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ABSTRACT

Motivation: Misfolding of membrane proteins plays an important

role in many human diseases such as retinitis pigmentosa, hereditary

deafness and diabetes insipidus. Little is known about membrane

proteins as there are only very few high-resolution structures. Single-

molecule force spectroscopy is a novel technique, whichmeasures the

force necessary to pull a protein out of a membrane. Such force curves

contain valuable informationon theprotein structure, conformation, and

inter- and intra-molecular forces. High-throughput force spectroscopy

experiments generate hundreds of force curves including spurious

ones and good curves, which correspond to different unfolding path-

ways. Manual analysis of these data is a bottleneck and source of

inconsistent and subjective annotation.

Results: We propose a novel algorithm for the identification of

spurious curves and curves representing different unfolding pathways.

Our algorithm proceeds in three stages: first, we reduce noise in the

curves by applying dimension reduction; second, we align the curves

with dynamic programming and compute pairwise distances and third,

we cluster the curves based on these distances. We apply our method

to a hand-curated dataset of 135 force curves of bacteriorhodopsin

mutant P50A. Our algorithm achieves a success rate of 81%

distinguishing spurious from good curves and a success rate of 76%

classifying unfolding pathways. As a result, we discuss five different

unfolding pathways of bacteriorhodopsin including three main

unfoldingeventsandseveralminor ones.Finally,we link foldingbarriers

to the degree of conservation of residues.Overall, the algorithm tackles

the force spectroscopy bottleneck and leads to more consistent and

reproducible results paving the way for high-throughput analysis of

structural features of membrane proteins.

Contact: annalisa.marsico@biotec.tu-dresden.de

1 INTRODUCTION

Integral membrane proteins play essential roles in cellular

processes, including photosynthesis, transport of ions and small

molecules, maintenance of osmotic balance, cell–cell adhesion,

signal transduction and light harvesting. They account for �20–

30% of the open reading frames of a typical genome. Despite the

central importance of transmembrane proteins, the number of high-

resolution structures remains small due to the practical difficulties

in crystallizing them (Bowie, 2005). Many human disease-linked

point mutations occur in transmembrane proteins: human rhodopsin

and its mutants causing retinitis pigmentosa (Rader et al., 2004;

Sanders and Myers, 2004), human aquaporin and its mutants

causing diabetes (Tamarappoo et al., 1999). These mutations

cause structural instabilities in a transmembrane protein, leading

it to unfold or to fold in an alternative conformation (Filipek et al.,
2003; Mirzadegan et al., 2003). Protein folding is described by

multidimensional energy landscapes or folding funnels and this

is the result of complex inter- and intra-molecular interactions

(Onuchic and Wolynes, 2004). Atomic Force Microscopy (AFM)

is mostly known for its imaging capabilities, but it also provides a

novel tool for detecting and locating forces on a single-molecule

level, like the inter- and intra-molecular interactions that stabilize

protein structures, forces mediating receptor–ligand bonds or

controlling antibody–antigen binding (Janshoff et al., 2000; Kedrov

et al., 2005). Single-molecule force spectroscopy experiments allow

measuring the stability of membrane proteins and also probing the

energy landscapes (Janovjak et al., 2004). In Figure 1A we show

a schematic representation of the force spectroscopy instrumenta-

tion. Molecules with complex three-dimensional (3D) structures,

such as proteins, can be unfolded in a controlled way. Titin and

bacteriorhodopsin are examples of proteins that have been intens-

ively studied (Rief et al., 1997; Oesterhelt et al., 2000; Janovjak

et al., 2004; Sapra et al., 2006). When transmembrane proteins are

unfolded in force spectroscopy experiments, during continuous

stretching of the molecule, the applied forces are measured by

the deflection of the cantilever and plotted against extension (tip-

sample separation), yielding a characteristic force–distance curve

for the specific molecule under investigation (Fig. 1). The force–

distance curve is the result of subsequent events of molecular

interactions (Zhuang and Rief, 2003; Oesterhelt et al., 2000).

