
Anti-Pattern Matching

Claude Kirchner, Radu Kopetz, Pierre-Etienne Moreau

INRIA & LORIA?, Nancy, France
{Claude.Kirchner, Radu.Kopetz, Pierre-Etienne.Moreau}@loria.fr

Abstract. It is quite appealing to base the description of pattern-based
searches on positive as well as negative conditions. We would like for
example to specify that we search for white cars that are not station
wagons.

To this end, we define the notion of anti-patterns and their semantics
along with some of their properties. We then extend the classical notion
of matching between patterns and ground terms to matching between
anti-patterns and ground terms. We provide a rule-based algorithm that
finds the solutions to such problems and prove its correctness and com-
pleteness. Anti-pattern matching is by nature different from disunifica-
tion and quite interestingly the anti-pattern matching problem is unitary.
Therefore the concept is appropriate to ground a powerful extension to
pattern-based programming languages and we show how this is used to
extend the expressiveness and usability of the Tom language.

1 Introduction

Pattern matching is a widely spread concept both in the computer science com-
munity and in everyday life. Whenever we search for something, we build a
structured object, a pattern, that specifies the features we are interested in. But
we are often in the case where we want to exclude certain characteristics: typi-
cally we would like to specify that we search for white cars that are not station
wagons.

We call anti-patterns the patterns that may contain complement symbols,
denoted by k. For example, the web search engine from Google has an option
where we can specify what specific words we do not want the result pages to
contain. But it is not possible to express a search that has nested negations.
What are the nested negations used for? Consider the following situation: using
a search engine for cars, we want to search for a car that is not white; but in the
case the car is ecological, we do not care about the color. This kind of search can
be expressed in the following manner: kcar(white,)∨ car(, ecological) which
could be equivalently expressed by the anti-pattern kcar(white, kecological).

Another of our motivations comes from the popular “Business rules” manage-
ment systems (BRMS for short) that provide a restricted anti-pattern capability.
For example, although it is possible to use nested negations in Ilog JRules, one

? UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP

2 Claude Kirchner, Radu Kopetz, Pierre-Etienne Moreau

of the most representative business rule language on the market1, they are not
handled in full generality. A BRMS consists mainly of three components: a set of
facts representing the current state of the system called Working Memory (WM),
a set of IF-THEN rules that test and alter the WM, and a rule interpreter that
applies the rules on the WM. A BRMS uses pattern matching to find out if an
object is in the WM or not. If we put in the working memory the following fact:
car(white, ecological), and we insert the following rules:

1. if there is no car that has the color white and the type ecological then action1,
2. if there is no car that has the color white and the type not ecological then

action2,
3. if there is no car that has the color white and the type not diesel then action3.

none of the actions are fired. When we look at the three rules, we can see that
basically the rule engine ignores the second negation. We consider that for the
second rule, the action should have been fired.

A further issue that is not addressed in current pattern matching based
languages, is the problem of non-linearity inside a negative context. We are not
aware of the existence of a language where we can express in a single pattern the
following search: look for a car that does not have both interior and exterior color
the same. This should give all the cars with different interior-exterior colors.

In this rich context, our first contribution is to define in the next section the
concept of anti-pattern and its semantics. Indeed as a term t represents the set
of all its ground instances, the anti-pattern kt represents the complement of the
representation of t in the set of ground terms and this definition is extended
recursively. Of course, many frameworks and results have already contributed
to the use of negation in logic based languages. Having in particular in mind
negation by failure in Prolog [8], the explicit use of counter-examples [16], dis-
unification [11], feature constraints [3], inclusion constraints [20] and negation
in iRho [17], we will motivate and explain the usefulness of anti-patterns.

Our second contribution concerns the definition of the notion of matching
anti-patterns against terms in Section 3. In Section 4 we present a rule based
algorithm for transforming anti-pattern matching problems into classical equa-
tional ones. The latter ones can be further solved using a subset of the disunifi-
cation rules. In Section 5, such problems are shown to be unitary, which is a nice
property in particular when using anti-patterns for programming purposes. We
finally report in the Section 6 on the implementation of this algorithm in Tom
— a programming language that extends C and Java by offering algebraic data-
types and pattern matching facilities [19,15] — and discuss how anti-patterns
could be used to extend the expressiveness of this language.

Although we will make precise our main notations, we assume that the reader
is familiar with the standard notions of algebraic rewrite systems, for example
presented in [5,14].

1 http://www.ilog.com/products/jrules

http://www.ilog.com/products/jrules

Anti-Pattern Matching 3

2 Terms and anti-terms

We briefly recall or introduce the notations for a few concepts that will be used
along this paper.

A signature F is a set of function symbols, each one having a fixed arity.
T (F ,X) is the set of terms built from a given finite set F of function symbols
and a denumerable set X of variables. A term t is said to be linear if no variable
occurs more than once in t. The set of variables occurring in a term t is denoted
by Var(t). If Var(t) is empty, t is called a ground term and T (F) is the set of
ground terms.

A substitution σ is an assignment from X to T (F ,X), denoted σ = {x1 7→
t1, . . . , xk 7→ tk} when its domain Dom(σ) is finite. Its application, written σ(t),
is defined by σ(xi) = ti, σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) for f ∈ Fn, and
σ(y) = y if y 6∈ Dom(σ). Given a term t, σ is called a grounding substitution
when σ(t) ∈ T (F). The set of substitutions is denoted Σ. The set of grounding
substitutions for a term t is denoted GS(t).

