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Abstract. Expressing rules in controlled natural language can bring
us closer to the vision of the Semantic Web since rules can be written
in the notation of the application domain and are understandable by
anybody. AceRules is a prototype of a rule system with a multi-seman-
tics architecture. It demonstrates the formal representation of rules using
the controlled natural language ACE. We show that a rule language can
be executable and easily understandable at the same time. AceRules is
available via a web service and two web interfaces.

1 Introduction

The idea of the Semantic Web [4] is to transform and extend the current World
Wide Web into a system that can also be understood by machines, at least to
some degree. Ideally, the Semantic Web should become as pervasive as the tradi-
tional World Wide Web today. This means that a large part of the society should
be able to participate and contribute, and thus we have to deal with the problem
that most people feel uncomfortable with technical notations. Controlled nat-
ural languages seem to be a promising approach to overcome this problem by
giving intuitive and natural representations for ontologies and rules. We present
AceRules as a prototype of a front-end rule system to be used in the context of
the Semantic Web or other environments.

The goal of AceRules is to show that controlled natural languages can be
used to represent and execute formal rule systems. Attempto Controlled English
(ACE) [9, 8] is used as input and output language. ACE looks like English but
avoids the ambiguities of natural language by restricting the syntax [15] and by
defining a small set of interpretation rules [1]. The ACE parser1 translates ACE
texts automatically into Discourse Representation Structures (DRS) [7] which
are a syntactical variant of first-order logic. Thus, every ACE text has a single
and well-defined formal meaning. Among other features, ACE supports singular
and plural noun phrases, active and passive voice, relative phrases, anaphoric
references, existential and universal quantifiers, negation, and modality. ACE
has successfully been used for different tasks, e.g. as a natural language OWL
front-end [17] and as an ontology language for the biomedical domain [19].
1 http://attempto.ifi.uzh.ch/ape



In the following section, we will introduce the AceRules system and we will
point out some of the problems involved (Sect. 2). Next, we will explain the in-
terfaces available for AceRules (Sect. 3), and finally we will draw the conclusions
(Sect. 4).

2 The AceRules System

AceRules is a multi-semantics rule system prototype using the controlled natural
language ACE as input and output language. AceRules is designed for forward-
chaining interpreters that calculate the complete answer set. The general ap-
proach of AceRules, however, could easily be adopted for backward-chaining
interpreters. AceRules is publicly available as a web service and through two
different web interfaces (see Sect. 3).

In order to clarify the functionality of AceRules, let us have a look at the
following simple program. We use the term program for a set of rules and facts.

If a customer has a card and does not have a code then CompanyX sends a letter

to the customer.

Every customer has a card.

John is a customer.

John does not have a code.

Submitting this program to AceRules, we get the answer shown below.2 We use
the term answer for the set of facts that can be derived from a program.

John is a customer.

CompanyX sends John a letter.

John has a card.

It is false that John has a code.

As we can see, the program and the answer are both in English. No other formal
notations are needed for the user interaction. Even though inexperienced users
might not be able to understand how the answer is inferred, they are certainly
able to understand input and output and to verify that the output is some kind
of conclusion of the input. This is the essential advantage of ACE over other
formal knowledge representation languages.

Existing work to use natural language representations for rule systems is
based on the idea of verbalizing rules that already exist in a formal represen-
tation [13, 16, 20]. In our approach, the controlled natural language is the main
language that can be translated into a formal representation (parsing) and back-
wards (verbalizing). It is not necessary that the rules are first formalized in
another language.

The rest of this section explains some of the important properties of AceRules,
namely its multi-semantics architecture (Sect. 2.1), the representation of nega-
tion (Sect. 2.2), and the construction of valid programs (Sect. 2.3).

2 The courteous interpreter is used here. See Sect. 2.1 for details.



2.1 Multi-Semantics Architecture

AceRules is designed to support various semantics. The decision of which se-
mantics to choose should depend on the application domain, the characteristics
of the available information, and on the reasoning tasks to be performed. At
the moment, AceRules incorporates three different semantics: courteous logic
programs [12], stable models [10], and stable models with strong negation [11].

The original stable model semantics supports only negation as failure, but it
has been extended to support also strong negation. Courteous logic programs are
based on stable models with strong negation and support therefore both forms
of negation. Section 2.2 will take a closer look at this issue.

None of the two forms of stable models guarantee a unique answer set. Thus,
some programs can have more than one answer. In contrast, courteous logic
programs generate always exactly one answer. In order to achieve this, priorities
are introduced and the programs have to be acyclic.

On the basis of these properties, one should decide which semantics to choose.
Since we do not want to restrict AceRules to a certain application or domain,
we decided to make the semantics exchangeable.

The three semantics are implemented in AceRules as two interpreter mod-
ules. The first interpreter module handles courteous logic programs and is im-
plemented natively.3 For the stable model semantics with and without strong
negation there is a second interpreter module that wraps the external tools
Smodels [21] and Lparse [25].