From the analysis of single-molecule force spectra it is possible

to associate the peaks to single potential barriers stabilizing seg-

ments within membrane proteins. These segments can be repre-

sented by transmembrane helices, polypeptide loops or fragments

and are established by collective interactions of several amino acids

(Kessler et al., 2005). For a given molecule under study, the force–

distance curves exhibit certain patterns, which contain information

about strength and location of molecular forces established inside

the molecule, about stable intermediates and interaction pathways,

and the probability with which they occur. In contrast to soluble

proteins, investigated by single-molecule force spectroscopy, the

folded part of a membrane protein is anchored within the membrane

and the sequence of the unfolding peaks follows the amino acid

sequence of the protein (Muller et al., 2002). For each peak the

number of already unfolded amino acids can be determined from

the length of the unfolded part of the polypeptide chain, obtained

from a fit to a hyperbolic function, the worm-like chain model

(WAC), of the given peak (Rief et al., 1997). Consequently,

with the peaks and the predicted secondary structure, it is possible�To whom correspondence should be addressed.
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to associate the peaks with structural domains (Fig. 1C) (Muller

et al., 2002).

To obtain statistically relevant results, many single molecules

of the same species need to be studied and a large number of

force curves collected and analysed. To discriminate force curves

showing specific and unspecific interactions and different unfolding

pathways, classification and pattern recognition algorithms have

to be applied, as the manual annotation is slow and subject to

human mistakes. Even if some off-line software packages have

been developed to analyse single-molecule force spectroscopy

data (Kasas et al., 2000; Kuhn et al., 2005), there is an increasing

demand for data analysis techniques and suitable pattern recogni-

tion algorithms that offer fully automated processing of force spec-

troscopy datasets on the basis of scientific criteria. Here, we develop

an algorithm for high-throughput classification and statistical ana-

lysis of force spectra and apply it to a benchmark dataset of 135

force curves obtained for a bacteriorhodopsin mutant P50A. We

interpret the results and discuss main and minor unfolding events

of bacteriorhodopsin.

2 MATERIALS AND METHODS

We briefly describe how the experimental curves are obtained and then

we illustrate the method developed to automatically analyse them. To identi-

fy different unfolding pathways with single-molecule force spectroscopy we

devise a method, which proceeds in three stages as shown in Figure 2: First,

noise is removed from the curves; second, two force curves are aligned and

their pairwise distance is computed; third, the curves are clustered hierarch-

ically. The resulting clusters correspond to spurious curves and to different

unfolding pathways.

2.1 Experimental setup

Bacteriorhodopsin mutant P50A is a kind gift of Prof. James Bowie (UCLA,

USA) and is prepared as described (Faham et al., 2004). The protein is

attached non-specifically to silicon nitride cantilever by applying a contact

force of 1 nN between the AFM stylus and the membrane surface. Single-

molecule AFM imaging and force spectroscopy is performed as described

Fig. 1. (A) Schematic representation of atomic force microscopy. The sample

is mounted on a piezo-electrical element and scanned under a sharp tip

attached to the cantilever. The voltage difference of the photodetector is

proportional to the deflection of the cantilever. (B) Unfolding of a transmem-

brane protein. A single molecule is kept between the tip and the sample while

the tip-sample separation is continuously increased. (C) Typical spectrum

obtained from an experiment of unfolding of bacteriorhodopsin with the main

peaks fitted by a hyperbolic function (worm-like chain model) and correlated

to the unfolding of secondary structure elements.

A

B

C

D

Fig. 2. Algorithm for noise reduction, alignment and clustering of force

curves. (A) Noise reduction: Dimension reduction with singular value

decomposition is applied. (B) Curve alignment: The two curves are aligned

with dynamic programming. (C) Clustering: The pairwise distances obtained

with curve alignment are clustered with hierarchical clustering and average

linkage. (D) Peak detection: Peaks are detected with the worm-like chain

model for evaluation of the clustering.
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(Muller et al., 2002; Oesterhelt et al., 2000). First, membrane patches are

imaged using contact mode AFM (Muller et al., 1999). For force meas-

urements, the AFM stylus is approached to the membrane protein surface

while applying a constant force of <1 nN. After a contact time of 500 ms

�1 s, the stylus is retracted from membrane surface at a constant velocity.

