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Abstract. Rules play an increasingly important role in a variety of Se-
mantic Web applications as well as in traditional IT systems. As a univer-
sal medium for publishing information, the Web is envisioned to become
the place for publishing, distributing, and exchanging rule-based knowl-
edge. Realizing the importance and the promise of this vision, W3C has
created the Rule Interchange Format Working Group (RIF WG) and
chartered it to develop an interchange format for rules in alignment with
the existing standards in the Semantic Web architecture stack.

However, creating a generally accepted interchange format is by no means
a trivial task. First, there are different understandings of what a “rule” is.
Researchers and practitioners distinguish between deduction rules, nor-
mative rules, production rules, reactive rules, etc. Second, even within
the same category of rules, systems use different (often incompatible)
semantics and syntaxes. Third, existing Semantic Web standards, such
as RDF and OWL, show incompatibilities with many kinds of rule lan-
guages at a conceptual level.

This article discusses the role that different kinds of rule languages and
systems play on the Web, illustrates the problems and opportunities in
exchanging rules through a standardized format, and provides a snapshot
of the current work of the W3C RIF WG.



2 Boley et al.

1 Introduction

Rule interchange on the Web has become an increasingly important issue during
the last couple of years in both industry and academia. Offering a flexible, adap-
tive approach towards applications development on a high level of abstraction,
declarative rules languages have already been developed by different communi-
ties and deployed in various application domains. Companies manage and specify
their business logic in the form of rules [The00]. Rules are also being used for
modeling security policies in cooperative systems [Bon05], and they are gaining
popularity as a means of reasoning about Web data [BS04,EIP+06,Ros06].

To exploit the full potential of rule-based approaches, the business rules and
the Semantic Web communities have started to develop solutions for reusing and
integrating knowledge specified in different rule languages. The Rule Markup
Initiative5, which started in 2000, focused its efforts on defining a shared Rule
Markup Language (RuleML) that tries to encompass different types of rules.
The European Network of Excellence REWERSE [BS04] (Reasoning on the
Web with Rules and Semantics) proposes R2ML [WGL06], the REWERSE I1
Rule Markup Language, which offers a solution for interchanging rules between
heterogeneous systems combining RuleML, SWRL, and OCL. Moreover, three
member submissions for Web rule languages, namely the Semantic Web Rule
Language (SWRL) [HPSB+04], the Web Rules Language (WRL) [ABdB+05],
and SWSL Rules [BBB+] (a rule language proposed by the Semantic Web Ser-
vices Language Committee6) were submitted independently to the World Wide
Web Consortium (W3C) as starting points for standardization in the rules area.

Finally, at the end of 2005, W3C launched the Rule Interchange Format
Working Group (RIF WG) which has been chartered to standardize a common
format for rule interchange on the Web.

In this article, we start with a general discussion of problems related to rule
interchange on the Web and outline the role of rules in realizing the Semantic
Web vision. Then, we present the results of the W3C RIF WG achieved so far
and outline future work to be done. In particular, we will discuss the first two
public working drafts released by the Working Group—the Use Cases and Re-
quirements [GHMe] document and the technical design of a core rule interchange
format, the RIF Core [Be07].

1.1 Running Example: A Simple Movie Scenario

To illustrate the main ideas, we use an example where several movie databases
interoperate through the Web.

Example 1. The fictitious International Movie Datastore (IMD) publishes its
database through its Web site http://imd.example.org/. This database is
shown in Figure 1(a). Likewise, John Doe Sr., who owns a DVD Rental Store,
MoviShop, makes his movie rental services available on the Web. His site is
supported by a similar database shown in Figure 1(b).
5 Rule Markup Initiative, http://www.ruleml.org
6 http://www.daml.org/services/swsl/
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Movie Title Year MinAge
m1 Plan 9 from Outer Space 1959 16
m2 Matrix Revolutions 2003 18
m3 Bride of the Monster 1955 16
m4 Ed Wood 1994 12

.

.

.

Person Name Birthyear
p1 Edward D. Wood Jr. 1924
p2 Johnny Depp 1963
p3 Tim Burton 1958
p4 Andy Wachowski 1967
p5 Martin Landau 1931
p6 Larry Wachowski 1965

.

.

.

PersonID ActedIn Role
p2 m4 Edward D. Wood Jr.
p5 m4 Bela Lugosi

.

.

.

PersonID Directed
p3 m4
p1 m1
p1 m3

.

.

.

. . .

(a) IMD’s database, accessible via: http://imd.example.org/

DVD# Movie
dvd1 m1
dvd2 m1

.

.

.

Customer# DVD# RentalDate ReturnDate
c1 dvd2 2007-09-01 2007-09-01
c2 dvd5 2007-01-01

.

.

.

Customer# Name Age
c1 Joanna Doe 31
c2 Johnny Dough 12
c3 John Doe Jr. 16

.

.

.

((b) MoviShop’s database

Fig. 1. IMD, a fictitious movie database, and MoviShop, a fictitious DVD rental store

By employing Web formats such as XML, RDF, and OWL, John can share
data over the Web. John also uses Semantic Web technologies for implement-
ing some of the services MoviShop is offering. For instance, MoviShop provides
customers with information about the newest movies by importing data from
http://imd.example.org/. It also publishes the information about available
movies and links to other Web sources that provide reviews and recommenda-
tions (such as IMD). MoviShop also supports online ordering of movies, which
can later be picked up in a branch office of MoviShop.

Recently John has become fascinated by the new business opportunities,
which could arise if MoviShop could import and exchange not only data but also
business rules. He is thus very excited about W3C’s ongoing efforts towards a
common rules interchange format.

1.2 Rules and Rule Types

Creating a format for rule interchange on the Web, which could help John con-
duct his business, is not a trivial task. First, there are different ideas about what
types of rules are of interest: one might get different views depending on whether
you talk to a production rule vendor, a database vendor, or a Semantic Web re-
searcher. This is because the term “rule” is an umbrella for a number of related,
but still quite different concepts.

A simple example of a rule is a CSS selector, i.e. a statement that defines how
browsers should render elements on an HTML page, such as the list of available
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movies in John’s MoviShop. At the business level, John might be interested to
enforce constraint rules such as “credit cards accepted by MoviShop are VISA
and MasterCard.” Moreover, rules can define implicit data, e.g. “Customers who
have rented more than 100 movies are priority customers.”

Integrity constraints on the structure of the data in databases, such as “each
movie has a single production year,” or “each MoviShop customer has a unique
identification number,” provide another example of rules.

Statements specifying parts of an application’s dynamic behavior such as ’if
an item is perishable and it is delivered more than 10 days after the scheduled
delivery date then the item will be rejected’ or ’if a customer is blacklisted then
deny the customer’s request to booking a movie’ are also rules. The second rule is
a good example for rules that could be interchanged between systems deployed
by MoviShop and similar online shops.

The above examples show that rules may specify constraints, (implicit) con-
struction of new data, data transformations, updates on data or, more general,
event-driven actions. Rules are also used for reasoning with Web and Semantic
Web data. From a high-level view, rules are statements that express static or
dynamic relationships among different data items, the logic of applications, and
more generally of business processes within enterprises.

Rules may differ significantly not only in their purpose (e.g., transforming
data), but also in their form. Consider, for example, the following rules:

(R1) IF movie ?M was produced before 1930
THEN ?M is a black and white movie

(R2) ON request from customer ?C to book a movie
IF customer ?C is blacklisted
DO deny ?C’s request

Rule R1 has two components: The IF part searches for movies produced
before 1930 and binds the variable M to such movies. The THEN part of the rule
uses the retrieved information to construct new data—a view over the movie
data. Rule R2 has a different structure: The ON part waits for a request for
booking a movie to come in, i.e. an event. The IF part of rule R2 is similar
to the IF part of rule R1—it checks a condition about the customer requesting
a movie. The DO part specifies the action to be executed on a request from a
blacklisted customer.

Different kinds of rules present different requirements to the implementor.
R2 needs a richer language and a more complex execution semantics than R1,
since its ON part requires support for detecting incoming events and its DO part
needs support for executing actions. However, both types of rules share the need
to support conditions in the IF part. This commonality among different types
of rules suggest a way of approaching the development of a rule interchange
format by starting with common parts (such as the IF part) and extending this
support to various features of different types of rules. To better understand the
similarities among different types of rules, we divide them into three categories:
deduction rules, normative rules, and reactive rules (see [TW01,BM05]).
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Deduction rules are statements of how to derive knowledge from other
knowledge by using logical inference. Deduction rules are also called derivation
rules in the business rules community, constructive rules by logicians, and views
in the database community.

One could say that deduction rules describe static dependencies among en-
tities which might be used to infer additional implicit knowledge from what
is explicitly stated in a knowledge base or database. Deductive rules are often
specified as implications of the form head ← body: The head gives a specifica-
tion of the data to be constructed/inferred and the body queries the underly-
ing database(s). Both rule parts may and usually share variables. Variables get
bound to data items in the body and these bindings are then used in the head
to infer new data. In the previous example, rule R1 is a deductive rule. Its body
is introduced by the keyword IF and the head by THEN. The head and the body
share the variable M, which is a placeholder for a movie object.

The actual syntax and the nature of the parts in a rule depend on the chosen
rule language. Some languages divide the body into a query part, which selects
data from one or more databases, and a condition part, which acts as a filter for
the results obtained by evaluating the query part. Consider the rule R1, which
constructs a view of black and white movies from a movie database at http:
//imd.example.org/movies.xml. The body of the rule searches for movies in
a database and then filters out the movies produced before 1930. As a concrete
example of a rule language, let us consider rule R1 expressed in Xcerpt7, an
XML rule language based on deductive rules:

CONSTRUCT
black-and-white { all var Title }

FROM
in { resource { "http://imd.example.org/movies.xml", XML},

moviedb {{
movie {{

title { var Title },
year { var Year }

}}
}}

} WHERE var Year < 1930
END

Rule components specify patterns for the data to be constructed or queried.
The rule head, introduced by CONSTRUCT, gathers all substitutions for the vari-
able Title. The rule body, introduced by FROM gives an incomplete pattern for the
movies.xml data and retrieves the movie titles and years as substitutions for the
variables Title and Year. The WHERE part specifies the desired filter condition.

