here we give an example of a
reaction rule:

Example 2. On customer book request, if the book

is available, then approve order and decrease amount

of books in stock by order quantity.
The next component of R2ML is a textual concrete

syntax defined by an XML schema (so called R2ML
XML). The purpose of this schema is to enable sharing
R2ML rules among different applications by using
XML. Another (but graphical) concrete syntax is a
UML-based Rule Language (URML) that extends the
UML metamodel with rule concepts (e.g., derivation
rules) from R2ML, while URML represents
vocabularies by using standard UML classes and their
relationships. In Figure 3, we give a URML
representation for the reaction rule from Example 2.
We should point out that there is a plug-in for Fujaba (a
well-known UML tool), called Strelka, for modeling

rules by using URML. Strelka serializes URML models
in the R2ML XML format.

Figure 3. An example of reaction rule

Several transformations between R2ML and other
languages (e.g., RuleML, F-Logic, OWL/SWRL, Jess,
and UML/OCL) have been implemented. These
transformations have been implemented with XSLT or
the ATLAS Transformation Language (ATL) [19]. In
the rest of the paper, we show how this set of
transformations can be extended by providing
transformations between R2ML and Semantic Web
service description languages and R2ML and trust
policy management languages.

5. Mapping R2ML and Semantic Web

Service Descriptions

In this section, we describe how R2ML reaction
rules are mapped to Semantic Web service
descriptions, logical formulas used in their
descriptions, and ontology vocabularies referred to
from such descriptions. The approach is demonstrated
on WSDL-S, while differences with OWL-S and
WSMO are discussed later in the section. In a nutshell,
WSDL-S [1] has the following features:

• It is defined as an extension of the standard WSDL
with the goal to be fully compatible with standard
Web service specifications and tools;

• It enables annotating datatypes using domain
ontologies through the modelReference and
schemaMapping attributes, but still data types are
defined by using XML Schema.

• Precondition XML element defines a set of assertions
that must be met before a Web service operation can
be invoked;

• Effect XML element can make statements about what
changes in the state are expected to occur upon
invocation of the service;

• It is fully agnostic about the language used for
defining domain ontologies, referred to in
modelReference (e.g., UML, ODM, and OWL) and
rules used in precondition and effect elements (e.g.,
OCL, SWRL, RuleML, R2ML).

As can be seen from the listed features of WSDL-S,
this language has many concepts similar to the concepts
of reaction rules described above. A WSDL interface
operation corresponds to an R2ML reaction rule in the
following way:

• A WSDL input element is mapped to an incoming
message that represents the triggering event of an
R2ML reaction rule;

• A WSDL output element is modeled as an outgoing
message representing the triggered action of an
R2ML reaction rule;

• R2ML reaction rule conditions and post-conditions
are mapped to the WSDL-S preconditions and
WSDL-S effects, respectively;

• A WSDL outfault element is mapped to an alternative
action (in the form of an outgoing message) bound to
a corresponding error condition in a reaction rule of
the form ON-IF-THEN-ELSE.

Since WSDL-S does not have any presumption
about rule language that will be used in its
preconditions and effects, we can transform R2ML
conditions and postconditions onto WSDL-S
preconditions and effects, respectively, to be expressed
in any rule language for which there are
transformations implemented with R2ML (e.g.,
RuleML, SWRL, OCL, and F-Logic). The same is
applied to the opposite direction of transformations
(i.e., from WSDL-S to R2ML). Our recommendation is
that WSDL-S preconditions and effects should be
represented in R2ML and then, based on the need in a
specific situation, translated to a target rule language.
However, there is one constraint in WSDL-S caused by
the XML schema definition of WSDL-S about
precondition and effect XML elements. Both these
elements have the expression attribute for defining
logical conditions, which can only be set in the form of
a text-based syntax (e.g., OCL or F-Logic). This means
that we can not used an XML format (e.g., SWRL and
R2ML) that will be wrapped by, for example, the effect
XML element of WSDL-S. So, the R2ML conditions
can only be addressed by using XPath referring to
specific parts of rules defined in R2ML XML
documents (arrow 1 in Figure 4). Another approach is
to change the definition of the WSDL-S precondition
and effect XML elements (having in mind that it is still
only a W3C member submission), so that they can also
wrap in an XML literal like it is shown with arrow 2 in
Figure 4.