2.2. Data preparation: filtering bad curves and

determining zero-force baseline and

contact point

Before applying the alignment algorithm a careful pre-processing of experi-

mental data is needed. The quality of measured force curves varies from an

unfolding event to the other. Not every force curve contains unfolding

signals, some of them exhibit an overall length indicative of partial or

multiple unfolding events, others show peaks due to non-specific interactions

(corrupted curves) or a slope in the baseline that makes further analysis

difficult. The quality of input data is very important for an automated pro-

cedure since corrupted data often lead to incorrect results and make it

difficult to give a reliable interpretation. We automatically detect these

corrupted curves and remove them and, for the subsequent analysis, we

filter those curves that satisfy the following criteria:

� presence of at least one peak (point whose force magnitude is higher than

twice the standard deviation of the noise in the final part of the spectrum)

in the force–distance curve;

� position of the last peak in a suitable distance range, depending on

the length of the protein under study. This criterion ensures that all

the analysed curves correspond to complete single unfolding events

(Muller et al., 2002).

According to a classical analysis, a linear fit of the non-contact part

of each spectrum allows one to determine the zero-force baseline and evalu-

ate the standard deviation of the noise. The non-contact part of a spectrum

corresponds to the final part of the signal, pure noise due to the free motion

of the cantilever, which is no more in contact with the membrane surface.

The first intersection of the baseline with the spectrum determines the con-

tact point (the point at which the deflected cantilever is in contact with the

sample surface) (Kuhn et al., 2005).

We also detect the last peak of the curve and remove unspecific noise

after this peak. We achieve this by a 5 nm linear fit on the end of the curve, by

calculating its standard deviation and by walking forwards until the standard

deviation increases by a factor of 1.5.

2.3 Noise reduction: singular value decomposition

In force spectroscopy measurements, the dominant source of noise is the

thermal motion of the cantilever, but other sources (like electronic, optical or

vibrational noise of the instrument) can affect the sensitivity of the meas-

urements, causing the real relevant peaks in the force–distance curves to be

difficult to detect and distinguish from random noise. In a typical force

spectroscopy experiment, the standard deviation of the noise in the final

part of the spectrum is usually between 10 and 40 pN and strongly depends

on the spring constant of the cantilever (Janovjak, 2005). In order to reduce

the noise we apply dimension reduction with singular value decomposition

(SVD) to the spectra.

Singular value decomposition decomposes a matrix X into two orthogonal

matrices U and V and a diagonal matrix S as follows: X ¼ USVT (Goldberg,

1992). The diagonal matrix S contains singular values s1,s2, . . . , sn in

decreasing order on its diagonal. By setting sk,sk+1, . . . , sn to zero we can

reduce the matrix X’s dimensionality from n to k and thus reduce noise from

the original signal. Figure 2A shows a schematic decomposition of the

curves. For our purposes, the matrix X consists of a spectrum per row.

For the 135 force curves of bacteriorhodopsin we remove 15 dimensions

with singular value decomposition, which represent 2% of the original

signal. The standard deviation is 8 pN afterwards, which is considerably

smaller than 14 pN obtained from applying a moving average for noise

reduction.

2.4 Curve alignment with dynamic programming

In the second stage (Fig. 2B) of our method the curves are aligned using

global sequence alignment with dynamic programming(see e.g. Eddy,

2004):

Given two sequences seq1 and seq2

Let M(i,j) be the match score of seq1(i), seq2(j)

Let g be a negative gap penalty

For i ¼ 1 to n: A[i,0] ¼ i*g

For j¼1 to m: A[0,j] ¼ j*g

For i ¼ 1 to n

For j ¼ 1 to m
A[i, j] ¼ max(A[i-1, j]+g, A[i, j-1]+g, A[i-1, j-1]+M(i, j))

Output A[n,m] as final score

The key reason for using a sequence alignment technique is the

meaningful definition of matches/mismatches, insertions and deletions.

