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Abstract. Reactive Web systems, Web services, and Web-based pub-
lish/subscribe systems communicate events as XML messages, and in
many cases require composite event detection: it is not sufficient to react
to single event messages, but events have to be considered in relation to
other events that are received over time.
Emphasizing language design and formal semantics, we describe the
rule-based query language XChangeEQ for detecting composite events.
XChangeEQ is designed to completely cover and integrate the four com-
plementary querying dimensions: event data, event composition, tem-
poral relationships, and event accumulation. Semantics are provided as
model and fixpoint theories; while this is an established approach for rule
languages, it has not been applied for event queries before.

1 Introduction

Emerging Web technologies such as reactive Web systems [9, 4, 7, 23], Web-based
publish/subscribe systems [25, 15], and Web services communicate by exchanging
messages. These messages usually come in an XML format such as SOAP [20] or
Common Base Event (CBE) [14] and signify some application-level event, e.g.,
an update on a Web document, publication of new information, a request for
some service, or a response to a request.

For many applications it is not sufficient to query and react to only single,
atomic events, i.e., events signified by a single message. Instead, events have to
be considered with their relationship to other events in a stream of events. Such
events (or situations) that do not consist of one single atomic event but have to
be inferred from some pattern of several events are called composite events.

Examples for such composite events are omnipresent. An application for stu-
dent administration might require notification when “a student has both handed
in her thesis and given the defense talk.” A library application might send a mo-
nition when “a book has been borrowed and not returned or extended within one
month.” A stock market application might require notification if “the average of
the reported stock prices over the last hour raises by 5%.”

This article describes work on the rule-based high-level event query language
XChangeEQ for the Web, focusing on language design and formal semantics.



XChangeEQ has been introduced in [3]; we extend on this work by providing for-
mal semantics in the form of model and fixpoint theories for stratified programs.
XChangeEQ is developed as a part (sub-language) of the reactive, rule-based Web
language XChange [9].1 It is however designed so that it can also be deployed
as a stand-alone event mediation component in an event-driven architecture [16]
or in the General Semantic Web ECA Framework described in [23].

The contributions of this article are as follows. (1) We discuss language de-
sign issues of event query languages for the Web (Section 2). We identify four
complementary dimensions that need to be considered for querying events. While
they might have been implicit in some works on composite event queries, we are
not aware of any works stating them explicitly before.

(2) We shorty introduce XChangeEQ (Section 3). XChangeEQ is significantly
more high-level and expressive than previous (composite) event query languages.
To the best of our knowledge, XChangeEQ is the first language to deal with
complex structured data in event messages, support rules as an abstraction and
reasoning mechanism for events, and build on a separation of concerns that gives
it ease-of-use and a certain degree of expressive completeness.

(3) We provide formal semantics for XChangeEQ in the form of model and
fixpoint theories (Section 4). While this approach is well-explored in the world
of rule-based and logic programming, its application to an event query language
is novel and should be quite beneficial for research on composite event queries:
semantics of earlier event query languages often have been somewhat ad hoc,
generally with an algebraic and less declarative flavor, and did not accommodate
rules. In our discussion, we highlight where we deviate from traditional model
theories to accommodate the temporal notions required by event queries.

2 Design Considerations

Our work on XChangeEQ is motivated by previous work on XChange [9], a lan-
guage employing Event-Condition-Action rules to program distributed, reactive
Web applications. Similar to composite event detection facilities found in ac-
tive databases [19, 18, 13, 12, 1], XChange provides composition operators such
as event conjunction, sequence, repetition, or negation. Our experiences with
programming in XChange [10, 7] has taught us that there is a considerable gap
between the requirements posed by applications and the expressivity of composi-
tion operators. Further, event querying based on composition operators is prone
to misinterpretations as discussions in the literature show [29, 17, 1]. This expe-
rience has lead us to reconsider and analyze the requirements for event query
languages, which we present here, and to the development of XChangeEQ.

A sufficiently expressive event query language should cover (at least) the
following four complementary dimensions. How well an event query language
covers each of these dimensions gives a practical measure for its expressiveness.

1 Accordingly, the superscript EQ stands for Event Queries. XChangeEQ replaces the
original composite event query constructs [8] of XChange. It has a different design
and is an improvement both in expressivity and ease-of-use.