Figure 4. Mappings between reaction rules represented in the R2ML XML format (a) and WSDL-S (b)

We can also apply similar mappings between R2ML
and OWL-S. Definition of OWL-S preconditions and
effects can be both literal and XML literals, which is
fully compatible with two alternatives discussed for
WSDL-S (arrows 1 and 2 in Figure 4). Furthermore,
vocabularies can be defined in different ontology
languages, thus R2MlL transformation can increase the
interoperability level. However, OWL-S contains the
Process ontology that is used for modeling atomic and
composite (e.g., sequence, split, split+join, and any-
order) processes. These different types of process
execution are represented in R2ML reaction rules by
using EventExpressions – see Figure 2 (e.g.,
SequenceEventExpression or ChoiceEventExpression).
A similar situation is with mappings between WSMO
and R2ML. R2ML vocabulary elements fully capture
WSMO ontologies, while WSMO rules that are based
on F-Logic are also fully captured by R2ML rules.
Actually, there is already a transformation between
R2ML and F-Logic [19]. However, when mapping
WSMO service descriptions to R2ML, there is one
difference compared to mappings between R2ML and
WSDL-S and between R2ML and OWL-S. It is related
to output messages where WSMO has two properties,
effect and post-condition. Post-conditions are related to
the data output, whereas effects are used to define
general state changes caused by the execution of the
output. We can say that R2ML, OWL-S, and WSDL-S
do not distinguish between these two different types of
output conditions and both of them are captured with

OWL-S and WSDL-S effect and R2ML post condition.
However, to provide automatic transformations
between R2ML and WSMO, R2ML should be slightly
be extended to distinguish between data only and
general state change conditions.

6. Policy languages and R2ML

In the previous section we showed that SWS
description languages can be modeled using reaction
rules. The last step in providing a powerful interchange
format between different policy-aware SW services is
to map policy rules from a source policy language to
R2ML and from R2ML to the target policy language.

Policies for semantic web services are generally
divided into privacy policies, in which the global
constraints over accessing a service are defined, and
authentication policies in which certain privileges are
given to each user in accordance to the credentials s/he
provides. Privacy policies can be perfectly modeled as
integrity rules in R2ML. Each integrity rule is a
sequence of logical predicates which through resolution
process can eventually hold a value of either true or
false. This logical value can be neatly evaluated as a
privacy policy to determine whether or not the process
of information exchange can happen after resolving the
constraints of the integrity rule. Authentication policies
on the other hand can be efficiently modeled as
derivation rules. Providing a set of credentials by a
peer may satisfy the sequence of constraints in the

<r2ml:RuleSet>
 <r2ml:Vocabulary>
 <r2ml:Class r2ml:classID=”Item”><!--…--></r2ml:Class>
 <r2ml:Class r2ml:classID=”Customer”><!--…--></r2ml:Class>
 </r2ml:Vocabulary>
 <r2ml:ReactionRule r2ml:id=“BookOrder" xmlns:srv="http://www.example.org/">
 <r2ml:triggeringEvent>
 <r2ml:SOAPMessage r2ml:sender=""
 r2ml:startTime="2006-03-21T09:00:00"
 ml:duration="P0Y0M0DT0H0M0S"
 ml:eventTypeID="BookOrder">
 <r2ml:arguments>
 <r2ml:ObjectVariable r2ml:name="x" r2ml:classID="srv:Item"/>
 <r2ml:DataVariable r2ml:name="y" r2ml:dataTypeID="xsd:integer"/>
 <r2ml:ObjectVariable r2ml:name="z" r2ml:classID="srv:Customer"/>
 </r2ml:arguments>
 </r2ml:SOAPMessage>
 </r2ml:triggeringEvent>
 <r2ml:conditions>
 <r2ml:ObjectClassificationAtom r2ml:classID="srv:AvailableItem">
 <r2ml:ObjectVariable r2ml:name="x"/>
 </r2ml:ObjectClassificationAtom>
 <r2ml:EqualityAtom>
 <r2ml:AttributeFunctionTerm r2ml:attributeID="srv:quantityInStock">
 <r2ml:contextArgument>
 <r2ml:ObjectVariable r2ml:name="x" r2ml:classID="srv:Item"/>
 </r2ml:contextArgument>
 </r2ml:AttributeFunctionTerm>
 <r2ml:DataVariable r2ml:name="y" r2ml:dataTypeID="xsd:integer"/>
 </r2ml:EqualityAtom>
 </r2ml:conditions>
 <r2ml:producedAction>
 <!-- …-->
 </r2ml:producedAction>
 <r2ml:postcondition>
 <!-- …-->
 </r2ml:postcondition>
 </r2ml:ReactionRule>
</r2ml:RuleSet>

