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Abstract Policy-based access control is nowadays a common mechanism to protect data
in distributed environments. However, the word policy has been given many dif-
ferent meanings and is used in different contexts. This chapter gives an overview
of the existing approaches to logic- and rule-based system behavior specification
in the light of the peculiar needs of business and security rules.
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Introduction
For a long time, logic programming and rule-based reasoning have been pro-

posed as a basis for policy specification languages. However, the term “policy”
has not been given a unique meaning. In fact, it is used in the literature in a
broad sense that encompasses the following notions:

Security Policiespose constraints on the behaviour of a system. They
are typically used to control permissions of users/groups while accessing
resources and services.

Trust Management policy languagesare used to collect user properties
in open environments, where the set of potential users spans over the
entire web.

Action Languagesare used in reactive policy specification to execute
actions like event logging, notifications, etc. Authorizations that involve
actions and side effects are sometimes calledprovisional.

Business Rulesare “statements about how a business is done” [25] and
are used to formalize and automatize business decisions as well as for
efficiency reasons. They can be formulated asreaction rules, derivation
rules, andintegrity constraints[142, 147].

All these kinds of specification interact tightly with each other: Credential-
based user properties are typically used to assign access control permissions;
logging, monitoring, and other actions are part of the high-level security spec-
ification documents of many organizations; many business rules—e.g., for
granting discounts or special services—are based on the same kind of user
properties that determine access control decision. Moreover, this kind of
business decisions and access control decisions are to be taken more or less
simultaneously—e.g. immediately before service access.

There has been extensive research focusing on each of these different no-
tions of policies. In the next four sections, we will give an overview of exist-
ing approaches for each of these notions (security policies, policy-based trust
management, action languages and business rules), and will then discuss in
section 5 two different efforts to integrate several aspects in a common frame-
work. There is still a lot of work to be done in the future and this chapter
provides the knowledge and pointers required for anyone planning to work on
this area.

1. Security Policies
Rule-based languages are commonly regarded as the best approach to for-

malizing security policies. In fact, most of the systems we use every day adopt
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policies formulated as rules. Roughly speaking, the access control lists applied
by routers are actually rules of the form: “if a packet of protocol X goes from
hosts Y to hosts Z then [don’t] let it pass”. Some systems, like Java, adopt
procedural approaches. Access control is enforced by pieces of code scattered
around the virtual machine and the application code; still, the designers of
Java security felt the need for a method calledimplies, reminiscent of rules,
that causes certain authorizations to entail other authorizations [81].

The main advantages of rule-based policy languages can be summarized as
follows:

People (including users with no specific training in computers or logic)
spontaneously tend to formulate security policies as rules.

Rules have precise and relatively simple formal semantics, be it opera-
tional (rewrite semantics), denotational (fixpoint-based), or declarative
(model theoretic). Formal semantics is an excellent help in implement-
ing and verifying access control mechanisms, as well as validating poli-
cies.

Rule languages can be flexible enough to model in a unified framework
the many different policies introduced along the years as ad-hoc mecha-
nisms. Different policies can be harmonized and integrated into a single
coherent specification.

In particular, logic programming languages are particularly attractive as policy
specification languages. They enjoy the above properties and have efficient
inference mechanisms (linear or quadratic time). This property is important
as in most systems policies have to manage a large number of users, files,
and operations—hence a large number of possible authorizations. And for
those applications where linear time is too slow, there exist well-established
compilation techniques (materialization, partial evaluation) that may reduce
reasoning to pure retrieval at run time.

Another fundamental property of logic programs is that their inference is
nonmonotonic, due tonegation-as-failure. Logic programs can make default
decisions in the absence of complete specifications. Default decisions arise
naturally in real-world security policies. For example,openpolicies prescribe
that authorizations by default are granted, whereasclosedpolicies prescribe
that they should be denied unless stated otherwise. Other nonmonotonic in-
ferences, such as authorization inheritance and overriding, are commonly sup-
ported by policy languages.