Data extraction: Events contain data that is relevant for applications to
decide whether and how to react to them. For events that are received as XML
messages, the structure of the data can be quite complex (semi-structured). The
data of events must be extracted and provided (typically as bindings for vari-
ables) to test conditions (e.g., arithmetic expressions) inside the query, construct
new events, or trigger reactions (e.g., database updates).

Event composition: To support composite events, i.e., events that consist
out of several events, event queries must support composition constructs such
as the conjunction and disjunction of events (more precisely, of event queries).
Composition must be sensitive to event data, which is often used to correlate
and filter events (e.g., consider only stock transactions from the same customer
for composition). Since reactions to events are usually sensitive to timing and
order, an important question for composite events is when they are detected. In
a well-designed language, it should be possible to recognize when reactions to a
given event query are triggered without difficulty.

Temporal (and causal) relationships: Time plays an important role in
event-driven applications. Event queries must be able to express temporal condi-
tions such as “events A and B happen within 1 hour, and A happens before B.”
For some applications, it is also interesting to look at causal relationships, e.g.,
to express queries such as “events A and B happen, and A has caused B.” In this
article we concentrate only on temporal relationships since causal relationships
can be queried in essentially the same manner.2

Event accumulation: Event queries must be able to accumulate events to
support non-monotonic features such as negation of events (understood as their
absence) or aggregation of data from multiple events over time. The reason for
this is that the event stream is (in contrast to extensional data in a database)
unbounded (or “infinite”); one therefore has to define a scope (e.g., a time inter-
val) over which events are accumulated when aggregating data or querying the
absence of events. Application examples where event accumulation is required
are manifold. A business activity monitoring application might watch out for
situations where “a customer’s order has not been fulfilled within 2 days” (nega-
tion). A stock market application might require notification if “the average of
the reported stock prices over the last hour raises by 5%” (aggregation).

3 The Language XChangeEQ

XChangeEQ is designed on the following foundations.

(1) Its syntax enforces a separation of the four querying dimensions described
above, yielding a clear language design, making queries easy to read and under-
stand, and giving programmers the benefit of a separation of concerns. Even
more importantly, this separation allows to argue that the language reaches a

2 While temporality and causality can be treated similarly in queries, causality raises
interesting questions about how causal relationships can be defined and maintained.
Investigation of these issues is planned for the future.



certain degree of expressive completeness. Our experience, stemming from at-
tempts to express queries with existing event query languages, shows us that
without such a separation not all dimensions are fully covered.

(2) It embeds the Web and Semantic Web query language Xcerpt [28] to
specify classes of relevant events, extract data (in the form of variable bindings)
from them, and construct new events.

(3) It supports rules as an abstraction and reasoning mechanism for events,
with the same motivation and benefits of views in traditional database systems.

These foundations lead to improvements on previous work on composite event
query languages in the following ways: XChangeEQ is a high-level language with
a clear design that is easy to use and provides the appropriate abstractions for
querying events. It emphasizes the necessity to query data in events, which has
been neglected or over-simplified earlier. Being targeted for semi-structured XML
messages as required for CBE, SOAP, and Web Services, it is particularly suitable
for use in business applications domains. We make an attempt towards expressive
completeness by fully covering all four query dimensions explained earlier using
a separation of concerns in XChangeEQ. Arguably, in previous languages that do
not use such a separation, some (usually simple) queries might be expressed more
compactly. This compactness then however leads easily to misinterpretations (as
discussed in [29, 17, 1]) and comes in previous work at the price of a serious lack
in expressiveness (incomplete coverage of the four dimensions), where less simple
queries cannot be expressed.

Using the example of a stock market application, we now introduce the syntax
of our event query language XChangeEQ.

3.1 Querying Atomic Events

Application-level events are nowadays often represented as XML, especially in
the formats Common Base Event [14] and SOAP [20]. Skipping details of such
formats for the sake of brevity, we will be using four atomic events in our stock
market example: stock buys, stock sells, and orders to buy or sell stocks. Involved
applications may also generate further events without affecting our examples.

The left side of Figure 1 depicts a buy order event in XML. For conciseness
and human readability, we use a “term syntax” for data, queries, and construc-
tion of data instead of the normal tag-based XML syntax. The right side of
Figure 1 depicts the XML event as a (data) term. The term syntax is slightly
more general than XML, indicating whether the order of children is relevant
(square brackets []), or not (curly braces {}).