The given Xcerpt rule exemplifies a deductive rule with selection and filtering
of data in the body and grouping of data items in the head. Data is retrieved from
a single data source—an XML document—but more than one data source can be
7 Xcerpt, http://xcerpt.org
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queried within one deductive rule. The data source may be explicitly given, as in
this case, or given implicitly (e.g. upon loading a ruleset). Depending on the rule
language used to specify and evaluate deductive rules, other features may also be
supported. Join queries over multiple data sources, which correlate pieces of data
found in the data sources, may also be specified in a deductive rule’s body. Other
features, such as aggregation of data (e.g. by means of aggregate functions like
count, which counts the substitutions for a given variable), or external function
calls may or may not be allowed to be used in rules.

Other examples of rule languages based on deductive rules are SQL views,
Datalog, Prolog, and most other logical rules languages.

Normative rules are rules that pose constraints on the data or on the
logic of an application. Such rules ensure that changes made to a database do
not cause inconsistencies and that the business logic of a company is obeyed.
Normative rules are also called structural rules in the business rules community
and integrity constraints in databases.

Normative rules describe disallowed inconsistencies rather than inferring new
knowledge. A simple constraint is that each customer must have a unique iden-
tification number. Two different identification numbers for the same person are
an indication of corrupted data. Similar examples arise in E-R models in the
form of key declarations and cardinality restrictions. XML’s DTDs also provide
rudimentary capabilities to express such key constraints in the form of ID and
IDREF attributes, and XML Schema provides rich support for key and foreign
key constraints.

In some cases, deductive rules can be used to implement normative rules8.
In other cases, reactive rules (discussed next) can be used to implement certain
types of normative rules. The decision largely depends on the application and
on the available support for different rule types. For example, in [FFLS99] con-
straints are used to describe the structure of Web sites and deductive rules are
used as a specification and implementation mechanism. Deductive rules are also
used to specify assertion-style constraints in databases. In addition, database
implementors often use triggers—a form of reactive rules—as a technique for
implementing integrity constraints.

Reactive rules offer means to describe reactive behavior and implement
reactive systems, i.e. to automatically execute specified actions when events of
interest occur and/or certain conditions become true. Reactive rules are also
called active rules and dynamic rules. Unlike deduction rules, reactive rules talk
about state changes. Events represent changes in the state of the world and rules
specify further changes that must occur in reaction to the events (hence the name
reactive rules). Reactive rules usually have the form of Event-Condition-Action
(ECA) rules or production rules.

ECA rules are rules of the form ON Event IF Condition DO Action. This
means that the Action should be executed if the Event occurs, provided that
the Condition also holds. The Event part serves a twofold purpose: detecting
8 More details on the proposed classification of rules can be found at http://www.w3.
org/2005/rules/wg/wiki/Classification_of_Rules
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events of interest and selecting data items from their representations (by binding
variables as discussed above). Different kinds of events may be supported, rang-
ing from low-level, data-driven events, such as the deletion of a subtree of an
XML tree, to high-level more abstract events, such as the delay of a flight. De-
pending on the rule language, only single occurrences of events (atomic events)
may be allowed to be specified and detected, or temporal combinations of events
(composite events) may be permitted. The events mentioned previously are all
atomic. The following is an example of a composite event: “customer ?C requests
booking a movie AND no response from ?C on bringing back movie M1.”

The Condition part queries the state of the world—e.g. XML and RDF
data in Web applications or a legacy database—and may be expressed in a
query language such as XPath9, Xcerpt10, or SPARQL11. Like the Event part,
the Condition also selects data items that can be further used in executing
the Action. Different kinds of actions may be supported by reactive systems:
updates to data (e.g., insertion of a subtree into an XML tree), changes to the
rule set itself (e.g., removal of a rule), new events to be triggered, or procedure
calls (e.g., calling an external function which sends an email message). Actions
can also be combined to ease the programming of complex applications.

The following example gives a possible implementation of the rule R2 pre-
viously mentioned in this section. We use XChange12 here, a language which is
based on ECA rules:

ON
xchange:event {{
xchange:sender { var S },
order {{
customer { var C }

}}
}}

FROM
in { resource { "http://MoviShop.org/blacklisted.xml", XML },
desc var C

}
DO
xchange:event {
xchange:recipient { var S },
message { "Your request can not be processed,

since you are blacklisted" }
}

END

9 XPath, http://www.w3.org/TR/xpath
10 Xcerpt, http://xcerpt.org
11 http://www.w3.org/TR/rdf-sparql-query/
12 XChange, http://reactiveweb.org/xchange/intro.html
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XChange [BBEP05,BEP06b,P0̆5] integrates the query language Xcerpt for
specifying the condition part (introduced by FROM) of reactive rules. XChange
assumes that each reactive Web node has reactive rules in place and that the
communication of Web nodes is realized through event messages—messages car-
rying information on the events that have occurred. XChange reactive rules react
upon such event messages, which are labelled xchange:event. The ON part of the
example reactive rule gives a pattern for incoming event messages that represent
booking requests. The FROM part is an Xcerpt query; the descendant construct
in the example is used for searching at a variable depth in blacklisted.xml for
the customer requesting the order. The DO part sends an event message to the
customer announcing the reasons for denying the request.

Examples of other ECA rule languages and systems are the General Semantic
Web ECA Framework,13 [BFMS06,MSvL06] Prova,14, ruleCore15, and Active
XQuery [BBCC02]. Another ECA rule language for XML data is proposed in
[BPW02] and adapted for RDF data as the RDF Triggering Language (RDF-
TL) [PPW03]. Reaction RuleML16 was recently launched as part of the RuleML
Initiative.17 Its aim is the development of a markup language for the family of
reactive rules.

Triggers are a form of ECA rules employed in database management systems:
The E part specifies the database update operation to react to, the C part
specifies the condition that needs to hold for executing the database update
operations specified in the A part. Triggers combined with relational or object-
oriented database systems give rise to so-called active database systems. Most
of the active database systems support triggers where all three rule parts – E,
C, and A – are explicitly specified; proposals also exist where the E or the C
part is either missing or implicit. Examples of active database systems include
Starburst [Wid96], Postgres [PS96], and the systems based on SQL:1999 [Mel02].

It is worthwhile to also mention other, less popular, variations of ECA rules.
Event-Condition-Action-Alternative (ECAA) rules extend the ECA rules by
specifying the action to be executed when the given condition doesn’t hold. Note
that an ECAA rule can be rewritten into two ECA rules, where the condition
part of one rule is the negation of the other. An ECnAn+1 rule is a generaliza-
tion of an ECAA rule. Yet another form of ECA rules are the Event-Condition-
Action-Postcondition (ECAP) rules, which extend ECA rules by specifying a
(post)condition that needs to hold after the action has been executed. These
kinds of restrictions make sense, for instance, when considering action execution
frameworks supporting transactions.

Production rules are rules of the form IF Condition DO Action. They say
that the Action part must be executed whenever a change to the underlying

13 General Semantic Web ECA Framework, http://www.dbis.informatik.

uni-goettingen.de/eca/
14 Prova,http://www.prova.ws
15 ruleCore,www.rulecore.com
16 Reaction RuleML,http://ibis.in.tum.de/research/ReactionRuleML/
17 RuleML Initiative, http://www.ruleml.org
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database makes Condition true. The Condition queries the working memory,
which contains the data on which the rules operate. Selected data is then used to
execute the actions specified in the Action part. An action usually contains oper-
ations on the working memory (e.g., assert a new data item) but also statements
à la procedural programming (e.g., assignment, loop).

As an example, consider a different incarnation of the reactive rule R2 –
this time using ILOG’s commercial production rules system JRules.18 Other
production rules systems include OPS5,19 JBoss Rules,20 and Jess.21

rule denyBlacklistedCustomers {
when {
c: Customer (blacklisted == yes);
m: MoviesCart (owner == c; value > 0);

} then {
out.println ("Customer "+c.name+" is blacklisted!");
retract m;

}
}

The condition part of the rule (introduced by when) gives a pattern for in-
stances of classes Customer and MoviesCart. It matches Customer instances
whose attribute blacklisted is set to yes and whose MoviesCart’s attribute
value is greater than zero (meaning that the customer wants to order at least
one movie). The two classes used in the example rule may be Java or C classes
or element types from an XML Schema. The action part (introduced by then)
announces the reason of denying the request and updates the working memory
removing the MoviesCart object for the respective Customer instance (by the
statement retract m).

ECA and production rules are discussed in [BBB+07], where an in-depth pre-
sentation of both approaches to reactive behavior is given. The work also tries to
reveal similarities and differences between the two approaches to programming
reactive applications on the Web. The structure and semantics of the two kinds
of rules indicate that the ECA rule approach is well suited for distributed ap-
plications which rely on event-based communication between components, while
the production rule approach is more appropriate for coding the logic of stateful
applications.

A considerable number of rule languages that can be employed for program-
ming Semantic Web applications have been proposed, which we will discuss in
more detail in Section 2. An overview of current rule languages and systems that
were considered of interest by the participants of the W3C RIF WG can be found

18 ILOG JRules, http://www.ilog.com/products/jrules/
19 Official Production System 5, http://www.cs.gordon.edu/local/courses/cs323/

OPS5/ops5.html
20 JBoss Rules, http://www.jboss.com/products/rules
21 Jess, http://www.jessrules.com/



10 Boley et al.

at http://www.w3.org/2005/rules/wg/wiki/List_of_Rule_Systems. In this
section we presented a classification of rules that can be a basis for discovering
commonalities between rule languages. However, as the examples have shown,
they also reveal considerable differences with respect to syntax, supported fea-
tures, and semantics. Thus, to determine whether language constructs have the
same effect in different rule languages, an analysis based on the language seman-
tics is needed. A standard interchange format should be geared for exchanging
rules with different structure, constructs, and semantics.

1.3 W3C RIF WG Charter

The charter of the W3C RIF WG22 gives guidelines and requirements for the rule
interchange format to be developed within the Working Group. This document
and the particular interests of the participants of the W3C RIF WG will influence
the ultimate shape RIF is going to take.