For all of these reasons, rule languages based on nonmonotonic logics even-
tually became the most frequent choice in the literature. A popular choice
consists ofnormal logic programs, i.e. sets of rules like

A← B1, . . . , Bm, notC1, . . . , notCn
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interpreted with thestable model semantics[73]. In general, each program
may have one stable model, many stable models, or none at all. There are
opposite points of view on this feature.

Some authors regard multiple models as an opportunity to write nondeter-
ministic specifications where each model is an acceptable policy and the sys-
tem makes an automatic choice between the available alternatives [31]. For
instance, the models of a policy may correspond to all possible ways of as-
signing permissions that preserve aChinese Wallpolicy [45]. However, the set
of alternative models may grow exponentially, and the problem of finding one
of them is NP-complete. There are exceptions with polynomial complexity
[124, 132], though.

Some authors believe that security managers would not trust the system’s
automatic choice and adopt restrictions such asstratifiability [6] to guarantee
that the canonical model be unique. The system rejects non-stratified speci-
fications, highlighting nonstratified rules to help the security administrator in
reformulating the specifications. As a further advantage, stratifiability-like re-
strictions yield PTIME semantics.

A nonmonotonic logic has been proposed for the first time as a policy spec-
ification language by Woo and Lam [151]. The main motivations are expres-
siveness and flexibility. To address complexity issues (inference in proposi-
tional default logic is at the second level of the polynomial hierarchy), Woo and
Lam propose to use the fragment of default logic corresponding tostratified,
extended logic programs, that is, stratified logic programs with two negations
(negation as failure and classical negation), whose unique stable model can
be computed in quadratic time. Extended logic programs can be easily trans-
formed into equivalent normal logic programs (with only negation as failure)
by means of a straightforward predicate renaming.

The approach by Woo and Lam has been subsequently refined by many
authors. Some have proposed fixed sets of predicates and terms, tailored to
the expression of security policies. In the language of the security community,
such a fixed vocabulary is called amodel, whereas in the AI community, it
would be probably regarded as an elementary ontology. From a practical point
of view, the vocabulary guides security administrators in specifying the policy.

Furthermore, the original approach has been extended with temporal con-
structs, inheritance and overriding, message control, policy composition con-
structs, and electronic credential handling. All these aspects are illustrated
in detail in the following subsections. Further rule-based languages for pol-
icy specification that do not exhibit dynamic or nonmonotonic features will be
discussed in the section devoted to trust management.
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Dynamic Policies
Security policies may change with time. Users, objects, and authorizations

can be created and removed. Moreover, some authorizations may be active
only periodically. For example, an employee may use the system only during
work hours. Therefore, rule-based policy languages should be able to express
time-dependent behavior.

Temporal Authorization Bases In [28] the sets of users and objects
are fixed, and the temporal validity of authorizations is specified throughperi-
odic expressionsand suitabletemporal operators.

Periodic authorizations are obtained by labeling each rule with atemporal
expressionspecifying the time instants at which the rule applies. Temporal
expressions consist of pairs〈[begin,end] , P〉. P is a periodic expression
denoting an infinite set of time intervals (such as“9 A.M. to 1 P.M. on working
days”). The temporal interval[begin, end] denotes the lower and up-
per bounds imposed on the scope of the periodic expressionP (for example,
[2/2002,8/2002] ). The rule is valid at all times that lie within the interval
[begin,end] and satisfy the periodic expressionP.

Rules are expressionsA 〈OP〉 B, whereA is the authorization to be derived,
B is a Boolean composition of (ground) authorizations, andOP is one of the
following operators:WHENEVER, ASLONGAS, UPON. The three operators
correspond to different temporal relationships that must hold between the time
t in which A is derived, and the timet′ in whichB holds. The semantics is the
following:

WHENEVER derivesA for each instant in([begin,end],P) , where
B holds (i.e.t = t′).

ASLONGAS derives A for each instantt in ([begin,end],P)
such that B has been “continuously” true for allt′ < t in
([begin,end],P) .

