
The Journal of Logic and Algebraic Programming 70 (2007) 53–73
www.elsevier.com/locate/jlap

Reasoning about interaction protocols for customizing web service
selection and composition �

Matteo Baldoni ∗, Cristina Baroglio, Alberto Martelli, Viviana Patti

Dipartimento di Informatica – Università degli Studi di Torino, Corso Svizzera 185, 10149 Torino, Italy

Abstract

This work faces the problem of automatic selection and composition of web services, discussing the advantages that derive
from the inclusion, in a web service declarative description, of the high-level communication protocol, that is used by the service
for interacting with its partners, allowing a rational inspection of it. The approach we propose is set in the Semantic Web field of
research and inherits from research in the field of multi-agent systems. Web services are viewed as software agents, communicating by
predefined sharable interaction protocols. A logic programming framework based on modal logic is proposed, where the protocol-
based interactions of web services are formalized and the use of reasoning about actions and change techniques (planning) for
performing the tasks of selection and composition of web services in a way that is personalized w.r.t. the user request is enabled.
We claim that applying reasoning techniques on a declarative specification of the service interactions allows to gain flexibility in
fulfilling the user preference in the context of a web service matchmaking process.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Semantic Web services; Reasoning about actions; Interaction protocols; Personalization; Agent logic programming

1. Introduction

Web services are an emergent paradigm for implementing business collaborations, across and within corporation
boundaries [1]. Workflow research and technology have found in web services a natural field of application which
opens interesting and challenging perspectives. Web services, however, also raised the attention of other research
communities, in particular the two respectively studying the Semantic Web and multi-agent systems (MAS for short).
The work presented in this paper is set transversely across these three fields. The aim is, basically, to show with
a practical example the possibility and the benefits of cross-fertilization of these three areas, which indeed show
interesting convergence points.

� This research has partially been funded by the European Commission and by the Swiss Federal Office for Education and Science within
the 6th Framework Programme project REWERSE number 506779 (cf. http://rewerse.net), and it has also been supported by MIUR PRIN 2005
“Specification and Verification of Agent Interaction Protocols” national project.

∗
Corresponding author. Tel.: +39 011 6706711; fax: +30 011 751603.
E-mail addresses: baldoni@di.unito.it (M. Baldoni), baroglio@di.unito.it (C. Baroglio), mrt@di.unito.it (A. Martelli), patti@di.unito.it

(V. Patti).

1567-8326/$ - see front matter ( 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2006.05.005

www.elsevier.com/locate/jlap
http://rewerse.net
mailto:baldoni@di.unito.it
mailto:baroglio@di.unito.it
mailto:mrt@di.unito.it
mailto:patti@di.unito.it


54 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

Concerning web services, this paper focuses on a central issue: studying declarative descriptions aimed at allowing
forms of automated interoperation that include, on the one hand, the automation of tasks like matchmaking and execution
of web services, on the other, the automation of service selection and composition in a way that is customized w.r.t.
the user’s goals and needs, a task that can be considered as a form of personalization [2]. Indeed, selection and
composition not always are to be performed on the sole basis of general properties of the services themselves and of
their interactive behavior, such as the category of the service or the functional compositionality of a set of services, but
they should also take into account the user’s intentions (and purposes) which both motivate and constrain the search
or the composition. As a quick example, consider a web service that allows buying products, alternatively paying cash
or by credit card: a user might have preferences on the form of payment to enact. In order to decide whether or not
buying at this shop, it is necessary to single out the specific course of interaction that allows buying cash. This form
of personalization can be obtained by applying reasoning techniques on a description of the service process. Such a
description must have a well-defined meaning for all the parties involved. In this issue it is possible to distinguish three
necessary components: first, web services capabilities must be represented according to some declarative formalism
with a well-defined semantics, as also recently observed by van der Aalst [1]; second, automated tools for reasoning
about such a description and performing tasks of interest must be developed; third in order to gain flexibility in fulfilling
the user’s request, reasoning tools should represent such requests as abstract goals.

The approach that we propose is to exploit results achieved by the community that studies logic for agent systems
and, in particular, reasoning about actions and change. Indeed, the availability of semantic information about web
resources enables the application of reasoning techniques, such as ontology reasoning, constraint reasoning, non-
monotonic reasoning, and temporal reasoning [3], whose use would allow the design of systems that, being able of
autonomous decisions, can adapt to different users and are open to interact with one another. In particular, we propose
to use techniques for reasoning about actions for performing the automatic selection and composition of web services,
in a way that is customized w.r.t. the users’ request, by reasoning on the communicative behavior of the services.
Communication can, in fact, be considered as the behavior resulting from the application of a special kind of actions:
communication actions. The reasoning problem that this proposal faces can intuitively be described as looking for an
answer to the question “Is it possible to make a deal with this service respecting the user’s goals?”. Given a logic-based
representation of the service policies and a representation of the customer’s needs as abstract goals, expressed by a
logic formula, logic programming reasoning techniques are used for understanding if the constraints of the customer
fit in with the policy of the service.

This proposal inherits from the experience of the research community that studies MAS and, in particular, logic-
based formalizations of interaction aspects. Indeed, communication has intensively been studied in the context of
formal theories of agency [4,5] and a great deal of attention has been devoted to the definition of standard agent
communication languages (ACL), e.g. FIPA [6] and KQML [7]. Recently, most of the efforts have been devoted to the
definition of formal models of interaction among agents, that use conversation protocols. The interest for protocols
is due to the fact that they improve the interoperability of the various components (often separately developed) and
allow the verification of compliance to the desired standards. Given the abstraction of web services as entities, that
communicate by following predefined, public and sharable interaction protocols, we have studied the possible benefits
provided by a declarative description of their communicative behavior, in terms of personalization of the service
selection and composition. The approach models the interaction protocols provided by web services by a set of logic
clauses, thus at high (not at network) level. A description by policies is definitely richer than the list of input and output,
precondition and effect properties usually taken into account for the matchmaking (see Section 5). Moreover having a
logic specification of the protocol, it is possible to reason about the effects of engaging specific conversations, and, on
this basis, to perform many tasks in an automatic way. Actually, the proposed approach can be considered as a second
step in the matchmaking process, which narrows a set of already selected services and performs a customization of the
interaction with them.

For facing the problem of describing and reasoning about conversation protocols, we have extended the agent
language DyLOG [8] by introducing a communication kit, that is presented in this article. DyLOG is an agent
programming language, based on a modal logic for reasoning about actions and beliefs, which has already been
used in the development of adaptive web applications [9]. It allows the specification of the behavior of rational agents,
and it supplies mechanisms for reasoning about it. In Section 3 we present an extension for dealing with communication.
This extension is based on an agent theory, in which agents have local beliefs about the world and about the mental
states of the other agents, and where communications are modelled as actions that operate on such beliefs. This account



M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 55

of communication aims at coping with two main aspects: the change in the state that encodes an agent’s beliefs, caused
by a communicative act, and the decision strategy used by an agent for answering to a received communication. To
these aims, the semantics of primitive speech acts is described in terms of effects on the mental state, both in the
case in which the agent is the sender and in the case in which it is the recipient, and, in the line of [10], conversation
protocols are used as decision procedures. Each agent has a subjective perception of the on-going conversations and,
guided by the protocol, it makes hypothetical assumptions on the other agents’ answers. In the web service application
context we exploit such a feature by including in the knowledge base of an agent (the requester) a description of the
potentially interesting services. This description is given by logic rules expressing their communicative policies from
the point of view of the requester. The language provides a goal-directed proof procedure that supports reasoning on
communication and allows an agent to reason about the interaction that it is going to enact before it actually occurs,
with the aim of proving properties of the possible executions.

In Section 2 we will locate our proposal in the context of current research on web services, while in Sections 2.1 and
4 we will show by means of examples how it is possible to use the new tools offered by the language for representing
and reasoning on the conversation policies of the web services for personalizing the retrieval, the composition of, and
the interaction with services. In this perspective, this article integrates and extends the work in [11,12].

2. Context and perspectives

In the last years distributed applications over the World-Wide Web have obtained wide popularity and uniform
mechanisms have been developed for handling computing problems which involve a large number of heterogeneous
components, that are physically distributed and that interoperate. These developments have begun to coalesce around
the web service paradigm, where a service can be seen as a component available over the web. Each service has an
interface that is accessible through standard protocols and that describes the interaction capabilities of the service. It
is possible to develop new applications over the web by combining and integrating existing web services.

In this scenario, two needs have inspired recent research [13]: the first is the need of developing programming
languages for implementing the behavior of the single participants involved in an interaction, the other is the need
of developing modelling languages for describing processes and their interaction protocols, abstracting from details
concerning the internal behavior of the single components. At the moment of writing this article, the language BPEL4WS
(BPEL for short [14]) has emerged as the standard for specifying the business processes of single services and it allows
writing a local view of the interaction that should take place, i.e. the interaction from the point of view of the process.
Its authors envisioned the use of the language both as an execution language, for specifying the actual behavior of a
participant in a business interaction, and as a modelling language, for specifying the interaction at an abstract level, once
again from the perspective of the service being described. If, on a hand, BPEL as an execution language is extremely
successful, BPEL as a language for modelling abstract interactions substantially did not succeed [1]. Its limit is that
it does not allow to perform the analysis of the described process, but the capability of performing this analysis is
fundamental to the real implementation of those sophisticate forms of flexibility and composition that one expects
in the context of the web. For achieving such a flexibility and enable automatic devices to use a web resource, the
latter must bear some public information about itself, its structure, the way in which it is supposed to be used, and so
forth. This information should be represented according to some conventional formalism which relies on well-founded
models, upon which it is possible to define access and usage mechanisms. To meet these requirements, the attention
of part of the community has focussed on capturing the behavior of BPEL in a formal way, and many translations of
BPEL into models supporting analysis and verification (process algebras, petri nets, finite state machines) are currently
under investigation [15,16]. For what concerns the specification of interaction protocols, instead, there is a growing
agreement on the fact that the local point of view is not sufficient and that a global view of the interaction to occur
should be expressed. This level of representation is captured by the concept of choreography. Choreographies are
expressed by using specific languages, like the W3C proposal WS-CDL [17]. We will discuss about choreographies
further below in the section.

