
Digital Home

rdflog—Taming Existence
A Logic-based Query Language for RDF pms.ifi.lmu.de

François Bry, Tim Furche
Clemens Ley, Benedikt Linse

Authors

U

Physical Home I

h
t
t
p
:
/
/
w
w
w
.
p
m
s
.
i
f
i
.
l
m
u
.
d
e
/

Institute for Inform
atics

U
niversity of M

unich

1
D

ata:
Sem

i-structured
 Trees &

 G
rap

hs
2

Patterns:
Exam

p
les for Selected

 D
ata

3
R

ules:
Sep

aration of Concern by V
iew

s

Bibliography Entries: DBLP-style

Article Content: HTM
L or DocBook

Topics and Them
es: SKOS Ontology

G
raph data m

odel for Xcerpt and visXcerpt
—

 as in RD
F and sem

i-structured D
Bs like Lore

—
great attention to XM

L specificities such as
attributes and nam

espaces

Consistent Extension of XM
L

—
children order m

ay be irrelevant
—

possible transparent resolution of
non-hierarchical relations

Bibliography Entries
—

rather regular schem
a w

ith optionals
—

several ordered lists, otherw
ise

keyed attributes

 article_66_cicero_wax @ article{

 authors[...],
 title["Space- and Time-Optimal Data Storage on Wax Tablets"],
 within[scrolls["1-94"], ^journal_adm],
 content[
 body[
 contributions @ h1["Contributions"],
 h1["A History of Data Storage: From Stone to Parchment"],
 p["Despite ", cite[^article_66_scaurus_qumran], "..."],
 ol[

 li[em[strong["Homeric"], " Age:"], "..."],
 li[em["Age of the ", strong["Kings"], ":"], "..."]
], ...
 tachygraphy @ h1["Challenges for Tachygraphy on Wax"],
 p["Though conditions for writing on wax tablets are adverse ",

 "to tachygraphy, systems as described in ",
 a[href[^tiro], "Section 2"], "..."]
]
]
 }

A
rticle Content

—
irregular, highly recursive schem

a
—

H
TM

L: structure through delim
iters

D
ocBook: structure through nesting

Topics and Them
es:

—
SKO

S-based ontology using
 s

k
o
s
:
n
a
r
r
o
w
e
r, s

k
o
s
:
r
e
l
a
t
e
d, etc.

—
part of A

CM
 1998 classification

schem
e plus som

e ad-hoc concepts

Basic Patterns: Variables and Incom
pleteness

Q
uery-by-Exam

ple
 paradigm

—
 queries just like data plus variables,

incom
pleteness, optionality, negation

—
patterns plus variables instead of navigation

Logical Variables in Patterns
—

select relevant data (n-ary queries)
—

group and aggregate data
—

join different data item
s

Com
plex Patterns: Form

ulas, Join, Optionality

Textual Syntax for Patterns: Term
- and XM

L-style

Separation of Q
uery and Construction

—

 tw
o separate parts in rules

—
no m

ixing of construction and querying
—

 instead chaining w
here necessary

Separation of Concern by View
s

—
separate tasks of a query in rules

—
effi

cient evaluation of chained queries
—

 m
em

oization and unfolding

Rules: Inference, View
s, and Chaining

Integration I: Separation of Concern

Integration II: Putting it All Together

Basic Pattern
“return the titles of all top-level sections in
articles by M

arcus Tullius Cicero and
published in ‘Applied D

ata M
anagem

ent’. ”

Com
plex Pattern

“return titles and optionally paragraphs of
all top-level sections w

ithout figures in
articles on the topic ‘W

ax Tablets’. ”

GOAL
 articles-on-wax-tablets [
 all article [
 title [var ArticleTitle],
 sections [
 all section [
 var SectionTitle,

 optional var Para
]]]]
FROM
 and {
 in{ xml-document["file:DATA.bibliography.xcerpt"],
 bib {{
 article {{
 title {{ var ArticleTitle }},
 content [[
 section {{
 info {{ var SectionTitle -> title {{ }} }},
 without desc figure {{ }},
 optional var Para -> para {{ }}
 }}]] }} }} },
 in{ rdf-document["file:DATA.acm-skos.xcerpt"],
 computing-classification {{
 triple[var Paper, "skos:prefLabel", var ArticleTitle],
 triple[var Paper, "skos:primarySubject", var WaxTablets],
 triple[var WaxTablets, "skos:prefLabel", "Wax Tablets"]
 }} }
}END

GOAL
 <articles-on-wax-tablets>
 all <article>
 <title>var ArticleTitle</title>
 <sections>
 all <section>
 var SectionTitle

 optional var Para
 </section> </sections> </article>
 </articles-on-wax-tablets>
FROM
 and (
 xml-document "file:DATA.bibliography.xcerpt" (
 <bib