The ground semantics of a term t ∈ T (F ,X) is the set of all its ground
instances: JtKg = {σ(t) | σ ∈ GS(t)}. In particular, when x ∈ X , we have
JxKg = T (F).

2.1 Anti-terms

Definition 2.1 (Syntax of anti-terms). Given F and X , the syntax of an
anti-term is defined as follows:

AT ::= x | kAT | f(AT , . . . ,AT)

where x ∈ X , f ∈ F and the arity is respected. The set of anti-terms is denoted
AT (F ,X) (resp. AT (F) for ground anti-terms). Any term is an anti-term, i.e.
T (F ,X) ⊆ AT (F ,X).

For example, if x, y, z denote variables, a, b, c constants, f, g two function
symbols of arity 2 and 1, the following expressions are anti-terms: kx, ka,
kf(ka, g(kx)), f(x, y), f(ka, b), f(x, kx).

Definition 2.2 (Free variables). The free variables of an anti-term q are de-
fined inductively by:

1. FVar(x) = {x},
2. FVar(kq) = ∅,
3. FVar(f(q1, . . . , qn)) = ∪i=1..nFVar(qi), with the arity of f equal to n.

Example 2.1. Assuming that a is a constant and f is binary, we have: FVar(a) =
∅, FVar(kx) = ∅, FVar(f(x, kx)) = {x}, FVar(kf(x, kx)) = ∅.

Definition 2.3 (Substitutions on anti-terms). A substitution σ uniquely
extends to an endomorphism σ′ of AT (F ,X): if x is a free variable, σ′(x) = σ(x),
otherwise σ′(x) = x. For q, q1, . . . , qn ∈ AT (F ,X), we have σ′(f(q1, . . . , qn)) =
f(σ′(q1), . . . , σ′(qn)), and σ′(kq) = kσ′(q).

4 Claude Kirchner, Radu Kopetz, Pierre-Etienne Moreau

Example 2.2. Note that substitutions are active only on the free variables:
σ(f(x, kx)) = f(σ(x), kσ(x)), σ(f(x, ky)) = f(σ(x), ky).

The notion of grounding substitutions is also extended to anti-terms (e.g. t)
as substitutions (e.g. σ) such that FVar(σ(t)) = ∅.

Intuitively, the semantics of the complement of a term represents the com-
plement of its semantics in T (F). Therefore, the complement of a variable kx
denotes T (F)\JxKg = T (F)\T (F) = ∅. Similarly, kf(x) denotes T (F)\{f(t) |
t ∈ T (F)}. In the following we extend this intuition to complements of comple-
ments, as well as complements which occur in subterms, and we formally define
the semantics of an anti-term.

As usual, a position is a finite sequence of natural numbers. The subterm u
of a term t at position ω is denoted t|ω, where ω describes the path from the
root of t to the root of u. t(ω) denotes the root symbol of t|ω.

By t[s]ω we express that the term t contains s as subterm at position ω.
Positions are ordered in the classical way: ω1 < ω2 if ω1 is the prefix of ω2 [14].

The ground semantics extends to anti-terms:

Definition 2.4 (Ground semantics of anti-terms). The ground semantics
of any anti-term q ∈ AT (F ,X) is defined recursively in the following way:

Jq[kq′]ωKg = Jq[z]ωKg\Jq[q′]ωKg

where z is a fresh variable and for all ω′ < ω, q(ω′) 6= k.

Example 2.3.

1. JkaKg = JzKg\JaKg = T (F)\{a},
2. JkxKg = JzKg\JxKg = T (F)\T (F) = ∅, for any variable x,
3. JkkxKg = JzKg\JkxKg = JzKg\(Jz′Kg\JxKg) = T (F)\(T (F)\T (F)) = T (F),
4. Jkg(x)Kg = JzKg\Jg(x)Kg = T (F)\{g(σ(x)) | σ ∈ GS(g(x))},
5. Jg(kx)Kg = Jg(z)Kg\Jg(x)Kg = ∅,
6. Jkg(kx)Kg = JzKg\Jg(kx)Kg = T (F)\∅ = T (F),
7. we can also express that we are looking for something that is either not

rooted by g, or it is g(a):
Jkg(ka)Kg = JzKg\Jg(ka)Kg = JzKg\(Jg(z′)Kg\Jg(a)Kg)

= T (F)\(Jg(z′)Kg\{g(a)})
= T (F)\({g(σ(z′)) | σ ∈ GS(g(z′))}\{g(a)})
= T (F)\{g(z) | z ∈ T (F ,X)} ∪ {g(a)},

8. Jf(a, kb)Kg = Jf(a, z)Kg\Jf(a, b)Kg = {f(a, σ(z)) | σ ∈ GS(f(a, z))}\{f(a, b)} ,
9. Jkf(x, x)Kg = JzKg\Jf(x, x)Kg = T (F)\{f(σ(x), σ(x)) | σ ∈ GS(f(x, x))}

note the crucial use of non-linearity to denote any term except those rooted
by f with identical subterms,

10. Jf(x, kx)Kg = Jf(x, z)Kg\Jf(x, x)Kg

= {f(σ(x), σ(z)) | σ ∈ GS(f(x, z))}\{f(σ(x), σ(x)) | σ ∈ GS(f(x, x))}
= f(a, b), f(a, c), f(b, c), . . .