The W3C RIF WG is chartered to develop an exchange format for rules
that should enable rules to be translated between different rule languages and,
thus, to be used in different rule systems. This is to be achieved through two
phases corresponding to the development of an extensible core interchange for-
mat and a set of extensions (called standard dialects). Each of these work phases
is chartered for up to two years.

Phase I focuses essentially on Horn rules for a core rule interchange format.
The RIF Core development should build a stable backbone and allow extensions
in the second phase. For Phase II, the charter just gives starting points for
possible extensions. For example, the core format might be extended in the
direction of first-order rules, (possibly non-monotonic) logic programming rules,
and particularly ECA and production rules, neither of which to be fully covered
in the core.

The charter also emphasizes compatibility with Web and Semantic Web tech-
nologies such as XML, RDF, SPARQL, and OWL. It states that the primary
normative syntax of a general rule interchange format must be based on XML.
Moreover, it states that RIF must support interoperability with RDF data and
be compatible with OWL and SPARQL.

1.4 Outline

The subsequent sections are structured as follows. In Section 2 we describe in
more detail the role of rules and rule interchange in the Semantic Web architec-
ture.

Then we turn to a discussion of the early working draft documents published
by the RIF WG. The use cases for rule interchange described in the Second W3C
Public Working Draft of Use Cases and Requirements are discussed in Section 3.
The requirements for RIF that follow from these initial use cases are discussed
in Section 4. The first public Working Draft on RIF Core Design [Be07] will be

22 http://www.w3.org/2005/rules/wg/charter.html
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Fig. 2. The role of rules in the Semantic-Web layer cake

discussed in Section 5, where we present the current syntax and semantics of the
RIF Core using an example.

A comprehensive classification system, called RIF Rule Arrangement Frame-
work (RIFRAF), is currently under development and is being populated with
existing rule languages and systems. The status of this study and impact on
possible extensions to RIF Core are also briefly discussed in Section 5.

2 Rules in the Semantic Web architecture: Where do
rules belong?

Recent versions of the often cited “Semantic Web Layer Cake” [BL05] position
rules as a central component (see Figure 2).

We have already pointed out in the introduction that rule interchange, and
thus RIF, will not be restricted to Semantic Web applications. It is expected,
for example, that rules will affect Web Services standards, such as SA-WSDL,23

which merge the Semantic Web and Web services worlds by allowing semantic
annotations within WSDL documents. However, since the role of rules within
the Web services layer is yet to be clearly defined by the standards bodies, we
will focus on the “core” semantic Web architecture and discuss the applications
of rules to the existing Semantic Web standards: XML, RDF, RDFS, OWL, and
SPARQL. Note that the presented version of the Semantic Web architecture
stack in Figure 2 leaves out layers such as “Proof,” “Security,” “Encryption,” and
“Trust.” Rules are certainly going to play an important role within these layers
as well, but here we will focus on the layers that already have recommendations
endorsed by W3C.

2.1 URIs and Unicode

The Semantic Web is based on the idea of Uniform Resource Identifiers (URIs)
as unique identifiers for documents that live on the Web, but also for real-world or
abstract objects. Following this paradigm, RIF will support and require the use of
23 http://www.w3.org/2002/ws/sawsdl/
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URIs for objects, relations, and other components of rules. The main difference
between URIs and URLs is that, for instance, http://imd.example.org#m1
might be a URI that identifies a movie stored at IMD, but it does not necessarily
need to identify any document on the Web. URIs may also have syntactic forms
that are not URLs. In the near future, Semantic Web languages will be expected
to use the rich Unicode character set in order to provide support for non-Latin
letters in a uniform way. In order to be able to identify objects using non-Latin
character sets, the IRI (International Resource Identifier) specification has been
recently adopted by W3C. An IRI is just like a URI, but it might include, for
example, Kanji or Hebrew characters. It has been decided that RIF will use IRIs
to denote globally accessible objects.

2.2 XML and Namespaces

The eXtensible Markup Language (XML) has been chosen as the standard ex-
change syntax for data and messages on the Web and, consequently, will likely
also be the basis for the exchange of rules on the Web.

Example 2 (Running example continued). In order to support movie enthusiasts
and other people like John, our video store owner, IMD makes its movie data
available in an XML document, as shown in Figure 3.

<?xml version="1.0" encoding="UTF-8"?>
<moviedb xmlns="http://imd.example.org/ns/">

<movie ID="m1">
<title>Plan 9 from Outer Space</title>
<directedBy IDref="p1"/>
...
<year>1959</year>
<age>16</age>

</movie>

...

<person ID="p1">
<name>Edward D. Wood Jr.</name>
<dateOfBirth>1924-10-10</dateOfBirth>

</person>

...

</moviedb>

Fig. 3. IMD’s XML dump, available at http://imd.example.org/movies.xml

In XML, URIs also serve to denote unique identifiers. For example, identifiers
in http://imd.example.org/movies.xml, such as http://imd.example.org/
movies.xml#m1, can be used to denote objects described in the document. More-
over, URIs serve to denote “scopes” of element or attribute names within XML
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documents using XML’s namespace mechanism. For instance, the XML docu-
ment in Figure 3 has the default namespace http://imd.example.org/ns/. An
element named name in the figure refers to “the name element associated with
the URI http://imd.example.org/ns/,” which is used to specify the name of a
person. Namespaces are used to disambiguate references to element or attribute
names that appear in the same document, but have different meaning and are
typically defined externally. For instance, the name element that describes a per-
son could have a different structure from the name element that is used for
companies. The latter may be defined in an external document using some other
namespace.

Sometimes, notably in RDF, however, the term “namespace” is used to refer
to prefixes of full URLs. For instance, <imd:age> is treated as an abbreviation
of the URI http://imd.example.org/ns/age, if imd is defined as a “macro” for
http://imd.example.org/ns/. Reusing the term “namespace” in this situation
is unfortunate and causes confusion. A more appropriate term, compact URI (or
curi), has recently been adopted for the abbreviation schemes like <imd:age>
above. RIF will support compact URIs as well.

Semantic Web languages are required to support an XML exchange syntax
and so will RIF. Since XML is verbose and is hard for humans to write and
understand, it is used mostly for machine-to-machine exchange. Semantic Web
languages, such as RDF or OWL, also support more human-friendly abstract
syntaxes, and RIF will provide such a human-oriented syntax as well.

XML comes with several accompanying standards: for querying XML doc-
uments (XPath and XQuery); for transforming XML documents to XML and
other formats (XSLT); for specifying document structure (XML Schema); and so
on. Although XPath, XQuery, and XSLT are the most common query and trans-
formation tools for XML, many XML rule languages based on logic program-
ming have been developed. These include eLog [BFG+01], Xcerpt [Sch04] and
XChange [BEP06a], and Prolog systems with extensive XML support like Ciao
Prolog [CH01] or SWI Prolog [WHvdM06]. Examples of Xcerpt and XChange
were given in the introduction and similar examples can be worked out for the
other languages on the above list. These examples and overlapping expresive fea-
tures of these rule languages suggest that at least some rules could be exchanged
among dissimilar systems. However, it is not yet clear how far this can be taken
and to what extent (query, transformation, or validation) rules on top of XML
can be interchanged in general.

2.3 RDF and RDFS

The Resource Description Framework (RDF) is the basic data model for the
Semantic Web. It is built upon one of the simplest structures for representing
data—a directed labeled graph. An RDF graph is typically described by a set
of triples of the form 〈Subject Predicate Object〉, also called statements, which
represent the edges of the graph. In the RDF terminology, predicates are called
properties and are identified by URIs. Subjects and Objects can be either URIs
denoting real or abstract resources, datatype literals (e.g., 1.2, ”abc”), or XML
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literals (i.e. well-formed XML snippets).24 Besides a normative RDF/XML syn-
tax, several more readable syntaxes for RDF have been devised, we use here the
more terse Turtle [Bec06] syntax.

Example 3 (Running example continued). IMD also exports its movie data in
RDF, see Figure 4 (a) and additionally provides some structural information on
its data as an RDFS hierarchy Figure 4(b).

@prefix imd: <http://imd.example.org/ns/>
@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix bio: <http://purl.org/vocab/bio/0.1/>
@prefix rdf: <http://www.w3 ...rdf-syntax-ns#>

<imd:m1> <imd:title> "Plan 9 from Outer Space".
<imd:m1> <imd:directedBy> <imd:p1> .
<imd:m1> <imd:year> "1959" .
...

<imd:m29> <imd:year> "1929" .

...

<imd:p1> <foaf:name> "Edward D. Wood Jr.";
<bio:event> _:p1Birth.

_:p1Birth a <bio:Birth>;
<bio:date> "1924-10-10".
<bio:place> "Poughkeepsie, NY, USA".

...

@prefix imd: <http://imd.example.org/ns/>
@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix bio: <http://purl.org/vocab/bio/0.1/>
@prefix rdf: <http://www.w3 ...rdf-syntax-ns#>
@prefix rdfs: <http://www.w3 ...rdf-schema#>

...

<imd:directedBy> <rdfs:domain> <imd:Movie>.
<imd:directedBy> <rdfs:range> <imd:Director>.
<imd:Director> <rdfs:subclassOf> <foaf:person>.

...

(a) Movie data in RDF (b) Structural metadata in RDF Schema (RDFS)

Fig. 4. IMD’s data in RDF(S)

John imports this metadata to process it for MoviShop, finding it more flex-
ible and easier to combine with his own data than a fixed XML scheme. John’s
customers are often interested in additional information about movies, such as,
whether old movies are color or black-and-white—information that is not ex-
plicitly provided by the exported IMD’s metadata. In order to avoid labeling
every movie explicitly as color or black-and-white, John wants his system to au-
tomatically infer that all movies produced before 1930 are black and white, and
that the movies produced after, say, 1950 are likely to be color movies. Then he
would have to label explicitly only the movies produced in-between.

(R1) Every movie at http://movishop.example.org/ produced
before 1930 is black and white.

(R1’) Every movie at http://movishop.example.org/ produced
after 1950 is color unless stated otherwise.

He finds out that there are several rule languages which he could use and again
to process such rules, but not really any format which allows him to publish this
rule.
24 Strictly speaking, RDF does not allow literals in subject positions, but languages

like SPARQL lift this restriction.
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Rule Languages for RDF. Several rule engines can process rules of the form (R1)
and some also rules of the form (R1’).25

TRIPLE26 allows to access RDF data and manipulate it by Horn rules defined
in F-Logic [KLW95] syntax. The engine is based on XSB27.