Querying such single event messages is a two-fold task: one has to (1) specify
a class of relevant events (e.g., all buy events) and (2) extract data from the
events (e.g., the price). XChangeEQ embeds the XML query language Xcerpt
[28] for both. Figure 2 shows an exemplary buy event (left) and an event query
that recognizes such buy events with a price total of $10 000 or more (right).

Xcerpt queries describe a pattern that is matched against the data. Query
terms can be partial (indicated by double brackets or braces), meaning that a
matching data term can contain subterms not specified in the query, or total



<order>

<orderId >4711</orderId>

<customer>John</customer>
<buy> <stock>IBM</stock>

<l im i t >3.14</ l im i t>

<volume>4000</volume>
</buy> </order>

order [
order Id { 4711 } ,
customer { ”John” } ,
buy [ stock { ”IBM” } ,

l im i t { 3 .14 } ,
volume { 4000 } ]

]

Fig. 1. XML and term representation of an event

buy [ order Id { 4711 } ,
t rade Id { 4242 } ,
customer { ”John” } ,
s tock { ”IBM” } ,
p r i c e { 2 .71 } ,
volume { 4000 } ]

buy {{ t rade Id { var I } ,
customer { var C } ,
s tock { var S } ,
p r i c e { var P } ,
volume { var V }

}} where { var P ∗ var V >= 10000 }

Fig. 2. Atomic event query

(indicated by single brackets or braces). Queries can contain variables (keyword
var), which will be bound to the matching data, and a where-clause can be
attached to specify non-structural (e.g., arithmetic) conditions. In this article,
we will stick to simple queries as above. Note however that Xcerpt supports
more advanced constructs for (subterm) negation, incompleteness in breadth
and depth, and queries to graph-shaped data such as RDF. An introduction to
Xcerpt is given in [28].

The result of evaluating an Xcerpt query on an event message is the set Σ

of all possible substitutions for the free variables in the query (non-matching is
signified by Σ = ∅). Our example query does not match the order event from
Figure 1, but matches the buy event on the left of Fighre 2 with Σ = {σ1},
σ1 = {I 7→ 4242, C 7→ John, S 7→ IBM, P 7→ 2.71, V 7→ 4000}.

In addition to event messages, XChangeEQ event queries can query for timer
events. Absolute timer events are time points or intervals (possibly periodic)
defined without reference to the occurrence time of some other event. They are
specified in a similar way as queries to event messages and we refer to [3] for
details. Relative timer events, i.e., time points or intervals defined in relation to
some other event, will be looked at in Section 3.3 on event composition.

3.2 Reactive and Deductive Rules for Events

XChangeEQ uses two kinds of rules: deductive rules and reactive rules. Deductive
rules allow to define new, “virtual” events from the events that are received. They
have no side effects and are analogous to the definition of views for database data.
Figure 3 (left) shows a deductive rule deriving a new bigbuy events from buy

events satisfying the earlier event query of Figure 2. Deductive rules follow the
syntax DETECT event construction ON event query END. The event construction
in the rule head is simply a data term augmented with variables which are
replaced during construction by their values obtained from evaluating the event



DETECT bigbuy {
t rade Id { var I } ,
customer { var C } ,
s tock { var S } }

ON buy {{
t rade Id { var I } ,
customer { var C } ,
s tock { var S } ,
p r i c e { var P } ,
volume { var V }

}} where { var P ∗ var V >= 10000 }
END

RAISE

to ( r e c i p i e n t=
”http : // aud i tor . com” ,
t r an spo r t=
”http : / / . . . /HTTP/”)

{
var B

}
ON var B −> bigbuy {{ }}
END

Fig. 3. Deductive rule (left) and reactive rule (right)

query in the rule body. (Several variables bindings will lead to the construction
of several events if no grouping or aggregation constructs are used.) The event
construction is also called a construct term; more involved construction will be
seen in Section 3.5 when we look at aggregation of data. Recursion of rules is
restricted to stratifiable programs, see Section 4.2 for a deeper discussion.

