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Bibliography Entries: DBLP-style

Article Content: HTM
L or DocBook

Topics and Them
es: SKOS Ontology

G
raph data m

odel for Xcerpt and visXcerpt
—

 as in RD
F and sem

i-structured D
Bs like Lore

—
great attention to XM

L specificities such as 
attributes and nam

espaces

Consistent Extension of XM
L

—
children order m

ay be irrelevant
—

possible transparent resolution of 
non-hierarchical relations

Bibliography Entries 
—

rather regular schem
a w

ith optionals
—

several ordered lists, otherw
ise 

keyed attributes

  article_66_cicero_wax @ article{

    authors[ ...  ],
    title[ "Space- and Time-Optimal Data Storage on Wax Tablets" ],
    within[ scrolls[ "1-94" ], ^journal_adm ],
    content[
      body[
        contributions @ h1[ "Contributions" ],
        h1[ "A History of Data Storage: From Stone to Parchment" ],
        p[ "Despite ", cite[ ^article_66_scaurus_qumran ], "..." ],
        ol[

     li[ em[ strong[ "Homeric" ], " Age:" ], "..." ],
     li[ em[ "Age of the ", strong[ "Kings" ], ":" ], "..." ]
   ], ...
   tachygraphy @ h1[ "Challenges for Tachygraphy on Wax" ],
   p[ "Though conditions for writing on wax tablets are adverse ", 

          "to tachygraphy, systems as described in ",
          a[ href[ ^tiro ], "Section 2" ], "..." ]
      ]
    ]
  }

A
rticle Content

—
irregular, highly recursive schem

a
—

H
TM

L: structure through delim
iters

D
ocBook: structure through nesting

Topics and Them
es:

—
SKO

S-based ontology using 
       s

k
o
s
:
n
a
r
r
o
w
e
r, s

k
o
s
:
r
e
l
a
t
e
d, etc.

—
part of A

CM
 1998 classification 

schem
e plus som

e ad-hoc concepts

Basic Patterns: Variables and Incom
pleteness

Q
uery-by-Exam

ple
 paradigm

—
 queries just like data plus variables, 

incom
pleteness, optionality, negation 

—
patterns plus variables instead of navigation

Logical Variables in Patterns
—

select relevant data (n-ary queries)
—

group and aggregate data 
—

join different data item
s

Com
plex Patterns: Form

ulas, Join, Optionality

Textual Syntax for Patterns: Term
- and XM

L-style

Separation of Q
uery and Construction

 
—

 tw
o separate parts in rules

—
no m

ixing of construction and querying
—

 instead chaining w
here necessary

Separation of Concern by View
s

—
separate tasks of a query in rules

—
effi

cient evaluation of chained queries
—

 m
em

oization and unfolding

Rules: Inference, View
s, and Chaining

Integration I: Separation of Concern

Integration II: Putting it All Together

Basic Pattern
“return the titles of all top-level sections in 
articles by M

arcus Tullius Cicero and 
published in ‘Applied D

ata M
anagem

ent’. ”

Com
plex Pattern

“return titles and optionally paragraphs of 
all top-level sections w

ithout figures in 
articles on the topic ‘W

ax Tablets’. ”

GOAL
  articles-on-wax-tablets [
    all article [
      title [ var ArticleTitle ],
      sections [
        all section [
          var SectionTitle,

      optional var Para
        ] ] ] ]
FROM
 and {
   in{ xml-document[ "file:DATA.bibliography.xcerpt" ],     
       bib {{
         article {{
           title {{ var ArticleTitle }},
           content [[ 
             section {{ 
               info {{ var SectionTitle -> title {{ }} }},
               without desc figure {{ }},
               optional var Para -> para {{ }}
            }} ]] }} }} }, 
   in{ rdf-document[ "file:DATA.acm-skos.xcerpt" ],     
       computing-classification {{
         triple[ var Paper, "skos:prefLabel", var ArticleTitle ],
         triple[ var Paper, "skos:primarySubject", var WaxTablets ],
         triple[ var WaxTablets, "skos:prefLabel", "Wax Tablets" ]
       }} }
}END

GOAL
  <articles-on-wax-tablets>
    all <article>
      <title>var ArticleTitle</title>
      <sections>
        all <section>
          var SectionTitle

      optional var Para
        </section> </sections> </article> 
  </articles-on-wax-tablets>
FROM
 and (
   xml-document "file:DATA.bibliography.xcerpt" (
       <bib 