UPON derivesA for each instantt in ([begin,end],P) such thatB
has been true in somet′ < t in ([begin,end],P) .

Note thatWHENEVERcorresponds to classical implication,ASLONGASem-
bodies a classical implication and a temporal operator, andUPON works like a
trigger.

In this framework, policy specifications are calledtemporal authorization
bases(TABs, for short). They are sets of periodic authorizations and deriva-
tion rules. TABs are given a semantics by embedding them intofunction-free
constraint logic programsover the integers, a fragment of CLP(Z) denoted by
Datalognot,≡Z,<Z [110, 143].
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The semantics of negation as failure is the stable model semantics, extended
to constraint logic programs. To ensure the uniqueness of the canonical model
and its PTIME computability, TABs are restricted so that the corresponding
logic program is locally stratified.

To implement TAB-based access control efficiently, the canonical model of
the corresponding logic program is materialized, that is, it is computed in ad-
vance. In this way, access control involves no deduction and is reduced to
retrieval. The technical difficulty to be solved is that the canonical model is
infinite because time is unbounded. The results of [28] show that policy ex-
tensions always become periodic after an initial stabilization phase; therefore,
only this phase and one period need to be materialized. The materialized view
is computed using the Dred [86] and Stdel [110] approaches.

The TABs framework embodies a fixed strategy for conflict resolution (de-
nials take precedence). The problem of specifying different strategies is not
addressed in [28]. Conflict resolution in general will be dealt with in Sect. 1.0.

Active Rules An intermediate approach between imperative and declar-
ative dynamic policy specifications can be found in [29]. The specification
language, TRBAC, is based on active rules calledrole triggers, whose head
specifies actions that modify the policy extension. One difference between
this language and previous approaches is that dynamic changes concernroles,
rather than individual authorizations. Mathematically, a role can be regarded as
a relation between users and permissions [133], so by activating and deactivat-
ing roles, active rules simultaneously handle entire groups of authorizations.

The syntax of role activation/deactivation policies is based onevent expres-
sionsand status expressions. The former may have the formenable R or
disable R, whereR is a role name. Event expressions can beprioritized by
labeling them—as inp : enable R—with a priority p taken from a partially
ordered set. If the policy simultaneously entails two conflicting prioritized
events,p1 : enable R andp2 : disable R, then the event with higher priority
overrides the other. Ifp1 = p2, then the default choice isp2 : disable R.
This choice can be regarded as a particular instantiation of the denial-takes-
precedence principle. Status expressions may have the formenabled R or
¬enabled R. Role triggers have the form

S1, . . . , Sn, E1, . . . , Em → p : E0 after ∆t

whereS1, . . . , Sn are status expressions,E0, . . . , Em are event expressions
(n,m ≥ 0), and∆t specifies a delay after whichE0 will be executed. Concep-
tually, all role triggers whose bodies are satisfied fire in parallel and schedule
the event in their heads. The bodies can be made true by previously scheduled
events, by events requested at run time by the security administrator, and by
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periodic events, that is, prioritized events labeled with a periodic expression of
the same form as those adopted in [28] (and illustrated previously).

Semantics is modeled via atransition function, obtained by adapting the
stable model semantics to role triggers and periodic events. A suitable form
of stratifiability is introduced to make the system behavior deterministic and
computable in polynomial time. The new form of stratifiability must take into
account the priorities associated with rule heads and the temporal delays∆t.

Role triggers can be naturally implemented through the standard triggers
supported by several DBMS (a prototype implementation based on Oracle is
described in [29]). Periodic events are materialized like TABs, by consider-
ing only the stabilization phase and one period. The materialization, called
agenda, is then used to generate events that activate the triggers. TRBAC gives
an abstract and cleaner view of the procedural trigger mechanism supported by
the DBMS. For example, the semantics of the triggers derived from TRBAC
policies does not depend on the order in which triggers are fired.