Anti-Pattern Matching 5

The second condition of Definition 2.4 is essential. It prevents from replacing
a subterm by a fresh variable inside a complemented context (i.e. below a k).
Otherwise, for kg(ka) we would have had Jkg(ka)Kg = Jkg(z)Kg\Jkg(a)Kg = ∅.

These simple examples show that anti-terms provide a compact and expres-
sive representation for the sets of terms. A nice property can be easily derived
from them:

Proposition 2.1. For any t ∈ AT (F ,X), we have JkktKg = JtKg

Proof. Using the Definition 2.4, JkktKg= JzKg\JktKg= JzKg\(Jz′Kg\JtKg) =JtKg.
ut

3 Matching anti-patterns

Before showing how anti-terms can be used for matching ground terms, we recall
the standard definitions and results for the classical terms, as they are presented
in [5,14] for example.

3.1 Pattern matching

Definition 3.1 (Matching).

1. a pattern is a term,
2. a matching equation is a problem p ≺≺ t with p a pattern and t a term,
3. a substitution σ is a solution of the matching equation p ≺≺ t if σ(p) = t,
4. a matching system S is a conjunction of matching equations,
5. a substitution σ is a solution of a matching system S if it is solution of all

the matching equations in S. The set of solutions of S is denoted by Sol(S),
6. we denote by Fail a matching system without solution.

In this paper, without loss of generality, we only consider matching equations of
the form p ≺≺ t where t is a ground term. The solution of a matching system S,
when it exists, is unique and is computed by a simple recursive algorithm [13].
This algorithm can be expressed by the set of rewrite rules Match, given below.
The symbol ∧ is assumed to be associative, commutative and idempotent, S is
any conjunction of matching equations, pi are patterns, and ti are ground terms:

Decompose f(p1, . . . , pn) ≺≺ f(t1, . . . , tn) 7→7→
∧

i=1,...,n pi ≺≺ ti
SymbolClash f(p1, . . . , pn) ≺≺ g(t1, . . . , tm) 7→7→ Fail if f 6= g
MergingClash x ≺≺ t1 ∧ x ≺≺ t2 7→7→ Fail if t1 6= t2
Delete p ≺≺ p 7→7→ True
PropagateClash S ∧ Fail 7→7→ Fail
PropagateSuccess S ∧ True 7→7→ S

The soundness and the completeness of Match is expressed as follows:

6 Claude Kirchner, Radu Kopetz, Pierre-Etienne Moreau

Theorem 3.1 ([14]). The normal form by the rules in Match of any matching
problem p ≺≺ t such that t ∈ T (F), exists and is unique.

1. if it is of the form
∧

i∈I xi ≺≺ ti with I 6= ∅, then the substitution σ = {xi 7→
ti}i∈I is the unique match from p to t,

2. if it is True then p and t are identical, i.e. p = t,
3. if it is Fail , then there is no match from p to t.

3.2 Anti-pattern matching

We now extend the classical notion of matching equation by allowing anti-terms
on the left side. We will further call them anti-patterns.

When considering classical patterns, a matching equation p ≺≺ t has a solu-
tion when there exists a substitution σ such that σ(p) = t, that is when t ∈ JpKg.
Indeed more precisely σ ∈ GS(p) is a solution if {t} = Jσ(p)Kg. This extends
naturally to the anti-patterns.

Definition 3.2 (Solutions of anti-pattern matching). For all q ∈
AT (F ,X) and t ∈ T (F), the solutions of the anti-pattern matching problem
q ≺≺ t are:

Sol(q ≺≺ t) = {σ | t ∈ Jσ(q)Kg, with σ ∈ GS(q)}

Remember that by Definition 2.3, the substitutions apply only on free vari-
ables. Also note that for p ∈ T (F ,X), we have Jσ(p)Kg = {σ(p)}; this is not
always true for the anti-patterns. Take for example f(x, kb), and σ = {x 7→ a}:
the set Jσ(f(x, kb))Kg = Jf(a, kb))Kg has more than one element, as we saw in
Example 2.3. Here are some examples for the solutions of anti-pattern matching
problems:

Example 3.1.

1. Sol(f(a, kb) ≺≺ f(a, a)) = Σ,
2. Sol(kg(x) ≺≺ g(a)) = {σ | g(a) ∈ T (F)\{g(σ(x)) | σ ∈ GS(g(x))}} = ∅,
3. Sol(f(ka, x) ≺≺ f(b, c)) = {x 7→ c},
4. Sol(f(x, kx) ≺≺ f(a, b)) = {x 7→ a},
5. Sol(f(x, kg(x)) ≺≺ f(a, g(b))) = {x 7→ a},
6. Sol(f(x, kg(x)) ≺≺ f(a, g(a))) = ∅.

4 Anti-pattern matching and equational problems

The relation between anti-pattern matching and equational problems is not triv-
ial. For instance, the interpretation of kq ≺≺ t should not be q 6= t. Although
this may be correct in the case of ground terms, like ka ≺≺ b, it is not true in the
general case. Take for example kg(x) ≺≺ g(a), which according to Definition 3.2
has no solution. But the solutions of g(x) 6= g(a) are the solutions of x 6= a. In
this section we provide a way of transforming any anti-pattern matching prob-
lem into a corresponding equational one that has the same set of solutions. We
extend the notion of an equation between terms [11] to the notion of an equation
containing anti-patterns:

Anti-Pattern Matching 7

Definition 4.1 (Solutions of equations with anti-patterns). For any
anti-pattern q and ground term t, σ is a solution of the equational problem
∃w1, . . . , wn,∀y1, . . . , ym : q = t if:

1. the domain of σ is FVar(q)\{w1, . . . , wn, y1, . . . , ym},
2. there exists a substitution ρ whose domain is {w1, . . . , wn}\(FVar(q) ∪

{y1, . . . , ym}) such that for all substitutions θ whose domain is
{y1, . . . , ym}\(FVar(q) ∪ {w1, . . . , wn}) we have: t ∈ Jθρσ(q)Kg.