{partial,unordered}>
         <article 

{partial,unordered}>
           <title>var ArticleTitle</title>
           <content>
             <section 

{partial,unordered}> 
               <info 

{partial,unordered}>
             var SectionTitle -> <title 

{partial,unordered}/>
           </info>

               without desc <figure 
{partial,unordered} />

               optional var Para -> <para 
{partial,unordered} />

             </section> 
           </content> 
         </article> 
       </bib> )
   rdf-document "file:DATA.acm-skos.xcerpt" (
       (var Paper, skos:prefLabel, var ArticleTitle)
       (var Paper, skos:primarySubject, var WaxTablets)
       (var WaxTablets, skos:prefLabel, "Wax Tablets") ) ) 
END

M
ultiple Syntaxes

—
textual term

 syntax (com
pact)

—
textual XM

L-style syntax (explicit)
—

visual syntax visXcerpt

Rules and Chaining
“close the skos:related relation on the 
provided data by adding skos:subject and 
traversing the closure of skos:narrow

er”

Integrating RD
F and XM

L
“in w

hich areas have m
y co-authors 

published in recent year?”

Integrating RD
F and XM

L
“I w

ould like to prepare a call-for-paper
for an established conference. W

hat are
the areas of interest in recent years?”
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Identifier and label of elem
ents

Context-M
enu: Interactive Features

Folding elem
ents for inform

ation focus

Elem
ent nesting (child relation) becom

es
box nesting and colors

N
on-hierarchical relations as hyperlinks

O
rdered vs. unordered children list

A
ccessing W

eb resources: arbitrary XM
L 

docum
ents can be accessed using their U

RL
Term

s as form
ulas: 

Term
s m

ay contain boolean connectives, including disjunctions

Rules separate construction from
 querying

and allow
 for procedural abstraction in query program

s

Xcerpt and visXcerpt: 
Integrating W

eb Q
uerying

Sacha Berger
François Bry
Tim

 Furche

Incom
plete patterns in depth: 

descendant allow
s additional interm

ediary elem
ents

G
rouping collects alternative bindings for variables:

essential for structural assem
bly 

Incom
plete patterns in breadth: 

partial patterns allow
 additional child elem

ents

Variables are used in lieu of data :
express selection,  joins, or arithm

etic conditions

Term
s as form

ulas: 
Term

s m
ay contain boolean connectives, variables, negation, etc.

Subterm
 negation: 

Som
e subterm

s m
ay be required not to occur in m

atching data

O
ptional subterm

s:
Local form

 of disjunction essential for variable schem
a  data

Value Joins:
Expressed through m

ultiple variable occurrences

O
ptional construction:

Lim
ited form

 of conditional construction based on variable bindings

— on cities and rivers of the World
— can you guess the name of the 

third city (represented by X)?

X

Australia

Germany Berlin

Sydney

“Spree”

“Isar”

locatedIn

locatedIn

hasRiver

Munich

locatedIn

hasRiver

locatedIn

Y

“Moselle” “Rhine”

hasRiver hasRiver

hasSight spitsAt

“Schängelbrunnen”

name

Tourist

Z

rdf:type

Legend (Data) X

country city

existential variable

literalclass

RDF Data Graph 0

FORALL City City' City'' Country
IF City locatedIn Country, 

City' locatedIn Country, 

        City <_lex   City',

NOT( City'' locatedIn Country, 

       City <_lex   City'', 

       City'' <_lex   City' )

THEN  City predecessor City'

FORALL Country EXISTS Bag FORALL City City'
IF City locatedIn Country, 

 NOT City' predecessor City

THEN Bag  rdf:_1   City, 

      Bag   rdf:type rdf:Bag, 

      Country cities   Bag

FORALL Bag City City'
IF   Bag rdf:_n  City, 

     City predecessor City' 

THEN Bag rdf:_(n+1) City'

Example: Filling Containers 1

1

2

3 U

Germany

rdf:Bag

X

Munich

Berlin

cities

rdf:typerdf:_2

rdf:_1

rdf:_3

W
rdf:type

Australia

cities

Sydney

rdf:_1

Filled Containers 2

Example: Gathering Collections

FORALL City City' City'' Country
IF City locatedIn Country, 

City' locatedIn Country, 

City <_lex City',

NOT( City'' locatedIn Country, 

City <_lex City'', 

City'' <_lex City' )