{partial,unordered}>
 <article

{partial,unordered}>
 <title>var ArticleTitle</title>
 <content>
 <section

{partial,unordered}>
 <info

{partial,unordered}>
 var SectionTitle -> <title

{partial,unordered}/>
 </info>

 without desc <figure
{partial,unordered} />

 optional var Para -> <para
{partial,unordered} />

 </section>
 </content>
 </article>
 </bib>)
 rdf-document "file:DATA.acm-skos.xcerpt" (
 (var Paper, skos:prefLabel, var ArticleTitle)
 (var Paper, skos:primarySubject, var WaxTablets)
 (var WaxTablets, skos:prefLabel, "Wax Tablets")))
END

M
ultiple Syntaxes

—
textual term

 syntax (com
pact)

—
textual XM

L-style syntax (explicit)
—

visual syntax visXcerpt

Rules and Chaining
“close the skos:related relation on the
provided data by adding skos:subject and
traversing the closure of skos:narrow

er”

Integrating RD
F and XM

L
“in w

hich areas have m
y co-authors

published in recent year?”

Integrating RD
F and XM

L
“I w

ould like to prepare a call-for-paper
for an established conference. W

hat are
the areas of interest in recent years?”

‘A
dvancem

ents in D
ata

M
anagem

ent for M
ilitary and Civil

A
pplication’

‘G
raphs and N

etw
orks’

‘Trees’
‘D

ata Structures’
‘D

ata’

‘Inform
ation System

s’

‘Papyri’
‘W

ax Tablets’

‘Storage
M

anagem
ent’

‘Secondary
Storage’

‘Program
m

ing
Techniques’

‘Softw
are’

‘O
perating System

s’

‘Com
puting Classification System

’
a
c
m
9
8
:
C
C
S

a
c
m
9
8
:
D

m
y
b
i
b
:
j
o
u
r
n
a
l
_
a
d
m

hasTopConcept

h
a
s
T
o
p
C
o
n
c
e
p
t

a
c
m
9
8
:
E

a
c
m
9
8
:
H

hasTopConcept

a
c
m
9
8
:
D
_
1

a
c
m
9
8
:
D
_
4

narrower

narrower

‘Logic
Program

m
ing’

‘Visual
Program

m
ing’

a
c
m
9
8
:
D
_
1
_
6

a
c
m
9
8
:
D
_
1
_
7

narrower

narrower

narrower

narrower a
c
m
9
8
:
D
_
4
_
2

a
c
m
9
8
:
D
_
4
_
2
_
e

a
c
m
9
8
:
D
_
4
_
2
_
e
_
i

a
c
m
9
8
:
D
_
4
_
2
_
e
_
i
i

narrower

narrower

‘D
atabase M

anagem
ent’

‘Physical D
esign’

‘Logical D
esign’

‘D
ata M

odels’

‘Inform
ation Storage and
Retrieval’

‘Inform
ation Storage’

‘System
s and Softw

are’

‘Perform
ance evaluation

(effi
ciency and effectiveness)’

a
c
m
9
8
:
E
_
1

n
a
r
r
o
w
e
r

a
c
m
9
8
:
E
_
1
_
c

a
c
m
9
8
:
E
_
1
_
d

n
a
r
r
o
w
e
r

n
a
r
r
o
w
e
r

a
c
m
9
8
:
H
_
2

n
a
r
r
o
w
e
r

a
c
m
9
8
:
H
_
2
_
1

a
c
m
9
8
:
H
_
2
_
2

narrower

a
c
m
9
8
:
H
_
2
_
1
_
a

narrower

narrower

a
c
m
9
8
:
H
_
3

n
a
r
r
o
w
e
r

n
a
r
r
o
w
e
r

a
c
m
9
8
:
H
_
3
_
2

narrower

a
c
m
9
8
:
H
_
3
_
4

a
c
m
9
8
:
H
_
3
_
4
_
d

narrower

m
y
b
i
b
:
c
o
n
f
_
d
m
c

m
y
b
i
b
:
a
r
t
i
c
l
e
_
6
6
_
s
c
a
u
r
u
s
_
q
u
m
r
a
n

m
y
b
i
b
:
a
r
t
i
c
l
e
_
6
6
_
w
a
x
_
c
i
c
e
r
o

m
y
b
i
b
:
i
n
p
r
o
c
_
4
4
_
b
r
u
t
u
s

‘A
pplied D

ata
M

anagem
ent’

‘From
 W

ax Tablets to Papyri: The
Q

um
ran Case Study’

‘Space- and Tim
e-O

ptim
al

D
ata Storage on W

ax Tablets’
‘Effi

cient M
anagem

ent of Rapidly
Changing Personal Records’

primarySubject

subject

r
e
l
a
t
e
d

p
r
i
m
a
r
y
S
u
b
j
e
c
t

s
u
b
j
e
c
t

primarySubject

primarySubject

r
e
l
a
t
e
d

p
r
i
m
a
r
y
S
u
b
j
e
c
t

subject

related

subject

Identifier and label of elem
ents

Context-M
enu: Interactive Features

Folding elem
ents for inform

ation focus

Elem
ent nesting (child relation) becom

es
box nesting and colors

N
on-hierarchical relations as hyperlinks

O
rdered vs. unordered children list

A
ccessing W

eb resources: arbitrary XM
L

docum
ents can be accessed using their U

RL
Term

s as form
ulas:

Term
s m

ay contain boolean connectives, including disjunctions

Rules separate construction from
 querying

and allow
 for procedural abstraction in query program

s

Xcerpt and visXcerpt:
Integrating W

eb Q
uerying

Sacha Berger
François Bry
Tim

 Furche

Incom
plete patterns in depth:

descendant allow
s additional interm

ediary elem
ents

G
rouping collects alternative bindings for variables:

essential for structural assem
bly

Incom
plete patterns in breadth:

partial patterns allow
 additional child elem

ents

Variables are used in lieu of data :
express selection, joins, or arithm

etic conditions

Term
s as form

ulas:
Term

s m
ay contain boolean connectives, variables, negation, etc.

Subterm
 negation:

Som
e subterm

s m
ay be required not to occur in m

atching data

O
ptional subterm

s:
Local form

 of disjunction essential for variable schem
a data

Value Joins:
Expressed through m

ultiple variable occurrences

O
ptional construction:

Lim
ited form

 of conditional construction based on variable bindings

— on cities and rivers of the World
— can you guess the name of the

third city (represented by X)?

X

Australia

Germany Berlin

Sydney

“Spree”

“Isar”

locatedIn

locatedIn

hasRiver

Munich

locatedIn

hasRiver

locatedIn

Y

“Moselle” “Rhine”

hasRiver hasRiver

hasSight spitsAt

“Schängelbrunnen”

name

Tourist

Z

rdf:type

Legend (Data) X

country city

existential variable

literalclass

RDF Data Graph 0

FORALL City City' City'' Country
IF City locatedIn Country,

City' locatedIn Country,

 City <_lex City',

NOT(City'' locatedIn Country,

 City <_lex City'',

 City'' <_lex City')

THEN City predecessor City'

FORALL Country EXISTS Bag FORALL City City'
IF City locatedIn Country,

 NOT City' predecessor City

THEN Bag rdf:_1 City,

 Bag rdf:type rdf:Bag,

 Country cities Bag

FORALL Bag City City'
IF Bag rdf:_n City,

 City predecessor City'

THEN Bag rdf:_(n+1) City'

Example: Filling Containers 1

1

2

3 U

Germany

rdf:Bag

X

Munich

Berlin

cities

rdf:typerdf:_2

rdf:_1

rdf:_3

W
rdf:type

Australia

cities

Sydney

rdf:_1

Filled Containers 2

Example: Gathering Collections

FORALL City City' City'' Country
IF City locatedIn Country,

City' locatedIn Country,

City <_lex City',

NOT(City'' locatedIn Country,

City <_lex City'',

City'' <_lex City')

THEN City predecessor City'

1

FORALL City EXISTS Coll
 FORALL City' Country
IF City locatedIn Country,

NOT(City' locatedIn Country,

City' predecessor City)

THEN Coll rdf:first City

FORALL Coll EXISTS Coll'
 FORALL City City'
IF Coll rdf:first City,

City predecessor City'

THEN Coll rdf:rest Coll',

 Coll' rdf:first City

FORALL Coll City City'
IF Coll rdf:first City,

 NOT City predecessor City'

THEN Coll rdf:rest rdf:nil

1

2

3

4

U1

Germany

cities

rdf:first

Berlin U2

rdf:rest

rdf:first

Munich

U3
rdf:rest

rdf:first

X

rdf:rest
U4

Australia

cities

rdf:first

Sydney

rdf:rest

Gathered Collections 2

a

p

p

q

U

b V

W
q

a

p

p

q

c

b f(a,b)

f(a,c)
q

a

p

p

U

b

a

p

p

c

b

S (SΣ)−1

(✳)

(✳)S

a

p
b

a

p
b

a

p
q

b f(a,b)

a

p
q

b V

(✳)

(✳)S

leaner leaner

leanerleaner

Example of Operational Semantics 1

a

X

b

c

p

p

r

Uq

r
c

V
q

a

X

b

c

p

p

r

r
c

a

X

b

c

p

p

r

a

b

p

r
c

V
q

a

X

b

c

p

p

r

Uq

V
q

a

b

p

r
c

leaner

leaner

(✳)

(✳✳) (✳)

(✳✳)

(✳)

Example Lean Semantics 3

Example Lean Semantics 2

a

c

d
p

p

q

Uq

b

q
a

c

d
p

p

qb

a

c

d
p

p

q

U

b

q

a

c

d
p

p

q

Uq

b

a

c

d
p

p

qb

leaner ⊭

(✳) (✳)

(✳)

Leaner, Lean Operator

leanerσ(ϕ) :=

ϕσ if ϕσ⊆ϕ

ϕ otherwise

The lean operator L : RDF → RDF

is defined as

L(ϕ) :=
⋂

σ∈Subst
leanerσ(ϕ)

An RDF graphϕ is lean if L(ϕ) =
ϕ.