We denote by Sol(∃w1, . . . , wn,∀y1, . . . , ym : q = t) the set of all substitutions
that are solutions of ∃w1, . . . , wn,∀y1, . . . , ym : q = t. We have the following
properties:

1. Sol(q = t) = Sol(q ≺≺ t), since t is a ground term,
2. Sol(∃w1, . . . , wn,∀y1, . . . , ym : not(q = t)) = {σ | t 6∈ Jθρσ(q)Kg}, with the

same conditions on θ, ρ, σ as in Definition 4.1, and not being the classical
logic negation. One may notice that the substitutions ρ and σ do not have the
variables {y1, . . . , ym} in their domains, and therefore we can safely eliminate
θ in Sol(∃w1, . . . , wn,∀y1, . . . , ym : not(q = t)) = {σ | t 6∈ Jρσ(q)Kg}, because
the ground semantics will instantiate anyway {y1, . . . , ym} with all their
possible values.

Given an anti-pattern q and a ground term t, we consider the following rewrite
system AP-Elim. This transforms an anti-pattern matching problem into an equa-
tional one:

ElimMatch q ≺≺ t 7→7→ q = t
ElimAnti q[kq′]ω = t 7→7→ ∃z q[z]ω = t ∧ ∀x ∈ FVar(q′) not(q[q′]ω = t)

if ∀ ω′ < ω, q(ω′) 6= k and z a fresh variable

Clearly, these rules are terminating and the normal form does not contain
anymore the k symbol. If we apply these rules on the example we provided
earlier, kg(x) ≺≺ g(a), we obtain ∃z z = g(a) ∧ ∀x not(g(x) = g(a)) which
is equivalent with ∀x g(x) 6= g(a), that has no solution. Thus, for this example
these transformations are valid. As shown below they are also valid in the general
case:

Proposition 4.1. The rules are sound and preserving: they do not introduce
unexpected solutions, and no solution is lost in the application of the rules.

Proof. By Definition 4.1, this is clear for the rule ElimMatch. For ElimAnti, we
consider ω a position such that q[kq′]ω and ∀ ω′ < ω, q(ω′) 6= k.

Considering as usual that Sol(A∧B) = Sol(A)∩Sol(B) we have the following
result for the right hand side of the rule:

Sol(∃z q[z]ω = t ∧ ∀x ∈ FVar(q′) not(q[q′]ω = t))
= Sol(∃z q[z]ω = t) ∩ Sol(∀x ∈ FVar(q′) not(q[q′]ω = t))

8 Claude Kirchner, Radu Kopetz, Pierre-Etienne Moreau

From Definition 4.1, Sol(∃z q[z]ω = t) = {σ | ∃ρ such that Dom(ρ) = {z}, t ∈
Jρσ(q[z]ω)Kg, and Dom(σ) = FVar(q[z])\{z}}.

To have t ∈ Jρσ(q[z]ω)Kg the only possible value for ρ(z) is t|ω. So we can
further rewrite the above solutions in:

{σ | t ∈ Jσ(q[t|ω]
ω
)Kg, with Dom(σ) = FVar(q[z])\{z}} (1)

Applying also the Definition 4.1, Sol(∀x ∈ FVar(q′) not(q[q′]ω = t)) is equal to:

{σ | t 6∈ Jσ(q[q′]ω)Kg with Dom(σ) = FVar(q[q′]) \ FVar(q′)} (2)

On the other hand, for the left part of the rule ElimAnti, by Definition 4.1 we
have:

Sol (q[kq′]ω = t) = {σ | t ∈ Jσ(q[kq′]ω)Kg, with Dom(σ) = FVar(q[kq′])}
= {σ | t ∈ (Jσ(q[z]ω)Kg\Jσ(q[q′]ω)Kg), with . . .}, since ∀ω′ < ω, q(ω′) 6= k
= {σ | t ∈ Jσ(q[z]ω)Kg and t 6∈ Jσ(q[q′]ω)Kg, with Dom(σ) = FVar(q[kq′])}
= {σ | t ∈ Jσ(q[z]ω)Kg, with . . .} ∩ {σ | t 6∈ Jσ(q[q′]ω)Kg with . . .}

(3)
Now it remains to check the equivalence of (3) with the intersection of (1) and
(2). First of all, FVar(q[z])\{z}= FVar(q[q′]) \ FVar(q′) = FVar(q[kq′]) which
means that we have the same domain for σ in (3), (1), and (2). Therefore, we
have to prove: {σ | t ∈ Jσ(q[z]ω)Kg} = {σ | t ∈ Jσ(q[t|ω]

ω
)Kg}.

But σ does not instantiate z, and for the inclusion t ∈ Jσ(q[z]ω)Kg to be
true, the only possible value of z is t|ω. As we considered an arbitrary k, we
can conclude that the rule is sound and preserving, wherever it is applied on a
term. ut

Using the rewrite system AP-Elim, we can eliminate all k symbols from any
anti-pattern matching problem. The normal forms have the following structure:
∃z q = t ∧ ∀x not(∃z′ q′ = t ∧ ∀x′ not(. . .)).