In parallel, the World-Wide Web Consortium (W3C), has given birth to the Semantic Web initiative [18] (see also
[19,20]) which is centered on providing a common framework, that allows resources to be shared and reused across
application, enterprise, and community boundaries. In order to be machine-processable, information must be given
a well-defined meaning; one underling assumption is that its representation has a declarative format. Research in



56 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

the Semantic Web area is giving very good results for what concerns the intelligent retrieval and use of documents,
nevertheless, research on Semantic Web services is still at its beginning. The current W3C proposal for describing
Semantic Web services is the language OWL-S. Like BPEL, OWL-S allows the description of possibly composite
processes from a local perspective. Noticeably, the sets of operators that the two languages supply, and by which the
processes can be composed, though not fully identical, show a consistent intersection. The main difference between the
two languages seems to be that BPEL is more focussed on the message exchange between the service and its parties,
while OWL-S is more focussed on the process advertisement and the process structure. Another similarity is that both
languages allow the definition of executable specifications. For the sake of completeness, OWL-S is but a proposal and
alternative initiatives are being conducted, like WSMO [21]. It is also interesting to notice that in the Semantic Web
context, there is currently no proposal of a concept close to that of “choreography”, the questions of service effective
executability and interoperability are open, and the proposed matchmaking techniques are still simple and quite far
from fully exploiting the power of shareable semantics.

We have observed two interesting convergence points, one between the vision reported in [13] and results of research
in multi-agent systems, the other between research in multi-agent systems and that in the Semantic Web. The former
is that also in the case of agent systems, research has identified in message exchange the key to interoperation, even
in the case in which agents are not rational. In particular, in an agent system it is possible to distinguish the global
interaction schema that the group of agents should realize, the interaction protocol (analogous to a choreography),
from a declarative representation of the interactive behavior of the single agents, their interaction policies (executable
specifications). Protocols are public and shared by the agents; policies can be made public. Similarly to what postulated
by the Semantic Web, both descriptions are supposed as being declarative, with a well-defined meaning and a well-
founded semantics. Moreover, agent systems are commonly supposed as being open and constituted by heterogeneous
members. In this context, besides giving a global view of communication, protocols can also be considered as a
specification, in an interlanguage (koine), that can be used – even run-time – for selecting agents that should interact
in some task. Partners which agree on using a global interaction protocol, can cooperate even if their local interactive
behaviors are implemented by using different programming languages. The respect of the global rules guarantees the
interoperability of the parties (i.e. their capability of actually producing an interaction), and that the interactions will
satisfy expected requirements. Of course in this context verifying that the local implementations conform to the global
specification becomes crucial.

On the other hand, having a declarative representation with a strong formal basis makes it possible to apply reasoning
techniques for achieving goals of interest or prove properties of interest, the formalization basically depending on
the reasoning tasks to be tackled. In particular, in order to introduce that degree of flexibility that is necessary for
personalizing the selection and composition of web services in an open environment, in such a way that the user’s
goals and needs are satisfied, it is necessary to reason on the interactive behavior that the service can enact by using
a declarative language that both supports the explicit coding of interaction policies, and that refers to a formal model
for reasoning on knowledge attitudes like goals and beliefs. As we will show in the following examples, this kind
of formalization allows the selection of specific courses of interaction among sets of possible alternatives, based on
the user’s likings and constraints, a selection process that can be extended to the case of service composition. To
our knowledge, none of the most widely diffused languages for representing (semantic) web services has all these
characteristics, so for proposing these advanced forms of selection it is necessary to borrow from the neighboring area
of multi-agent systems. We have chosen the DyLOG language for writing the abstract specifications of the service
behaviors because the language shows all these characteristics.

2.1. A scenario

Let us now introduce a simple scenario that will help us in showing how, by reasoning about the communicative
behavior of web services, it is possible to personalize their fruition. The scenario encompasses two kinds of web services
for taking reservation: services to book tables at restaurants and services to book seats at cinemas. In this framework it is
quite easy to invent queries of various complexity. Not all of them can be answered by the basic keyword-based retrieval
mechanisms (see related works in Section 5) with sufficient precision. To the aims of this example it is sufficient to
suppose that there are only two restaurant booking services (we will simply call them restaurant1 and restaurant2) and
two cinema booking services (cinema1 and cinema2). On a keyword basis, the two cinemas have the same description
as well as the two restaurants but all the services have a different interactive behavior with their clients. Figs. 1 and



M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 57

Customer Restaurant

queryIf(available(time))

refuseInform(available(time))

inform(~available(time))

inform(available(time))

inform(reservation(time))

alternative

inform(cinema_promo)

inform(ft_number)

Customer Restaurant

queryIf(available(time))

refuseInform(available(time))

inform(~available(time))

inform(available(time))

inform(reservation(time))

alternative

(i) (ii)

Fig. 1. The AUML sequence diagrams represent the interactions occurring between the customer and each of the restaurant web services is followed
by (i) restaurant1 and (ii) restaurant2.

2 report their interaction protocols, represented as AUML [22,23] sequence diagrams. In particular, restaurant1 takes
part to a promotion campaign, by which each customer, who made a reservation by the internet service, receives a
free ticket for a movie (Fig. 1(i)). Restaurant2 does not take part to this initiative (Fig. 1(ii)). On the side of cinemas,
cinema2 accepts reservations to be paid cash but no free tickets (Fig. 2(iv) whereas cinema1 accepts the promotional
tickets and, as an alternative, it also takes reservations by credit card (Fig. 2(iii)).

One of the simplest tasks that can be imagined is web service retrieval, in this case the query is a description of the
desired service (e.g. “cinema booking service”). However, what to do when the user is not simply interested in a generic
kind of service but s/he would like to find services that besides being of that kind also show other characteristics? For
instance to find a cinema booking service that does not require to confirm the reservation by sending a credit card
number. While in the former case a keyword-based description would have been sufficient, and the answer would have
included both cinema1 and cinema2, in the latter case more information about the service is necessary. How to consider
cinema1 that requires either the credit card or a promotional free ticket? Even more interesting is the case in which the
answer to the user’s goal requires to combine the executions of two (or more) independent web services. For instance,
let us suppose that the user would like to organize an evening out by, first, having dinner at some nice restaurant and,
then, watching a movie; moreover, s/he heard that in some restaurants it is possible to gain a free ticket for a movie
and s/he would like to profit of this possibility but only if it is not necessary to use the credit card because s/he does
not trust internet connections very much. If, on one hand, searching for a cinema or a restaurant reservation service is
a task that can be accomplished by any matchmaking approach, the conditions “look for promotions” and “do not use
my credit card” can be verified only by a rational inspection of the communication with the services. This verification
should be done before the actual interaction. Obviously, the only combination that satisfies all the user’s requests is
to reserve a table at restaurant1, and then make a reservation at cinema1. This solution can be found only enacting a
reasoning mechanism that, based on the description of the interaction protocols, selects restaurant1 and cinema1 and,
in particular, it selects the course of action that makes use of the free ticket.

In order to perform this kind of tasks, in this work we set the web service selection and composition problems
in a multi-agent perspective. The idea is to interpret web services as agents, each bearing a public communication
protocol (described in a declarative format), and to delegate the task of selection (or composition) to a personalization
agent. Such an agent receives a description of the user’s desires and goals, interacts with other systems that perform
a less informed retrieval of services, and, in order to find a suitable solution to the user’s request, applies a reasoning
mechanism to the communication protocols of the services. The protocols of such services, that have been identified
by the less informed retrieval systems, are supposed to be represented in a specification language, such as AUML
[22,23]. We assume that this representations are translated in DyLOG procedures that are included in the knowledge
base of the personalization agent. Given this representation, in order to accomplish the reasoning tasks that have been
described, we propose the use of procedural planning techniques, in which the possible executions of a sequence of
protocols are evaluated, with the aim of deciding if they meet or not the requirements or under which assumptions.
In particular, we will exploit the planning capabilities offered by the DyLOG agent programming language, which is
described in Section 3.



58 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

Customer Cinema

queryIf(available(movie))

refuseInform(available(movie))

inform(~available(movie))

inform(available(movie))

queryIf(cinema_promo)

refuseInform(cinema_promo)

inform(~cinema_promo)

alternative

alternative

inform(cinema_promo)

inform(ft_number)

inform(reservation(movie))

queryIf(pay_by(c_card))

refuseInform(pay_by(c_card))

inform(~pay_by(c_card))

inform(pay_by(c_card))

inform(cc_number)

inform(reservation(movie))

alternative

Customer Cinema

queryIf(available(movie))

refuseInform(available(movie))

inform(~available(movie))

inform(available(movie))

inform(pay_by(cash))

alternative

inform(reservation(movie))

(iii) (iv)

Fig. 2. In this case, the AUML sequence diagrams represent the possible interactions between the customer and each cinema web service: (iii)
represents the protocol followed by cinema1; (iv) is followed by cinema2.

Of course, the agent cannot be sure that once the plan is executed it will not fail because the planning process is
performed before the interaction; so, for instance, it cannot know if there will actually be a free table left at the restaurant.
No currently existing selection mechanism can guarantee this but it would be interesting to study the relations between
replanning techniques and the compensation techniques developed for long-time transactions (see Section 5 for further
discussion). The advantage of the proposed approach is that it leaves out services, that would in no case allow the
achievement of the user’s goals respecting all the requirements, as well as it allows the exact identification of those
permitted courses of interaction that satisfy them.

Present web service technology is quite primitive w.r.t. the framework we propose, and the realization of the picture
sketched above would require an integration, in the current tools for web service representation and handling, of
knowledge representation languages – in the line of those developed in the Semantic Web area – and of techniques for
reasoning and dealing with communication, inspired by those studied in the area of MAS. Even if a real integration
is still far from being real for the sake of concreteness, let us describe our vision of the steps to be taken toward the
realization.

