
Evolution of Distributed Web Data:
An Application of the Reactive Language XChange

François Bry Michael Eckert Hendrik Grallert Paula-Lavinia Pătrânjan
University of Munich, Institute for Informatics

http://www.pms.ifi.lmu.de, {bry,eckert,grallert,patranjan}@pms.ifi.lmu.de

Abstract

Many data sources on the Web evolve: they change their
content over time, typically as reactions to events. Such
changes often need to be mirrored in data on other Web
nodes: updates need to be propagated. To respond to the
need for evolution and reactivity both locally and globally,
the language XChange has been developed. We demonstrate
its applicability in a concrete scenario of distributed Web sites
of a scientific community with mutual data dependencies.

1. Introduction

Many data sources on the Web and Semantic Web are
evolving in the sense that they change their content over time
in reaction to events bringing new information [2]. Often,
such changes must be mirrored in data on other Web nodes:
updates need to be propagated.

The reactive, rule-based language XChange [3] has been
developed to respond to the need for both local (at a single
Web node) and global (distributed over several Web nodes)
evolution and reactivity on the Web. Borrowing ideas from
active database systems, XChange is a language of Event-
Condition-Action (ECA) rules. XChange is tailored for the
distributed nature of the Web and for common Web data for-
mats by allowing event-based communication and by embed-
ding the versatile Web query language Xcerpt [6, 7].

Our demonstration shows how XChange can be applied to
programming reactive Web sites where data evolves locally
and, through mutual dependencies, globally. The setting we
consider are several distributed Web sites of a fictitious sci-
entific community of historians called the Eighteenth Cen-
tury Studies Society (ECSS). ECSS is subdivided into par-
ticipating universities, thematic working groups, and project
management. Universities, working groups, and management
have each their own Web site. The different Web sites are
autonomous, but cooperate to evolve together and mirror rel-
evant changes from other Web sites. For example, Web sites
maintain data about members; a change of member data at a
university entails further changes at the Web sites of the man-
agement and some working groups.

2. The Language XChange

We refer to [3] for a full introduction to XChange, and only
describe its foundations and benefits here:

(i) XChange programs consist of ECA rules. These allow
programming on a high abstraction level and are easy to ana-
lyze for both humans and machines.

(ii) XChange embeds the versatile Web query language
Xcerpt [6, 7] to access and reason with Web data, and also
provides an integrated update language (based on Xcerpt) for
modifying Web data. All parts of a rule follow the same
paradigm of specifying patterns for tree- or graph-structured
data (e.g., XML, RDF) that is queried, newly constructed, or
updated. This makes XChange elegant and easy to learn.

(iii) Both atomic and composite events can be detected and
relevant data extracted from events [3, 1].

(iv) XChange enforces a clear separation of persistent data
(Web resources, relating to state) and volatile data (events,
relating to changes in state).

(v) XChange’s high abstraction level and its powerful con-
structs allow for short and compact code.

An XChange program is located at one Web node and con-
sists of rules of the form ON Event query IF Web query DO
Action. Such an ECA rule means: when events answering
the event query are received and the Web query evaluates suc-
cessfully, perform the action. Both event and Web query can
extract data through variable bindings, which can then be used
in the action. With this, we can see that both event and Web
queries serve a double purpose of detecting when to react and,
through binding variables, how to react.

For distributed applications XChange programs at differ-
ent Web sites coordinate by sending and receiving events as
XML messages in a push-manner. We see this as an important
advantage of ECA rules over production rules [2].

3. Description of our Demonstration

Our demonstration applies the ECA rule language
XChange to the distributed Web data of ECSS, as described
in Section 1. Data evolves locally and updates are propagated
globally by means of event messages. The Web sites of uni-
versities, working groups, and management are autonomous,
but cooperate to evolve together and mirror relevant changes.



r1: ON change member
DO update LMU data

r2: ON change member
DO forward to management

r3: ON change member
DO update management data

r4: ON change member (w/WG3)
IF was not member of WG3
DO send add member to WG3

r5: ON change member (w/o WG2)
IF was member of WG2
DO send remove member to WG2

r6: ON remove member
DO update WG2 data

r7: ON add member
DO update WG3 data

Figure 1. Example: Affected Rules

Figure 2. Example: Distributed Event Flow

The different Web sites maintain XML data about mem-
bers, publications, meetings, library books, and newsletters.
Data is often shared, for example a member’s personal data
is present at his home university, at the management node,
and in the working groups he participates in. Such shared
data needs to be kept consistent among different nodes; this
is realized by communicating changes as events between the
different nodes using XChange ECA rules.