JENA28 has its own rule language and execution engine, which allows forward
(RETE-style [For82]) and backward chaining (tabled SLG resolution[SW94])
evaluation of rules on top of RDF.

cwm29 is a simple forward chaining reasoner, which uses Notation3 (N3), a
rule language that extends RDF’s widely used turtle syntax [Bec06]. The seman-
tics of N3 is not, however, defined formally, so the results of rule evaluation are
implementation-dependent.

FLORA-230 is a very powerful rule-based system, which is capable of rep-
resenting and efficiently executing logic programming style rules. It is based
on F-logic, but in addition has support for higher-order modeling via HiLog
[CKW93a] and for declarative state changes via Transaction Logic [BK98,BK94].
It uses XSB as its rule evaluation engine.

Finally, dlvhex31 is a flexible framework for developing extensions to the
declarative Logic Programming Engine DLV,32 which supports RDF import and
provides rules on top of RDF. DLV’s [LPF+06] rules language is disjunctive Dat-
alog [EGM97], i.e., it is based on logic programming with disjunctions in rule
heads, negation as failure in rule bodies, and several other extensions—all based
on the so-called answer set semantics (see [Bar03]).

As can be seen by this short list of the available engines, they cover a plethora
of different languages and semantics. However, they all also support a common
sublanguage, i.e., function-free Horn rules. Most of these systems would for in-
stance allow to express and process rule (R1) from the above example, which
can be written as a Horn rule as follows:

∀D, M, Y. (triple(D, rdf : type, moviShop : Dvd) ∧ triple(D, moviShop : shows, M) ∧
triple(M, rdf : type, imd : Movie) ∧ triple(M, imd : year, Y ) ∧ Y < 1930
→ triple(M, rdf : type, moviShop : BWMovie))

A common sublanguage that underlies most of the rule systems is the basic
idea behind RIF Core, the core dialect of RIF. However, not all languages support
all types of rules. For instance, even within the category of languages that are
based on deduction rules not all the languages support rule (R1’). To support

25 Rule (R1’) is using so-called “default reasoning” and its treatment requires non-first-
order logic. It can be handled by systems such as FLORA-2 and dlvhex, which are
briefly described here.

26 http://triple.semanticweb.org/
27 http://xsb.sourceforge.net/
28 http://jena.sourceforge.net/
29 http://www.w3.org/2000/10/swap/doc/cwm
30 http://flora.sourceforge.net
31 http://con.fusion.at/dlvhex/
32 http://www.dlvsystem.com/



16 Boley et al.

exchange between languages that are more expressive than the core, RIF will
provide dialects that extend the RIF Core dialect. For instance, rule (R1’) could
be supported by a logic programming dialect of RIF.

RDF Schema. RDF itself was not designed to express schema information –
this job was given to a separate specification known as RDF Schema (RDFS).
RDFS is a very simple ontology language for specifying taxonomies of resources
and properties, as well as domain and range restrictions for properties, such as
the ones shown in Figure 4(b). Our IMD site uses RDFS to express some of
the axioms about the movie domain. For instance, an axiom might say that each
subject of a triple with the <imd:directedBy> property is a member of the class
<imd:Movie>.

These structural axioms can themselves be interpreted as rules. In fact the
above-mentioned RDF engines often approximate RDF and RDFS semantics
with Datalog rules [tH05,EIP+06].

For instance, the RDFS entailment rule (rdfs3) from [Hay04], which states

If an RDF graph contains triples (P rdfs:range C) and (S P O) then
the triple O rdf:type C is entailed.

can be written as a Horn rule as follows:

∀S, P, O, C.triple(P, rdf : range, C) ∧ triple(S, P, O)→ triple(O, rdf : type, C)

The following examples show how this rule is represented in TRIPLE’s F-
Logic style, JENA’s rule syntax, N3, FLORA-2, and dlvhex.

TRIPLE:
rdf:= ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
rdfs:= ’http://www.w3.org/2000/01/rdf-schema#’.
type := rdf:type.
range := rdfs:range.

FORALL O,C O[type->C] <- EXISTS S,P (S[P->O] AND P[range->C]).

JENA:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

[rdfs3: (?s ?p ?o) (?p rdfs:range ?c) -> (?o rdf:type ?c)]

N3:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

{ <#p> rdfs:range <#c>. <#s> <#p> <#o> . }
log:implies { <#o> rdf:type <#c> }.
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FLORA-2:
:- iriprefix rdf = ’http://www.w3.org/2000/01/rdf-schema#’.

?O[rdf#type->?C] :- ?S[?P->?O], ?P[rdf#range->?C]).

dlvhex:
#namespace("rdf","http://www.w3.org/1999/02/22-rdf-syntax-ns#")
#namespace("rdfs","http://www.w3.org/2000/01/rdf-schema#")

triple(O,rdf:type,C) :- triple(P,rdfs:range,C), triple(S,P,O).
triple(S,P,O) :-

&rdf["http://UrlWithRdfData.example.org/data.rdf"](S,P,O)

As we can see, all these languages have syntactic differences, but they express
the RDFS axiom in our example in similar ways. A common exchange format
like RIF would enable interchange of such rules between the various systems.

RDF enhanced with rules may be useful in several other contexts: for defin-
ing mappings between RDF vocabularies, for specifying implicit metadata, for
integrating information from different sources, and so on.

2.4 OWL

RDFS is good only for very simple ontologies and a more expressive language
based on Description Logic was recommended by W3C. The Web Ontology Lan-
guage [DSB+04] (OWL) adds several features to the simple class hierarchies
of RDFS. First, it provides an algebra for constructing complex classes out of
simpler ones. Second, it extends what one can do with properties by allowing
transitive, symmetric, functional, and inverse properties. It also supports restric-
tions on property values and cardinality.

Still, OWL proved to be insufficient for many applications on the Semantic
Web and the need to add rules became evident early on. Unfortunately, OWL
is not easily combinable with most rule-based formalisms. For one thing, OWL
allows disjunctive and existential information, while most rule systems do not.
For another, OWL is entirely based on first-order logic, while many rule-based
formalisms support so-called default reasoning, which is not first-order.

To illustrate, the following statement is easily within OWL’s competence:

Every movie has at least one director.

Using the abstract syntax [PSHH04] of OWL, one can write it as follows:

Class( imd:movie partial
restriction (imd:directedBy minCardinality 1) )

But representing the same as a logical rule

∀M. ( triple(M, rdf : type, imd : movie) → ∃D.triple(M, imddirectedBy, D) )
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requires existential quantification in the rule head, which places such a rule
squarely outside of most rule systems.33

Even a simple extension of OWL by Horn rules, such as SWRL [HPSB+04],
raises several non-trivial semantic issues and the language quickly looses its
most attractive asset – decidability. Moreover, as already mentioned, many rule
systems support so-called default negation as opposed to classical negation. Rule
(R1’) in Example 3 uses precisely this kind of negation. Such a rule cannot be
represented in OWL or its rule-based extension SWRL and yet this kind of
statements are commonplace.

Default negation goes beyond RIF Core, but it is expected to be supported
by at least one of the future dialects of RIF, which will be developed as part
of Phase II work. We refer the reader to [dBEPT06,EIP+06,Ros06] for further
details on the issues concerning the integration of OWL and rules.

2.5 SPARQL

SPARQL [Pe06] is a forthcoming RDF query language standard, which is still
under development by the W3C Data Access Working Group (DAWG).34 Other
RDF query languages with interesting features were proposed as well [FLB+06].

SPARQL is interesting in connection with rules and RIF for several reasons:

1. The RIF Working Group promises in its charter to “ensure that the rule
language is compatible with the use of SPARQL as a language for querying
of RDF datasets.” This could be achieved by allowing SPARQL queries in
rule bodies.

2. SPARQL’s CONSTRUCT queries can be viewed as deductive rules, which
create new RDF triples from RDF datasets [Pol07,SS07].

3. SPARQL queries can be represented as Datalog rules [Pol07].

SPARQL allows querying RDF datasets via simple and complex graph pat-
terns. A graph pattern is a graph some of whose nodes and arcs are labeled with
variables instead of resources. Besides graph patterns, SPARQL has several in-
teresting features, such as optional graph patterns, filtering values, and unions
of patterns.

Example 4 (Running example continued). Although John could choose any num-
ber of systems for his shop, he was concerned with being locked into one of
the systems without a possibility to switch. So, he decided to try his luck with
SPARQL, as this language is expected to get W3C’s stamp of approval soon. Sup-
pose that the RDF dataset from Figure 4(a) is accessible via URI http://imd.
example.org/movies.rdf and that RDF data about the movies in John’s Mo-
viShop is accessible through http://movishop.example.org/store.rdf. Then
he could ask a query about all movies produced before 1930 as follows:

33 Existentials in rule heads are beyond Horn rules, though in many cases, rule systems
can approximate such existential information using Skolem functions.

34 http://www.w3.org/2001/sw/DataAccess/
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@prefix imd: <http://imd.example.org/ns/>
@prefix moviShop: <http://movishop.example.org/ns/>
@prefix rdf: <http://www.w3 ...rdf-syntax-ns#>

SELECT ?M
FROM <http://imd.example.org/movies.rdf>
FROM <http://movishop.example.org/store.rdf>
WHERE { ?D rdf:type moviShop:Dvd . ?D movShop:shows ?M .

?M rdf:type imd:Movie . ?M imd:year ?Y .
FILTER (?Y < 1930) }

Since this was easy, John feels glad that RIF WG has decided to ensure SPARQL
compatibility.

Then suddenly John stumbled upon a brilliant idea: to express the above
query as a rule using SPARQL’s CONSTRUCT statement:

CONSTRUCT { ?M rdf:type moviShop:BWMovie }
FROM <http://imd.example.org/movies.rdf>
FROM <http://movishop.example.org/store.rdf>
WHERE { ?D rdf:type moviShop:Dvd . ?D movShop:shows ?M .