In our view, public descriptions of interaction protocols in the scenario above (represented by AUML diagrams)
can be mapped in public descriptions of choreographies (e.g. WS-CDL-like descriptions). A choreography defines a
global view of the protocol followed by a certain service, e.g. the cinema service, for accomplishing the cooperative
task of booking a cinema ticket. A costumer service, that in principle is interested to participate to the cooperation
for booking a ticket for its user, translates such a description in the declarative language DyLOG1 and uses reasoning
techniques, supported by the language, plus its local knowledge on the user’s preferences for checking whether the
contract, defined by the choreography, satisfies its user. Such reasoning conditions the costumer’s decision of selecting
the cinema service as a partner in a real interaction for accomplishing a task. Of course the outcome of the reasoning is

1 This process requires the selection of a proper ontology, see Section 5.



M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 59

meaningful under the following assumption: the implementation of the cinema service behavior (that could be written
in an execution language like BPEL) must be conformant w.r.t. the choreography specification that is used as input of
the reasoning. Verifying the conformance and the interoperability of web services to a global protocol definition (to be
provided at the choreography level) is definitely one of the hot topics at the moment. In [24] we started to attack the
problem by proposing a framework, based on the theory of formal languages, where both the global protocol and the
web service behavior are expressed by using finite state automata. Instead in [25] choreography and orchestration are
formalized by using two process algebras and conformance takes the form of a bisimulation-like relation.

3. A declarative agent language for reasoning about communication

Logic-based, executable languages for agent specification have been deeply investigated in the last years [26–
28,8,29]. In this section we introduce the main features of DyLOG, our agent language for reasoning about actions and
changes, and, in particular, we present the extension for dealing with communication (the CKit, Section 3.2), which
will be explained with more details and with examples. Section 3.3 presents the semantics of the CKit based on a
non-monotonic solution to deal with the persistency problem, while Section 3.4 presents the reasoning mechanisms
that will be used in Section 4. The proof theory is reported in Appendix A.

DyLOG is a logic programming language for modeling rational agents, based on a modal theory of actions and
mental attitudes. In this language modalities are used for representing actions while beliefs model the agent’s internal
state. The language refers to a mentalistic approach, which is also adopted by the standard FIPA-ACL [6], where
communicative actions affect the internal mental state of the agent. The mental state of an agent is described in terms
of a consistent set of belief formulas. The modal operator Bagi models the beliefs of the agent agi . The modal operator
Magi is defined as the dual of Bagi (Magi ϕ ≡ ¬Bagi¬ϕ); intuitively it represents the fact that agent agi considers ϕ
possible. The language allows also dealing with nested beliefs, which allow the representation of what an agent thinks
about the other agents’ beliefs, and make reasoning on how they can be affected by communicative actions possible.
DyLOG accounts both for atomic and complex actions, or procedures. Atomic actions are either world actions, that is
actions which affect the world, or mental actions, i.e. sensing or communicative actions which only modify the agent’s
beliefs. For each world action and for each agent the modalities [aagi ] and 〈aagi 〉 are defined: [aagi ]ϕ denotes the fact
that the formula ϕ holds after every execution of a performed by agent agi , while 〈aagi 〉ϕ, represents the possibility
that ϕ holds after the action has been executed by the agent. A modality Done(aagi ) is also introduced for expressing
that a (a communicative act or a world action) has been executed. Last but not least, the modality � (box) denotes
formulas that hold in all the possible agent mental states. The formalization of complex actions draws considerably from
dynamic logic for the definition of action operators like sequence (;), ruled by 〈a; b〉ϕ ≡ 〈a〉ϕ, test (?), 〈ψ?〉ϕ ≡ ψ ∧ ϕ
and non-deterministic choice (∪), 〈a ∪ b〉ϕ ≡ 〈a〉ϕ ∨ 〈b〉ϕ but, differently than [30], DyLOG refers to a Prolog-like
paradigm and procedures are defined as recursive Prolog-like clauses. Analogously to what done in the case of atomic
actions, for each procedure p, the language contains also the universal and existential modalities [p] and 〈p〉. All the
modalities of the language are normal; � is reflexive and transitive and its interaction with action modalities is ruled
by the axiom �ϕ ⊃ [aagi ]ϕ, that is, in agi’s mental state ϕ will hold after every execution of any action performed by
the agent. The epistemic modality Bagi is serial, transitive and Euclidean. The interaction of Done(aagi ) with other
modalities is ruled by the axioms ϕ ⊃ [aagi ]Done(aagi )ϕ and Done(aagj )ϕ ⊃ BagiDone(aagj )ϕ (awareness), with
agi = agj when aagi is not a communicative action.

3.1. The agent theory

DyLOG agents are considered as individuals, each with its subjective view of a dynamic domain. The framework
does not model the real world but only the internal dynamics of each agent in relation to the changes caused by actions.
An agent’s behavior is specified by a domain description that includes:
1. the agent’s belief state;
2. action and precondition laws that describe the effects and the preconditions of atomic world actions on the executor’s

mental state;
3. sensing axioms for describing atomic sensing actions;
4. procedure axioms for describing complex behaviors.



60 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

Let us denote by the term belief fluent F , a belief formula BagiL or its negation, where L, the belief argument, is a
fluent literal (f or ¬f ), a done fluent (Done(aagi )
 or its negation), or a belief fluent of rank 1 (Bl or ¬Bl). In this
latter case the symbol l is an attitude-free fluent, that is a fluent literal or a done fluent.

Intuitively, the belief state contains what an agent (dis)believes about the world and about the other agents. It is
a complete and consistent set of rank 1 and 2 belief fluents. A belief state provides, for each agent, a three-valued
interpretation of all the possible belief arguments L, that can either be true, false, or undefined when both ¬BagiL and
¬Bagi¬L hold. UagiL expresses the ignorance of agi about L.

World actions are described by their preconditions and effects on the actor’s mental state; they trigger a revision
process on the actor’s beliefs. Formally, action laws describe the conditional effects on agi’s belief state of an atomic
action a, executed by agi itself. They have the form:

�(BagiL1 ∧ · · · ∧ BagiLn ⊃ [aagi ]BagiL0) (1)

�(MagiL1 ∧ · · · ∧ MagiLn ⊃ [aagi ]MagiL0) (2)

Law (1) states that if agi believes the preconditions to an action a in a certain epistemic state, after a execution, agi
will also believe the action’s effects. (2) states that when the preconditions of a are unknown to agi , after the execution
of a, agi will consider unknown also its effects.2 Precondition laws, instead, specify mental conditions that make an
atomic action executable in a state. An agent agi can execute a when the precondition fluents of a are in its belief state.
More formally:

�(BagiL1 ∧ · · · ∧ BagiLn ⊃ 〈aagi 〉
) (3)

Sensing actions produce knowledge about fluents; they are defined as non-deterministic actions, with unpredictable
outcome, formally modelled by a set of sensing axioms. Each sensing action s has associated a set dom(s) of literals
(its domain). When agi executes s, it will know which of such literals is true.

[s]ϕ ≡
[ ⋃
l∈dom(s)

sBagi l
]
ϕ (4)

∪ is the choice operator of dynamic logic and sBagi l , for each l ∈ dom(s), is an ad hoc primitive action, that probes
one of the possible outcomes of the sensing. Such primitive actions are ruled by the simple action clauses:

�(Bagi l1 ∧ · · · ∧ Bagi ln ⊃ 〈sBagi l〉
) (5)

�(
 ⊃ [sBagi l]Bagi l) (6)

�(
 ⊃ [sBagi l]Bagi¬l′) (7)

for each l′ ∈ dom(s), l = l′. Clause (5) means that after any sequence of world actions, if the set of literals Bagi l1 ∧
· · · ∧ Bagi ln holds, then the action sBagi l can be executed. The other ones describe the effects of sBagi l : in any state,
after the execution of sBagi l , l is believed (6), while all the other fluents belonging to dom(s) are believed to be false
(7). Note that the binary sensing action on a fluent l, is a special case of sensing where the associated finite set is {l,¬l}.

Complex actions specify complex behaviors by means of procedure definitions, built upon other actions. Formally,
a complex action is a collection of inclusion axiom schema of the modal logic, of form:

〈p0〉ϕ ⊂ 〈p1;p2; . . . ;pm〉ϕ (8)

p0 is a procedure name, “;” is the sequencing operator of dynamic logic, and the pi’s, i ∈ [1,m], are procedure names,
atomic actions, or test actions. Procedure definitions may be recursive and procedure clauses can be executed in a
goal-directed way, similarly to standard logic programs.

3.2. Communication

A communication theory has been integrated in the general agent theory by adding further axioms and laws to the
agents’ domain description. It consists of speech acts, get-message actions and conversation policies.