Other approaches Two recent languages,KAOS and Ponder [144, 57],
adopt constructs similar to active rules for expressing policies. They can for-
mulateobligations, that cause an agent to execute some actions whenever a
specified event triggers the rule and some precondition is satisfied. InKAOS
and Ponder, however, triggers and preconditions cannot refer to other autho-
rizations, so, for example, it is impossible to express rules like “grant/deny
A if A′ is granted/denied”. ExtendingKAOS and Ponder with such rules is a
nontrivial problem. In particular,KAOSis based on a description logic (OWL)
that extended with rules becomes easily undecidable.

Another recent approach,PROTUNE, supports actions in a significantly dif-
ferent way. Some predicates, calledprovisional predicates, can be made true—
if desired—by executing suitable actions. The directions on how and when a
provisional predicate should be made true are described in a meta-policy.PRO-
TUNE is described later in this chapter.

Hierarchies, Inheritance and Exceptions
Since the earliest time, computer security models have supported some

forms of abstraction on the authorization elements, to formulate security poli-
cies concisely. For instance, users can be collected in groups, and objects
and operations in classes. The authorizations granted to a user group apply
to all of its member users, and authorizations concerning a class of objects
apply to all of its members. This is modelled via an authorization hierarchy
derived from the hierarchies of subjects, objects and operations—calledbasic
hierarchiesin the following. For example, if authorizations are simply triples
(subject,object,action), then let(s, o, a) ≤ (s′, o′, a′) iff s ≤ s′, a ≤ a′ and
o ≤ o′. In this case, we say that the authorization(s, o, a) is more specific
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than(s′, o′, a′). Now, if (s′, o′, a′) is granted by the policy, then all(s, o, a)
such that(s, o, a) ≤ (s′, o′, a′) are implicitly granted, too. By analogy with
object-oriented languages, we say that(s, o, a) is inheritedfrom (s′, o′, a′).

The authorization hierarchy can be exploited to formulate policies in a top-
down, incremental fashion. An initial set of general authorizations can be pro-
gressively refined with more specific authorizations that introduceexceptions
to the general rules. A related benefit is that policies may be expressed con-
cisely and manageably. Exceptions make inheritance adefeasibleinference
in the sense that inherited authorizations can be retracted (oroverridden) as
exceptions are introduced. As a consequence, the underlying logic must be
nonmonotonic.

Exceptions require richer authorizations. It must be possible to say explic-
itly whether a given permission is granted or denied. Then authorizations are
typically extended with asign, ‘+’ for granted permissions and ‘−’ for denials.

It may easily happen that two conflicting authorizations are inherited from
two incomparable authorizations, therefore a policy specification language fea-
turing inheritance and exceptions must necessarily deal withconflicts. A pop-
ular conflict resolution methods—calleddenial takes precedence—consists of
overriding the positive authorization with the negative one (i.e. in case of con-
flicts, authorization is denied), but this is not the only possible approach.

Recent proposals have worked towards languages and models able to ex-
press, in a single framework, different inheritance mechanisms and conflict
resolution policies. Logic-based approaches, so far, are the most flexible and
expressive.

Flexible Authorization Framework Jajodia et al. [97] attempted to
balance flexibility and expressiveness on one side, and easy management and
performance on the other. Their proposal for aflexible authorization frame-
work (FAF) is a fragment of stratified normal programs with polynomial
(quadratic) time data complexity. In FAF, policies are divided into four de-
cision stages, corresponding to the following policy components:

Authorization Table. This is the set of explicitly specified authorizations.

The propagation policyspecifies how to obtain new derived authoriza-
tions from the explicit authorization table. For instance, derived autho-
rizations can be obtained by inheritance and exceptions.

Theconflict resolution policydescribes how possible conflicts between
the (explicit and/or derived) authorizations should be solved. Possi-
ble conflict resolution policies includeno-conflict (conflicts are con-
sidered errors),denials take precedence(negative authorizations pre-
vail over positive ones),permissions-take-precedence(positive autho-
rizations prevail over negative ones), andnothing-takes-precedence(the
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conflict remains unsolved). Some forms of conflict resolutions can be
expressed within the propagation policy, as in the case of overriding (also
known asmost-specific-takes precedence).