Reactive rules are used for specifying a reaction to the occurrence of an event.
The usual (re)action is constructing a new event message (as with deductive
rules) and use it to call some Web Service. Note that this new event leaves
the system and that it is up to the receiver to decide on the occurrence time
(typically such events are considered to happen only at the time point when the
corresponding message is received). For tasks involving accessing and updating
persistent data, our event queries can be used in the Event-Condition-Action
rules of the reactive language XChange.

An example for a reactive rule is in Figure 3 (right); it forwards every
bigbuy event (as derived by the deductive rule on the left) to a Web Service
http://auditor.com using SOAP’s HTTP transport binding. The syntax for
reactive rules is similar to deductive rules, only they start with the keyword
RAISE; in the rule head to() is used to indicate recipient and transport.

The distinction between deductive and reactive rules is important. While it
is possible to “abuse” reactive rules to simulate or implement deductive rules
(by sending oneself the result), this is undesirable: it is difficult with events that
have a duration, misleading for programmers, less efficient for evaluation, and
could allow arbitrary recursion (leading, e.g., to non-terminating programs or
non-stratified use of negation).

3.3 Composition of Events

So far, we have only been looking at queries to single events. Since temporal
conditions are dealt with separately, only two operators, or and and, are neces-
sary to compose event queries into composite event queries. (Negation falls under
event accumulation, see Section 3.5.) Both composition operators are multi-ary,
allowing to compose any (positive) number of event queries (without need for
nesting), and written in prefix notation. Disjunctions are a convenience in prac-



DETECT b u yo r d e r f u l f i l l e d { order Id { var O } ,
t rade Id { var I } ,
s tock { var S } }

ON and {
order { order Id { var O } ,

buy {{ stock { var S } }} } ,
buy {{ order Id { var O } ,

t rade Id { var I } }} }
END

Fig. 4. Conjunction of event queries

and { event o : order {{ order Id { var O } }} ,
event t : extend [ o , 1 min ] }

Fig. 5. Composition with relative timer event

tical programming but not strictly necessary: a rule with a (binary) disjunction
can be written as two rules. We therefore concentrate on conjunctions here.

When two event queries are composed with and, an answer to the composite
event query is generated for every pair of answers to the constituent queries. If
the constituent queries share free variables, only pairs with “compatible” variable
bindings are considered. (This generalizes to composition of three and more event
queries in the obvious manner.) Figure 4 illustrates the use of the and operator.
The buy order fulfilled event is detected for every corresponding pair of buy

order and buy event. The events have to agree on variable O (the orderId). The
occurrence time of the detected order fulfilled event is the time interval enclosing
the respective constituent events.

Composition of events gives rise to defining relative timer events, i.e., time
points or intervals defined in relation to the occurrence time of some other event.
Figure 5 shows a composite event query asking for an order event and a timer
covering the whole time interval from the order event until one minute after.
This timer event will be used later in Section 3.5 when querying for the absence
of a corresponding buy event in this time interval.

An event identifier (o) is given to the left of the event query after the keyword
event. It is then used in the definition of the relative timer extend[o, 1 min]

which specifies a time interval one minute longer than the occurrence interval
of o. (The time point at which o occurs is understood for this purpose as a
degenerated time interval of zero length.) The event identifier t is not necessary
here, but can be specified anyway. Event identifiers will also be used in temporal
conditions and event accumulation (Sections 3.4 and 3.5).

Further constructors for relative timers are: shorten[e,d] (subtracting d

from the end of e), extend-begin[e,d], shorten-begin[e,d] (adding or sub-
tracting d at the begin of e), shift-forward[e,d], shift-backward[e,d]

(moving e forward or backward by d).



DETECT ear lyRese l lWithLoss { customer { var C } ,
s tock { var S } }

ON and {
event b : buy {{ customer { var C } ,

s tock { var S } ,
p r i c e { var P1 } }} ,

event s : s e l l {{ customer { var C } ,
s tock { var S } ,
p r i c e { var P2 } }}

} where { b be f o r e s , t imeDi f f (b , s)<1hour , var P1>var P2 }
END

Fig. 6. Event query with temporal conditions

3.4 Temporal Conditions

Temporal conditions on events and causal relationships between events play an
important role in querying events. We concentrate in this paper on temporal
conditions, though the approach generalizes to causal relationships. Just like
conditions on event data, temporal conditions are specified in the where-clause
of an event query and make use of the event identifiers introduced above.