We consider a set of boolean simplification rules, called DeMorgan, that is ap-
plied on these normal forms: not(∃z P) 7→7→ ∀z not(P), not(∀z P) 7→7→ ∃z not(P),
not(a ∧ b) 7→7→ not(a) ∨ not(b), not(a ∨ b) 7→7→ not(a) ∧ not(b), not(not(a)) 7→7→ a,
not(a = b) 7→7→ a 6= b, not(a 6= b) 7→7→ a = b. The resulting expression no longer
contains any not, and thus is a classical equational problem. We call it an anti-
pattern disunification problem.

5 Solving anti-pattern matching via disunification

As presented previously, an anti-pattern matching problem can be translated into
an equivalent equational problem. A natural way to solve this type of problem
is to use a disunification algorithm such as described in [11]. Due to lack of
space, we cannot present disunification in detail. Instead we give in Figure 1 the
set of rules we consider. The interested reader can refer to [11] for a detailed
presentation of disunification.

Anti-Pattern Matching 9

Universality1 ∀z : z = t ∧ S 7→7→ ⊥
Universality2 ∀z : z 6= t ∧ S 7→7→ ⊥
Universality3 ∀z : S 7→7→ S if z 6∈ Var(S)
Universality4 ∀z : S ∧ (z 6= t ∨ S′) 7→7→ ∀z : S ∧ S′(z ← t)
Universality5 ∀z : S ∧ (z = t ∨ S′) 7→7→ ∀z : S ∧ S′ if z 6∈ Var(S′)
Replacement z = t ∧ S 7→7→ z = t ∧ S(z ← t)
Elimination1 a = a 7→7→ >
Elimination2 a 6= a 7→7→ ⊥
PropagateClash1 S ∧ ⊥ 7→7→ ⊥
PropagateClash2 S ∨ ⊥ 7→7→ S
PropagateSuccess1 S ∧ > 7→7→ S
PropagateSuccess2 S ∨ > 7→7→ >
Clean1 a ∧ a 7→7→ a
Clean2 a ∨ a 7→7→ a
Clash1 f(p1 . . . pn) = g(t1 . . . tn) 7→7→ ⊥ if f 6≡ g
Clash2 f(p1 . . . pn) 6= g(t1 . . . tn) 7→7→ > if f 6≡ g
Decompose1 f(p1 . . . pn) = f(t1 . . . tn) 7→7→

V
i=1,...,n pi = ti

Decompose2 f(P1 . . . Pn) 6= f(t1 . . . tn) 7→7→
W

i=1,...,n pi 6= ti

Merging1 z = t ∧ z = u 7→7→ z = t ∧ t = u
Merging2 z 6= t ∨ z 6= u 7→7→ z 6= t ∨ t 6= u
Merging3 z = t ∧ z 6= u 7→7→ z = t ∧ t 6= u
Merging4 z = t ∨ z 6= u 7→7→ t = u ∨ z 6= u

Removed rules: OccurCheck, Explosion, Elimination of disjunctions
New rules:
Exists1 ∃z : S 7→7→ S if z 6∈ Var(S)
Exists2 ∃z : S ∧ (z 6= t ∨ S′) 7→7→ S if z 6∈ Var(S)
Exists3 ∃z : S ∧ (z = t ∨ S′) 7→7→ S if z 6∈ Var(S)

Fig. 1. Simplified presentation of the disunification rules: AP-Match

5.1 Disunification rules

[11] presents a set of disunification rules that is proved to be sound and pre-
serving. Moreover, irreducible problems for these rules are definitions with con-
straints, i.e. either >, ⊥ or a conjunction of equalities and disequalities. In Fig-
ure 1 we present this set of rules, but tailored for anti-pattern matching problems.
It is still sound and preserving, but also ensures (thanks to Theorem 5.1) that
for each problem a normal form exists and is unique. We will further call it
AP-Match.

From the classical presentation of disunification rules, three rules have been
removed. They were no longer necessary in the restricted case of the anti-
patterns, as their application conditions are never fulfilled. Three new rules that
are proved to be sound and preserving [9] have been added. They ensure the
elimination of all variables that are existentially quantified. The justification is
simple, and consists in showing that any problem containing an occurrence of

10 Claude Kirchner, Radu Kopetz, Pierre-Etienne Moreau

an existentially quantified variable is reducible: if there is such a variable, one
of the three introduced rules is tried. The condition z 6∈ Var(S) may prevent
from applying a rule. In that case, we have z ∈ Var(S) and therefore one of the
following rules can be applied: Replacement (or Merging), Decompose (or Clash)
— if the variable z is inside a term.

In [11] there is a clear separation between the elimination of parameters and
the rules that reach definitions with constraints. But, as affirmed both in [11]
and [9], such a strict control is only for presentation purposes. In our algorithm,
we use a single step approach.

5.2 Solved forms

In the following we show that an anti-pattern disunification problem (resulting
from the application of AP-Elim, followed by DeMorgan can be simplified by the
rewrite system AP-Match, given in Figure 1, such that it does not contain any
disjunction or disequality.

Example 5.1. If we consider f(x, ky) ≺≺ f(a, b), the corresponding anti-pattern
disunification problem is computed in the following way:
f(x, ky) ≺≺ f(a, b) 7→7→ f(x, ky) = f(a, b)

7→7→ ∃z f(x, z) = f(a, b) ∧ ∀y not(f(x, y) = f(a, b))
7→7→ ∃z f(x, z) = f(a, b) ∧ ∀y f(x, y) 6= f(a, b)

Proposition 5.1. Given an anti-pattern disunification problem, the normal
form wrt. the rewrite system AP-Match does not contain disjunctions or dis-
equalities.