2 Laws of form (2) allow actions with non-deterministic effects, that may cause a loss of knowledge, to be specified.



M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 61

Speech acts are atomic actions of the form speech_act(sender , receiver , l) where sender and receiver are
agents and l is either a fluent literal or a done fluent. Since agents have a personal view of the world, the way in
which an agent’s beliefs are modified by the execution of a speech act depends on the role that it plays. For this
reason, speech act specification is twofold: one definition holds when the agent is the sender, the other when it is the
receiver. Speech acts are modelled by generalizing the action and precondition laws of world actions, so to enable
the representation of the effects of communications that are performed by other agents. When the agent is the sender,
the precondition laws contain some sincerity condition that must hold in the agent’s mental state. When agi is the
receiver, the action is supposed as always executable (agi has no control over a communication performed by another
agent). This representation allows agents to reason about conversation effects. Hereafter are a few examples of speech
act, as defined in DyLOG: they are the specification of the inform, queryIf, and refuseInform FIPA-ACL primitive
speech acts.

inform(Self,Other, l)
(a) �(BSelf l ∧ BSelfUOther l ⊃ 〈inform(Self,Other, l)〉
)
(b) �([inform(Self,Other, l)]MSelfBOther l)
(c) �(BSelfBOtherauthority(Self, l) ⊃ [inform(Self,Other, l)]BSelfBOther l)
(d) �(
 ⊃ 〈inform(Other, Self, l)〉
)
(e) �([inform(Other, Self, l)]BSelfBOther l)
(f) �(BSelf authority(Other, l) ⊃ [inform(Other, Self, l)]BSelf l)
(g) �(MSelf authority(Other, l) ⊃ [inform(Other, Self, l)]MSelf l)

Clause (a) represents the executability preconditions for the action inform(Self ,Other , l): it specifies those mental
conditions that make this action executable in a state. Intuitively, it states that Self can execute an inform act only if it
believes l (BSelf models the beliefs of agent Self ) and it believes that the receiver (Other) does not know l. According
to clause (b), the agent also considers possible that the receiver will adopt its belief (the modal operator MSelf is the
dual of BSelf by definition), although it cannot be sure that this will happen by the autonomy assumption. Nevertheless,
if agent Self thinks to be considered by the receiver a trusted authority about l, it is also confident that Other will
adopt its belief, clause (c). Since executability preconditions can be tested only on the mental state of Self , when Self
is the receiver the action of informing is considered as always executable, clause (d). When Self is the receiver, the
effect of an inform act is that Self will believe that l is believed by the sender (Other), clause (e), but Self will adopt
l as an own belief only if it thinks that Other is a trusted authority, clause (f).

queryIf(Self,Other, l)
(a) �(USelf l ∧ ¬BSelfUOther l ⊃ 〈queryIf(Self,Other, l)〉
)
(b) �(
 ⊃ 〈queryIf(Other, Self, l)〉
)
(c) �([queryIf(Other, Self, l)]BSelfUOther l)

By queryIf an agent asks another agent if it believes that l is true. To perform a queryIf act, Self must ignore l
and it must believe that the receiver does not ignore l, clause (a). After a queryIf act, the receiver will believe that the
sender ignores l.

refuseInform(Self,Other, l)
(a) �(USelf l ∧ BSelf Done(queryIf(Other, Self, l))


⊃ 〈refuseInform(Self,Other, l)〉
)
(b) �(
 ⊃ 〈refuseInform(Other, Self, l)〉
)
(c) �([refuseInform(Other, Self, l)]BSelfUOther l)

By refuseInform an agent refuses to give an information it was asked for. The refusal can be executed only if the
sender ignores l and it believes that the receiver previously queried it about l, clause (a). A refusal by some other agent
is considered as always possible, clause (b). After a refusal the receiver believes that the sender ignores l.

Get-message actions are used for receiving messages from other agents. Since, from the agent perspective, they
correspond to queries for an external input, they are modelled as a special kind of sensing actions, whose outcome



62 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

Querier Informer

queryIf(Fluent)

refuseInform(Fluent)

inform(~Fluent)

inform(Fluent)

alternative

Fig. 3. The AUML sequence diagram represents the communicative interactions occurring between the querier and the informer in the
yes_no_query protocol.

is unpredictable. The main difference w.r.t. normal sensing actions is that they are defined by means of speech acts
performed by the interlocutor. Formally, get_message actions are defined by axiom schemas of the form:

[get_message(agi, agj , l)]ϕ ≡
[ ⋃

speech_act∈Cget_message

speech_act(agj , agi, l)
]
ϕ (9)

Cget_message is a finite set of speech acts, which are all the possible communications that agent agi expects from
agent agj in the context of a given conversation. A get_message action does not have a domain of mental fluents
associated to it, the information is obtained by looking at the effects of such speech acts on agi’s mental state.

Conversation protocols specify patterns of communication; they define the context in which speech acts are executed
[10] and are modelled by means of procedure axioms having the form (8). Since agents have a subjective perception
of the communication, each protocol has as many procedural representations as the possible roles in the conversation.
We will call policy each such role-centric implementation.

Let us consider, for instance the yes_no_query protocol reported in Fig. 3, a simplified version of the FIPA Query
Interaction Protocol [31]. The protocol has two complementary views, one to be followed for performing a query
(yes_no_queryQ) and one for responding (yes_no_queryI ). Let us show how it would be possible to implement it
in DyLOG.

(a) 〈yes_no_queryQ(Self,Other, F luent)〉ϕ ⊂
〈queryIf(Self,Other, F luent); get_answer(Self,Other, F luent)〉ϕ

(b) [get_answer(Self,Other, F luent)]ϕ ≡
[inform(Other, Self, F luent) ∪ inform(Other, Self,¬F luent) ∪
refuseInform(Other, Self, F luent)]ϕ

Trivially, in yes_no_queryQ agent Self performs a queryIf speech act then it waits for the answer of agentOther . The
definitions of get_answer and get_start (the latter is reported hereafter, axiom (f)) are instances of the get_message
axiom. Intuitively, the right hand side of get_answer represents all the possible answers expected by agent Self from
agent Other about F luent , in the context of a conversation ruled by the yes_no_queryQ conversation policy.

(c) 〈yes_no_queryI (Self,Other, F luent)〉ϕ ⊂
〈get_start(Self,Other, F luent);
BSelf F luent?; inform(Self,Other, F luent)〉ϕ

(d) 〈yes_no_queryI (Self,Other, F luent)〉ϕ ⊂
〈get_start(Self,Other, F luent);
BSelf¬F luent?; inform(Self,Other,¬F luent)〉ϕ

(e) 〈yes_no_queryI (Self,Other, F luent)〉ϕ ⊂
〈get_start(Self,Other, F luent);



M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 63

USelf F luent?; refuseInform(Self,Other, F luent)〉ϕ
The yes_no_queryI protocol specifies the behavior of the agent Self , when it plays the role of the informer, waiting
for a query fromOther and, then, replying in accordance to its beliefs on the query subject. Last but not least, rule (f)
reports the axiom by which get_start is defined:

(f) [get_start(Self,Other, F luent)]ϕ ≡ [queryIf(Other, Self, F luent)]ϕ
It is a renaming of queryIf.

We are now in condition to define the communication kit, denoted by CKitagi , of an agent agi as the triple
(�C,�CP,�Sget ), where �C is the set of simple action laws defining agi’s speech acts, �Sget is the set of axioms
that specify agi’s get_message actions and�CP is the set of procedure axioms specifying its conversation protocols.

A domain description defining an agent agi is, then, a triple (�,CKitagi , S0), where CKitagi is the agent’s commu-
nication kit, S0 is agi’s initial set of belief fluents, and� is a specification of the agent’s non-communicative behavior.
It is a triple (�A, �S, �P), where �A is the set of agi’s world action and precondition laws, �S is the specification
of a set of sensing action, �P a set of axioms that define complex actions.

3.3. Dealing with persistency

In the DyLOG framework, a non-monotonic solution is adopted to deal with the persistency problem. More precisely,
an abductive semantics is proposed for the language, in which abductive assumptions are used to model the persistency
of beliefs fluents, from a state to the following one, when an action is performed. The solution is a generalization of
[8], that allows one to deal also with nested beliefs and communicative actions, and consists in maximizing persistency
assumptions about epistemic fluents after the execution of action sequences. In particular any belief fluent F which
holds in a given state is assumed to persist through an action, unless it is inconsistent to assume so, i.e. unless ¬F
holds after the action execution.

Notice that belief states are inconsistent when they contain either a belief Bagi l and its negation, or the belief
formulas BagjBagi l and BagjBagi¬l, or the belief formulas BagjBagi l and Bagj¬Bagi l. However, from the seriality of
the Bagi operators, the following general formula schema for the rank 2 beliefs holds in the defined logic for any two
agents agi and agj (actually, the general schema for any rank of nesting holds):

BagiBagj¬ϕ ⊃ ¬BagiBagj ϕ (10)

This property guarantees that when an inconsistency arises “locally” in the beliefs ascribed from agi to some other
agent, the beliefs of agi itself will be inconsistent. Therefore, in case of a nested epistemic fluent BagiBagj l, the
persistency is correctly blocked when a locally inconsistent fluent BagiBagj¬l becomes true after an action execution,
because ¬BagiBagj l can be derived from (10).

Given these considerations, the semantics is defined according to the method used by Eshghi and Kowalski in
the definition of the abductive semantics for negation as failure [32]. A new set of atomic propositions of the form
M[a1] · · · [am]F are defined as abducibles.3 Their meaning is that the fluent expression F can be assumed to hold in
the state obtained by the execution of the primitive actions a1, . . . , am. Each abducible can be assumed to hold, if it is
consistent with the domain description (�,CKitagi , S0) and with the other assumed abducibles. Then, we add to the
axiom system, that characterizes the logic defined by the domain description, the persistency axiom schema:

[a1] · · · [am−1]F ∧ M[a1] · · · [am−1][am]F ⊃ [a1] · · · [am−1][am]F
where a1, . . . , am are primitive actions and F is a belief fluent. It means that if F holds after a1, . . . , am−1, and it can
be assumed to persist after action am (i.e., it is consistent to assume M[a1] · · · [am]F ), one can conclude that F holds
after the sequence of actions a1, . . . , am.

3 Notice that here M is not a modality. Mα denotes a new atomic proposition. Mα means “α is consistent”, analogously to default logic.



64 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

3.4. Reasoning about conversations

Given a domain description, we can reason about it and formalize the temporal projection and the planning problem
by means of existential queries of form:

〈p1〉〈p2〉 · · · 〈pm〉Fs (11)

where each pk , k = 1, . . . , m may be an (atomic or complex) action executed by agi or an external speech act, that
belongs to CKitagi . By the word external we denote a speech act in which our agent plays the role of the receiver.
Checking if a query of form (11) succeeds corresponds to answering the question “Is there an execution trace of the
sequence p1, . . . , pm that leads to a state where the conjunction of belief fluents Fs holds for agent agi?” In case all
the pk’s are atomic actions, it amounts to predict if the condition of interest will be true after their execution. In case
complex actions are involved, the execution trace that is returned in the end is a plan to bring about Fs. The procedure
definition constrains the search space.