3 Fixed Point Semantics

3.1 Definition

Let

•Φ be an RDFLOG program,

• ϕ an RDF graph,
3

1 Notes

On this poster the following notations are used:

– We consider an RDF graph a formula.

– The inverse function of a skolemisation S is denoted by S−1.

– We denote the application of a skolemisation S to a formula ϕ by ϕS .

– We denote a skolenisation S which eliminates the existential variables {x1, . . . , xn}
by replacing them with the terms {t1, . . . , tn} by 〈x1/t1, . . . , xn/tn〉. Then the ap-
plication of a substitutionσ to a skolemisation 〈x1/t1, . . . , xn/tn〉 is 〈x1/t1σ, . . . , xn/tnσ〉.

2 Lean

2.1 Definition

Let

– ϕ an RDF graph and

– σ a substitution for the existential variables in ϕ.

The mapping leanerσ : RDF → RDF is defined as

leanerσ(ϕ) :=
{
ϕσ if ϕσ⊆ϕ
ϕ otherwise

The lean operator L : RDF → RDF is defined as

L(ϕ) :=
⋂

σ∈Subst
leanerσ(ϕ)

An RDF graph ϕ is lean if L(ϕ) =ϕ.

3 Fixed Point Semantics

3.1 Definition

Let

– Φ an RDFLOG program,

– ϕ an RDF graph,

– (Q1x1 . . .Qn xn .t1 ∧ . . .∧ tn → t) = r ∈Φ an RDFLOG rule,

– S a skolemisation forΦ∪ {ϕ}, and

– σ a substitution for the universal variables in r .

1

1 Notes

On this poster the following notations are used:

– We consider an RDF graph a formula.

– The inverse function of a skolemisation S is denoted by S−1.

– We denote the application of a skolemisation S to a formula ϕ by ϕS .

– We denote a skolenisation S which eliminates the existential variables {x1, . . . , xn}
by replacing them with the terms {t1, . . . , tn} by 〈x1/t1, . . . , xn/tn〉. Then the ap-
plication of a substitutionσ to a skolemisation 〈x1/t1, . . . , xn/tn〉 is 〈x1/t1σ, . . . , xn/tnσ〉.

2 Lean

2.1 Definition

Let

– ϕ an RDF graph and

– σ a substitution for the existential variables in ϕ.

The mapping leanerσ : RDF → RDF is defined as

leanerσ(ϕ) :=
{
ϕσ if ϕσ⊆ϕ
ϕ otherwise

The lean operator L : RDF → RDF is defined as

L(ϕ) :=
⋂

σ∈Subst
leanerσ(ϕ)

An RDF graph ϕ is lean if L(ϕ) =ϕ.

3 Fixed Point Semantics

3.1 Definition

Let

– Φ an RDFLOG program,

– ϕ an RDF graph,

– (Q1x1 . . .Qn xn .t1 ∧ . . .∧ tn → t) = r ∈Φ an RDFLOG rule,

– S a skolemisation forΦ∪ {ϕ}, and

– σ a substitution for the universal variables in r .

1

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

– !P"L the operational semantics of a logic program P , and

– σ(ϕ) the substitution used in the proof of ϕ fromΨS .

The operational semantics is defined as

!Ψ"O := {ϕ(Sσ(ϕ))−1 |ϕ ∈ !ΨS"L}

5.2 Proposition: Soundness and Completeness

Let

– Ψ an RDF program.

Then

!Ψ"O ⊆ !Ψ"M (soundness)

∀ϕ ∈ !Ψ"M ∃ψ ∈ !Ψ"O ∃σ ∈ Subs(exvar(ϕ)) .ϕσ |=|ψ (completeness)

5.3 Proposition:Big Lemma

Let

– Ψ a set of formulas,

– ϕ a formula, and

– S a skolemisation.

Then
Ψ |= ϕ⇔ΨS |= ϕS

3

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

– !P"L the operational semantics of a logic program P , and

– σ(ϕ) the substitution used in the proof of ϕ fromΨS .

The operational semantics is defined as

!Ψ"O := {ϕ(Sσ(ϕ))−1 |ϕ ∈ !ΨS"L}

5.2 Proposition: Soundness and Completeness

Let

– Ψ an RDF program.

Then

!Ψ"O ⊆ !Ψ"M (soundness)

∀ϕ ∈ !Ψ"M ∃ψ ∈ !Ψ"O ∃σ ∈ Subs(exvar(ϕ)) .ϕσ |=|ψ (completeness)

5.3 Proposition:Big Lemma

Let

– Ψ a set of formulas,

– ϕ a formula, and

– S a skolemisation.