Proof. We consider an anti-pattern q ∈ AT (F ,X), and an arbitrary application
of ElimAnti:

q[kq′]ω = t 7→7→ ∃z q[z]ω = t ∧ ∀x ∈ FVar(q′) not(q[q′]ω = t)

If a disequality or a disjunction is produced, it comes from the not(q[q′]ω = t).
We now consider the variables that occur in this expression. Each of them belongs
to one of the following classes:

1. the free variables of q′,
2. the free variables of q[q′]ω — excepting the free variables of q′,
3. the variables of q[q′]ω that are not free.

In the following we show that the normal form cannot contain such a variable.
Therefore, the normalization of ∀x ∈ FVar(q′), not(q[q′]ω = t) leads to either >
or ⊥:

1. these are universally quantified variables, and they will be eliminated by
Universality rules,

Anti-Pattern Matching 11

2. let us consider y ∈ FVar(q[q′]ω)\FVar(q′), and let us suppose that the
reduction of not(q[q′]ω = t) generates the disequality y 6= t|ω1 , then the
reduction of the first part ∃z q[z]ω = t will generate y = t|ω2 , with ω2 = ω1

because t and the skeleton of q are the same in both parts. By applying
the Replacement rule, all the occurrences of y 6= t|ω1 are transformed in
t|ω1 6= t|ω1 and later eliminated,

3. any variable that is not free (i.e. is under a k) will be universally quantified
by a further application of the rule ElimAnti, therefore later eliminated by
Universality1 or Universality2. ut

Theorem 5.1. Given an anti-pattern disunification problem, its normal form
wrt. the rewrite system AP-Match exists and is unique.

1. when it is of the form
∧

i∈I xi = ti with I 6= ∅ and xi 6= xj for all i 6= j, the
substitution σ = {xi 7→ ti}i∈I is the solution of the matching problem,

2. when it is >, any substitution σ is a solution of the matching problem,
3. when it is ⊥, the matching problem has no solution.

Proof. By applying Proposition 5.1. ut

5.3 Simple examples

Let us show on a few examples how the rules behave. First with one complement:
f(a, kb) ≺≺ f(a, a)
7→7→ f(a, kb) = f(a, a) 7→7→ ∃zf(a, z) = f(a, a) ∧ not(f(a, b) = f(a, a))
7→7→ ∃zf(a, z) = f(a, a) ∧ f(a, b) 6= f(a, a)
7→7→ ∃z(a = a ∧ z = a) ∧ (a 6= a ∨ b 6= a) 7→7→ ∃z(z = a) ∧ (⊥ ∨>)
7→7→ > ∧ > 7→7→ >.

Of course complements can be nested as illustrated below:
kf(a, kb) ≺≺ f(a, b)
7→7→ kf(a, kb) = f(a, b) 7→7→ ∃z z = f(a, b) ∧ not(f(a, kb) = f(a, b))
7→7→ ∃z z = f(a, b) ∧ not(∃z′f(a, z′) = f(a, b) ∧ not(f(a, b) = f(a, b)))
7→7→ ∃z z = f(a, b) ∧ (∀z′f(a, z′) = f(a, b) ∨ f(a, b) = f(a, b))
7→7→ > ∧ (∀z′(a = a ∧ z′ = b) ∨ (a = a ∧ b = b))
7→7→ ∀z′(z′ = b) ∨ > 7→7→ >.

We can also consider anti-pattern problems with variables, such as f(ka, x) ≺≺
f(b, c), whose solution is {x 7→ c}. The pattern can be non-linear: f(x, kx) ≺≺
f(a, b), leading to {x 7→ a}. Nested negation and non-linearity can be combined:
kf(x, kg(x)) ≺≺ f(a, g(b))
7→7→ kf(x, kg(x)) = f(a, g(b))
7→7→ ∃z z = f(a, g(b)) ∧ ∀x not(f(x, kg(x)) = f(a, g(b)))
7→7→ ∃z z = f(a, g(b)) ∧ ∀x not(∃z′ f(x, z′) = f(a, g(b))

∧ ∀x not(f(x, g(x)) = f(a, g(b))))
7→7→ ∃z z = f(a, g(b)) ∧ ∀x(∀z′ f(x, z′) = f(a, g(b)) ∨ ∃x f(x, g(x)) = f(a, g(b)))
7→7→ > ∧ ∀x (∀z′ (x = a ∧ z′ = g(b)) ∨ ∃x (x = a ∧ g(x) = g(b)))
7→7→ ∀x (x = a ∧ ∀z′ (z′ = g(b)) ∨ ∃x (x = a ∧ x = b))
7→7→ ∀x (x = a ∧ ⊥ ∨ ∃x (x = a ∧ a = b))
7→7→ ∀x (⊥ ∨ ∃x (x = a ∧ ⊥)) 7→7→ ∀x (⊥ ∨⊥) 7→7→ ⊥.

12 Claude Kirchner, Radu Kopetz, Pierre-Etienne Moreau

5.4 Summing up the relations with disunification

When comparing anti-pattern problems with general disunification ones, there
are many similarities, but some important differences also. In the anti-pattern
case, a solved form does not contain any quantifier whereas disunification allows
existential ones. Another important difference is the unitary property (Theo-
rem 5.1) which is obviously not true for disunification: x 6= a has many solutions
in general. Disunification contains rules (called globally preserving) that return
an equational problem whose solutions are a subset of the given problem. The
Explosion and the Elimination of disjunctions rules are such examples. In our case,
the complexity is dramatically reduced since these rules are unnecessary.