A special case is when the procedure is a conversation protocol. In this case and by applying these same reasoning
techniques, the agent will be able to predict how a conversation can affect its mental state and also to produce a
conversation that will allow it achieve a communicative goal of interest. In this process get_message actions are
treated as sensing actions, whose outcome is not known at planning time – agents cannot read each other’s mind, so
they cannot know in advance the answers that they will receive. For this reason all of the possible alternatives are
to be taken into account. This can be done because of the existence of the protocol. The extracted plan will, then,
be conditional, in the sense that for each get_message action and for each sensing action it will contain as many
branches as possible action outcomes. Each path in the resulting tree is a linear plan that brings about the desired
condition Fs. More formally:

(1) an action sequence σ = a1; . . . ; am, with m ≥ 0, is a conditional plan;
(2) if a1; . . . ; am (m ≥ 0) is an action sequence, s ∈ S is a sensing action, and σ1, . . . , σt are conditional plans, then

σ = a1; . . . ; am; s; ((Bagi l1?); σ1 ∪ · · · ∪ (Bagi lt?); σt ) where l1, . . . , lt ∈ dom(s), is a conditional plan;
(3) if a1; . . . ; am (m ≥ 0) is an action sequence, g ∈ S is a get_message action, and σ1, . . . , σt are conditional

plans, then σ = a1; . . . ; ak; g; ((BagiDone(c1)
?); σ1 ∪ · · · ∪ (BagiDone(ct )
?); σt ) where c1, . . . , ct ∈ Cg ,
is a conditional plan.

In some applications it is actually possible to extract a conditional plan, that leads to the goal independently from
the answers of the interlocutor. This mechanism will be used for web service selection in Section 4.2. An alternative
is to look for a linear plan that leads to the goal, given some assumptions on the received answers. This approach does
not guarantee that at execution time the services will stick to the planned conversation, but it allows finding a feasible
solution when a conditional plan cannot be found. This is actually the case of web service composition (Section 4.3). If
we compose restaurant1 and cinema1, it is possible to find a conversation after which the user’s desires about the credit
card and about the use of promotional tickets are satisfied. However, the success of the plan depends on information
that is known only at execution time (availability of seats) and that we assumed during planning. In fact, if no seat is
available the goal of making a reservation will fail. The advantage of reasoning about protocols, in this latter situation, is
that the information contained in the protocol is sufficient to exclude a priori a number of compositions that will never
satisfy the goal. For instance, restaurant1 plus cinema2 does not permit to exploit a promotion independently from the
availability of seats. The proof procedure that allows to reason about conversation protocols is a natural evolution of
[8] and is described in Appendix A; it is goal-directed and based on negation as failure (NAF). NAF is used to deal
with the persistency problem for verifying that the complement of a mental fluent is not true in the state resulting from
an action execution, while in the modal theory we adopted an abductive characterization. The proof procedure allows
agents to find linear plans for reaching a goal from an incompletely specified initial state. The soundness can be proved
under the assumption of e-consistency, i.e. for any action the set of its effects is consistent [33]. The extracted plans
always lead to a state in which the goal condition Fs holds.

4. Reasoning about conversations for web service selection and composition

This section reports a few examples aimed at showing the utility of a declarative representation of conversation
protocols and policies in a Semantic Web framework. The scenario we refer to is the one introduced in Section 2.1. The



M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 65

web services that are involved can be classified in two categories, depending on their function: restaurant web services
and cinema web services. The former allows a user to book a table at a given restaurant, the latter to book a seat at
a given cinema. The interaction, however, is carried on in different ways. In particular, the services accept different
forms of payment and only part of them allow users to benefit of promotions. The section is structured in the following
way. First of all, we focus on knowledge representation and present the protocols used by the web services involved in
the scenario. Afterwards, the two tasks of web service selection and web service composition will be tackled, showing
how personalization plays an important role in both cases.

4.1. Representing conversation protocols in DyLOG

Let us begin with describing the protocols, that are followed by the web services. Such protocols allow the interaction
of two agents (the service and the customer), so each of them encompasses two complementary views: the view of the
web service and the view of the customer. Each view corresponds to an agent conversation policy, which is represented
as a DyLOG procedure but for the sake of brevity, we report only the view of the customer. It is easy to see how the
structures of the procedure clauses correspond to the sequence of AUML operators in the sequence diagrams. The
subscripts next to the protocol names are a writing convention for representing the role that the agent plays; so, for
instance, Q stands for querier, and C for customer. The customer view of the restaurant protocols is the following:

(a) 〈reserv_rest_1C(Self, Service, T ime)〉ϕ ⊂
〈yes_no_queryQ(Self, Service, available(T ime)) ;

BSelf available(T ime)? ;
get_info(Self, Service, reservation(T ime)) ;
get_info(Self, Service, cinema_promo) ;
get_info(Self, Service, f t_number)〉ϕ

(b) 〈reserv_rest_2C(Self,WebS, T ime)〉ϕ ⊂
〈yes_no_queryQ(Self,WebS, available(T ime)) ;

BSelf available(T ime)? ;
get_info(Self,WebS, reservation(T ime))〉ϕ

(c) [get_info(Self, Service, F luent)]ϕ ⊂ [inform(Service, Self, F luent)]ϕ
Procedure (a) is the protocol procedure that describes the communicative behavior of the first restaurant: the customer
asks if a table is available at a certain time, if so, the restaurant informs it that a reservation has been taken and that it
gained a promotional free ticket for a cinema (cinema_promo), whose code number (f t_number) is returned. The
get_message action get_info and the protocol yes_no_queryQ have already been explained in Section 3. Procedure
(b), instead, describes the communicative behavior of the second restaurant: the interaction is similar to the previous
case but the restaurant does not take part to the promotion so the customer does not get any free ticket for the cinema.
Clause (c) shows how get_info can be implemented as an inform act executed by the service and having as recipient the
customer. The question mark amounts to check the value of a fluent in the current state; the semicolon is the sequencing
operator of two actions. On the other hand, the cinema protocols are as follows:

(c) 〈reserv_cinema_1C(Self, Service,Movie)〉ϕ ⊂
〈yes_no_queryQ(Self, Service, available(Movie)) ;

BSelf available(Movie)? ;
yes_no_queryI (Self, Service, cinema_promo) ;

¬BSelf cinema_promo? ;
yes_no_queryI (Self, Service, pay_by(c_card)) ;

BSelf pay_by(c_card)? ;
inform(Self, Service, cc_number) ;
get_info(Self, Service, reservation(Movie))〉ϕ

(d) 〈reserv_cinema_1C(Self, Service,Movie)〉ϕ ⊂
〈yes_no_queryQ(Self, Service, available(Movie)) ;

BSelf available(Movie)? ;
yes_no_queryI (Service, Self, cinema_promo) ;



66 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

BSelf cinema_promo? ;
inform(Self, Service, f t_number) ;
get_info(Self, Service, reservation(Movie))〉ϕ

(e) 〈reserv_cinema_2C(Self,WebS,Movie)〉ϕ ⊂
〈yes_no_queryQ(Self,WebS, available(Movie)) ;

BSelf available(Movie)? ;
get_info(Self,WebS, pay_by(cash)) ;
get_info(Self,WebS, reservation(Movie))〉ϕ

Supposing that the desired movie is available, the first cinema alternatively accepts credit card payments, clause
(c), or promotional tickets, clause (d). The second cinema, instead, accepts only cash payments, clause (e).

In the following, the selection and composition tasks, that the personalization agentpa can accomplish, are described.
As explained in Section 2.1, these tasks are aimed at refining a previous selection, performed by a retriever. In the
example that we are using, when pa will start the personalization task the following list of candidate services will
already be available in the DyLOG knowledge base as well as the protocols that they follow:

Bpaservice(restaurant, restaurant1, reserv_rest_1C)
Bpaservice(restaurant, restaurant2, reserv_rest_2C)
Bpaservice(cinema, cinema1, reserv_cinema_1C)
Bpaservice(cinema, cinema2, reserv_cinema_2C)

The agent will personalize the interaction with the services, according to the requests of the user, dismissing services
that do not fit. To this aim, it will reason about the procedures select_service or comp_services, reported hereafter.

4.2. Web service selection by reasoning about interaction

Web service selection by means of reasoning about a service conversation policy, amounts to answering to the
query “Is there a possible conversation among those allowed by the service protocol, after which a condition of interest
holds?”. In the scenario depicted in Section 2.1, an example is the desire of the user of avoiding credit card payments
over the web (for instance when booking a cinema ticket for the movie akira). Let us suppose that a preliminary
selection has identified cinema1 and cinema2, whose conversation policies are described in the previous section,
clauses (c)–(e), as cinemas that show akira. A further selection based on reasoning can begin by reasoning about the
(Prolog-like) procedure select_service:

〈select_service(T ypeService,Name,Data)〉ϕ ⊂
〈Bpaservice(T ypeService,Name, P rotocol)? ; Protocol(pa,Name,Data) 〉ϕ

Let us consider the query expressing the fact that the personalization agent wants to select a cinema booking
service, that allows a dialogue by which the credit card number of the user is not communicated to the service, that
is, the condition that must hold in pa’s mental state after the procedure’s execution is Bpa¬BCcc_number . This
condition is a nested belief, that is, a belief about the knowledge of another agent (the cinema service). This is the
query:

〈select_service(cinema,C, akira)〉Bpa¬BCcc_number)

C is a variable that ranges over the set of cinema names in the knowledge base. This query, as we will show, succeeds
with answer C equal to cinema2.