THEN City predecessor City'

1

FORALL City EXISTS Coll 
       FORALL City' Country
IF City locatedIn Country, 

NOT( City' locatedIn Country, 

City' predecessor City )

THEN Coll rdf:first City

FORALL Coll EXISTS Coll' 
       FORALL City City'
IF Coll rdf:first City, 

City predecessor City'

THEN Coll rdf:rest Coll', 

     Coll' rdf:first City

FORALL Coll City City'
IF Coll rdf:first City, 

 NOT City predecessor City'

THEN Coll rdf:rest rdf:nil

1

2

3

4
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Germany
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Berlin U2
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Munich

U3
rdf:rest

rdf:first

X
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Gathered Collections 2
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Leaner, Lean Operator

leanerσ(ϕ) :=





ϕσ if ϕσ⊆ϕ

ϕ otherwise

The lean operator L : RDF → RDF

is defined as

L(ϕ) :=
⋂

σ∈Subst
leanerσ(ϕ)

An RDF graphϕ is lean if L(ϕ) =
ϕ.

3 Fixed Point Semantics

3.1 Definition

Let

•Φ be an RDFLOG program,

• ϕ an RDF graph,
3

1 Notes

On this poster the following notations are used:

– We consider an RDF graph a formula.

– The inverse function of a skolemisation S is denoted by S−1.

– We denote the application of a skolemisation S to a formula ϕ by ϕS .

– We denote a skolenisation S which eliminates the existential variables {x1, . . . , xn}
by replacing them with the terms {t1, . . . , tn} by 〈x1/t1, . . . , xn/tn〉. Then the ap-
plication of a substitutionσ to a skolemisation 〈x1/t1, . . . , xn/tn〉 is 〈x1/t1σ, . . . , xn/tnσ〉.
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– σ a substitution for the universal variables in r .
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5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

– !P"L the operational semantics of a logic program P , and

– σ(ϕ) the substitution used in the proof of ϕ fromΨS .

The operational semantics is defined as

!Ψ"O := {ϕ(Sσ(ϕ))−1 |ϕ ∈ !ΨS"L}

5.2 Proposition: Soundness and Completeness

Let

– Ψ an RDF program.

Then

!Ψ"O ⊆ !Ψ"M (soundness)

∀ϕ ∈ !Ψ"M ∃ψ ∈ !Ψ"O ∃σ ∈ Subs(exvar(ϕ)) .ϕσ |=|ψ (completeness)

5.3 Proposition:Big Lemma

Let

– Ψ a set of formulas,

– ϕ a formula, and

– S a skolemisation.

Then
Ψ |= ϕ⇔ΨS |= ϕS
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Operational Semantics

Commutativity of leaner and cons

The mapping consr,σ : RDF → RDF is defined as

consr,σ(ϕ) :=
{
ϕ∪ (t Sσ)(Sσ)−1

if {t1, . . . , tn}Sσ⊆ϕS

ϕ otherwise

The consequence operator T : RDF → RDF is defined as

T (ϕ) :=
⋃

r∈Ψ

⋃

σ∈Subst
consr,σ(ϕ)

The fixed point semantics of a RDFLOG program is defined as

&Ψ'F P := lfp(T )

3.2 Proposition: Commutativity

Let

– r an RDFLOG rule,

– σ a substitution for the universal variables in r , and

– τ a substitution for the existential variables in ϕ.

Then

exvar(r )∩dom(τ)∩ ran(τ) =)
=⇒ leanerτ ◦consr,σ = consr,σ ◦ leanerτ

4 Model Theoretic Semantics

4.1 Definition

Let

– Ψ an RDFLOG program.

The model theoretic semantics ofΨ is defined as

&Ψ'M := {ϕ ∈ RDF |Ψ |= ϕ}
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Skolemisation & Entailment

Fixed Point Semantics

1 Notes

On this poster the following notations are used:

– We consider an RDF graph a formula.

– The inverse function of a skolemisation S is denoted by S−1.

– We denote the application of a skolemisation S to a formula ϕ by ϕS .

– We denote a skolenisation S which eliminates the existential variables {x1, . . . , xn}
by replacing them with the terms {t1, . . . , tn} by 〈x1/t1, . . . , xn/tn〉. Then the ap-
plication of a substitutionσ to a skolemisation 〈x1/t1, . . . , xn/tn〉 is 〈x1/t1σ, . . . , xn/tnσ〉.