The event query in Figure 6 involves temporal conditions. It detects situations
where a customer first buys stocks and then sells them again within a short time
(less than 1 hour) at a lower price. The query illustrates that typical applications
require both qualitative conditions (b before s) and quantitative (or metric)
conditions (timeDiff(b,s) < 1 hour). In addition, the query also includes a
data condition for the price (var P1 > var P2).

In principle, various external calendar and time reasoning systems could be
used to specify and evaluate temporal conditions. However, many optimizations
for the evaluation of event queries require knowledge about temporal conditions.
See [6] for an initial discussion of temporal optimizations.

XChangeEQ deals with non-periodic time intervals (time points are treated
as degenerated intervals of zero length), periodic time intervals (i.e., sequences
of non-periodic intervals), and durations (lengths of time). An overview of the
built-in constructs for temporal conditions can be found in [3].

Note that there is an important difference between timer events used in
queries and references to time as part of where-conditions. Timer events have to
happen for the event query to yield an answer (i.e., they are waited for), while
time references in conditions can lie in the future and only restrict the possible
answers to an event query.

3.5 Event Accumulation

Event querying displays its differences to traditional querying most perspicuously
in non-monotonic query features such as negation or aggregation. For traditional
database queries, the data to be considered for negation or aggregation is read-



DETECT buyOrderOverdue {
order Id { var I } }

ON and {
event o : order {{

order Id { var I }
buy {{ }} }} ,

event t : extend [ o , 1 min ] ,
wh i l e t : not buy {

order Id { var I } }
}

END

RAISE to ( . . . ) {
reportOfDai lyAverages {

a l l entry {
stock { var S } ,
avgPr ice { avg ( a l l var P) }

} group−by var S } }
ON and {

event t : tradingDay {{ }} ,
wh i l e t : c o l l e c t s e l l {

stock { var S } ,
p r i c e { var P } }

END

Fig. 7. Event accumulation for negation (left) and aggregation (right)

ily available in the database and this database is finite.3 In contrast, events are
received over time in an event stream which is unbounded, i.e., potentially in-
finite. Applying negation or aggregation on such a (temporally) infinite event
stream would imply that one has to wait “forever” for an answer because events
received at a later time might always change the current answer. We therefore
need a way to restrict the event stream to a finite temporal extent (i.e., a finite
time interval) and apply negation and aggregation only to the events collected
in this accumulation window.4

It should be possible to determine the accumulation window dynamically
depending on the event stream received so far. Typical cases of such accumulation
windows are: “from event a until event b,” “one minute until event b,” “from
event a for one minute,” and (since events can occur over time intervals, not
just time points) “while event c.” Here we only look at the last case because it
subsumes the first three (they can be defined as composite events).

Negation is supported by applying the not operator to an event query. The
window is specified with the keyword while and the event identifier of the event
defining the window. The meaning is as one might expect: the negated event
query while t: not q is successful if no event satisfying q occurs during the
time interval given by t. An example can be seen in Figure 7 (left): it detects
buy orders that are overdue, i.e., where no matching buy transaction has taken
place within one minute after placing the order. The accumulation window is
specified by the event query t, which is a timer relative to the order event.
Observe that the negated query can contain variables that are also used outside
the negation; the example reveals the strong need to support this.

Following the design of the embedded query language Xcerpt, aggregation
constructs are used in the head of a rule, since they are related to the construction
of new data. The task of the body is only collecting the necessary data or events.
Collecting events in the body of a rule is similar to negation and indicated by

3 Recursive rules or views may allow to define infinite databases intensionally. How-
ever, the extensional data (the “base facts”) is still finite.

4 Keep in mind that accumulation here refers to the way we specify queries, not the way
evaluation is actually performed. Keeping all events in the accumulation windows in
memory is generally neither desirable nor necessary for query evaluation.



the keyword collect. The rule in Figure 7 (right) has an event query collecting
sell events over a full trading day. The actual aggregation takes place in the
head of the rule, where all sales prices (P ) for the same stock (S) are averaged
and a report containing one entry for each stock is generated. The report is sent
at the end of each trading day; this is reflected in the syntax by the fact that
tradingDay{{ }} must be written as an event, i.e., must actually occur.