6 Implementation

We do not have enough space to present the implementation in detail but the
reader should know that the presented anti-pattern matching algorithm has been
fully implemented and integrated in Tom2. With the purpose of also supporting
anti-patterns, we enriched the syntax of the Tom patterns to allow the use the
operator ‘!’ (representing ‘k’). Therefore, constructs as the following one are now
valid in this language:

%match(s) {
f(a(),g(b())) -> { /* action 1: executed when f(a,g(b))<<s */ }
f(!a(),g(b())) -> { /* action 2: when f(x,g(b))<<s with x!=a */ }
!f(x,!g(x)) -> { /* action 3: when not f(x,y)<<s or ... */ }
!f(x,g(y)) -> { /* action 4 */ }

}

Similarly to switch/case, an action part is executed when its corresponding
pattern matches the subject s. Note that non-linear patterns are allowed.

Without the use of anti-patterns, one would be forced to verify additional
conditions in the action part. For example, the previous %match should have
been written:

%match(s) {
f(a(),g(b())) -> { /* action 1 */ }
f(x,g(b)) -> { if(x != a) { /* action 2 */ } }
y -> { if(symb(y) != f) { /* action 3 */ }

else { %match(y) { f(x,g(x)) -> { /* action 3 */ } } } }
z -> {
if(symb(z) != f) { /* action 4 */ }
else { %match(z) {

f(x,g(y)) -> { break; /* do not perform action 4 */ }
_ -> { /* action 4 */ } } } }

}

2 http://tom.loria.fr

http://tom.loria.fr

Anti-Pattern Matching 13

This example clearly shows that anti-pattern semantics cannot be easily obtained
in a standard setting. Note also that method extraction would be necessary to
avoid duplicating actions. This would make the code even more complex.

7 Related work

There has been a huge amount of work that can be related in a way or another
with the content of this paper. In spite of this, the anti-patterns are quite a nov-
elty for pattern matching languages. It is important to stress that we introduced
the anti-patterns with the purpose of having a compact and permissive repre-
sentation to match ground terms: the use of nested negations replaces the use
of conjunctions and/or disjunctions and there is no restriction to linear terms
for example. It is also a useful representation which is both intuitive and easy
to compile in an efficient way. In the context of Tom, general algorithms such as
disunification [10,11,9] could have been used. But since pattern-matching is the
main execution mechanism, we were interested in a specialized approach that is
both simpler and more efficient.

Lassez [16] presented a way of expressing exclusion by the means of counter-
examples: typically, the expression f(x, y)/{f(a, u) ∨ f(u, a)} represents all the
ground instances of f(x, y), different from f(a, u) and f(u, a). Even though this
is a useful and close approach, it is more restrictive than the anti-patterns.
Consider for example the anti-pattern kf(a, kb), that cannot be represented by
terms with counter-examples, unless we allow the counter-examples to also have
counter-examples, i.e. z/{f(a, y/{b})} — an issue not addressed in [16]. More-
over, the application domain of terms with counter-examples was rather machine
learning than efficient term rewriting. This may explain why they restricted to
linear terms and studied if these types of expressions have an equivalent repre-
sentation using disjunctions. Actually, complementing non-linear terms was not
very much addressed (except for disunification) and standard algorithms that
computes complements are incorrect for non-linear terms, as mentioned in [18].
Complementing higher order patterns is also considered only in the linear case.

Although the syntax of set constraints [2,20,1,7] allows the use of complement
without any restriction of linearity or level of complement, we are not aware of
any good semantics for the general case. Moreover, despite the fact that theoret-
ically it is possible to have a constraint of the form f(a, b) ⊆ ¬f(a,¬b), existing
implementations do not allow the complement in its fully generality. For ex-
ample the CLP(Set) language in B-Prolog3 allows the use of the symbol ‘\’ as
a unary operator representing the complement. However, it is only defined for
variables, and not for constants. Another example is CLP(SC) [12], where we
are restricted to use only predicates of arity 0 and 1, which obviously cannot
have the same expressiveness as anti-patterns. Besides that, it does not provide
variable assignments. Constraints over features trees [4,3,6] include the exclusion
constraint which is a formula of the form ¬∃y(xfy), which says that the feature f

3 http://www.probp.com/

http://www.probp.com/

14 Claude Kirchner, Radu Kopetz, Pierre-Etienne Moreau

is undefined for x, i.e. there is no edge that starts from x labeled with f. A more
complex semantics of nested negations is not provided, for example to express
that there is no ‘a’ in relation with x, unless x is in relation with ‘b’.

CDuce4 allows for the use of complement when declaring types but it restricts
it to be used on types alone, and do not deal with variables complements.

The constrained terms, as defined in [9], can be used to obtain the semantics
of some anti-patterns. They may have constraints — conjunction of disequalities
— attached to their variables. Considering for example f(a, kb), this is seman-
tically equivalent to f(a, z), constrained by z 6= b. But for a more complex
expression, like f(a, kg(b, kc)), this approach is not expressive enough because
the use of disjunctions in the constraints is not allowed.