Then
Ψ |= ϕ⇔ΨS |= ϕS

3

Operational Semantics

Commutativity of leaner and cons

The mapping consr,σ : RDF → RDF is defined as

consr,σ(ϕ) :=
{
ϕ∪ (t Sσ)(Sσ)−1

if {t1, . . . , tn}Sσ⊆ϕS

ϕ otherwise

The consequence operator T : RDF → RDF is defined as

T (ϕ) :=
⋃

r∈Ψ

⋃

σ∈Subst
consr,σ(ϕ)

The fixed point semantics of a RDFLOG program is defined as

&Ψ'F P := lfp(T)

3.2 Proposition: Commutativity

Let

– r an RDFLOG rule,

– σ a substitution for the universal variables in r , and

– τ a substitution for the existential variables in ϕ.

Then

exvar(r)∩dom(τ)∩ ran(τ) =)
=⇒ leanerτ ◦consr,σ = consr,σ ◦ leanerτ

4 Model Theoretic Semantics

4.1 Definition

Let

– Ψ an RDFLOG program.

The model theoretic semantics ofΨ is defined as

&Ψ'M := {ϕ ∈ RDF |Ψ |= ϕ}

2

The mapping consr,σ : RDF → RDF is defined as

consr,σ(ϕ) :=
{
ϕ∪ (t Sσ)(Sσ)−1

if {t1, . . . , tn}Sσ⊆ϕS

ϕ otherwise

The consequence operator T : RDF → RDF is defined as

T (ϕ) :=
⋃

r∈Ψ

⋃

σ∈Subst
consr,σ(ϕ)

The fixed point semantics of a RDFLOG program is defined as

&Ψ'F P := lfp(T)

3.2 Proposition: Commutativity

Let

– r an RDFLOG rule,

– σ a substitution for the universal variables in r , and

– τ a substitution for the existential variables in ϕ.

Then

exvar(r)∩dom(τ)∩ ran(τ) =)
=⇒ leanerτ ◦consr,σ = consr,σ ◦ leanerτ

4 Model Theoretic Semantics

4.1 Definition

Let

– Ψ an RDFLOG program.

The model theoretic semantics ofΨ is defined as

&Ψ'M := {ϕ ∈ RDF |Ψ |= ϕ}

2

Soundness & Completeness

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

– !P"L the operational semantics of a logic program P , and

– σ(ϕ) the substitution used in the proof of ϕ fromΨS .

The operational semantics is defined as

!Ψ"O := {ϕ(Sσ(ϕ))−1 |ϕ ∈ !ΨS"L}

5.2 Proposition: Soundness and Completeness

Let

– Ψ an RDF program.

Then

!Ψ"O ⊆ !Ψ"M (soundness)

∀ϕ ∈ !Ψ"M ∃ψ ∈ !Ψ"O ∃σ ∈ Subs(exvar(ϕ)) .ϕσ |=|ψ (completeness)

5.3 Proposition:Big Lemma

Let

– Ψ a set of formulas,

– ϕ a formula, and

– S a skolemisation.

Then
Ψ |= ϕ⇔ΨS |= ϕS

3

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

– !P"L the operational semantics of a logic program P , and

– σ(ϕ) the substitution used in the proof of ϕ fromΨS .

The operational semantics is defined as

!Ψ"O := {ϕ(Sσ(ϕ))−1 |ϕ ∈ !ΨS"L}

5.2 Proposition: Soundness and Completeness

Let

– Ψ an RDF program.

Then

!Ψ"O ⊆ !Ψ"M (soundness)

∀ϕ ∈ !Ψ"M ∃ψ ∈ !Ψ"O ∃σ ∈ Subs(exvar(ϕ)) .ϕσ |=|ψ (completeness)

5.3 Proposition:Big Lemma

Let

– Ψ a set of formulas,

– ϕ a formula, and

– S a skolemisation.

Then
Ψ |= ϕ⇔ΨS |= ϕS

3

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

– !P"L the operational semantics of a logic program P , and

– σ(ϕ) the substitution used in the proof of ϕ fromΨS .

The operational semantics is defined as

!Ψ"O := {ϕ(Sσ(ϕ))−1 |ϕ ∈ !ΨS"L}

5.2 Proposition: Soundness and Completeness

Let

– Ψ an RDF program.

Then

!Ψ"O ⊆ !Ψ"M (soundness)

∀ϕ ∈ !Ψ"M ∃ψ ∈ !Ψ"O ∃σ ∈ Subs(exvar(ϕ)) .ϕσ |=|ψ (completeness)

5.3 Proposition:Big Lemma

Let

– Ψ a set of formulas,

– ϕ a formula, and

– S a skolemisation.

Then
Ψ |= ϕ⇔ΨS |= ϕS

3

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

– !P"L the operational semantics of a logic program P , and

– σ(ϕ) the substitution used in the proof of ϕ fromΨS .

The operational semantics is defined as

!Ψ"O := {ϕ(Sσ(ϕ))−1 |ϕ ∈ !ΨS"L}

5.2 Proposition: Soundness and Completeness

Let

– Ψ an RDF program.