<definitions>
 <types>
 <xs:schema>
 <xs:complexType name=" BookOrderRequest">
 <xs:sequence>
 <xs:element name="x" type="xsd1:Item“
 wssem:modelReference=“svr:Item”/>
 <xs:element name="y” type="xs:integer"
 wssem:modelReference="svr:quantity”/>
 <xs:element name="z" type="xsd1:Customer“
 wssem:modelReference=“svr:Custormer”/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 </types>
 <interface name="BookOrderInterface">
 <operation name=“BookOrder" pattern="wsdl:in-out">
 <input messageLabel ="BookOrderRequest" element="BookOrderRequest"/>
 <output messageLabel =“BookOrderRespond" element="BookOrderRespond"/>
 <wssem:precondition name="BookOrderPrecondition"
 expression = “/r2ml:RuleSet/r2ml:ReactionRule[@r2ml:id =
 ‘BookOrder’]/r2ml:conditons”/>
 <wssem:effect name="BookOrderPrecondition">
 <r2ml:EqualityAtom>
 <r2ml:AttributeFunctionTerm r2ml:attributeID="srv:quantityInStock">
 <r2ml:contextArgument>
 <r2ml:ObjectVariable r2ml:name="x" r2ml:classID="srv:Item"/>
 </r2ml:contextArgument>
 </r2ml:AttributeFunctionTerm>
 <r2ml:DataOperationTerm r2ml:operationID="minus">
 <r2ml:contextArgument>
 <r2ml:ObjectVariable r2ml:name="x" r2ml:classID="srv:Item"/>
 </r2ml:contextArgument>
 <r2ml:arguments>
 <r2ml:DataVariable r2ml:name="y"/>
 <r2ml:DataVariable r2ml:name="quantity"/>
 </r2ml:arguments>
 </r2ml:DataOperationTerm>
 </r2ml:EqualityAtom>
 <wssem:effect/>
 </operation>
 </interface>
</definitions>

b) a)

1

2

condition part of a derivation rule and consequently a
series of privileges are given to the peer.

To give the reader a clear understanding of how the
policy rules can be exchanged using R2ML, we provide
some mappings from policy languages to R2ML and
vice versa. However, due to the length limitations in
the paper, we limit our samples to authentication
policies which are more general than privacy policies
in the sense of dealing with conditions and
consequences. We choose Rei and PeerTrust to define
policies, we consider the same scenarios mentioned in
[12] and [16], then we convert them to identical R2ML
definitions and discuss the similarities of the results.

The first scenario based on [16] defines an
authentication policy in which a discount is given to a
buyer only if s/he proves that s/he is a student in a valid
university (Figure 5). As it is obvious in Figure 5 the
user should prove that s/he belongs to a valid university
and the university must certify the validity of the
student ID the user provides with regards to her/his
name and information. It is worth mentioning that the
object following “$” in PeerTrust illustrates the
requester to whom the results will be returned and the
object following “@” is the entity responsible for
certifying the expression that appears before “@”. For
example the last constraint in Figure 5 considers
University as the certifying authority for the expression
studentId(Buyer). The expressivity of R2ML enables us
to define the above rule in several different ways;
however, we finally chose the transformation in Figure
6 as the most suitable one.

discount(BookTitle) $ Buyer ←
 studentId(Buyer) @ University @ Buyer,
 validUniversity(University),
 studentId(Buyer) @ University.