There are various other semantics that could be supported, e.g. defeasible
logic programs [22] or disjunctive stable models [23]. Only little integration effort
would be necessary to incorporate these semantics into AceRules.

2.2 Two Kinds of Negation

In many applications, it is important to have two kinds of negation [27]. Strong
negation (also called classical negation or true negation) indicates that some-
thing can be proven to be false. Negation as failure (also called weak negation
or default negation), in contrast, states only that the truth of something cannot
be proven.

However, there is no such general distinction in natural language. It depends
on the context, what kind of negation is meant. This can be seen with the
following two examples in natural English:

If there is no train approaching then the school bus can cross the railway tracks.

If there is no public transport connection to a customer then John takes the

company car.

In the first example (which is taken from [11]), the negation corresponds to
strong negation. The school bus is allowed to cross the railway tracks only if the
available information (e.g. the sight of the bus driver) leads to the conclusion that

3 The implementation of the courteous interpreter is based on [6].



no train is approaching. If there is no evidence whether a train is approaching
or not (e.g. because of dense fog) then the bus driver is not allowed to cross the
railway tracks.

The negation in the second sentence is most probably to be interpreted as
negation as failure. If one cannot conclude that there is a public transport con-
nection to the customer on the basis of the available information (e.g. public
transport schedules) then John takes the company car, even if there is a special
connection that is just not listed.

As long as only one kind of negation is available, there is no problem to
express this in controlled natural language. As soon as two kinds of negation are
supported, however, we need to distinguish them somehow. We found a clean
and natural way to represent the two kinds of negation in ACE. Strong negation
is represented with the common negation constructs of natural English:

– does not, is not (e.g. John is not a customer)
– no (e.g. no customer is a clerk)
– nothing, nobody (e.g. nobody knows John)
– it is false that (e.g. it is false that John waits)

To express negation as failure, we use the following constructs:

– does not provably, is not provably (e.g. a customer is not provably trustworthy)
– it is not provable that (e.g. it is not provable that John has a card)

This allows us to use both kinds of negation side by side in a natural looking
way. The following example shows a rule using strong negation and negation as
failure at the same time.

If a customer does not have a credit-card and is not provably a criminal then the

customer gets a discount.

This representation is compact and we believe that it is well understandable.
Even for persons that have never heard of strong negation and negation as
failure, this rule makes some sense, even though they are probably not able to
grasp all its semantic properties. Of course, if users want to create or modify
rules containing negation then they have to learn first how the two kinds of
negation have to be represented in ACE.

2.3 Intelligent Grouping

ACE is an expressive language, in fact more expressive than most rule languages.
Thus, some sentences have to be rejected by AceRules because they cannot be
mapped to an acceptable rule of the respective rule theory. However, in some
situations the formal structure is not directly compliant with the rule theory,
but can be translated in a meaningful way into a valid rule representation. This
translation we call intelligent grouping.

To make this point clear, we present some simple examples using stable model
semantics with strong negation. The described procedure can be used in the same



way for the other semantics. Rules of the stable model semantics with strong
negation have the form

L0 ← L1 ∧ . . . ∧ Lm ∧ ∼Lm+1 ∧ . . . ∧ ∼Ln

with 0 ≤ m ≤ n and each Li being a literal. A literal is an atomic proposition
(Ai) or its strong negation (¬Ai). Negations are allowed to be applied only to
atomic propositions or — in the case of negation as failure (∼) — to literals.
Furthermore the heads of rules must contain nothing but a single literal. These
restrictions we have to keep in mind when we translate an ACE text into a
rule representation. As a first example, let us consider the following AceRules
program:

John owns a car.

Bill does not own a car.

If someone does not own a car then he/she owns a house.

The ACE parser transforms this text into its logical representation4

owns(john, X)
car(X)
¬(owns(bill, Y ) ∧ car(Y ))
¬(owns(A,B) ∧ car(B))→ (owns(A,C) ∧ house(C))

which is not yet compliant with the rule theory. It contains complex terms inside
of a negation and in the head of a rule. But considering the initial text, we
would expect this example to be acceptable. In fact, it was just formalized in an
inappropriate way. This is the point where the intelligent grouping is applied. If
we aggregate some of the predicates then we end up with a simpler representation
that has a correct rule structure:

owns car(john)
¬owns car(bill)
¬owns car(X)→ owns house(X)

This transformation is based on a set of grouping patterns that are collected in
a first step, and then these patterns are used to perform the actual grouping.
For our example, the following two patterns have been used:

owns(X1, I1), car(I1) ⇒ owns car(X1)
owns(X2, I2), house(I2)⇒ owns house(X2)

In such patterns, there can be two kinds of placeholders: Each Xi stands for any
variable or atom, and each Ii stands for a variable that does not occur outside of
the group. This allows us to omit the variables Ii after the transformation. From
a more intuitive point of view, we can say that the phrases “owns a car” and “owns

4 Throughout this article we will use a simplified form of the logical representation.
For a more precise description, consult [7].



a house” are considered as atomic propositions. This means that the car and the
house do not have an independent existence, and thus references to these objects
are not allowed. If this restriction is violated then a consistent transformation
into a valid rule structure is not possible. For example, the program

Bill does not own a car.