Then

!Ψ"O ⊆ !Ψ"M (soundness)

∀ϕ ∈ !Ψ"M ∃ψ ∈ !Ψ"O ∃σ ∈ Subs(exvar(ϕ)) .ϕσ |=|ψ (completeness)

5.3 Proposition:Big Lemma

Let

– Ψ a set of formulas,

– ϕ a formula, and

– S a skolemisation.

Then
Ψ |= ϕ⇔ΨS |= ϕS

3

Skolemisation & Entailment

Fixed Point Semantics

1 Notes

On this poster the following notations are used:

– We consider an RDF graph a formula.

– The inverse function of a skolemisation S is denoted by S−1.

– We denote the application of a skolemisation S to a formula ϕ by ϕS .

– We denote a skolenisation S which eliminates the existential variables {x1, . . . , xn}
by replacing them with the terms {t1, . . . , tn} by 〈x1/t1, . . . , xn/tn〉. Then the ap-
plication of a substitutionσ to a skolemisation 〈x1/t1, . . . , xn/tn〉 is 〈x1/t1σ, . . . , xn/tnσ〉.

2 Lean

2.1 Definition

Let

– ϕ an RDF graph and

– σ a substitution for the existential variables in ϕ.

The mapping leanerσ : RDF → RDF is defined as

leanerσ(ϕ) :=
{
ϕσ if ϕσ⊆ϕ
ϕ otherwise

The lean operator L : RDF → RDF is defined as

L(ϕ) :=
⋂

σ∈Subst
leanerσ(ϕ)

An RDF graph ϕ is lean if L(ϕ) =ϕ.

3 Fixed Point Semantics

3.1 Definition

Let

– Ψ an RDFLOG program, ϕ an RDF graph,

– (Q1x1 . . .Qn xn .t1 ∧ . . .∧ tn → t) = r ∈Ψ an RDFLOG rule,

– S skolemisation forΨ∪ {ϕ}, σ substitution for the universal var.s in r .

1

The mapping consr,σ : RDF → RDF is defined as

consr,σ(ϕ) :=
{
ϕ∪ (t Sσ)(Sσ)−1

if {t1, . . . , tn}Sσ⊆ϕS

ϕ otherwise

The consequence operator T : RDF → RDF is defined as

T (ϕ) :=
⋃

r∈Ψ

⋃

σ∈Subst
consr,σ(ϕ)

The fixed point semantics of a RDFLOG program is defined as

&Ψ'F P := lfp(T)

3.2 Proposition: Commutativity

Let

– r an RDFLOG rule,

– σ a substitution for the universal variables in r , and

– τ a substitution for the existential variables in ϕ.

Then

exvar(r)∩dom(τ)∩ ran(τ) =)
⇒ leanerτ ◦consr,σ = consr,σ ◦ leanerτ

4 Model Theoretic Semantics

4.1 Definition

Let

– Ψ an RDFLOG program.

The model theoretic semantics ofΨ is defined as

&Ψ'M := {ϕ ∈ RDF |Ψ |= ϕ}

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

2

The mapping consr,σ : RDF → RDF is defined as

consr,σ(ϕ) :=
{
ϕ∪ (t Sσ)(Sσ)−1

if {t1, . . . , tn}Sσ⊆ϕS

ϕ otherwise

The consequence operator T : RDF → RDF is defined as

T (ϕ) :=
⋃

r∈Ψ

⋃

σ∈Subst
consr,σ(ϕ)

The fixed point semantics of a RDFLOG program is defined as

&Ψ'F P := lfp(T)

3.2 Proposition: Commutativity

Let

– r an RDFLOG rule,

– σ a substitution for the universal variables in r , and

– τ a substitution for the existential variables in ϕ.

Then

exvar(r)∩dom(τ)∩ ran(τ) =)
⇒ leanerτ ◦consr,σ = consr,σ ◦ leanerτ

4 Model Theoretic Semantics

4.1 Definition

Let

– Ψ an RDFLOG program.

The model theoretic semantics ofΨ is defined as

&Ψ'M := {ϕ ∈ RDF |Ψ |= ϕ}

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

2

The mapping consr,σ : RDF → RDF is defined as

consr,σ(ϕ) :=
{
ϕ∪ (t Sσ)(Sσ)−1

if {t1, . . . , tn}Sσ⊆ϕS

ϕ otherwise

The consequence operator T : RDF → RDF is defined as

T (ϕ) :=
⋃

r∈Ψ

⋃

σ∈Subst
consr,σ(ϕ)

The fixed point semantics of a RDFLOG program is defined as

&Ψ'F P := lfp(T)

3.2 Proposition: Commutativity

Let

– r an RDFLOG rule,

– σ a substitution for the universal variables in r , and

– τ a substitution for the existential variables in ϕ.

Then

exvar(r)∩dom(τ)∩ ran(τ) =)
⇒ leanerτ ◦consr,σ = consr,σ ◦ leanerτ

4 Model Theoretic Semantics

4.1 Definition

Let

– Ψ an RDFLOG program.