Let us begin with considering cinema1 (Protocolwill be equal to reserv_cinema_1C). This service will be selected
if it is possible to answer the query 〈reserv_cinema_1C(pa, cinema1, akira)〉Bpa¬Bcinema1cc_number . It is easy
to see from the protocol specification that such an interaction is possible, given that the user owns a free ticket. However,
let us suppose that this is not the case and that the initial mental state of the agent contains the beliefs: Bpacc_number
i.e. the agent knows the user’s credit card number which is not to be used, ¬Bpacinema_promo, the user does not have
a free ticket, ¬Bpapay_by(c_card), the agent is an authority about the method of payment. Moreover, suppose that
pa also has some hypothesis about the knowledge of the cinema services, like Bpa¬BCcc_number (with C varying



M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 67

on {cinema1, cinema2}), the services do not already know the credit card number. Of course, initially the agent will
also believe that no ticket for akira has been booked yet (Bpa¬booked(akira)).

When the agent reasons about the protocol execution, the test Bpacinema_promo? fails as well as the subsequent
test Bpapay_by(c_card)? fails. As a result, cinema1 is not selected, and select_service considers the other option,
i.e. cinema2. In this case the analogous query succeeds and an execution trace of the protocol reserv_cinema_2C is
returned as a result. It is the following conditional dialogue plan between pa and the cinema2:

queryIf(pa, cinema2, available(akira));
((BpaDone(inform(cinema2, pa, akira))
?);

get_info(pa, cinema2, pay_by(cash));
(BpaDone(inform(cinema2, pa, pay_by(cash)))
?);
get_info(pa, cinema2, reservation(akira));
(BpaDone(inform(cinema2, pa, reservation(akira)))
?) ∪

(BpaDone(inform(cinema2, pa,¬akira))
?) ∪
(BpaDone(refuseInform(cinema2, pa, akira))
?))

Notice that no communication involves the belief Bpa¬Bcinema2cc_number , which persists from the initial state; thus,
at the end of each execution branch the user’s desire of keeping the credit card number secret is satisfied.

4.3. Web service composition by reasoning about interaction

The other task of interest is web service composition. Again, suppose that a preliminary selection has already been
accomplished, resulting in the a set of candidate services listed at the end of Section 4.1. In this case, the user wants
to book a table at a restaurant plus a cinema entrance profiting of the promotion. For accomplishing this task the
personalization agent reasons about the procedure comp_services (a possible implementation is reported below), that
sketches the general composition-by-sequencing of a set of services, based on their interaction protocols.

〈comp_services([ ])〉ϕ ⊂ true

〈comp_services([[TypeService,Name,Data]|Services])〉ϕ ⊂
〈Bpaservice(T ypeService,Name, P rotocol)? ;
Protocol(pa,Name,Data) ; comp_services(Services)〉ϕ

Intuitively, comp_services builds a sequence of protocols so that it will be possible to reason about them as a whole.
Let us now consider the query:

〈comp_services([[restaurant, R, dinner], [cinema,C, akira]])〉
(Bpacinema_promo ∧ Bpareservation(dinner)∧
Bpareservation(akira) ∧ Bpa¬BCcc_number ∧ BpaBCf t_number)

that amounts to determine if it is possible to compose the interaction with a restaurant and a cinema web services, reserv-
ing a table for dinner (Bpareservation(dinner)) and booking a ticket for the movie akira (Bpareservation(akira)),
exploiting a promotion (Bpacinema_promo). Credit card is not to be used (Bpa¬BCcc_number), the free ticket is
to be spent (BpaBCf t_number). The agent initial mental state contains beliefs about the user’s credit card number
(Bpacc_number), the desire to avoid using it (¬Bpapay_by(credit_card)), and the fact that the agent is an authority
about the form of payment. Further assumptions are that no reservation for dinner nor for the movie has been taken
yet, Bpa¬reservation(dinner) and Bpa¬reservation(akira), that pa does not have a free ticket for the cinema,
¬Bpacinema_promo, and some hypothesis on the interlocutor’s mental state, e.g. the belief fluent Bpa¬BCcc_number
(withC in {cinema1, cinema2}), meaning that the cinema booking services do not already know the credit card number.
In this context, the query succeeds with answerR equal to restaurant1 andC equal to cinema1, and the agent builds the
following execution trace of comp_services ([[restaurant , restaurant1, dinner], [cinema, cinema1, akira]]):

queryIf(pa, restaurant1, available(dinner)) ;
inform(restaurant1, pa, available(dinner)) ;

inform(restaurant1, pa, reservation(dinner)) ;
inform(restaurant1, pa, cinema_promo) ;
inform(restaurant1, pa, f t_number) ;
queryIf(pa, cinema1, available(akira)) ;



68 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

inform(cinema1, pa, available(akira)) ;
queryIf(cinema1, pa, cinema_promo) ;
inform(pa, cinema1, cinema_promo) ;
inform(pa, cinema1, f t_number) ;
inform(cinema1, pa, reservation(akira))

This is a dialogue plan that is made of a conversation between pa and restaurant1 followed by one between pa and
cinema1, instances of the respective conversation protocols, after which the desired condition holds. The linear plan,
will, lead to the desired goal given that some assumptions (above outlined with a box) about the provider’s answers
hold. For instance, that there is a free seat at the cinema, a fact that can be known only at execution time. Assumptions
occur when the interlocutor can respond in different ways depending on its internal state. It is not possible to know in
this phase which the answer will be, but since the set of the possible answers is given by the protocol, it is possible
to identify the subset that leads to the goal. In the example they are answers foreseen by a yes_no_query protocol.
Returning such assumptions to the designer is also very important to understand the correctness of the implementation
w.r.t. the chosen speech act ontology.

5. Conclusions and related works

The work presented in this article is set in the Semantic Web field of research and faces some issues related to
web service selection and composition. The basic idea is to consider a service as a software agent and the problem
of composing a set of web services as the problem of making a set of software agents cooperate within a multi-agent
system (or MAS). This interpretation is, actually, quite natural, although somewhat new to the web service community,
with a few exceptions [34,35]. In particular, we have studied the possible benefits provided by the introduction of an
explicit (and declarative) description of the communicative behavior of the web services in terms of personalization of
the service fruition and of the composition of a set of services. Indeed, a web service must follow some possibly non-
deterministic procedure aimed at getting/supplying all the necessary information. So far, however, standard languages
for semantic web service description do not envision the possibility of separating the communicative behavior from the
rest of the description. On the contrary, communication plays a central role in languages for describing workflows and
business processes, like BPEL. Unfortunately, such languages do not have a formalization that enables the automation,
based on reasoning, of the tasks that are the focus of this work [36,37].

The idea of setting web service selection and composition in the Semantic Web rather than in the WWW (that is of
representing web services according to a formal model that enables automated forms of reasoning), is motivated by a
growing agreement, in the web service research community, on the need of finding representation models that abstract
away from the specific languages (like BPEL) used to specify business processes, and which allow the analysis of
properties of the interactions that are executed [16]. The introduction of choreographies as global schemas of interaction
(and of languages like WS-CDL [17]) as well as the distinction between this global view from the local perspective
of the single services are a first consequence of such needs. At the moment of writing, in the Semantic Web area no
concept equivalent (or at least close to) choreographies has been defined yet, nevertheless, the languages proposed for
web service representation share with BPEL the characteristic of representing the local view of the interaction, that
each single process should have. The interesting point is that such languages have been designed expressly with the
aim of supplying abstract, formal representations. Another general agreement is on the principle that the richer the
semantic information that is used, the higher the precision of the answer to a query, where precision is the extent to
which only the items “really of interest” are returned [38]. Depending on the kind of resources and of tasks of interest it
is necessary to identify the right piece of information to use. In the approach that we have proposed the user’s goals and
needs have this role, and to be matched, they require the rational inspection of the interactive behavior of the services,
which consequently is to be represented in an explicit way.

The approach, proposed in this paper for performing the inspection, is based on techniques for reasoning about actions
and change, in which the communicative behavior of the services is modelled as a complex action (a procedure) based
on speech acts. In this framework the selection and composition tasks can be interpreted as the process of answering
the questions “Is it possible to interact with this service in such a way that this condition will hold afterwards?” and “Is
it possible to execute these services in sequence in such a way that this condition will hold afterwards?”. Of course the



M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 69

effective achievement of the goal might depend on conditions, that are necessary to the completion of the interaction but
that will be known only at execution time. For instance, in order to book a table at a restaurant it is necessary that there
is at least one free table. We have not tackled this problem yet, although it would be very interesting to integrate in the
approach that we have proposed a mechanism for dealing with failure (at execution time) and replanning. This form of
reasoning is necessary to arrive to real applications and it could take into account also degrees of preference explicitly
expressed by the user. Such criteria could be used to achieve a greater flexibility, by relaxing some of the constraints in
case no plan can be found or when a plan execution fails. In particular, in our opinion it would be extremely interesting
to study integrations of replanning techniques with compensation techniques. Indeed, in the research community that
studies planning the interest is mainly posed on the efficiency of the planner and replanning, if any, does not exploit
any explicit representation of actions for undoing things, with a few exceptions [39]. Given the current state, whatever
it is, forward actions are searched for reaching the goal. The process might have, as a side effect, the undoing of some
partial achievement but this will be an occasional outcome. The main achievement of the proposed approach, however,
is that the presence of public protocol/policy specifications gives the agent the possibility to set up plans. Even though
this plan might be subject to assumptions (e.g. that a table will be available), the agent will know in advance if it is
worthwhile to interact with that partner. In a way, the approach that has been proposed can be seen as a sieve that allows
agents to brush off a number of partners before the interaction. Nevertheless, it is something more than a sieve because
it also allows the identification of courses of interaction that the agent is willing to perform. In this perspective, it is
actually a valuable tool for personalizing the interaction with web services according to the goals of the user.