8 Conclusion and future work

In this paper we have defined the notion of anti-patterns along with their seman-
tics. We have shown how anti-pattern matching problems can be transformed
in specific disunification problems. Therefore, most of the properties (conflu-
ence, termination) that hold for the disunification rules are still true for the
anti-pattern matching ones. Moreover, we proved that anti-pattern matching is
unitary, that the rules are sound and fully preserving, and that the computed
solved forms do not contain any disequality — properties that are not true for
general disunification problems. Finally, the anti-pattern matching algorithm has
been implemented and is available in the Tom system.

We are currently working on two questions. The first one is about the precise
complexity of the anti-pattern matching problem. For instance, the satisfiability
in T (F) of equational problems is known to be NP-complete. However, solv-
ing anti-pattern matching being a more restricted disunification problem, we
conjecture that solving an anti-pattern matching problem is polynomial.

The second one concerns the study of anti-pattern matching in presence of
associative operators. This is quite appealing because of the nice expressive-
ness that such a feature will provide. For instance in Tom the pattern (∗, !a, ∗)
would denote a list which contains at least one element different from a, whereas
!(∗, a, ∗) would denote a list which does not contain any a. This will be more gen-
erally useful for theories like associativity and commutativity and anti-pattern
matching should therefore be investigated for appropriate equational theories.
Acknowledgments: We sincerely thank Luigi Liquori for stimulating discus-
sions and suggestions, Emilie Balland for her comments on the preliminary ver-
sion of this paper and the anonymous referees for their valuable remarks and
suggestions.

References

1. A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set constraints
with negative constraints. Information and Computation, 122(1):30–44, 1995.

4 http://www.cduce.org/

http://www.cduce.org/

Anti-Pattern Matching 15

2. A. Aiken and E. L. Wimmers. Solving systems of set constraints (extended ab-
stract). In LICS, pages 329–340. IEEE Computer Society, 1992.

3. H. Ait-Kaci, A. Podelski, and G. Smolka. A feature constraint system for logic
programming with entailment. Theoretical Computer Science, 122(1–2):263–283,
1994.

4. F. Baader, H.-J. Bürckert, B. Nebel, W. Nutt, and G. Smolka. On the expressivity
of feature logics with negation, functional uncertainty, and sort equations. Journal
of Logic, Language and Information, 2:1–18, 1993.

5. F. Baader and T. Nipkow. Term Rewriting and all That . Cambridge University
Press, 1998.

6. R. Backofen and G. Smolka. A complete and recursive feature theory. Theoretical
Computer Science, 146(1–2):243–268, July 1995.

7. W. Charatonik and L. Pacholski. Negative set constraints with equality. In LICS,
pages 128–136. IEEE Computer Society, 1994.

8. K. L. Clark. Logic and databases, chapter Negation as Failure, pages 293–322.
Plenum Press, New York, 1978.

9. H. Comon. Unification et disunification. Théories et applications. Thèse de Doc-
torat d’Université, Institut Polytechnique de Grenoble (France), 1988.

10. H. Comon. Disunification: a survey. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic. Essays in honor of Alan Robinson, chapter 9, pages 322–
359. The MIT press, Cambridge (MA, USA), 1991.

11. H. Comon and P. Lescanne. Equational problems and disunification. In C. Kirch-
ner, editor, Unification, pages 297–352. Academic Press inc., London, 1990.

12. J. S. Foster. CLP(SC): Implementation and efficiency considerations. In Pro-
ceedings Workshop on Set Constraints, held in Conjunction with CP’96, Boston,
Massachusetts, 1996.

13. G. Huet. Résolution d’equations dans les langages d’ordre 1, 2, . . . , ω. Thèse de
Doctorat d’Etat, Université de Paris 7 (France), 1976.

14. C. Kirchner and H. Kirchner. Rewriting, solving, proving. A preliminary version
of a book available at http://www.loria.fr/∼ckirchne/rsp.ps.gz, 1999.

15. C. Kirchner, P.-E. Moreau, and A. Reilles. Formal validation of pattern matching
code. In P. Barahona and A. Felty, editors, Proceedings of the 7th ACM SIGPLAN
PPDP, pages 187–197. ACM, July 2005.

16. J.-L. Lassez and K. Marriott. Explicit representation of terms defined by counter
examples. Journal of Automated Reasoning, 3(3):301–317, 1987.

17. L. Liquori. iRho: the software [system description]. DCM: International Work-
shop on Development in Computational Models. Electr. Notes Theor. Comput. Sci.,
135(3):85–94, 2006.

18. A. Momigliano. Elimination of negation in a logical framework. In Proceedings
of the 14th Annual Conference of the EACSL on Computer Science Logic, volume
1862 of LNCS, pages 411–426, London, UK, 2000. Springer Verlag.

19. P.-E. Moreau, C. Ringeissen, and M. Vittek. A Pattern Matching Compiler for
Multiple Target Languages. In G. Hedin, editor, 12th Conference on Compiler
Construction, Warsaw (Poland), volume 2622 of LNCS, pages 61–76. Springer-
Verlag, May 2003.

20. M. Müller, J. Niehren, and A. Podelski. Inclusion constraints over non-empty sets
of trees. In M. Dauchet, editor, Theory and Practice of Software Development, In-
ternational Joint Conference CAAP/FASE/TOOLS, volume 1214 of LNCS, pages
217–231. Springer Verlag, Apr. 1997.

http://www.loria.fr/~ckirchne/rsp.ps.gz

	Anti-Pattern Matching
	Claude Kirchner, Radu Kopetz, Pierre-Etienne Moreau