Matches and mismatches reward/penalize more or less fitting parts of the

force curves. Insertions and deletions are important, as peaks in the curves

may vary by up to six residues and as peaks may be missing completely

between two curves. Here, the match/mismatch score M(i,j) is defined as

follows:

Mði‚ jÞ ¼
1 � jseq1ðiÞ � seq2ðjÞj

avgðmax_f orce_valueÞ if jseq1ðiÞ � seq2ðjÞj
� 2snoise

� jseq1ðiÞ � seq2ðjÞj
avgðmax_f orce_valueÞ else

8>>>><
>>>>:

The scoring function is proportional to the absolute value of the force

magnitude difference, normalized by the average of the maximum force

values from the two spectra. We define a match between two force values

when the absolute value of their difference is not greater than twice the

standard deviation of the noise, otherwise we define a mismatch. The stand-

ard deviation of the noise strongly depends on the cantilever used in the

experiment, so the value of this parameter changes according to the experi-

mental data under study. The gap penalty g used in the global alignment

procedure is position-dependent and its value can be changed in the algo-

rithm according to the particular dataset.

In our case the gap penalty g is set to a value of 0.002 for force values in

the first 10 nm of the spectra and to a value of 0.8 in rest of the trace. An

unspecific attachment of the cantilever to the C-terminus of the protein

(24 amino acids long ¼ 10nm) needs to be compensated by a low gap

penalty for these first 10 nm. The similarity score sim (seq1,seq2) of two

curves seq1 and seq2 is A(n,m), i.e. the final alignment score.

As an example of our approach consider Figure 3. To achieve the optimal

alignment, the algorithm introduces a gap within the first peak. As a result,

the rest of the curves matches apart from one missing peak.

2.5 Defining unfolding classes with hierarchical

clustering

Finally, we cluster the curves using hierarchical clustering with

average linkage (Fig. 2C). We define the distance of two sequences as

1-sim(seq1,seq2). Only curve pairs with a Z-score of sim(seq1,seq2) better

than 0.65 are considered for clustering, as a lower value indicates an outlier,

which belongs to the class of spurious curves.

2.6 Peak detection

For the evaluation of our approach peaks have to be detected. The standard

approach for fitting force peaks revealed from stretching a polypeptide is

the WLC. Consider Figure 2D. Unfolded proteins behave in an approxima-

tion like random coils whose elasticity is described by the WLC with a

persistence length lp ¼ 4 s (Rief et al., 1997; Muller et al., 2002). The

gradual, nonlinear increase in the extension traces can be fitted using the
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WLC model with only one free parameter: the contour length L of the

stretched portion of the molecule. The equation below describes the increas-

ing slope of the force-distance trace at low forces (few hundreds pN) with

good agreement:

FðxÞ ¼ kbT

lp

1

4

�
1� x

L

��2

þ x

L
� 1

4

� �

where kb is the Boltzman’s constant and T is the temperature.

The WLC fit of a peak thus provides the contour length L of the unfolded

portion of the protein, that is the position of the corresponding barrier against

unfolding. From the knowledge of the attachment point of the protein to the

cantilever tip, the position of an unfolding barrier with respect to the amino

acid sequence of the backbone can thus be counted backwards from the

terminus.

For the evaluation of our algorithm, we use the WLC model and detect

peaks of curves manually, so that each curve is represented by a sequence of

contour lengths seq ¼ (L1, . . . ,Ln) for n detected peaks.

3 EVALUATION

3.1 Bacteriorhodopsin

In order to assess the reliability of our method, we test it on a dataset

of 135 force curves collected from unfolding experiments of the

P50A bacteriorhodopsin mutant. Bacteriorhodopsin is a compact

27 kDA light-driven proton pump in Halobacterium salinarum,

converting the energy of green light into an electrochemical proton

gradient. Bacteriorhodopsin represents one of the most extensively

studied membrane proteins. Its structural analysis has revealed the

photoactive retinal embedded in seven closely packed transmem-

brane a-helices, which build a common structural motif along a

large class of related G-protein coupled receptors. As bacteri-

orhodopsin was already intensively studied by single-molecule

force spectroscopy experiments, we test our algorithm on a new

experimental dataset consisting of force–distance traces from a

bacteriorhodopsin mutant where Pro50 in helix B is mutated to

Ala. Prolines in the helices of bacteriorhodopsin are studied as

they are linked to kinks in the helices.

3.2 Spurious curves and peak detection

According to the manual annotation, there are 61 good curves

among the total dataset of 135 curves. Our algorithm identifies

spurious curves during the pre-processing step and as outliers

with low similarity to other curves during the clustering phase.

Our algorithm achieves a success rate of 81% in comparison to

the manual annotation in classifying bad and good curves.