Figure 5. An Authentication Policy in PeerTrust

In Figure 6, we have mapped each predicate in
PeerTrust to a GenericAtom in R2ML with the
variables of each predicate defined as an
ObjectVariable in R2ML. Certification authorities of a
predicate in PeerTrust are also modeled as
GenericFunctionTerms in which the FunctionID refers
to the role of the authority and an ObjectVariable refers
to the certifying authority itself. To increase the
expressivity and flexibility of the mapping we have
explicitly defined a certification authority for the
second constraint of Figure 5 as “self” which is implicit
in the original model defined in PeerTrust. “self” in
PeerTrust, and correspondingly in our mapping, refers
to the entity that is defining the policy. Digging into the
sample provided above and our conventions in
transforming the concepts, the reader may find it easy

to transfer a similar concept from PeerTrust to R2ML
and back.

Now that a transformation from a rule in PeerTrust
to R2ML has been provided, we follow a completely
different scenario mentioned in [12] for a policy
defined in Rei. Figure 7a shows the sample scenario in
Rei.

<r2ml:DerivationRuleSet>
<r2ml:DerivationRule xmlns:plcy="http://www.services.org/Policy/">

<r2ml:conditions>
 <r2ml:ObjectClassificationAtom r2ml:classID="plcy:Buyer">
 <r2ml:ObjectVariable r2ml:name="buyer"/>
 </r2ml:ObjectClassificationAtom>
<!-- Similarly we define university and book as variables from classes University
and Book respectively -->

 <r2ml:GenericAtom r2ml:predicateID="plcy:Buyer:studentID">
 <r2ml:arguments>
 <r2ml:ObjectVariable r2ml:name="buyer"/>
 <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:isCertifiedBy"
 r2ml:typeCategory="order">
 <r2ml:arguments>
 <r2ml:ObjectVariable r2ml:name="buyer"/>
 <r2ml:ObjectVariable r2ml:name="university"/>
 </r2ml:arguments>
 </r2ml:GenericFunctionTerm>
 </r2ml:arguments>
 </r2ml:GenericAtom>

 <r2ml:GenericAtom r2ml:predicateID="plcy:validUniversity">
 <r2ml:arguments>
 <r2ml:ObjectVariable r2ml:name="university"/>
 <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:isCertifiedBy">
 <r2ml:arguments>
 <r2ml:ObjectName r2ml:objectID="plcy:self" />
 </r2ml:arguments>
 </r2ml:GenericFunctionTerm>
 </r2ml:arguments>
 </r2ml:GenericAtom>

<!—The last predicate is similar to the others -->

<r2ml:conclusion>
 <r2ml:GenericAtom r2ml:predicateID="plcy:discount">
 <r2ml:arguments>
 <r2ml:ObjectVariable r2ml:name="book"/>
 <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:requester">
 <r2ml:arguments>
 <r2ml:ObjectVariable r2ml:name="buyer"/>
 </r2ml:arguments>
 </r2ml:GenericFunctionTerm>
 </r2ml:arguments>
 </r2ml:GenericAtom>
</r2ml:conclusion>

</r2ml:DerivationRule>
</r2ml:DerivationRuleSet>\

Figure 6. Transformation from PeerTrust to R2ML

In this example permission in using a service will be
granted to the requesting entity in case the requester is
working on the same project as the provider. Rei is
built upon the concepts of OWL and RDF so the
relationships are binary as opposed to PeerTrust which
can have predicates of the form ternary or higher.
Moreover, Rei does not address the certifying
authorities as explicitly as PeerTrust and the authorities
are dealt with again through defining the binary
relationships between the constraints and the entities
involved. Figure 7b is showing the transformation from
the sample in Figure 7a to R2ML.