John owns a car X.

Mary sees the car X.

that leads to the logical representation

¬(owns(bill, A) ∧ car(A))
owns(john, B)
car(B)
sees(mary,B)

cannot be translated into a valid rule structure. An error message has to be raised
in such cases informing the user that the program has an invalid structure. It
has still to be evaluated how hard it is for normal users to follow this restriction
and how often such situations actually occur. We are considering to develop
authoring tools [3] that automatically enforce these restrictions.

Concerning the grouping step, one might think that the text was just trans-
lated into a too complex representation in the first place and that the parser
should directly create a grouped representation. The following program shows
that this is not the case:

John owns a car.

The car contains a suitcase.

If someone X owns something that contains something Y then X owns Y.

It is transformed by the ACE parser into:

owns(john, H)
car(H)
contains(H,S)
suitcase(S)
owns(Z,X) ∧ contains(X, Y )→ owns(Z, Y )

In this case, we need the more fine-grained representation and no grouping has
to be done since the program is already in a compliant form. This and the first
example start both with the sentence “John owns a car”, but in the end it has
to be represented differently. Thus, the grouping is intelligent in the sense that
it must consider the whole program to find out which predicates have to be
grouped.

Another important property of the grouping step is that the transformation
has to be reversible. Before verbalizing an answer set, we need to ungroup the
predicates that were grouped before.

Altogether, the intelligent grouping gives us much flexibility. A sentence like
“John owns a car” is treated as an atomic property of an object (John) or as a
relation between two objects (John and a car), whichever makes sense in the
respective context.



3 Interfaces

There are different existing interfaces that use controlled natural languages, e.g.
query interfaces like Querix [18] or LingoLogic [26]. Other interfaces can also
be used as editors like ECOLE [24], GINO [5], or AceWiki5, but none of them
concerns rule systems. There are applications like NORMA [14] which can ver-
balize formal rules, but no tool exists that uses a controlled natural language as
a full-blown rule language.

AceRules comes with three interfaces. A webservice [2] facilitates the integra-
tion of the AceRules functionality into any other program. Furthermore, there
are two web interfaces for human interaction. One is a technical interface6 that
is intended for advanced users that are interested in the technical background
of the system. The main web interface7 aims at end-users who are not familiar
with formal notations. For the rest of this section, we will take a closer look at
this main interface of which Fig. 1 shows a screenshot.

We claim that a Semantic Web interface for end-users (in the sense of an
editor interface) should fulfill the following three properties which partly overlap.

1. Technical notations should be hidden. The users should not see any technical
language (e.g. any XML-based language), but instead there should be a well-
understandable and intuitive representation. Novice users should be able to
understand the semantic representations after a very short learning phase.

2. The interface should guide the users during modification and creation of the
formal representations. The users should not need to read any manuals or
other documentation before they can start using the system, but they should
be able to learn how to interact with the system while using it.

3. The users should be supported by a context-sensitive and comprehensive help
feature. Especially in the case of errors, the users should be led immediately
to a corresponding help article. These articles should be concise suggestions
how to solve the problem.

Altogether, these three properties ensure that the Semantic Web interface has
a shallow learning curve which we consider to be crucial for the success of the
Semantic Web.

AceRules uses ACE as input and output language. No other notations are
needed. Thus, AceRules fully satisfies the first condition. Furthermore, AceRules
has a help feature which is shown in a browser-internal window. There is a help
article for every error that can occur. If an error has occurred, then the user is
directed to the respective article. Thus, AceRules fulfills the third condition as
well.

AceRules gives also some help for the modification of existing programs and
for the creation of new sentences. Nevertheless, we have to admit that it can only
partially fulfill the second condition. For a real guidance of the user, a predictive

5 http://attempto.ifi.uzh.ch/acewiki
6 http://attempto.ifi.uzh.ch/acerules_ti
7 http://attempto.ifi.uzh.ch/acerules



Fig. 1. The figure shows a screenshot of the AceRules web interface. The upper text
box is the input component and contains the program to be executed. The result of
the program is then displayed in the text box below

authoring tool [3] would be needed, as provided by ECOLE and AceWiki. Such
an authoring tool guides the user step by step through the creation of a sentence
and makes it impossible to create syntactically incorrect representations.

4 Conclusions

We demonstrated that it is possible to use controlled natural languages for the
formal representation of rule systems. Negation as failure and strong negation
can be used side by side in a natural way. We introduced intelligent grouping
as a method of transforming formal structures into valid rule representations.
The AceRules web interface proves that a controlled natural language like ACE
is well suited for the communication with the user and that no other formal
language is needed.

AceRules is still a prototype and not yet ready for the use in real world
applications. For example, the underlying theories do not support procedural
attachments or arithmetics that would probably be needed in a real world envi-
ronment. We believe that ACE and AceRules can be extended to support such



constructs in a natural way. On the interface level, a predictive authoring tool
would be very helpful. We referred to existing tools that demonstrate how this
could be done.
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