Our proposal can be considered as an approach based on the process ontology, a white box approach in which part
of the behavior of the services is available for a rational inspection. In this case, the deductive process exploits more
semantic information: in fact, it does not only take into account the pre- and post-conditions, as above, it also takes
into account the complex behavior (the communicative behavior) of the service. The idea of focussing on abstract
descriptions of the communicative behavior is, actually, a novelty also with respect to other proposals that are closer
to the agent research community and more properly set in the Semantic Web research field. The work that is surely the
closest to ours is the one by the DAML-S (now OWL-S) coalition, that designed the language OWL-S [40]. An OWL-S
service description has three conceptual levels: the profile, used for advertising and discovery, where inputs, outputs,
preconditions and effects are enumerated, the process model, a declarative description of the structure of a service,
and the grounding, that describes how an agent can access the service by means of low-level (SOAP) messages. To
our aims, the most interesting component of an OWL-S web service description is the process model, which describes
a service as atomic, simple (viewed as atomic) or composite, in a way inspired by the language GOLOG and its
extensions [30,28,41,40]. However, to our knowledge, no approach for reasoning about the process model has been
proposed yet. In the works by McIlraith et al. (e.g. [42]), indeed the most relevant for us, the idea is always to compose
services that are viewed as atomic, and the composition is merely based on their preconditions and effects, exploiting
techniques derived from the Situation Calculus. In particular, the precondition and effect, input and output lists are flat;
no relation among them can be expressed, so it is impossible to understand if a service can follow alternative courses
of interaction, among which one could choose. Indeed, the advantage of working at the protocols level is that by
reasoning about protocols agents can personalize the interaction by selecting a course that satisfies user- (or service-)
given requirements. This process can be started before the actual interaction takes place.

Of course, other approaches to matchmaking have been proposed and are being investigated. For instance, the frame-
based approaches, like the UDDI registry service for WSDL web services [13]. In this case two sets of textual property
values are compared, a service description and a query (i.e. the description of a desired service); both descriptions
are based on partially pre-enumerated vocabularies of service types and properties. Close to frame-based approaches
is the set-based modelling approach proposed in the WSMO service discovery. In this case the sets of objects to be
compared are the set of user’s goals (intended as the information that the user wants to receive as output) and the set of
objects delivered after a web service execution. The two sets might be inter-related in some way by ontologies, which
are considered as domain models. Actually, four different degrees of match are formalized, depending on additional
properties that should hold and a complete formalization based on description logics is explained [43]. A refinement
of this proposal, in which more elaborated descriptions are taken into account, is proposed as a second step. At this
higher level of formalization, services are considered as relations on an abstract state-space and are described in terms
of inputs, outputs, preconditions, effects, assumptions, and post-conditions; in this extension exploits of interest are
identified by applying transaction logics. Another category is that of deductive retrieval (also known as “reuse by
contract”), well described in [44]. Here web services, interpreted as software components, are seen as black-boxes,



70 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

whose description relies on the concept of Abstract Data Type (or ADT). The semantics of an ADT is given by a set
of logic axioms. Part of the approaches in this family (the “plug in match” approaches [45]) use these logic axioms to
identify the pre- and post-conditions to the execution of the web service. In this case also queries are represented by a
set of pre- and post-conditions. The decision of whether a service matches a given query depends on the truth value of
the formula (preQ ⊃ preWS) ∩ (postQ ⊃ postWS), where preQ and postQ are the pre- and post-conditions of the
query and preWS and postWS are the pre- and post-conditions of the service. Many works should be cited in this line
of research, like NORA/HAMRR [46], feature-based classification [47], LARKS [48], SWS matchmaker [49], up to
PDDL-based languages (PDDL stands for “Planning Domain Definition Framework” [50]) like the proposal in [51].
To our knowledge none of these works is based on reasoning on an explicit representation of the interactive behavior
of the services, even in the case in which PDDL is used, the idea is to consider web services as atomic actions.

Appendix A. Goal-directed proof procedure for DyLOG

This appendix presents the proof procedure used to build linear plans, making assumptions on sensing actions and
on external communicative actions. Then, a variant that builds conditional plans is introduced, where all the possible
values returned by sensing and by incoming communications are taken into account. For the sake of brevity, we do not
report in this paper the demonstrations. Actually, these are very similar to those for DyLOG without communication
kit, see [8,52] for details.

Appendix A.1. Linear plan extraction

A query (see Section 3.4) of the form 〈p1;p2; . . . ;pn〉Fs succeeds if it is possible to execute in the given order
p1, p2, . . ., pn, starting from the current state, in such a way that Fs holds in the resulting belief state. Since a state
can be represented by the sequence of atomic actions performed for reaching it, in general, we write:

a1, . . . , am � 〈p1;p2; . . . ;pn〉Fs with answer (w.a.) σ

where a1, . . . , am represents the current state, to mean that the query can be proved with answer σ in the current state
and from the domain description (�, CKitagi , S0). The answer σ is an execution trace am, . . ., am+k of p1, . . . , pn in
the current state. We denote by ε the initial mental state.

Fig. A.1. Rules (1–6) of the goal-directed proof procedure for DyLOG. a1···m and p2···n stands for a1, . . . , am and p2, . . . , pn, respectively.
l denotes a fluent literal or a done fluent while L denotes l or a belief fluent of rank 1.



M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 71

Fig. A.2. Rules (7–14) of the goal-directed proof procedure for DyLOG. a1···m and p2···n stands for a1, . . . , am and p2, . . . , pn, respectively.
l denotes a fluent literal or a done fluent while L denotes l or a belief fluent of rank 1.

Fig. A.3. A variant of the proof procedure for extracting conditional plans. In (4-bis) s ∈ S and F = {l1, . . . , lt } = dom(s); in (5-bis) g ∈ S and
{c1, . . . , ct }= Cg .

The first part of the proof procedure, rules (1–6) in Fig. A.1, deals with the execution of complex actions, sensing
actions, primitive actions and test actions. The proof procedure reduces the complex actions in the query to a sequence
of primitive actions and test actions, then it verifies if the execution of primitive actions is possible and if test actions
are successful. To do this, it reasons about the execution of a sequence of primitive actions from the initial state and
computes the values of fluents at different states. During a computation, a state is represented by a sequence of primitive
actions a1, . . . , am. The value of fluents at a state is not explicitly recorded but it is computed when needed. The second
part of the procedure, rules (7–14), allows the values of mental fluents in an agent agi state to be determined.

Let us briefly comment the rules. To execute a complex action p the modality 〈p〉 is non-deterministically replaced
with the modality in the antecedent of a suitable axiom, rule (1). To execute a test action (Fs)?, the value of Fs is
checked in the current state; if Fs holds, the test action is eliminated otherwise the computation fails, rule (2). To
execute a primitive action a, first precondition laws are checked to verify if the action is possible. If they hold, the
computation moves to a new state in which the action has been performed, rule (3). To execute a sensing action s, rule
(4), we non-deterministically replace it with one of the primitive actions which define it, that, when it is executable, will
cause Bagi l and Bagi¬l′, for each l′ ∈ dom(s), with l = l′. Rule (5) deals with get_message actions: a get_message
action g is non-deterministically replaced with one of the external communicative actions which define it.

Rule (6) deals with the case when no more actions are to be executed. The desired sequence of primitive actions
has already been determined so, to check if Fs is true after it, rules (7-14) in Fig. A.2 are used. An epistemic fluent F



72 M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73

holds at a state a1, . . . , am if either F is an immediate effect of action am (rule 8a); or action am is a primitive action
sF (introduced to model the sensing action s), whose effect is to add F to the state (rule 8b); or F holds in the previous
state a1, . . . , am−1 and it persists after am, rule (8c); or a1, a2, . . . , am is the initial state and F already holds in it, rule
(8d). Notice that rule (8c) allows to deal with the frame problem: F persists from a state to the next one unless the
executed action am makes ¬F true, i.e. it persists if ¬F fails from a1, a2, . . . , am. In this rule not represents negation
as failure. Rule (9) deals with conjunction. Rule (10) allows Magi l to be concluded from Bagi l, this is justified by the
property of seriality of the belief modality. Rules (11) and (11′) have been introduced for coping with transitivity of
beliefs. Rules (12) and (12′) tackle their euclideaness. Rules (13) and (14) have been introduced to provide awareness
of the action execution.

Under the assumption of e-consistency, i.e. for every set of action laws for a given action which may be applied
in the same state, the set of their effects is consistent [33], of the domain description and of consistency of the initial
situation, the proof procedure is sound w.r.t. the non-monotonic semantics. First, it is necessary to show that the proof
procedure is sound and complete w.r.t. the monotonic Kripke semantics; then, it is possible to show the soundness of
the non-monotonic part.

Finally, let 〈p1; . . . ;pn〉Fs be an existential query and σ the answer returned by one of its successful derivations.
It is possible to show that σ is effectively an execution trace of p1; . . . ;pn, that is, given a domain description,
〈σ 〉Fs ⊃ 〈p1; . . . ;pn〉Fs. Moreover, σ is a legal sequence of atomic actions, it can actually be executed, and it always
leads to a state in which Fs holds, i.e. the 〈σ 〉
 and [σ ]Fs hold.

Appendix A.2. Building conditional plans

Let us now introduce a variant of the proof procedure presented above which, given a query 〈p1;p2; . . . ;pn〉Fs,
computes a conditional plan σ . All the executions in σ are possible behaviors of the sequence p1;p2; . . . ;pn. The
new proof procedure is obtained by replacing rules (4) and (5) in Fig. A.1 (to handle sensing actions and get message
actions, respectively) with rules (4-bis) and (5-bis) in Fig. A.3. As a difference with the previous case, when a sensing
action is executed, the procedure now considers all the possible outcomes of the action, so that the computation splits
in more branches. The resulting plan will contain a branch for each value that leads to success. The same holds for the
get_message actions, which indeed are treated as a special case of sensing.

References

[1] W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, H.M.W. Verbeek, P. Wohed, Life after BPEL? in: Proc. of WS-FM’05,
LNCS, vol. 3670, Springer, 2005, pp. 33–50 (invited speaker).

[2] M. Baldoni, C. Baroglio, N. Henze, Personalization for the Semantic Web, in: Reasoning Web, LNCS Tutorial, vol. 3564, Springer, 2005,
pp. 173–212.

[3] G. Antoniou, M. Baldoni, C. Baroglio, R. Baungartner, F. Bry, T. Eiter, N. Henze, M. Herzog, W. May, V. Patti, S. Schaffert, R. Schidlauer,
H. Tompits, Reasoning methods for personalization on the semantic web, Ann. Math. Comput. Teleinformatics (AMCT) 2 (1) (2004) 1–24.