2 Lean

2.1 Definition

Let

– ϕ an RDF graph and

– σ a substitution for the existential variables in ϕ.

The mapping leanerσ : RDF → RDF is defined as

leanerσ(ϕ) :=
{
ϕσ if ϕσ⊆ϕ
ϕ otherwise

The lean operator L : RDF → RDF is defined as

L(ϕ) :=
⋂

σ∈Subst
leanerσ(ϕ)

An RDF graph ϕ is lean if L(ϕ) =ϕ.

3 Fixed Point Semantics

3.1 Definition

Let

– Ψ an RDFLOG program, ϕ an RDF graph,

– (Q1x1 . . .Qn xn .t1 ∧ . . .∧ tn → t ) = r ∈Ψ an RDFLOG rule,

– S skolemisation forΨ∪ {ϕ}, σ substitution for the universal var.s in r .

1

The mapping consr,σ : RDF → RDF is defined as

consr,σ(ϕ) :=
{
ϕ∪ (t Sσ)(Sσ)−1

if {t1, . . . , tn}Sσ⊆ϕS

ϕ otherwise

The consequence operator T : RDF → RDF is defined as

T (ϕ) :=
⋃

r∈Ψ

⋃

σ∈Subst
consr,σ(ϕ)

The fixed point semantics of a RDFLOG program is defined as

&Ψ'F P := lfp(T )

3.2 Proposition: Commutativity

Let

– r an RDFLOG rule,

– σ a substitution for the universal variables in r , and

– τ a substitution for the existential variables in ϕ.

Then

exvar(r )∩dom(τ)∩ ran(τ) =)
⇒ leanerτ ◦consr,σ = consr,σ ◦ leanerτ

4 Model Theoretic Semantics
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&Ψ'M := {ϕ ∈ RDF |Ψ |= ϕ}
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rdflog—Rules & Programs
—An rdflog rule is a Horn clause extended with existentially quantified variables in the head.
—An rdflog rule has to be range restricted wrt. its universally quantified variables.
—An rdflog program is a stratifiable set of  rdflog rules.

1 RDF as a Formula

locatedIn(Munich,Germany)∧hasRiver(Munich,“Isar”)∧
locatedIn(Berlin,Germany)∧hasRiver(Berlin,“Spree”)∧
locatedIn(Sydney,Australia)∧
∃x

(
locatedIn(x,Germany)∧
hasRiver(x,“Rhine”)∧hasRiver(x,“Moselle”)∧
∃y(hasSight(x,y)∧name(y,“Schängelbrunnen”)∧
∃z(spitsAt(y,z)∧ rdf:type(z,Tourist)))

)
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1 RDF as a Formula

locatedIn(Munich,Germany)∧hasRiver(Munich,“Isar”)∧
locatedIn(Berlin,Germany)∧hasRiver(Berlin,“Spree”)∧
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locatedIn(x,Germany)∧
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RDF Data Graph as Formula 3

— for each country, creates a 
container of its cities 

— note similarity between the 
natural language and the 
rdflog formulation in rule 2

— container resources are, as 
recommended by the RDF 
specification, existential 
variables

— Bag is one of the three 
container types of RDF

This example shows that there are 
cases in which making intermediate 
results lean may both 
—decrease memory usage and 
—increase evaluation speed.

This example shows that if an 
intermediate RDF graph is made lean 
prematurely, the result of the 
evaluation may become incorrect. 
We address this by proposing a 
condition under which the 
immediate consequence and the 
lean operator commute (see        ).4

A

rdf:nil

— all relations from the data graph 
are retained in the result

— all relations from the data graph 
are retained in the result

1 Operational Semantics

∀x y ∃z p(x, y) → q(y, z) (∗∗)

∀x y p(x, y) → q(y, f (x, y)) (∗∗)

S = 〈u/c, z/ f (x, y)〉
(SΣ)−1 = 〈c/u, f (a,b)/v, f (a,c)/w〉

Σ= {{x/a, y/b}, {x/a, y/c}}

2 Lean 1

∃y∀x p(a, x) → q(x, y) (∗)

3 lean 2

∀x y ∃z p(x, y) → q(y, z) (∗)

p(a,b) → r (b,c) (∗∗)
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