The model theoretic semantics ofΨ is defined as

&Ψ'M := {ϕ ∈ RDF |Ψ |= ϕ}

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

2

The mapping consr,σ : RDF → RDF is defined as

consr,σ(ϕ) :=
{
ϕ∪ (t Sσ)(Sσ)−1

if {t1, . . . , tn}Sσ⊆ϕS

ϕ otherwise

The consequence operator T : RDF → RDF is defined as

T (ϕ) :=
⋃

r∈Ψ

⋃

σ∈Subst
consr,σ(ϕ)

The fixed point semantics of a RDFLOG program is defined as

&Ψ'F P := lfp(T)

3.2 Proposition: Commutativity

Let

– r an RDFLOG rule,

– σ a substitution for the universal variables in r , and

– τ a substitution for the existential variables in ϕ.

Then

exvar(r)∩dom(τ)∩ ran(τ) =)
⇒ leanerτ ◦consr,σ = consr,σ ◦ leanerτ

4 Model Theoretic Semantics

4.1 Definition

Let

– Ψ an RDFLOG program.

The model theoretic semantics ofΨ is defined as

&Ψ'M := {ϕ ∈ RDF |Ψ |= ϕ}

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

2

The mapping consr,σ : RDF → RDF is defined as

consr,σ(ϕ) :=
{
ϕ∪ (t Sσ)(Sσ)−1

if {t1, . . . , tn}Sσ⊆ϕS

ϕ otherwise

The consequence operator T : RDF → RDF is defined as

T (ϕ) :=
⋃

r∈Ψ

⋃

σ∈Subst
consr,σ(ϕ)

The fixed point semantics of a RDFLOG program is defined as

&Ψ'F P := lfp(T)

3.2 Proposition: Commutativity

Let

– r an RDFLOG rule,

– σ a substitution for the universal variables in r , and

– τ a substitution for the existential variables in ϕ.

Then

exvar(r)∩dom(τ)∩ ran(τ) =)
⇒ leanerτ ◦consr,σ = consr,σ ◦ leanerτ

4 Model Theoretic Semantics

4.1 Definition

Let

– Ψ an RDFLOG program.

The model theoretic semantics ofΨ is defined as

&Ψ'M := {ϕ ∈ RDF |Ψ |= ϕ}

5 Operational Semantics

5.1 Definition

Let

– Ψ an RDFLOG program,

– S a skolemisation forΨ,

2

Model Theoretic Semantics 1

2

3

4

5

6

7

X

leaner

Pat & Patachon

X X

4

rdflog—Rules & Programs
—An rdflog rule is a Horn clause extended with existentially quantified variables in the head.
—An rdflog rule has to be range restricted wrt. its universally quantified variables.
—An rdflog program is a stratifiable set of rdflog rules.

1 RDF as a Formula

locatedIn(Munich,Germany)∧hasRiver(Munich,“Isar”)∧
locatedIn(Berlin,Germany)∧hasRiver(Berlin,“Spree”)∧
locatedIn(Sydney,Australia)∧
∃x

(
locatedIn(x,Germany)∧
hasRiver(x,“Rhine”)∧hasRiver(x,“Moselle”)∧
∃y(hasSight(x,y)∧name(y,“Schängelbrunnen”)∧
∃z(spitsAt(y,z)∧ rdf:type(z,Tourist)))

)

1

1 RDF as a Formula

locatedIn(Munich,Germany)∧hasRiver(Munich,“Isar”)∧
locatedIn(Berlin,Germany)∧hasRiver(Berlin,“Spree”)∧
locatedIn(Sydney,Australia)∧
∃x

(
locatedIn(x,Germany)∧
hasRiver(x,“Rhine”)∧hasRiver(x,“Moselle”)∧
∃y(hasSight(x,y)∧name(y,“Schängelbrunnen”)∧
∃z(spitsAt(y,z)∧ rdf:type(z,Tourist)))

)

1

RDF Data Graph as Formula 3

— for each country, creates a
container of its cities

— note similarity between the
natural language and the
rdflog formulation in rule 2

— container resources are, as
recommended by the RDF
specification, existential
variables

— Bag is one of the three
container types of RDF

This example shows that there are
cases in which making intermediate
results lean may both
—decrease memory usage and
—increase evaluation speed.