Overall, there are three main peaks (at 88, 148 and 219 amino

acids) present in all curves and five minor ones [94 (18%), 105

(18%), 158 (34%), 175 (56%) and 232 amino acids (16%)] in the

61 good curves of the manual annotation.

3.3 Unfolding pathways

Our alignment algorithm generates a hierarchical clustering tree

where each cluster corresponds to a class of unfolding events.

We compare it against a manual annotation of the curves based

on a manual peak detection with the WLC described above.

A hierarchical clustering based on curve alignment reflects the

similarity of clustered spectra. Clusters in the tree correspond to

classes of unfolding events at different levels of granularity. We find

that all the spectra in the dataset share three main peaks (88 ± 5,

148 ± 5 and 219 ± 5 amino acids) that indicate the unfolding of two

transmembrane helices and their connecting loop in a single step.

Furthermore, we can identify subclusters in the hierarchical tree

relating to different unfolding events showing the presence of side

peaks besides the main unfolding pathway, indicating that helices

not always unfold pairwise but exhibit more unfolding intermedi-

ates. This result agrees with previous studies that analyse individual

unfolding pathways of bacteriorhodopsin (Oesterhelt et al., 2000).

Figure 4 shows an example of an unfolding pathway in the bac-

teriorhodopsin mutant P50A. The figure shows three spectra which

are very close to each other in the hierarchical tree of the curve

alignment and share the same number of peaks as the manual

annotation. This unfolding pathway corresponds to helix E and

helix D unfolding pairwise in a single step, then helix C with

loop B-C, then helix B unfolds and finally helix A together with

the N-terminus.

The full tree with all the unfolding events consists of 12 levels

starting from the root (dendrogram not shown). We progressively

cut the tree at different levels and, at each step, we identify

subclusters that can be possibly associated to different unfolding

pathways (Fig. 5). Each table in Figure 5 corresponds to the analysis

of subclusters at different levels of cutting, and, for each peak

position identified in the manual annotation, we show the percentage

of curves sharing a given peak. We discuss also the correlation

Fig. 3. Aligning two force curves with dynamic programming. (A) The

curves are not aligned. (B) After introducing a gap in the first peak, the overall

alignment of peaks is clear with one peak missing.
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between subclusters and different unfolding pathways. We underline

in red the peaks that possibly identify a given unfolding pathway.

3.4 Curve alignment versus manual annotation:

76% success rate

The manual annotation consists of the number of manually detected

peaks and their positions. We calculate the percentage of peak

positions which match within each subcluster of the algorithm’s

hierarchical clustering tree. This calculation is based on a sum-of-

pairs score inside each subcluster, where we do not split the dendro-

grams at any distance, but we consider subclusters as succession of

partitions in the hierarchical tree. On the basis of the manually

annotated dataset we achieve a precision of 75.6% for the curve

alignment method. This value indicates that the algorithm is con-

sistent with a classification of the spectra in different unfolding

pathways.

4 DISCUSSION

Single-molecule force spectroscopy is a convenient and promising

tool to measure interaction forces inside and between molecules.

But suitable algorithms to process the data still have to be

developed. The solution we propose greatly simplifies and accel-

erates the data processing step in specific force measurements,

compared with a manual selection and annotation. With our auto-

mated approach, the recognition of unfolding events is no more

considered subjective as for manual recognition but has the advant-

age to be reproducible and quantitative. The hierarchical tree, as

output from the described procedure can be helpful in the inter-

pretation of the experimental data, in discriminating different

possible unfolding pathways and calculating their probability of

occurrence. A similar dynamic programming approach was used

successfully in spectral alignment of mass spectrometry data for

peptides masses identification, where two spectra are represented as

sets of peaks and the problem consists of finding the best similarity

(or the minimum edit distance) between them, allowing insertions

and deletions of peaks (Pevzner et al., 2000). Unfortunately, unlike

mass spectra, force spectra do not consist of limited sets of peaks

and the problem of peak detection is not easy to solve. To overcome

this problem, we presented a solution based on a curve alignment

procedure and compared it with manually annotated data. Overall,

our approach leads to good results (success rate of 81% identifying

spurious curves and a success rate of 76% classifying unfolding

events). The method has also the advantage to be configurable

based on requirements e.g. our current match/mismatch function

penalizes the absolute difference of force, which does not align

Fig. 4. Three curves clustered by the algorithm share the same number of

peaks according to the manual annotation. They all share a side peak at about

171 amino acids. On the right, we show the mapping of the detected unfolding

barriers onto the three-dimensional structure (PDB ID 1PXR) of the protein.