?M rdf:type imd:Movie . ?M imd:year ?Y .
FILTER (?Y < 1930) }

However, an insider told John that the Data Access Working Group, which is
in charge of SPARQL, is not planning to position SPARQL as a rule language
and the semantics of the rules expressed using the CONSTRUCT statement is
not fully defined. The insider also suggested that John look into the ways of
translating complex SPARQL queries into Datalog rules and process them with
one of the earlier mentioned rule engines [Pol07].

We thus see that rules play (or can play) an important role in several layers
of the Semantic Web architecture. In turn, the Semantic Web architecture has
influenced the design of RIF inspiring such design decisions as the use of IRIs,
the compact URI scheme, XML, and the use of XML data types. The Semantic
Web imposed a number of other requirements on RIF, which will be discussed
further in Sections 4 and 5. However, in order to get a better idea of practical
scenarios which defined these requirements, we will first discuss some of the use
cases for rule interchange, which served as input to RIF design.

3 W3C Use Cases on Rule Interchange

Close to fifty use cases35 for rule interchange on the Web have been submitted
by the W3C RIF WG participants. These use cases depict a wide variety of
scenarios where rules are useful or even indispensable. Scenarios range from life
35 http://www.w3.org/2005/rules/wg/wiki/Use_Cases
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sciences, to e-commerce to business rules and Semantic Web rules. Other sce-
narios involve fuzzy reasoning, automated trust establishment, rule-based service
level agreement, etc.

The W3C RIF WG collected use cases for both phases of its chartered work,
but the Use Cases document does not group them according to the work phases.
Such a classification would be difficult in many cases, since different implemen-
tations of the same use case might be possible. Some of these implementations
might require Phase II features but some might be realizable completely within
Phase I.

Each use case presents requirements to be acknowledged by the rule inter-
change format to be developed by the working group. Some of these requirements
are stated explicitly, others are implied.

The submitted use cases were analyzed and classified into eight categories.36

Seven use cases were chosen and edited for publication as the First W3C Public
Working Draft of Use Cases and Requirements,37 which was released in March
2006.

The first draft did not include the requirements to RIF – these were included
in the second draft along with two new use cases. In this paper we present four
of the use cases from the second draft. The requirements to rule interchange are
discussed in Section 4.

3.1 Negotiating eBusiness Contracts Across Rule Platforms

The first two use cases motivate the need for a rule interchange format towards
facilitating automated, Web-based negotiations where rules are to be exchanged
between involved parties. The first use case presented in this section shows the
importance of such interchange for the reuse of electronic business documents
(such as order requests and business policies) that are made available online.

Jane and Jack negotiate an electronic business contract on the supply of items
by Jane’s company. The negotiation process involves exchange of contract-related
data and rules. Since the two companies may use different technologies, Jane and
Jack agree upon the data model and use RIF for interchanging rules. The data is
transmitted as XML documents using an agreed-upon format, together with the
rules to run simulations, and the results of these simulations are also represented
as XML data.

A purchase order from Jack’s company contains XML documents describing
information on the desired goods, packaging, and delivery location and date.
The associated rules describe delivery and payment policies. An example of such
a rule is

If an item is perishable and it is

36 Use case categories, http://www.w3.org/2005/rules/wg/wiki/General_Use_Case_
Categories

37 First W3C Public Working Draft of Use Cases and Requirements http://www.w3.

org/2005/rules/wg/ucr/draft-20060323.html
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delivered more than 10 days after the scheduled
delivery date then the item will be rejected.

Jane’s company wants a relaxation of the delivery policy proposed by Jack.
Thus, Jane proposes for acceptance and sends to Jack the following rule express-
ing the result of the negotiation carried out so far:

If an item is perishable and
it is delivered more than 7 days after the scheduled
delivery date but less than 14 days after the scheduled
delivery date then a discount of 18.7 percent will be
applied to this delivery.

Jack’s company defines future requests for items in form of an appropriate
XML schema document and a set of rules. This information is then published
on their Web site, so as to give supply companies the possibility to respond elec-
tronically by sending XML cost sheets. Just like shown in the example scenario
above, companies send rules expressed using RIF and Jack’s company analyzes
them for negotiation of electronic contracts.

Reactive rule-based systems (discussed already in Section 1) offer elegant
means for implementing rules such as those exemplified in this use case. Rule-
based negotiation frameworks or languages such as Protune38 could be used for
implementing this use case.

3.2 Negotiating eCommerce Transactions Through Disclosure of
Buyer and Seller Policies and Preferences

This use case shows that a higher degree of interoperability can be gained by
employing a rule interchange format within the process of establishing trust be-
tween the parties offering and those requesting a service in eCommerce scenarios.
Automated trust establishment is possible when policies for every credential and
every service can be codified. So as to minimize user intervention, the policies
should be checked automatically whenever possible. The notion of policies is a
quite general one referring to access control policies, privacy policies, business
rules, etc. (see e.g. [BO05] for a more in-depth discussion of trust negotiation).
Policies and credentials are themselves subject to access control. Thus, rule inter-
change is necessarily done during negotiation and disclosure of rules (in general)
depends on the current level of trust that negotiating systems have achieved.

The interchange of rules is exemplified here with the negotiation between an
online shop (eShop) and a customer (Alice) who wants to buy a device at eShop,
a scenario that very similarly could apply to our running MoviShop example.
Both Alice and eShop employ systems (agents) for establishing trust through
negotiation with the goal of successful completion of the desired transaction.
The negotiation is based on policies which describe which partners are trusted

38 Protune, http://www.l3s.de/~olmedilla/pub/2005/2005_policy_protune.pdf
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for what purposes, the credentials each system has, and which it will disclose if
a certain level of trust is achieved.

Upon Alice’s request to buy the desired device, eShop’s agent sends parts
of its policy back to Alice’s agent. The two agents involved in the negotiation
interchange a set of rules implementing the policies. Such an example rule is:

A buyer must provide credit card information together with
delivery information (address, postal code, city, country).

Alice’s agent evaluates its own policies and the received ones for determining
whether eShop’s information request is consistent with her own policies. The
agent uses policy rules such as:

Disclose Alice’s credit card information only to
online shops belonging to the Better Business Bureau.

By disclosing the above given rule, Alice’s agent asks eShop’s agent to provide
credentials stating that it belongs to the Better Business Bureau, Alice’s most
trusted source of information on online shops. Since eShop has such a creden-
tial and its policy states to release it to any potential customer, eShop’s agent
passes the credential to Alice’s agent. Before disclosing credit card and delivery
information to eShop, Alice’s agent checks whether release of this information
would not break Alice’s denial constraints. These constraints are given by the
following two rules:

Never disclose two different credit cards to the same
online shop.

For anonymity reasons, never provide both birth
date and postal code.

For this purchase, the birth date is not an issue and only information on one
credit card is requested. Thus, Alice’s constraints are respected. Alice’s negotia-
tion system therefore provides her credit card and delivery information to eShop.
eShop checks that Alice is not in its client black list, then confirms the purchase
transaction, generates an email notification to Alice that contains information
about the purchase, and notifies eShops’s delivery department.

3.3 Access to Business Rules of Supply Chain Partners

This use case shows that the existence of a rule interchange format would ease the
integration of different business processes by offering business process designers
a unified view over the used business rules while still allowing each involved
company to work with their own technology of choice.

The focus of the use case is on the integration of supply chain business
processes of multiple partners across company boundaries. Similar scenarios
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can be encountered also within a single company that is organized into semi-
independent business units. Each business unit might use different strategies
(i.e., the logic behind the decisions taken in a process) and technologies.

Such situations as addressed by this use case occur usually when companies
merge and their business processes need to be integrated. Business processes are
”structured, measured sets of activities designed to produce a specific output for
a particular customer or market” [Dav93]. A business process can span activities
of a single company or of multiple companies. Often the strategies followed by an
organization are specified by means of business rules [The00,Hal05]. In contrast
to procedural code, business rules are easier to comprehend and use for business
process designers, since they are declarative and high-level specifications.

For integrating supply chain business processes where multiple organizations
are involved, part of the business processes’ logic needs to be exposed (for deter-
mining the best strategy for integrating the processes) and, furthermore, business
rules defined by different (partner) organizations need to be executed. There are
two possible solutions for using such business rules and the decision of imple-
menting one of them depends also on ownership constraints: Different rule sets
could be merged into a single set of business rules, which can be then processed
in a uniform manner on one side. The other possibility consists in accessing the
other parties’ rule sets only by invoking remote engines and (locally) processing
their results only.

Consider an inspection of a damaged vehicle and the corresponding insurance
adjustment process as examples of two processes that need to be integrated. Since
the inspection of the vehicle is usually performed by independent inspectors, the
inspection process can not be directly integrated into the adjustment process.
The following business rules defines a decision point within the processes:

If inspector believes vehicle-is-repairable
then process-as-repair
otherwise process-as-total-loss.

The choice of sub-processes to be performed after the inspector’s work de-
pends on the decision taken using the above rule. In terms of business pro-
cess modeling, the example given is an instance of the exclusive choice pat-
tern [vdAtHKB03]; the insurance adjustment process branches into two alter-
native paths and exactly one of them can be chosen. Systems supporting Event-
Condition-Action-Alternative Action (ECAA) offer an elegant solution for im-
plementing such rules. As already noted in Section 1, for obtaining the same
effect with a system supporting reactive rules of the Event-Condition-Action
form, two ECA rules can be used where the condition of one rule is the negated
condition of the other.

3.4 Managing Inter-Organizational Business Policies and Practices

This use case demonstrates the need for supporting annotation of rules in a
rule interchange format, where rules or rulesets are labeled with tags carrying
meta-information.
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The use case addresses the need for interchanging rules that may not be
directly executed by machines, i.e. rules that need input in form of a decision or
confirmation from a person. The setting is somewhat similar to the use case of
Section 3.3 – multiple organizations and/or multiple units of a single organization
– but the focus here is on the management of their business policies and practices.
Another similarity consists in the fact that policies and practices are specified
as business rules.

The scenario is based on the EU-Rent case study [EU-05], a specification
of business requirements for a car rental company, promoted by the European
Business Rules Conference [Eur05] and the Business Rules Group [Bus05]. EU-
Rent operates in different EU countries. Thus, the company needs to comply
with existing EU regulations and each of its branches needs to comply also with
the regulations of the country it operates in.