This example shows that if an
intermediate RDF graph is made lean
prematurely, the result of the
evaluation may become incorrect.
We address this by proposing a
condition under which the
immediate consequence and the
lean operator commute (see).4

A

rdf:nil

— all relations from the data graph
are retained in the result

— all relations from the data graph
are retained in the result

1 Operational Semantics

∀x y ∃z p(x, y) → q(y, z) (∗∗)

∀x y p(x, y) → q(y, f (x, y)) (∗∗)

S = 〈u/c, z/ f (x, y)〉
(SΣ)−1 = 〈c/u, f (a,b)/v, f (a,c)/w〉

Σ= {{x/a, y/b}, {x/a, y/c}}

2 Lean 1

∃y∀x p(a, x) → q(x, y) (∗)

3 lean 2

∀x y ∃z p(x, y) → q(y, z) (∗)

p(a,b) → r (b,c) (∗∗)

1

1 Operational Semantics

∀x y ∃z p(x, y) → q(y, z) (∗∗)

∀x y p(x, y) → q(y, f (x, y)) (∗∗)

S = 〈u/c, z/ f (x, y)〉
(SΣ)−1 = 〈c/u, f (a,b)/v, f (a,c)/w〉

Σ= {{x/a, y/b}, {x/a, y/c}}

2 Lean 1

∃y∀x p(a, x) → q(x, y) (∗)

3 lean 2

∀x y ∃z p(x, y) → q(y, z) (∗)

p(a,b) → r (b,c) (∗∗)

1

(✳)

(✳)S

1 Operational Semantics

∀x y ∃z p(x, y) → q(y, z) (∗∗)

∀x y p(x, y) → q(y, f (x, y)) (∗∗)

S = 〈u/c, z/ f (x, y)〉
(SΣ)−1 = 〈c/u, f (a,b)/v, f (a,c)/w〉

Σ= {{x/a, y/b}, {x/a, y/c}}

2 Lean 1

∃y∀x p(a, x) → q(x, y) (∗)

3 lean 2

∀x y ∃z p(x, y) → q(y, z) (∗)

p(a,b) → r (b,c) (∗∗)

1

(✳)

1 Operational Semantics

∀x y ∃z p(x, y) → q(y, z) (∗∗)

∀x y p(x, y) → q(y, f (x, y)) (∗∗)

S = 〈u/c, z/ f (x, y)〉
(SΣ)−1 = 〈c/u, f (a,b)/v, f (a,c)/w〉

Σ= {{x/a, y/b}, {x/a, y/c}}

2 Lean 1

∃y∀x p(a, x) → q(x, y) (∗)

3 lean 2

∀x y ∃z p(x, y) → q(y, z) (∗)

p(a,b) → r (b,c) (∗∗)

1

1 Operational Semantics

∀x y ∃z p(x, y) → q(y, z) (∗∗)

∀x y p(x, y) → q(y, f (x, y)) (∗∗)

S = 〈u/c, z/ f (x, y)〉
(SΣ)−1 = 〈c/u, f (a,b)/v, f (a,c)/w〉

Σ= {{x/a, y/b}, {x/a, y/c}}

2 Lean 1

∃y∀x p(a, x) → q(x, y) (∗)

3 lean 2

∀x y ∃z p(x, y) → q(y, z) (∗)

p(a,b) → r (b,c) (∗∗)

1

(✳✳)
(✳)

1
O

p
eration

alSem
an

tics

∀
x

y∃z
p

(x,y)→
q

(y,z)
(∗∗

)

∀
x

y
p

(x,y)→
q

(y,f(x,y))
(∗∗

)

S
=
〈u

/c,z/f(x,y)〉
(S
Σ

) −
1=

〈c/u
,f(a

,b
)/v,f(a

,c)/w
〉

Σ
=

{{x/a
,y/b

},{x/a
,y/c}}

2
Lean

1

∃
y∀

x
p

(a
,x)→

q
(x,y)

(∗
)

3
lean

2

∀
x

y∃z
p

(x,y)→
q

(y,z)
(∗

)

p
(a

,b
)→

r(b,c)
(∗∗

)

1

1
O

p
er

at
io

n
al

Se
m

an
ti

cs

∀x
y
∃z

p
(x

,y
)→

q
(y

,z
)

(∗
∗)

∀x
y

p
(x

,y
)→

q
(y

,f
(x

,y
))

(∗
∗)

S
=
〈u

/c
,z

/f
(x

,y
)〉

(S
Σ

)−
1
=
〈c

/u
,f

(a
,b

)/
v,

f(
a

,c
)/

w
〉

Σ
=

{{
x/

a
,y

/b
},

{x
/a

,y
/c

}}

2
Le

an
1

∃y
∀x

p
(a

,x
)→

q
(x

,y
)

(∗
)

3
le

an
2

∀x
y
∃z

p
(x

,y
)→

q
(y

,z
)

(∗
)

p
(a

,b
)→

r(
b,

c)
(∗
∗)

1

1 Operational Semantics

∀x y ∃z p(x, y) → q(y, z) (∗∗)

∀x y p(x, y) → q(y, f (x, y)) (∗∗)

S = 〈u/c, z/ f (x, y)〉
(SΣ)−1 = 〈c/u, f (a,b)/v, f (a,c)/w〉

Σ= {{x/a, y/b}, {x/a, y/c}}

2 Lean 1

∃y∀x p(a, x) → q(x, y) (∗)

3 lean 2

∀x y ∃z p(x, y) → q(y, z) (∗)

p(a,b) → r (b,c) (∗∗)

1