Aggregation follows the syntax and semantics of Xcerpt (see [27] for a full
account), again showing that it is beneficial to base an event query language
on a data query language. The keyword all indicates a structural aggregation,
generating an entry element for each distinct value of the variable S (indicated
with group-by). Inside the entry-element an aggregation function avg is used
to compute the average price for each individual stock.

Aggregation has rarely been considered in work on composite events, though
it is clearly needed in many applications, including our stock market example.
A notable exception is [24], which however applies only to relational data (not
semi-structured or XML) and does not have the benefits of a separation of the
query dimensions as XChangeEQ.

4 Formal Semantics

Having introduced XChangeEQ informally above, we now supply formal, declara-
tive semantics for stratified programs in the form of model and fixpoint theories.
While this is a well-established approach for rule-based languages [22, 2], includ-
ing traditional database query languages supporting views or deductive rules, it
has not been applied to event query languages before. Related work on semantics
for event queries usually has an “algebraic flavor” (as the languages themselves
do), where the semantics for operators are given as functions between sequences
(or histories or traces) of events, e.g., [30, 21]. Further, these approaches often
neglect data in events (especially semi-structured data) and it is not clear how
they could be extended to support deductive rules (or views) over events.

In addition to accommodating both rules and data, the model theoretic ap-
proach presented here can be argued to be more declarative than previous alge-
braic approaches, expressing how an event is to be to detected rather than what

event is to be detected, making programs easier to understand and optimize.

The following specifics of querying events as opposed to pure (database)
data have to be arranged for in our semantics and make it novel compared their
counterpart in the logic programming literature [22, 2]: (1) in addition to normal
variables, event identifiers are accommodated, (2) answers to composite event
queries have an occurrence time, (3) temporal relations have a fixed interpre-
tation. Finally, the model theory must be (4) sensible for potentially infinite

streams of events (this also entails that negation and aggregation of events must
be “scoped” over a time window as we have seen earlier in Section 3.5).



4.1 Model Theory

Our model theory is Tarskian-style [11], i.e., it uses a valuation function for
free variables and defines an entailment relation between an interpretation and
sentences (rules and queries) from the language recursively over the structure

of the sentences.5 Tarskian model theories have the advantage of being highly
declarative, theoretically well-understood, and relatively easy to understand.

An event happens over a given time interval and has a representation as
message (as data term). Formally it is a tuple of a (closed and convex) time
interval t and a data term e, written et. The set of all events is denoted Events.

Time is assumed to be a linearly6 ordered set of time points (T, <). The time
intervals over which events happen are closed and convex, i.e., have the form
t = [b, e] = {p | b ≤ p ≤ e} (where b ∈ T and e ∈ T). For convenience we define:
begin([b, e]) = b, end([b, e]) = e, [b1, e1] ⊔ [b2, e2] = [min{b1, b2}, max{e1, e2}],
and [b1, e1] ⊑ [b2, e2] iff b2 ≤ b1 and e1 ≤ e2.

Matching of Atomic Event Queries against single incoming events is
based on a non-standard unification that is especially designed for the variations
and incompleteness in semi-structured data. Atomic Event Queries are single
query terms q that match only for the data term part e of events et; this does
not involve time or multiple events. Note that the query terms usually contain
free variables. The matching of query terms and data terms is based on Simu-
lation, which is a relation between ground terms, denoted �. Intuitively, q � d

means that the nodes and structure of q can be found in d. Simulation naturally
extends to a non-ground query term q′ by asking whether there is a (ground-
ing) substitution σ for the free variables in q′ such that the ground query term
q = σ(q′) obtained by applying the substitution σ to q′ simulates with the given
data term d. Further details can be found in [27]; they are not important for
understanding the presented model theory and thus not discussed here.

Substitution sets Σ rather than single substitutions σ are used in our
model theory to accommodate grouping and aggregation in the construction in
rule heads. Application Σ(c) of Σ to a construct term c results in a set of data
terms. For convenience we also define the application to query terms q with
Σ(q) = {σ(q) | σ ∈ Σ}.