`<!— Rei variables used —> <r2ml:DerivationRuleSet>

 <entity:Variable rdf:ID=”ProviderVar”/>
 <entity:Variable rdf:ID=”ProviderProject”/>
 <entity:Variable rdf:ID=”RequesterVar”/>

<!— Find provider of service —>
 <constraint:SimpleConstraint rdf:ID=”FindProviderOfService”
 constraint:subject=”&dcs;profile”
 constraint:predicate=”&process;contactInformation”
 constraint:object=”#ProviderVar”/>

<!— Get Provider’s project —>
<constraint:SimpleConstraint rdf:ID=”GetProviderProject”
constraint:subject=”#ProviderVar”
constraint:predicate=”&foaf;currentProject”
constraint:object=”#ProviderProject”/>

<!—Is Requester in the same project as Provider —>
 <constraint:SimpleConstraint rdf:ID=”SameProjectAsProvider”
 constraint:subject=”#RequesterVar”
 constraint:predicate=”&foaf;currentProject”
 constraint:object=”#ProviderProject”/>

<!— combine first two constraints —>
 <constraint:And rdf:ID=”FindProviderAndGetProject”
 constraint:first=”#FindProviderOfService”
 constraint:second=”#GetProviderProject”/>

<!— combine remaining constraint —>
 <constraint:And rdf:ID=”IsRequesterInSameProjectAsProvider”
 constraint:first=”#FindProviderAndGetProject”
 constraint:second=”#SameProjectAsProvider”/>

<!— permission to use data computation service —>
 <deontic:Permission rdf:ID=”ServicePermission”>
 <deontic:actor rdf:resource=”#RequesterVar”/>
 <deontic:action rdf:resource=”&dcs;service”/>
 <deontic:constraint
 rdf:resource=”#IsRequesterInSameProjectAsProvider”/>
 </deontic:Permission>

 <sws:AuthorizationPolicy rdf:ID=”AuthPolicy1”>
 <policy:grants rdf:resource=”ServicePermission”/>
 </sws:AuthorizationPolicy>

<r2ml:DerivationRule>
<r2ml:conditions>

 <r2ml:ObjectClassificationAtom r2ml:classID="plcy:Provider">
 <r2ml:ObjectVariable r2ml:name="ProviderVar"/>
 </r2ml:ObjectClassificationAtom>
 <!-- Similarly we define RequesterVar and ProviderProject as variables from classes
 Requester and Project respectively -->

 <r2ml:GenericAtom r2ml:predicateID="process:contactInformation">
 <r2ml:arguments>
 <r2ml:ObjectName r2ml:objectID="dcs:profile"/>
 <r2ml:ObjectVariable r2ml:name="ProviderVar"/>
 <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:isCertifiedBy">
 <r2ml:arguments>
 <r2ml:ObjectName r2ml:objectID="plcy:self"/>
 </r2ml:arguments>
 </r2ml:GenericFunctionTerm>
 </r2ml:arguments>
 </r2ml:GenericAtom>

 <r2ml:GenericAtom r2ml:predicateID="currentProject">
 <r2ml:arguments>
 <r2ml:ObjectVariable r2ml:name="ProviderVar"/>
 <r2ml:ObjectVariable r2ml:name="ProvierProject"/>
 <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:isCertifiedBy">
 <r2ml:arguments>
 <r2ml:ObjectName r2ml:objectID="plcy:self"/>
 </r2ml:arguments>
 </r2ml:GenericFunctionTerm>
 </r2ml:arguments>
 </r2ml:GenericAtom>
 <!—-There is also another GenericAtom to check the relationship between the
 Requestor and the ProviderProject-->
<r2ml:conclusion>
 <r2ml:GenericAtom r2ml:predicateID="servicePermission">
 <r2ml:arguments>
 <r2ml:ObjectName r2ml:objectID="dcs:service"/>
 <r2ml:GenericFunctionTerm r2ml:genericFunctionID="plcy:requester">
 <r2ml:arguments>
 <r2ml:ObjectName r2ml:objectID="RequesterVar"/>
 </r2ml:arguments>
 </r2ml:GenericFunctionTerm>
 </r2ml:arguments>
 </r2ml:GenericAtom>
</r2ml:conclusion>
</r2ml:DerivationRule>
</r2ml:DerivationRuleSet>