According to the positions of the detected peaks, helix E and helix D unfold

pairwise in a single step, then helix C with loop B-C, then helix B unfolds and

finally helix A together with the N-terminus.

Fig. 5. Five different unfolding pathways. Subcluster 1 is obtained by cutting

the hierarchical tree before the third level (starting form the root). Of the

curves, 58% share a common peak at about 175 amino acids, 33% at 94 and

33% at 158. We find that all the curves showing a peak at 158 amino acids

inside subcluster 1 also share the peak at 175 amino acids. We can possibly

associate subcluster 1 to the following unfolding pathway: 88, 148, 158, 175,

219 (unfolding of helices E and D in a single step, then helix C, then loop B-C,

then helix B and then helix A and N-terminus in a single step). Subcluster 2 is

obtained by cutting the tree before the sixth level. The most relevant percen-

tages correspond to peak positions 175 amino acids, shared from the 70% of

the curves and 232 amino acids (70% of the curves also in this case). We also

find that most of the curves (5/7) share a peak at 232 amino acids also share

a peak at 175 amino acids. This suggests an association between subcluster

2 and a possible unfolding pathway characterised from the presence of the

following peaks: 88, 148, 175, 219, 232 (unfolding of helix E and D in a single

step then helix D, then helix C with loop B-C, then helix B and then helix A

and then N-terminus alone). Subcluster 3 is obtained by cutting the hierarch-

ical tree before the seventh level. In this case all the curves in the subcluster

share a common peak at 175 amino acids (100%) and 67% of the curves share

a peak at 94 amino acids. We suggest that this subcluster can be highly

associated to the following unfolding pathway: 88, 94, 148, 175, 219

(unfolding of helix E in a two-step process, then helix D, then helix C with

the loop B-C, then helix B and then helix A with the N-terminus). Subcluster-4

and subcluster 5 are detected by cutting the tree before the ninth level.

Subcluster-4 can be associate to two different unfolding pathways: 88,

148, 158, 219 and 88, 148, 175, 219. Subcluster-5 can be associated to the

main unfolding pathway: 88, 148, 219 (pairwise unfolding of helices E and D,

then pairwise unfolding of helices C and B and finally helix A and N-terminus

in a single step).
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curves of similar behaviour of different absolute force values. To

detect these, the scoring function could be adapted to include

correlation of the curves.

To summarize, we propose a novel algorithm for high-throughput

classification of single-molecule force spectroscopy data. Current,

semi-automated approaches based on peak detection with the

worm-like chain model are manual and therefore slow and possibly

inconsistent. Our approach based on sequence alignment and clus-

tering addresses this bottleneck and leads to reproducible results.

As the next step, we will link unfolding events to sequence and

structure features such as conservation, residue–residue contacts

and protein topology. As an example, consider Figure 6, which

shows three main and two minor unfolding events in combination

with the degree of conservation of the residues. Unfolding barriers

are highly conserved, while the peaks are associated with low

conservation residues. We hope that a bioinformatics approach to

high-throughput atomic force microscopy can shed new light onto

the structure and function of membrane proteins.

We think that a bioinformatics analysis of mostly conserved

residues, residue–residue contacts and protein topology prediction

can give a helpful feedback in the interpretation of measured and

assigned molecular interactions that determine a specific unfolding

pathway in a given molecule.
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Fig. 6. Example of a spectrum showing the mapping of main peaks (85, 145

and 216 amino acids) and side peaks (91 and 171 amino acids) positions on

the structure of the bacteriorhodopsin mutant P50A. The residues in the

structure are coloured on the basis of their conservation score in a multiple

sequence alignment. The colour scale ranges from red (highly conserved

residues) to blue (weakly conserved residues). The positions of peaks in

the force curves are located in regions of low conservation. The highly con-

served residues fall inside two detected unfolding barriers.
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