An interpretation for a given XChangeEQ query, rule, or program is a 3-
tuple M = (I, Σ, τ), where (1) I ⊆ Events is the set of events et that “happen,”
i.e., are either in the stream of incoming events or derived by some deductive
rule. (2) Σ 6= ∅ is a grounding substitution set containing substitutions for
the “normal” variables (i.e., data variables, but not event identifiers). (3) τ

is a substitution for the event identifiers, i.e., a mapping from event variables
to Events. The substitution τ for event identifiers (cf. Section 3.3) is the first
unusual features of our model theory. Since τ signifies the events that contributed
to the answer of some query, we also call it an “event trace.”

5 This recursive definition over the structure allows to consider sub-formulas of a
formula in isolation, which is beneficial for both understanding and evaluation.

6 Linear time is chosen because we are interested in event that actually happened, not
in potential futures (where a branching time would be more apt).



I, Σ, τ |= (event i : q)t iff exists et′ ∈ I with τ(i) = et′ , t′ = t,
and for all e′ ∈ Σ(q) we have e′ � e

I, Σ, τ |= (event i : extends[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et, t = t′ + d

. . . (Definitions for other temporal events are similar and skipped.)

M |= (q1 ∧ q2)t iff M |= q
t1
1

and M |= q
t2
2

and t = t1 ⊔ t2
M |= (q1 ∨ q2)t iff M |= qt

1
or M |= qt

2

I, Σ, τ |= (Q where C)t iff I, Σ, τ |= Qt and WΣ,τ (C) = true

I, Σ, τ |= (while j : not q)t iff exists et′ with τ(j) = et′ , t′ = t,

and for all t′′ ⊑ t we have I, Σ, τ 6|= qt′′

I, Σ, τ |= (while j : collect q)t iff exists et′ with τ(j) = et′ , t′ = t, and exist n ≥ 0,
Σ1, . . . Σn, t1 ⊑ t, . . . tn ⊑ t with Σ =

S

i=1..n
Σi,

and for all i = 1..n we have I, Σi, τ |= qti

I, Σ, τ |= (c← Q)t iff (1) Σ′(c)t ⊆ I for Σ′ maximal (w.r.t. FreeV ars(Q)) and τ ′

such that I, Σ′, τ ′ |= Qt, or (2) I, Σ′, τ ′ 6|= Qt for all Σ′, τ ′

WΣ,τ (i before j) = true iff end(τ(i)) < begin(τ(j))
WΣ,τ (i during j) = true iff begin(τ(j)) < begin(τ(i)) and end(τ(i)) < end(τ(j))
WΣ,τ (i overlaps j) = true iff begin(τ(j)) < begin(τ(i)) < end(τ(j)) < end(τ(i))

Fig. 8. Model Theory for XChangeEQ

The satisfaction M |= F t of an XChangeEQ expression F over an occur-
rence time t in an interpretation M is defined recursively in Figure 8. The time
stamping of expressions is the second unusual feature of our model theory.

Given an XChangeEQ program P and a stream of incoming events E, we call
an interpretation M = (I, Σ, τ) a model of P under E if (1) M satisfies all rules
(c ← Q) ∈ P for all time intervals t and (2) contains the stream of incoming
events, i.e., E ⊆ I. Note that here the event stream simply corresponds to the
notion of base facts or extensional data found of traditional model theories.

The satisfaction relation uses a fixed interpretation W for all conditions that
can occur in the where-clause of a query. This includes the temporal relations
like before and is the third unusual feature of our model theory. W is a function
that maps a substitution set Σ, an event trace τ , and an atomic condition C

to true or false; we usually write Σ and τ in the index. WΣ,τ extends straight-
forwardly to boolean formulas of conditions. The definition of W is left outside
the “core model theory” to make it more modular and allow to easily integrate
different temporal reasoners. In Figure 8, we have given only the definitions for
before, during, and overlaps for space reasons.

Our fourth requirement on the model theory was that it is sensible on (po-
tentially) infinite streams of events. The basic idea for this is that to evaluate
a program P over a time interval t, we only have to consider events happening
during t. We will state this formally after giving the fixpoint theory.

4.2 Fixpoint Theory

A model theory, such as the one presented above, has the issue of allowing many
models for a given program. A common and convenient way to obtain a unique
model is to define it as the solution of a fixpoint equation (which is based on
the model theory). A fixpoint theory also describes an abstract, simple, forward-
chaining evaluation method, which can easily be extended to work incrementally
as is required for event queries [4].