Figure 7. Mapping between Rei and R2ML: a) A Rei policy and b) its counterpart in R2ML

Finally it should be noticed that there are a variety
of possible mappings from each policy language to
R2ML, for example a SimpleConstraint in Rei (as it
has been marked with 1 in Figure 7) can be easily and
expressively mapped to a ReferencePropertyAtom in
R2ML which is likely even more expressive than the
format we have already come up with (Figure 8).
However, transforming the derived R2ML definition to
another language, say PeerTrust, is not easy as there is
no room for the concept of certification authority in a
ReferencePropertyAtom.

<r2ml:ReferencePropertyAtom referencePropertyID="currentProject">
 <subject>
 <r2ml:ObjectVariable r2ml:name="RequesterVar"/>
 </subject>
 <object>
 <r2ml:ObjectVariable r2ml:name="ProviderProject"/>
 </object>
</r2ml:ReferencePropertyAtom>

Figure 8. A Simple Constraint in Rei expressed as a

ReferencePropertAton in R2ML

7. Discussion and Conclusion

In this paper we discussed how a comprehensive
and general purpose rule markup language such as

R2ML can be used as an intermediary language to
transform different business rules, descriptions, and
policies from one language to another. It was shown
how the descriptions for a semantic web service written
in WSDL-S or OWL-S can be mapped to and from
R2ML. It was also illustrated how the policy languages
defined in Rei or PeerTrust look similar after being
converted to R2ML and how this similarity could ease
the conversion from one language to the other. Our
solution in designing an interchange format for
Semantic Web services is completely independent of
the architecture adopted for service discovery.
Availability of transformations from each policy-aware
Semantic Web service description to R2ML and back
enables the brokers to surf the Web for the desired
services regardless of the language they have been
originally described in.

Since there is a transformation engine from R2ML
to F-Logic already developed, the problem of defining
PeerTrust in F-Logic and integrating it with WSMO in
order to enforce the policy rules to web services, as it
has been discussed in [16], can be neatly covered and
solved in our interchange format.

1

In our framework we can also exploit the graphical
notation of URML due to coverage of all the concepts
of URML by R2ML and availability of a serialization
from URML to R2ML. The graphical notation of
URML gives the users the opportunity of designing
their Semantic Web service descriptions in a graphical
UML-like environment without being familiar with the
syntax of any of the policy languages or Semantic Web
service ontologies. The designed URML model can
then be transformed into R2ML and then into any of
the previously mentioned languages for policy and
Web service description. Ease of implementation and
design is one of the main goals pursued in the
community of software engineering and Semantic Web
which is addressed in our proposal too.

Despite all the positive points listed above, this
paper should be regarded as the starting point for the
whole framework we have in mind. This paper is
mostly a conceptualization of the possibilities and most
of the proposed ideas are targets of the future work.
First and foremost, the amount of information loss
during transformation from one language into R2ML
and then into another language should be investigated
more closely. Although we believe R2ML is capable of
defining a wide variety of the concepts and although it
is open to expansion, we still need to investigate which
parts of the language need to expand. Our ultimate goal
is to design a framework capable of conforming to the
concepts in all business languages. This framework,
when fully implemented, will provide an easy way to
convert all rule languages to R2ML and then reason
over their concepts.

Acknowledgement

We would like to thank to Adrian Giurca and Sergey
Lukichev for their valuable comments on the ideas
presented in the paper.

9. References

[1] Akkiraju, R., et al., “WSDL-S Web Services
Semantics—WSDL-S,” W3C Member Submission,
www.w3.org/Submission/WSDL-S/, 2005.