CarWise and AutoLaw are consultancy companies that offer different ser-
vices like, for instance, clarifying regulations on managing fleets of vehicles by
negotiating with EU regulators and UK regulators, respectively. The outcome
of such a service are interpreted regulations and rules that can be directly used
by rule systems. CarWise and AutoLaw advise EU-Rent of rules that are to be
used at European and UK level, respectively.

EU-Rent has a set of rules in place that implement the companies’ poli-
cies and the EU regulations. Part of these rules are distributed to all EU-Rent
branches. Thus, for example EU-Rent UK needs to integrate the received rules
with the existing ones at the UK level. The rule set might change at the company
level (case in which rules need to be propagated to the branches), but also at
national (branches) level due to new national regulations. Changes of the rule
set could be updates (modifications) or deletions (removal) of existing rules, or
insertions of new rules into the rule set.

A concrete example rule that the EU-Rent corporate HQ could add is the
following:

Each electronic compliance document must have its
required electronic signatures 48 hours before its
filing deadline.

Such kinds of (business) rules can be implemented by means of reactive rules.
The event part of the reactive rule specifies the event 48 hours before the filing
deadline. The condition part queries for the existence of the electronic signatures.
The action part reports an out-of-compliance situation.

All three different types of rules discussed in Section 1 are usually encountered
in specifications of use cases for managing business policies and practices. The
following example gives three (business) rules of the EU-Rent case study: the
rule R1 is a deductive rule, R2 a normative rule, and R3 a reactive rule.

(R1) A customer who spends more than 1000 EUR per year
is a Gold customer.

(R2) A customer can rent at most one car at a time.
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(R3) A rental reservation must not be accepted if the
customer is blacklisted.

Section 1 has also presented two possible implementations of rule R3 us-
ing reactive rules. More generally, the article [BEPR06] analyzes the realization
of business processes by means of ECA rules. With a focus on control flow, a
concrete EU-Rent business process scenario is implemented using the reactive
rule-based language XChange. This work has led to the introduction of a pro-
cedure notion in XChange which is absent in most other rule languages. The
work has also shown that constructs for structuring rule sets are desirable in
rule-based languages.

3.5 Other Use Cases

Apart from the four use cases, which we described in detail, let us briefly recap
the other use cases specified in the RIF WG’s use cases document. The complete
use case descriptions, as published by the Working Group, can be found at
http://www.w3.org/TR/2006/WD-rif-ucr-20060710/.

Collaborative Policy Development for Dynamic Spectrum Access This
use case shows that by using a rule interchange format and deploying third-party
systems, the flexibility in matching the goals of end-users of a service or device
with the ones of providers and regulators of such services and devices can be
increased.

The use case concentrates on examples from the dynamic spectrum access
for wireless communication devices. It is assumed that the policies of a region
and the protocols for dynamically accessing available spectrums are defined by
rules. The goal is to have reconfigurable devices that can operate legally in
various regulatory and service environments. One of the technical preconditions
of making this possible relies on the format in which the rules are expressed and
the ability of devices to understand and use these rules.

To be able to use the advantages of a rule interchange format in this setting, a
third-party group should be formed, which is responsible for translating regional
policies and protocols into the interchange format.

Ruleset Integration for Medical Decision Support This use case moti-
vates the need for merging rule sets written in different rule languages. This
allows for inferring data that could not be obtained without the merge. This is
an important task of expert systems based on reasoning with rules. Complex
decision making systems use different data bases, ontologies, and rules written
in different rule languages.

The use case gives examples from the medical domain, where different data
sources come into play, such as pharmaceutical, patient data bases, and medical
ontologies.
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Interchanging Rule Extensions to OWL The use case gives a concrete mo-
tivation for a rule interchange format that is compatible with OWL (as required
also by the W3C RIF WG charter). This is the shortest use case in the Second
W3C Public Working Draft of Use Case and Requirements, yet a considerable
number of application domains such as medicine, biology, and e-Science, which
partly adopted OWL already, could benefit from the combination of rules with
ontologies. The domain of labeling brain cortex structures in MRI (Magnetic
Resonance Imaging) images is chosen here for illustration purposes. A deductive
rule is exemplified by use of which implicit knowledge, i.e. dependencies between
ontology properties, is inferred which cannot be expressed directly in OWL itself.

Vocabulary Mapping for Data Integration Different application domains
such as health care, travel planning, and IT management often need solutions
to the problems raised by integrating information from multiple data sources
with different data representation models. The idea of this use case relies on the
reusability of rules that implement mappings between such data models.

The use case gives examples from IT systems management. The concrete ex-
ample uses three different data sources, which are taken as basis for analyzing
the flexibility of a division’s business processes with respect to changes of their
IT management contracts. In many cases, the simple solution of mapping the
information of the three data sources to a single data format such as RDF does
not offer satisfactory results. One of the problems lies in the different granu-
larities of the contained data, which might be either too detailed or too coarse
grained. Thus, deductive rules – possibly involving aggregation of fine-grained
data – are used for defining simple and usable views over the data sources. The
implemented deductive rules are then published so as to be reused across the
company, where similar views are needed.

BPEL Orchestration of Web Services The use case exemplifies a commer-
cial credit approval Web service implemented as a BPEL orchestration of two
Web services, a credit history service and a rule-based decision service. A rule
interchange format would allow the re-use of rules for evaluating credit histories.
Moreover, rule editing and customization tools from different RIF compatible
vendors would ease the rule specification task.

Three rule sets for credit evaluation are used, which are executed sequentially.
The first two sets of rules calculate threshold values and a credit score, while
the third set of rules compares these values and makes the decision to approve
or deny the credit. The outcome of the decision system is in form of an XML
document informing about the decision and the reason(s) for it. The need for
querying and constructing XML data comes here into play, since for replying
to the customer, the answer needs to be constructed based on the XML data
received from the Web Service.

Publishing Rules for Interlinked Metadata The use case stresses the im-
portance of specifying implicit knowledge in form of rules and publishing them
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for re-use, so as to allow interlinking (meta-)data and rules from different Web
sources. Semantic Web technologies such as RDF allow publishing metadata ex-
pressing the semantics of data in machine-readable form. Often, such (explicit)
knowledge is supplemented by rules capturing implicit knowledge. Thus, a more
concise representation of data is obtained, maintenance of meta-data is simpli-
fied, and storage requirements are reduced.

The role of a rule interchange format is exemplified by means of the movie
database scenario presented in Section 1.1 that we have already used throughout
this paper. The example rule R1 given in Section 1.2, which constructs a view
of black and white movies, captures such implicit knowledge that can be further
used. However, also more complex rules implicitly linking and cross-referencing
between several online sources or involving (scoped) negation are covered, e.g.

(R3)
IF movie M is listed at http://AlternativeMDB.example.org

but not listed at http://imd.example.org
THEN M is an independent movie

4 W3C Requirements on a Rule Interchange Format

As already mentioned in Section 3, each use case imposes certain requirements
that should be taken into account when developing RIF. Consider again our
running example shortly described in Section 1.1. John Doe’s MoviShop uses
data on movies, customers, etc., expressed in XML, RDF, RDFS, and OWL.
Thus, to exchange rules over this data, RIF should offer support for XML, RDF,
and OWL. More details on what support means in such a context are given by
the corresponding requirements on data representation models discussed in this
section. If RIF (core or some dialect of it) meets the requirements posed by Mo-
viShop’s rules and the rule language R used for implementing them, John needs
a translator from R to RIF for interchanging (part of) its rules. For developing
such translators, one of the general requirements for RIF concerns the precise
syntax and semantics, which are to become starting points for correct translator
implementations.

This section shortly discusses the requirements on RIF, which have been ap-
proved by the W3C RIF WG and published in the Second Public Working Draft
of ’RIF Use Cases and Requirements’. The process of gathering and deciding
upon requirements on RIF has taken into account three sources of requirements:
Firstly, we have considered the (explicit and implicit) requirements posed by the
RIF use cases in the above mentioned document; we have determined a set of
requirements that are posed by each of these use cases—we call them general
requirements. Secondly, each WG participant have had the possibility to pro-
pose requirements that she or he considered relevant for RIF. The third source
of requirements is the so-called RIF Rulesystems Arrangement Framework39

39 RIFRAF, http://www.w3.org/2005/rules/wg/wiki/Rulesystem_Arrangement_

Framework
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(RIFRAF), a framework that classifies rule systems based on a set of discrimi-
nators. RIFRAF is to be used also as basis for determining desired RIF dialects.
The outcome of the work on RIF requirements is presented next by dividing the
requirements into general, Phase I, and Pase II requirements. The focus is more
on the general and Phase I requirements, since the Phase II requirements are
ongoing work at moment of writing.

4.1 General Requirements

The following requirements on RIF have a general character in the sense that
they express high-level conditions that RIF and the translators from and to RIF
need to meet.

– Implementability: RIF must be implementable using well understood tech-
niques, and should not require new research in e.g. algorithms or semantics
in order to implement translators.

– Semantic precision: RIF core must have a clear and precise syntax and se-
mantics. Each standard RIF dialect must have a clear and precise syntax
and semantics that extends RIF core.

– Extensible Format: It must be possible to create new dialects of RIF and
extend existing ones upwardly compatible.

– Translators: For every standard RIF dialect it must be possible to implement
translators between rule languages covered by that dialect and RIF without
changing the rule language.

– Standard components: RIF implementations must be able to use standard
support technologies such as XML parsers and other parser generators, and
should not require special purpose implementations when reuse is possible.

4.2 Phase I Requirements

The list of requirements given next refers to the RIF developed within Phase I.
It consists of requirements on the core interchange format.

– Compliance model: RIF must define a compliance model that will identify
required/optional features.

– Default behavior: RIF must specify at the appropriate level of detail the
default behavior that is expected from a RIF compliant application that
does not have the capability to process all or part of the rules described in
a RIF document, or it must provide a way to specify such default behavior.

– Different semantics: RIF must cover rule languages having different seman-
tics.

– Embedded comments: RIF must be able to pass comments.
– Embedded metadata: RIF must support metadata such as author and rule

name.
– Limited number of dialects: RIF must have a standard core and a limited

number of standard dialects based upon that core.
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– OWL data: RIF must cover OWL knowledge bases as data where compatible
with Phase I semantics.