A decision policydefines the response that should be returned to each
access request. In case of conflicts or gaps (i.e. some access is neither
authorized nor denied), the decision policy determines the answer. In
many systems, decisions assume either the open or the closed form (by
default, access is granted or denied, respectively).

The four decision stages correspond to the following predicates. (Below
s, o, anda denote a subject, object, and action term, respectively, where a term
is either a constant value in the corresponding domain or a variable ranging
over it).

cando (o,s,±a) represents authorizations explicitly inserted by the security
administrator. They represent the accesses that the administrator wishes
to allow or deny (depending on the sign associated with the action).

dercando (o,s,±a) represents authorizations derived by the system using
logic program rules.

do(o,s,±a) handles both conflict resolution and the final decision.

Moreover, a predicatedone keeps track of the history of accesses (for
example, this can be useful to implement a Chinese Wall policy), and a
predicateerror can be used to express integrity constraints. In addition,
the language has a set of predicates for representing hierarchical relation-
ships (hie- predicates) and additional application-specific predicates, called
rel- predicates. Application-specific predicates capture the possible differ-
ent relationships, existing between the elements of the data system, that may
need to be taken into account by the access control system. Examples of
rel- predicates areowner(user, object) , which models ownership of
objects by users, orsupervisor(user1, user2) , which models re-
sponsibilities and control within the organizational structure.

Authorization specifications are stated as logic rules defined over the above
predicates. To ensure stratifiability, the format of the rules is restricted as il-
lustrated in Fig. 1.1. Note that the adopted strata reflect the logical ordering of
the four decision stages.

The unique stable model of the given policy can be produced, stored and
incrementally updated via suitable materialization techniques.

Note that the clean identification and separation of the four decision stages
can be regarded as a basis for a policy specification methodology. In this sense,
the choice of a precise ontology and other syntactic restrictions (such as those
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Stratum Predicate Rules defining predicate
0 hie- predicates Base relations.

rel- predicates Base relations.
done Base relation.

1 cando Body may containdone, hie-
andrel- literals.

2 dercando Body may containcando, dercando, done,
hie- , andrel- literals. Occurrences of
dercando literals must be positive.

3 do When head is of the form
do( , , +a) body may containcando,
dercando, done, hie- andrel- literals.

4 do When head is of the form
do(o, s,−a) body contains just one literal
¬do(o, s, +a).

5 error Body may containdo, cando, dercando, done,
hie- , andrel- literals.

Figure 1.1. Rule composition and stratification of the proposal in [97]

illustrated in Fig. 1.1) may assist security managers in formulating their poli-
cies.

Hierarchical Temporal Authorization Model A general approach
to authorization inheritance under the denial-takes-precedence principle can
be found in [30]. In this framework, called thehierarchical temporal autho-
rization model(HTAM), no distinction is made between primitive and derived
authorizations. This feature required an extension to classical stratification
techniques.

The syntax of the policy language is the same as the syntax of TABs [28]
with one important difference: the elements of authorization triples can be
arbitrary nodes of basic hierarchies. The authorization hierarchy is defined by
(s, o, a, sign, g) ≤ (s′, o′, a′, sign, g) iff s ≤ s′, a ≤ a′ ando ≤ o′. Conflicts
are resolved according to the denial-takes-precedence principle. The formal
semantics is formulated by adapting the fixed-point construction underlying
the stable model semantics.

The major technical difficulty to be solved in this framework is that policy
specifications are always equivalent to a nonstratifiable logic program. In gen-
eral, such programs do not have a unique canonical model (and may have no
canonical model at all), and inference is not tractable. Stable model existence
and uniqueness, as well as its PTIME computability cannot be proved by means
of the usual stratification techniques. In [30] the theory of logic programming
is extended by identifying a class of nonstratifiable programs—calledalmost
stratifiable programs—with the same nice properties as stratifiable programs.
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If the policy satisfies a weakened stratification condition (ensuring that all non-
stratifiable cycles are caused only by the inheritance rules), then the policy has
one canonical model computable in polynomial time. These results rely on
the denial-takes-precedence principle, that disambiguates the meaning of the
specifications and ensures that the bodies of the inheritance rules involved in a
negative cycle are always mutually inconsistent.