[2] Battle, S., et al., “SWSL, Semantic Web Service
Language,” W3C Member Submission,
www.w3.org/Submission/SWSF-SWSL/

[3] Becker, M. Y., and Sewell, P., "Cassandra: flexible trust
management, applied to electronic health records," In

Proc. of 17th IEEE WSh on Computer Security

Foundations, pp. 139-154, 2004.
[4] Bonatti, P. & Olmedilla, D.. “Driving and Monitoring

Provisional Trust Negotiation with Metapolicies,” In

Proc. of the 6th IEEE Int’l WSh. on Policies For Dist.

Sys. and Networks, Washington, DC, 2005, pp. 14-23.

[5] Bradshaw, J.M. et al., “KAoS: Toward An Industrial-
Strength Open Agent Architecture,” Software Agents,

pp. 375-418, 1997.
[6] Burstein, M., Bussler, C., Zaremba, M., Finin, T.,

Huhns, M.N., Paolucci, M., Sheth, A.P., Williams, S.,
“A Semantic Web Services Architecture,” IEEE Internet

Computing, 9(5), 2005, pp. 72-81.
[7] de Bruijn, J., et al., “WSMO Web Service Modeling

Ontology (WSMO),” W3C Member Submission,
www.w3.org/Submission/WSMO/, 2005.

[8] Ginsberg, A., “RIF Use Cases and Requirements,” W3C

Working Draft, http://www.w3.org/TR/rif-ucr/, 2006.
[9] Grønmo, R., Jaeger, M.C., Hoff, H., “Transformations

between UML and OWL-S,” In Proc. of the 1st

European Conf. on Model Driven Architecture:

Foundations and Applications, Nuremberg, Germany,
2005, pp. 269-283.

[10] Hirtle, D., et al., “Schema Specification of RuleML
0.91,” http://www.ruleml.org/spec/, 2006

[11] Horrocks, I., et al., “SWRL: A Semantic Web Rule
Language Combining OWL and RuleML,” W3C

Member Sub., http://www.w3.org/Submission/SWRL/,
2004.

[12] Kagal, L. et al., “Authorization and privacy for semantic
web services,” In AAAI 2004 Spring Symposium on

Semantic Web Services, Stanford University, 2004.
[13] Lausen, H. et al., “Semantic web portals: state-of-the-art

survey,” J. of Know. Man., 9(4), 2005 pp. 40-49.
[14] Martin, D. et al., “OWL-S: Semantic Markup for Web

Services,” W3C Member Submission,
http://www.w3.org/Submission/OWL-S/

[15] Milanović, M. et al., “On Interchanging between
OWL/SWRL and UML/OCL,” In Proc. of the 6th WSh.

on OCL for (Meta-)Models in Multiple Application

Domains (OCLApps), Genoa, Italy, 2006.
[16] Olmedilla, D. et al., “Trust negotiation for semantic web

services,” In Proc. of the 1st Int’l WSh. on Semantic

Web Services and Web Process Composition, San
Diego, CA, USA, 2004, pp. 81-95.

[17] Payne, T. & Lassila, O., “Guest Editors' Introduction:
Semantic Web Services,” IEEE Intelligent Systems,
19(4), 2004, pp. 14-15.

[18] R2ML specification, http://oxygen.informatik.tu-
cottbus.de/R2ML/, 2006

[19] R2ML Translators, http://oxygen.informatik.tu-
cottbus.de/rewerse-i1/?q=node/15

[20] Sheth, A. et al., “Semantics to energize the full services
spectrum,” Comm. of the ACM, 49(7), 2006, pp. 55-61.

[21] Uszok, A. et al., “KAoS policy and domain services:
toward a description-logic approach to policy
representation, deconfliction, and enforcement,” In

Proc. of the 4th IEEE I‘l WSh. on Policies for

Distributed Systems and Networks, 2003, pp. 93-96.
[22] Wagner, G. et al., “A Usable Interchange Format for

Rich Syntax Rules Integrating OCL, RuleML and
SWRL,” In Proc. of WSh. Reasoning on the Web
(RoW2006), Edinburgh, UK, 2006.

[23] Wagner, G., “How to design a general rule markup
language?,” In Proc. of the WSh. on XML Tech. fur

das Semantic Web, 2002, Berlin, Germany, 2002.