– RDF data: RIF must cover RDF triples as data where compatible with Phase
I semantics.

– Rule language coverage: RIF must cover the set of languages identified in
the Rulesystem Arrangement Framework (RIFRAF). This requirement acts
as an umbrella for a set of requirements, which are expected as outcome of
the work on RIFRAF.

– Dialect Identification: RIF must have a standard way to specify the dialect
of the interchanged rule set in a RIF document. As the rule interchange
format developed within the W3C RIF WG—RIF—will come in form of a
core (RIF Core) and a set of dialects extending the core interchange format,
a mechanism is needed for specifying which RIF dialect is used for a set
of rules to be interchanged. This plays a role for example in the case that
incompatible RIF dialects exist.

– XML syntax: RIF must have an XML syntax as its primary normative syn-
tax.

– XML types: RIF must support an appropriate set of scalar datatypes and
associated operations as defined in XML Schema part 2 and associated spec-
ifications. This requirement is also stated in the W3C RIF WG charter.

– Merge Rule Sets: RIF should support the ability to merge rule sets. The big
interest in a standardized interchange format for rules is also determined
by the possibility of merging rule sets written in different rule languages
through RIF. This requirement is also explicitly stated e.g. in the use case
’Ruleset Integration for Medical Decision Support’.

– Identify Rule Sets: RIF will support the identification of rule sets.

4.3 Phase II Requirements

The Second Public Working Draft of ’RIF Use Cases and Requirements’ con-
tains one single requirement for the second phase of RIF development, namely
that RIF must be able to accept XML elements as data. The list of Phase II re-
quirements will of course be extended in the near future. At moment of writing,
the WG started the work on gathering other requirements for the RIF dialects
to be developed within Phase II. Under discussion are requirements such as
the full coverage of RDF and OWL, or the support for external calls (e.g. to
a SPARQL query processor). For an elegant implementation of rule R2 of our
running example, which is employed for denying requests from blacklisted Mo-
viShop customers, a RIF dialect is needed where e.g. action specifications are
allowed in the rules head. In other words, a RIF dialect for reactive rules or just
a form of them (such as production or ECA rules) is desirable. Whether or not
the RIF WG will develop such a RIF dialect depends largely on the interest of
its participants, their willingness to work towards a ’reactive’ dialect, and its
acceptance by the WG as a whole.
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5 The Rule Interchange Format: Current Core and
Possible Extensions

This section discusses the current work of the W3C RIF WG on the RIF Core
and means for determining the RIF standard dialects that will extend this core
interchange format.

In the first phase, the working group agreed on defining a deliberately in-
expressive core language which covers features available in most common rule
languages and devise a first proposal for a common exchange syntax for this
language.

Going back to our classification of rules from the introduction, where we
divided rule languages into deductive, normative, and reactive rules, let us briefly
recap the common ingredients which are necessary to model these rules.

All the rules we mentioned were in some sense checking a condition on a
(static or dynamic) knowledge base. In our examples from the introduction,
we called this the IF part for deduction rules and production rules; queries and
normative rules can, as a whole be viewed as checking a condition. This common
feature of RIF rules is acknowledged in that RIF Core will provide a simple logic
language to specify such conditions.

The RIF Condition Language (which at present is a working title for a sim-
ple language fragment to express these common conditions) is the fundamental
layer shared by Logic Programming rules (based on the Horn subset of first-order
logic), production (Condition-Action) rules, Event-Condition-Action rules, nor-
mative rules (integrity constraints), and queries.

This RIF Condition Language will thus provide means to exchange basic
conditions, consisting of simple conjunctions and disjunctions of atomic formulas
with existential variables, as well as a distinguished equality predicate. Starting
from the requirement to support sorted constants and variables, this core dialect
is developed as a general multisorted logic, whose sorts can be “webized”, i.e.
referenced by IRIs and aligned with relevant XML standards for typing, such
as XML Schema datatypes, as well as, later on, OWL and RDFS classes. Other
constructs of this language (constants, functions, predicates, etc.) can also be
identified by IRIs.

As an example of an extension layer on top of the RIF Condition Language,
the first working draft of RIF Core introduces the RIF Horn Rule Language
as chartered for RIF Phase 1. Because of the underlying ”Condition Logic with
Equality and Sorts” we obtain a ”Multi-Sorted Horn Logic with Equality”. It will
turn out that, given the former, only a small extra effort is required to obtain the
latter: the main part of a Horn rule is its body, and this is exactly a condition
in our sense and already sufficient for expressing simple rules. The Horn rule
layer will allow simple inference of atomic formulae, given that the respective
condition holds, thus it covers deductive rules and assert-only production rules.
The definition of dynamic aspects, namely event and non-assert action parts, is
currently under discussion.

Next steps will include extensions such as built-ins and negation, which are
useful features not only for the Horn Rule dialect, but also for a potential Pro-
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duction Rule dialect of RIF. Moreover, it is planned to define adequate (RDF)
metadata for RIF rules and rulesets, to specify how RDF data can be processed
by RIF rules, and to embed RIF rules into RDF statements.

Now let us have a closer look at the condition language as it is defined in the
first working draft.

5.1 The RIF Core Condition Language – Syntax

The basis of the language in Phase 1 is formed by conjunctive conditions that
can appear in the bodies of Horn-like rules with equality. Disjunctions of these
conditions are also allowed because such generalized rules are known to reduce
to the pure Horn case.

The first working draft of the RIF Core document [Be07] develops a syn-
tax and semantics for such RIF conditions, which also supports a basic set
of primitive data types (such as xsd:long, xsd:string, xsd:decimal, xsd:time,
xsd:dateTime, taken from the respective XML Schema datatypes [Be04]).

In order to support a general approach, as well as possible future higher-
order dialects based on HiLog [CKW93b] and Common Logic [(ed06], the RIF
Core language does not separate symbols used to denote constants from symbols
used as names for functions or predicates. Instead, all these symbols are drawn
from the same universal domain. When desired, separation between the different
kinds of symbols is introduced through the mechanism of sorts, which will also
be used for “typing” arguments as mentioned before. In logic, the mechanism
of sorts is used to classify symbols into separate subdomains. One can decide
that certain sorts are disjoint (for example, decimal and dateTime) and others
are not (for example, integer could be a subsort of the sort decimal). Control of
what sorts can be used for predicate (or concept) names, for function symbols,
and so on, shall, by the general mechanism introduced in RIF Core, be upon
agreement between the rule exchanging parties, or the ones defining a specific
RIF dialect.

Figure 5 shows a snapshot of the current RIF condition meta-model.
Based on this metamodel, two syntaxes are currently proposed for simple

conditions. A preliminary XML syntax, as well as a more readable syntax which
is similar in style to what in OWL is called the Abstract Syntax [PSHH04]. This
latter syntax, which resembles other standard syntaxes for (variants of) first-
order logic, is based on the following EBNF, used in examples of the first RIF
Core working draft:

CONDITION ::= CONJUNCTION | DISJUNCTION | EXISTENTIAL | ATOMIC
CONJUNCTION ::= ’And’ ’(’ CONDITION* ’)’
DISJUNCTION ::= ’Or’ ’(’ CONDITION* ’)’
EXISTENTIAL ::= ’Exists’ Var+ ’(’ CONDITION ’)’
ATOMIC ::= Uniterm | Equal
Uniterm ::= Const ’(’ TERM* ’)’
Equal ::= TERM ’=’ TERM
TERM ::= Const | Var | Uniterm
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Fig. 5. The RIF Core condition meta-model

Const ::= CONSTNAME | ’"’CONSTNAME’"’’^^’SORTNAME
Var ::= ’?’VARNAME | ’?’VARNAME’^^’SORTNAME

The terminal and non-terminal symbols in this EBNF should be largely self-
explanatory and we refer the reader to [Be07] for details. Note that the pro-
ductions for constants (Const) and variables (Var) include optionally sorted
versions. Most knowledge representation, programming and rule languages al-
low/require “typing” of constants and also of variables: take for example typed
literals in RDF, or variables in common programming languages, which is ac-
counted for by the Multisorted RIF Logic, to be discussed in more detail below.
At this point we do not commit to any particular vocabulary for the names of
constants, variables, or sorts.

Example 5 (Running example (cont’d)). For instance, in John’s rule for classify-
ing old movies as black-and-white, the condition part written in first-order logic
looks as follows:

∃D, Y. MoviShopDvd(D) ∧ shows(D, M) ∧
IMDMovie(M) ∧ IMDY ear(M, Y ) ∧ before(Y, 1930)

In RIF’s EBNF syntax, he could write this straightforwardly:

Exists ?D ?Y (

And ( "moviShop:Dvd"( ?D ) "imd:shows"( ?D ?M )

"imd:Movie"( ?M ) "imd:Year"( ?M ?Y )

"op:date-less-than"( ?Y "1930-01-01T00:00:00Z"^^dateTime ) ) )

Note that the names of the predicates are IRIs and thus are “webized.” In the
future, builtin predicates, like "op:date-less-than" will be also standardized
around XPath and XQuery functions [MMe07].

Note that in the above condition there is one free (i.e. non-quantified) vari-
able. Free variables arise because we are dealing with formulas that might occur
in a rule IF part. When this happens, the free variables in a condition formula
shall also occur in the rule THEN part. We will see that such variables are
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quantified universally outside the rule, and the scope of such quantification is
the entire rule.

An XML syntax for this condition language is currently under discussion,
where element names will be close to the metamodel/EBNF. Let us turn now to
the model theory behind RIF’s Condition Language.

5.2 The RIF Core Condition Language – Semantics

The first step in defining a model-theoretic semantics for a logic-based language
is to define the notion of a semantic structure, also known as an interpretation.
RIF takes here, in order to be general and extensible, an approach common to
systems that not only cover classical first-order logic, but also uncertainty or
inconsistency (which are clearly important in the open Web environment), i.e.,
multi-valued logics. Here, truth values are not only f (“false”) and t (“true”),
but a set of truth values TV , which has a total or partial order, called the truth
order (denoted with <t). For instance, in classical logic this order is simply
false <t true, whereas logics dealing with uncertainty or inconsistency often
are four-valued logics, e.g. with a partial order f <t u <t t and f <t i <t t,
where u and i denote “unknown” and “inconsistent”, respectively.40

Moreover, since RIF on the syntactic level does not distinguish between con-
stants, functions, and predicates, a semantic structure, I, is defined as a tuple
of mappings 〈IC , IV , IF , IR〉, which determines the truth value of every formula,
as explained below. Here, IC , IV , IF , and IR denote the interpretation of the
domain elements as, respectively, constants, variables, functions, and relations.