Events that occur in this community include changes in
the personal data of members, keeping track of the inventory
of the community-owned library, or simply announcing infor-
mation from email newsletters to interested working groups.
These events require reactions such as updates, deletion, al-
teration, or propagation of data, which are implemented us-
ing XChange rules. The rules run locally at the different Web
nodes of the community, allowing for the processing of local
and remote events.

Figure 1 gives an example of the rules triggered when
a member’s data, including working group affiliation, is
changed. The distribution of the rules and the flow of events
between the different Web nodes is shown in Fig. 2.

The initial change is made with a Web form at the mem-
ber’s home institution, sending event m1 to the LMU node.
There, rule r1 reacts and locally updates the member’s data
at LMU accordingly, while rule r2 forwards the change to
the management node as event m2. The management node
has rules for updating its own local data about the member
(r3) and for propagating the change to the affected working
groups (r4 for adding, r5 for deleting a member). The work-
ing groups finally each have rules (r6, r7) reacting to deletion
and insertion events (m3, m4).

Apart from this simple example of managing distributed
member data, our demonstration realizes a community-owned
and distributed virtual library, meeting organization, and
newsletter distribution. It is fully described in [5]. For pre-

sentation purposes, the facilities for displaying the rules of
each node and logging received and sent events are available.

4. Conclusions

While a similar behavior as the one in the demo could
be obtained with conventional programming languages,
XChange provides an elegant and easy solution. Evolution
of data and reactivity on the Web are easily arranged for by
using readable and intuitive ECA rules. Moreover, by em-
ploying and extending Xcerpt as a query language, XChange
integrates reactivity to events, querying of Web resources, and
updating those resources in a single, easy-to-learn language.

The demo presented here has been implemented in the
framework of a three months independent study project. The
student has had no prior experience with XChange, Xcerpt,
and rule-based programming (including ECA rules). Out of
the three month, large parts were dedicated to designing the
use case from scratch; the actual rule authoring consumed less
than one month. Judging from the learning curve, we estimate
that adding a new task to the demo (such as managing reports
that are delivered to the funding agency of the ECSS) could
be done within only two or three days now.

XChange is an ongoing research project [8]; a prototype
implementation is available and used to run the demonstra-
tion. Development focuses on further use cases and structur-
ing rule sets [4], automatic generation of ECA rules, querying
of composite events [1], and efficient evaluation.

Acknowledgments

This research has been funded by the European Commis-
sion and the Swiss Federal Office for Education and Science
within the 6th Framework Programme project REWERSE
number 506779 (http://rewerse.net).

References

[1] F. Bry and M. Eckert. A high-level query language for events. In
Proc. Int. Workshop on Event-driven Architecture, Processing
and Systems at Int. Conf. on Web Services. IEEE, 2006.

[2] F. Bry and M. Eckert. Twelve theses on reactive rules for the
Web. In Workshop ”Reactivity on the Web” at Int. Conf. Ex-
tending Database Technology. Springer, 2006. (Invited paper).

[3] F. Bry, M. Eckert, and P.-L. Pătrânjan. Reactivity on the Web:
Paradigms and applications of the language XChange. Journal
of Web Engineering, 5(1):3–24, 2006.

[4] F. Bry, M. Eckert, P.-L. Pătrânjan, and I. Romanenko. Realizing
business processes with ECA rules: Benefits, challenges, limits.
In Proc. Int. Workshop on Principles and Practice of Semantic
Web. Springer, 2006.

[5] H. Grallert. Propagation of updates in distributed web data: A
use case for the language XChange. Project thesis, Inst. f. In-
formatics, U. of Munich, 2006.

[6] S. Schaffert and F. Bry. Querying the Web reconsidered: A
practical introduction to Xcerpt. In Proc. of Extreme Markup
Languages Conf., 2004.

[7] Xcerpt. http://xcerpt.org.
[8] XChange. http://www.reactiveweb.org/xchange.