[4] F. Dignum, M. Greaves, Issues in agent communication, in: Issues in Agent Communication, LNCS, vol. 1916, Springer, 2000, pp. 1–16.
[5] F. Dignum (Ed.), Advances in Agent Communication Languages, LNAI, vol. 2922, Springer-Verlag, 2004.
[6] FIPA, Communicative act library specification, Tech. rep., FIPA (Foundation for Intelligent Physical Agents), 2002.
[7] T. Finin, Y. Labrou, J. Mayfield, KQML as an Agent Communication Language, in: J. Bradshaw (Ed.), Software Agents, MIT Press, 1995.
[8] M. Baldoni, L. Giordano, A. Martelli, V. Patti, Programming Rational Agents in a Modal Action Logic, Ann. Math. Artif. Intell. 41 (2–4)

(2004), 207–257 (Special issue on Logic-Based Agent Implementation).
[9] M. Baldoni, C. Baroglio, V. Patti, Web-based adaptive tutoring: an approach based on logic agents and reasoning about actions, Artificial

Intelligence Rev. 22 (1) (2004) 3–39.
[10] A. Mamdani, J. Pitt, Communication protocols in multi-agent systems: a development method and reference architecture, in: Issues in Agent

Communication, LNCS, vol. 1916, Springer, 2000, pp. 160–177.
[11] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, Reasoning about self and others: communicating agents in a modal action logic, in: Proc. of

ICTCS’2003, LNCS, vol. 2841, Springer, 2003, pp. 228–241.
[12] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, Reasoning about interaction protocols for web service composition, in: Bravetti and Zavattaro

[15], pp. 21–36, Electronic Notes in Theoretical Computer Science, vol. 105.
[13] A. Barros, M. Dumas, P. Oaks, A critical overview of the web services choreography description language(ws-cdl), Business Process Trends.

Available from: <http://www.bptrends.com>.
[14] BPEL4WS, 2003. Available from: <http://www-106.ibm.com/developerworks/library/ws-bpel>.

http://www.bptrends.com
http://www-106.ibm.com/developerworks/library/ws-bpel


M. Baldoni et al. / Journal of Logic and Algebraic Programming 70 (2007) 53–73 73

[15] M. Bravetti, G. Zavattaro (Eds.), Proc. of the 1st Int. Workshop on Web Services and Formal Methods (WS-FM 2004), Elsevier Science Direct,
2004, Electronic Notes in Theoretical Computer Science, vol. 105.

[16] M. Bravetti, L. Kloul, G. Zavattaro (Eds.), Proc. of the 2nd International Workshop on Web Services and Formal Methods (WS-FM 2005),
LNCS, vol. 3670, Springer, 2005.

[17] WS-CDL, 2004. Available from: <http://www.w3.org/tr/2004/wd-ws-cdl-10-20041217/>.
[18] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American.
[19] REWERSE Network of Excellence, 2004. Available from: <http://www.rewerse.org>.
[20] G. Antoniou, F. van Harmelen, A Semantic Web Primer, MIT Press, 2004.
[21] WSMO, 2005. Available from: <http://www.wsmo.org/>.
[22] J.H. Odell, H. Van Dyke Parunak, B. Bauer, Representing agent interaction protocols in UML, in: Agent-Oriented Software Engineering,

Springer, 2001, pp. 121–140. Available from: <http://www.fipa.org/docs/input/f-in-00077/>.
[23] Foundation for InteroPerable Agents, Fipa modeling: Interaction diagrams, Tech. rep., working Draft Version 2003-07-02, 2003.
[24] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, C. Schifanella, Verifying the conformance of web services to global interaction protocols: a first

step, in: Proc. of 2nd Int. Workshop on Web Services and Formal Methods, WS-FM 2005, LNCS, vol. 3670, 2005, pp. 257–271.
[25] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro, Choreography and Orchestration: a synergic approach for system design, in: Proc. the

3rd Int. Conf. on Service Oriented Computing, 2005.
[26] K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, V. Subrahmanian, IMPACT: a platform for collaborating agents, IEEE Intell. Systems 14 (2)

(1999) 64–72.
[27] M. Fisher, A survey of concurrent METATEM – the language and its applications, in: D. Gabbay, H. Ohlbach (Eds.), Proc. of the 1st Int. Conf.

on Temporal Logic, ICTL’94, LNAI, vol. 827, Springer-Verlag, 1994, pp. 480–505.
[28] G.D. Giacomo, Y. Lesperance, H. Levesque, Congolog, a concurrent programming language based on the situation calculus, Artificial

Intelligence 121 (2000) 109–169.
[29] J. Leite, A. Omicini, P. Torroni, P. Yolum (Eds.), Int. Workshop on Declarative Agent Languages and Technology, New York City, NY, USA,

2004. Available from: <http://centria.di.fct.unl.pt/∼jleite/dalt04>.
[30] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, R.B. Scherl, GOLOG: a logic programming language for dynamic domains, J. Logic

Programming 31 (1997) 59–83.
[31] FIPA, Fipa 2000, fipa Query Interaction Protocol Specification, Tech. rep., FIPA (Foundation for Intelligent Physical Agents), November 2000.
[32] K. Eshghi, R. Kowalski, Abduction compared with negation by failure, in: Proc. of ICLP’89, The MIT Press, Lisbon, 1989.
[33] M. Denecker, D. De Schreye, Representing incomplete knowledge in abduction logic programming, in: Proc. of ILPS’93, The MIT Press,

Vancouver, 1993.
[34] J. Bryson, D. Martin, S. McIlraith, L.A. Stein, Agent-based composite services in DAML-S: The behavior-oriented design of an intelligent

semantic web, 2002. Available from: <citeseer.nj.nec.com/bryson02agentbased.html>.
[35] K. Sycara, Brokering and matchmaking for coordination of agent societies: a survey, in: A. Omicini et al. (Ed.), Coordination of Internet

Agents, Springer, 2001.
[36] D.J. Mandell, S.A. McIlraith, Adapting BPEL4WS for the Semantic Web: the bottom-up approach to web service interoperation, in: Proc. of

the 2nd Int. Semantic Web Conference (ISWC2003), Sanibel Island, FL, 2003.
[37] J. Koehler, B. Srivastava, Web service composition: current solutions and open problems, in: ICAPS 2003 Workshop on Planning for Web

Services, 2003, pp. 28–35.
[38] M. Klein, A. Bernstein, Searching for services on the semantic web using process ontologies, in: Proc. of the Int. Semantic Web Working

Symposium (SWWS), Stanford University, California, USA, 2001.
[39] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso, Planning and monitoring web service composition, in: Proc. of Planning and

Monitoring Web Service Composition Artificial Intelligence: Methodology, Systems, Application (AIMSA) 2004, 2004.
[40] OWL-S, http://www.daml.org/services/owl-s/1.1/, 2004.
[41] S. McIlraith, T. Son, Adapting Golog for programming the Semantic Web, in: 5th Int. Sympos. on Logical Formalization of Commonsense

Reasoning, 2001, pp. 195–202.
[42] S. Narayanan, S.A. McIlraith, Simulation, verification and automated composition of web services, Honolulu, Hawaii, USA, 2002, pp. 77–88.
[43] U. Keller, R.L.A. Polleres, I. Toma, M. Kifer, D. Fensel, D5.1 v0.1 wsmo web service discovery, Tech. rep., WSML deliverable, 2004.
[44] J. Peer, Towards automatic web service composition using ai planning techniques, http://www.mcm.unisg.ch/org/mcm/web.nsf/staff/jpeer,

2003.
[45] A.M. Zamreski, J.M. Wing, Specification matching of software components, in: Proc. of the 3rd ACM SIGSOFT Sympos. on the Foundations

of Software Eng., 1995.
[46] B. Fischer, J. Schumann, NORA/HAMRR: Making deduction-based software component retrieval practical, in: Proc. of CADE-14 Workshop

on Automated Theorem Proving in Software Engineering, 1997.
[47] J. Penix, P. Alexander, Efficient specification-based component retrieval, Automated Software Engineering.
[48] K. Sykara, S. Widoff, M. Klusch, J. Lu, LARKS: dynamic matchmaking among heterogeneous software agents in cyberspace, Autonomous

Agents and Multi-Agent Systems.
[49] R.M.V. Haarslev, Description of the racer system and its applications, Stanford, CA, USA, 2001.
[50] D. MacDermott, AI planning systems competition, AI Magazine 21 (2) (2000) 35–55.
[51] J. Peer, M. Vokovic, A proposal for a semantic web service description format, in: Proc. of the European Conf. on Web Services (ECOWS’04),

Springer-Verlag, 2004.
[52] V. Patti, Programming Rational Agents: a Modal Approach in a Logic Programming Setting, Ph.D. thesis, Dipartimento di Informatica,

Università degli Studi di Torino, Torino, Italy, 2002. Available from: <http://www.di.unito.it/∼patti/>.

http://www.w3.org/tr/2004/wd-ws-cdl-10-20041217/
http://www.rewerse.org
http://www.wsmo.org/
http://www.fipa.org/docs/input/f-in-00077/
http://centria.di.fct.unl.pt/${sim }$jleite/dalt04
http://citeseer.nj.nec.com/bryson02agentbased.html
http://www.daml.org/services/owl-s/1.1/
http://www.mcm.unisg.ch/org/mcm/web.nsf/staff/jpeer
http://www.di.unito.it/${sim }$patti/

	Introduction
	Context and perspectives
	A scenario

	A declarative agent language for reasoning about communication
	The agent theory
	Communication
	Dealing with persistency
	Reasoning about conversations


	Reasoning about conversations for web service selection and composition
	Representing conversation protocols in DyLOG
	Web service selection by reasoning about interaction
	Web service composition by reasoning about interaction

	Conclusions and related works
	Goal-directed proof procedure for DyLOG
	Linear plan extraction
	Building conditional plans

	References