Our fixpoint theory requires XChangeEQ programs to be stratifiable [2].
Stratification restricts the use of recursion in rules by ordering the rules of
a program P into so-called strata (sets Pi of rules with P = P1 ⊎ · · · ⊎ Pn) such
that a rule in a given stratum can only depend on (i.e., access results from) rules
in lower strata (or the same stratum, in some cases). The restriction to stratifi-
able programs could be partially lifted at the cost of a more involved semantics
(and evaluation). This is however outside the scope of this paper.

Three types of stratification are required: (1) Negation stratification, i.e.,
events that are negated in the query of a rule may only be constructed by rules
in lower strata, events that occur positively may only be constructed by rules
in lower strata or the same stratum. (2) Grouping stratification, i.e., rules us-
ing grouping constructs like all in the construction may only query for events
constructed in lower strata. (3) Temporal stratification, i.e., if a rule queries a
relative temporal event like extends[i, 1min] then the anchoring event (here:
i) may only be constructed in lower strata. While negation and grouping strat-
ification are fairly standard, temporal stratification is a requirement specific to
complex event query programs like those expressible in XChangeEQ. We are not
aware of former consideration of the notion of temporal stratification. For a
formal definition of our stratification, we refer to [5].

The fixpoint operator TP for an XChangeEQ-Program P is defined as:

TP (I) = I ∪ {et | there exist a rule c← Q ∈ P, a maximal substitution set Σ,

and a substitution τ such that I, Σ, τ |= Qt and e ∈ Σ(c)}

The repeated application of TP until a fixpoint is reached is denoted T ω
P .

The fixpoint interpretation7 MP,E of a program P with stratification P =
P1⊎· · ·⊎Pn under and event stream E is defined by computing fixpoints stratum
by stratum: M0 = E = T ω

∅ (E), M1 = T ω

P1

(M0) . . . , MP,E = Mn = T ω

Pn
(Mn−1).

Here, Pi =
⋃

j≤j Pj denotes the set of all rules in strata Pi and lower.
Theorem 1 justifies our definition as usual for fixpoint semantics: For a

stratifiable program P and an event stream E, MP,E is a minimal model of P

under E. Further, MP,E is independent of the stratification of P .
More interestingly, we can show that the model theory and fixpoint semantics

are sensible on infinite event streams. The next theorem justifies a streaming
evaluation, where answers to composite event queries are generated “online”
and we never have to wait for the stream to end (which it will not if infinite).
This is the last feature of our semantics that is peculiar for event queries.

Theorem 2: Let E | t denote the restriction of an event stream E to a
time interval t, i.e., E | t = {et′ ∈ E | t′ ⊑ t}. Similarly, let M | t denote the
restriction of an interpretation M to t. Then the result of applying the fixpoint
procedure to E | t is the same as applying it to E for the time interval t, i.e.,
MP,E|t | t = MP,E | t. In other words to evaluate a program over a time interval
t, we do not have to consider any events happening outside of t.

Proofs for both theorems are presented in an extended version of this pa-
per [5]. The proof for theorem 1 is an adoption of a proof in [22].

7 Since we consider whole programs P now, only the set I of events that happen is
relevant for the fixpoint interpretation of P ; Σ and τ are thus skipped from now on.



5 Conclusions and Future Work

This article has introduced the high-level event query language XChangeEQ,
emphasizing language design and formal semantics. XChangeEQ deviates from
previous event query languages in a separation of the query dimensions data
extraction, event composition, temporal relationships, and event accumulation.
This separation allows a complete coverage of each of the dimensions, yielding a
language that can be argued to have reached a degree of expressive completeness.

The ability to query events represented in XML and other Web formats,
makes XChangeEQ suited for use in service-oriented and event-driven architec-
tures based on Web Services. Important for practical use, rules are supported as
an abstraction and reasoning mechanism for events. Rule-based reasoning about
events is also expected to become relevant in efforts to bring rules, including
reactive rules, to the (Semantic) Web [26, 4].

Efficient evaluation methods that utilize temporal conditions [6] and query
optimization for large numbers of event queries are the current focus of our
research. Implementation of our language in the scope of XChange is ongoing
work.
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