Definition 1 (Interpretation). Let D be a non-empty set of elements called
the domain of I, Const the set of constants, predicate names, and function sym-
bols, and Var the set of variables.

An interpretation I = 〈IC , IV , IF , IR〉 consists of four mappings:

– IC : Const→ D
– IV : Var→ D41

– IF : from Const to functions from D∗ → D, where D∗ is a set of all tuples
of any length over the domain D

– IR : from Const to truth-valued mappings D∗ → TV

Using these mappings, we can define a more general mapping, I, as follows:

– I(k) = IC(k) if k ∈ Const

– I(?v) = IV (?v) if ?v ∈ Var

– I(f(t1...tn)) = IF (f)(I(t1), ... . . . , I(tn))

Finally, the mapping ITruth : φ→ TV for conditions φ is defined inductively:
40 Such logics can also be given another partial order <k, called the knowledge order:

u <k t <k i and u <k f <k i. See, e.g., [Fit02] for details.
41 This is also often called variable assignment elsewhere in the literature.
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– Atomic formulas: ITruth(r(t1...tn)) = IR(r)(I(t1), ..., I(tn))
– Equality: ITruth(t1 = t2) = t iff I(t1) = I(t2); ITruth(t1 = t2) = f otherwise.
– Conjunction: ITruth( And ( c1 . . . cn ) ) = mint(ITruth(c1), . . . ,

ITruth(cn)), where mint is minimum with respect to the truth order.
– Disjunction: ITruth( Or ( c1 . . . cn ) ) = maxt(ITruth(c1), . . . , ITruth(cn)),

where maxt is maximum with respect to the truth order.
– Quantification: ITruth( Exists ?v1 . . . ?vn (c)) = maxt(I ′

Truth(c))
where maxt is taken over all interpretations I ′ =< IC , I ′

V , IF , IR >, which
agree with I everywhere except possibly in the interpretation I ′

V of the vari-
ables ?v1, . . . ..., ?vn.

Multisorted RIF Logic As mentioned earlier and also seen in the EBNF,
one may attach sorts from a set of primitive sorts (defined for a RIF dialect)
to constants and variables. The list of supported primitive sorts in RIF Core
(which probably will be extended later on) is: long, string, decimal, time,
and dateTime. Signatures for function and relation symbols specify their arity
and argument (and value) sorts. The current syntax to declare function sorts is:

’:- signature’ ’"’NAME’"’ s1 ’*’ ...’*’ sn ’→’ s ’,’

r1 ’*’ . . . ’*’ rk ’→’ r ’,’ . . .

Relation (or predicate) sorts are declared similarly:

’:- signature’ ’"’NAME’"’ s1 ’*’ ...’*’ sn ’,’

r1 ’*’ . . . ’*’ rk ’,’ . . .

For instance, the sorts of the XPath/XQuery relation op:date-less-than used
above could be defined by this signature:

:- signature "op:date-less-than" dateTime * dateTime

Interpretations of multi-sorted RIF dialects extend Definition 1 by new func-
tions to assign primitive sorts and function sorts assign a set of allowed primitive
sorts to the symbols of Const. The details of multi-sorted interpretations are
currently being worked out, but they seem to be an important feature, as many
languages (including RDF, Prolog, HiLog and F-Logic, Common Logic) support
signature declarations and/or typed literals and variables.

5.3 RIF Core Horn Rules

As a first simple core format for a complete but minimal rules interchange lan-
guage, the RIF WG defined a RIF Core Rule Language by extending the RIF
Core Condition Language, where conditions become rule bodies. RIF Phase 1
covers only the expressivity of Horn Rules, i.e. rules with one positive derived
atomic formula in the head (or THEN part).42. This simple rules dialect extends
the EBNF syntax for Core Conditions by the following productions:
42 Note, that the minor extensions such as allowing existentials and disjunctions in the

body via RIF Core conditions do not increase the expressive power of the language
above Horn.
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Ruleset ::= RULE*
RULE ::= ’Forall’ Var* CLAUSE
CLAUSE ::= Implies | ATOMIC
Implies ::= ATOMIC ’:-’ CONDITION

The symbol :- denotes the implication connective used in rules. The statement
ATOMIC :- CONDITION should be informally read as if CONDITION is true then
ATOMIC is also true. We deliberately avoid using the connective ← here because
in some RIF dialects, such as Logic Programming dialects and Production Rules
dialects, the implication :- will have different meaning from the meaning of the
first-order implication ←.

The upcoming envisioned RIF dialects will extend this core rule language by
generalizing the positive RIF conditions in the bodies, and probably they will
also allow more expressive rule heads.

RIF Core Horn Rules – Semantics In Section 5.2 above we already defined
the notion of semantic structures and the truth value of a RIF condition in such
a semantic structure (interpretation).

While semantic structures can be multivalued, rules are typically two-valued
even in logics that support inconsistency and uncertainty: a rule is either satisfied
in an Interpretation I (true) or not (false). We can define satisfaction of a rule
’head :- body’ in Interpretation I, denoted by I |= head :- body simply as
follows:

I |= head :- body iff ITruth(head) ≥t ITruth(body)

Note that, since in RIF Core we consider Horn clauses, where free variables
are assumed to be universally quantified over the whole rule, strictly speaking,
we need to refine this to: I |= clause iff I ′ |= clause for every I’ that agrees with
I everywhere except possibly on some variables free in clause. In this case, we
also say that I is a model of the clause. I is a model of a rule set R iff it is a
model of every rule in R.

The notion of a model is only the basic ingredient in the definition of a
semantics of a rule set. In general, the semantics of a rule set R is the set of
its intended models (see e.g. [Sho87]). There are different theories of what the
intended sets of models are supposed to look like depending on the features of
the particular rule sets.

For Horn rules, which we use in this section, the intended set of models of R is
commonly agreed upon: it is the set of all models of R. However, in (future) rule
dialects which allow constructs such as nonmonotonic negation (aka negation-
as-failure) in rule bodies, only some of the models of a rule set are viewed as
intended. This issue will be addressed in the appropriate dialects of RIF. The
two most common theories of intended models are based on the so called well-
founded models [GRS88] and stable models [GL88].

Future extensions of the presented RIF Core will need to enable the provider
of a rule set to be interchanged to declare explicitly what notion of intended
models are assumed in this rule set.
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Example 6 (Running example (cont’d)). Finally, John Doe can publish and ex-
change his rule

(R1)

IF movie M was produced before 1930

THEN M is a black and white movie

which declares his definition of black and white movies using RIF Core:

"moviShop:BWMovie" ( ?M ) :-

Exists ?D ?Y (

And ( "moviShop:Dvd"( ?D ) "imd:shows"( ?D ?M )

"imd:Movie"( ?M ) "imd:Year"( ?M ?Y )

"op:date-less-than"( ?Y "1930-01-01T00:00:00Z"^^dateTime ) ) )

Not too bad, but John waits what’s next and when he will be able to exchange
more complex rules such as

(R2)

IF movie M is listed at http://altmd.example.org but not

listed at http://imd.example.org

THEN M is an independent movie

(R3)

ON request from customer C to book a movie

IF customer C is blacklisted

DO deny C’s request

and he is eagerly waiting for a complete RIF which will enable him to do so.
The current core does not yet provide this feature, but is carefully designed to
enable plugging in of different forms of negation or various models of events and
actions in RIF dialects to be defined in the future.

5.4 What’s next?

The core rules fragment we have seen so far will provide the basis for further
dialects to cover richer features and express rules and rulesets beyond simple
Horn. The current efforts towards a very general model theory, catering for
multi-sorted and multi-valued logic extensions do not seem necessary for simple
Horn rules, but will enable upward compatible extensions of this common basis.

Currently, the underlying metamodel, introduced at the beginning of this sec-
tion, is also being extended towards a base ontology for describing the available
features of existing rule languages and systems. The working group has analyzed
this feature space and collected a list of discriminators (distinguishing features)
in the so called RIF Rules Arrangement Framework43 (RIFRAF). Aligning the
RIF Core Metamodel with RIFRAF in a common ontology will help RIF users
to classify their rule sets and features with respect to the upcoming family of
possibly diverging RIF dialects. We point out here again, that it is not the goal
of RIF to provide a one-for-all rule language which can cover all of these fea-
tures. Distinct features of different rule systems are often simply incompatible.
43 http://www.w3.org/2005/rules/wg/wiki/Rulesystem_Arrangement_Framework
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Rather, the concept of RIF dialects will enable the exchange of rules within
common fragments or variable feature sets between various parties in a modular
fashion.

6 Conclusion

This paper has presented a snapshot of the current working drafts of the W3C
RIF Working Group, which is working on the development of an interchange for-
mat for rules. The need for such a format has been motivated by the use cases
of the Second Public Working Draft of the RIF WG, which we have described
briefly. We illustrated the main ideas behind rule interchange using an exam-
ple of a DVD rental store. The example illustrates that in order to adequately
represent the services provided by MoviShop we need different types of rules: de-
ductive, normative, and reactive. MoviShop’s rules work with the data obtained
from different data sources. These data may be expressed using XML, RDF,
and/or OWL. The types of rules and the data (and metadata) representation
models needed for the task pose a number of requirements to the interchange
format for MoviShop’s rules. These requirements drive the development of a core
interchange format for rules—the RIF Core—and its extensions—RIF dialects.

As of this writing, the RIF WG has released the First Public Working Draft
of RIF Core. It includes the RIF Condition Language and its extension to the
RIF Horn Rule Language. The RIF Condition Language is expected to be used
for expressing the part of rules that is common to deductive, normative, and
reactive rules, namely the IF part, as shown via examples. The RIF Horn Rule
Language is intended to allow exchanging Horn-style deductive rules. This core
language is clearly not sufficient for interchanging many kinds of rules, but it
offers the basis for future extensions most of which will be developed as RIF
dialects.
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