HTAM and FAF enjoy complementary properties. On one hand, HTAM
gives a general solution to inheritance and overriding by resorting to non-
stratifiable programs. In FAF, it is impossible to override an inherited au-
thorization with a derived authorization because of the syntactic constraints
enforcing stratifiability.

On the other hand, conflict resolution and decision policies are fixed in
HTAM (and based on the denials take precedence principle, that is necessary
for stable model uniqueness and tractability), whereas FAF supports multiple
such policies. The main goal of FAF is flexibility. So far, no attempt has been
made to combine the advantages of both models.

Ordered Logic Programs A significantly different approach, inspired
by ordered logic programs[102], can be found in [31]. There, security policies
generalize the structure of an access control matrix by introducing inheritance
over the matrix indexes and by allowing derivation rules in the matrix elements.
The logic language is inspired byordered logic programs.

More precisely, let areferencebe a pair(object, subject), and let references
be structured by the natural hierarchy induced by the basic object and subject
hierarchies. A rule in this framework is a pair

〈 (o, s), L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln 〉 ,

where(o, s) is a reference. EachLi is either a standard literal (A or ¬A,
whereA is a logical atom) or areferential literal (o′, s′).L, where(o′, s′) is
a reference andL is a standard literal. The authorization predicate has the
form auth(p, g), wherep is a privilege (the analogue of theactionfield of the
authorizations discussed previously) andg is the grantor of the authorization.
As in the previous approaches, the semantics is obtained by adapting the stable
model semantics.

This syntax is just a factorized reformulation of the syntax of the other ap-
proaches. By default, subject and object are specified by the rule’s reference. In
rule bodies, one may refer to other subjects and objects by means of referential
literals. The real difference between this approach, on one hand, and HTAM
and FAF, on the other hand, is that when a policy specification has multiple
stable models, the authors of [31] propose three different conflict resolution
strategies:
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1 Use thewell-foundedmodel of the policy. This (partial) model approxi-
mates the intersection of all stable models of the policy and can be com-
puted in polynomial time.

2 Use the intersection of the stable models (called theskeptical semantics
of the policy). Computing the intersection is a co-NP-hard problem.

3 Select dynamically a stable model that contains all authorizations
granted so far and grants the current operation, if possible. Otherwise,
deny the operation. The problem of finding such a stable model (called
credulous semantics) is NP-complete (data complexity). Moreover, the
history of previous authorization must be stored and maintained.

The second and third strategies are computationally demanding. Powerful
engines for computing skeptical and credulous stable model semantics exist
[120, 65], but so far they have not been experimentally evaluated in this con-
text. A further difficulty related to the third strategy is that the policy cannot be
materialized in advance because its extension is selected dynamically at access
control time.

Other approaches KAOSand Ponder support little more than inheritance
without exceptions. As we pointed out before, preconditions cannot check
whether other authorizations are granted or denied, so rules cannot be chained.
Inference consists in matching requests against policies, looking for a more
general authorization whose associated preconditions are satisfied. InKAOS,
this means computing subsumptions between the given request and the con-
cepts describing authorizations. Overriding is not supported.

Message Control
Many modern systems are based on distributed objects or agents that interact

and cooperate by exchanging messages. A natural approach in such systems is
to formulate policies at the level of the communication middleware. Messages
may be delivered, blocked, or modified to enforce the security policy. For
example, when the sender is not trusted, the receiver specified in the message
may be replaced by a secure wrapper. The message contents may be changed,
too, e.g. by weakening a service request.

This approach is pursued in a series of papers by Minsky et al., including
[116, 117]. In the former paper, the policy language of theDarwin system is
described. It adopts a Prolog-like syntax to formulate message handling and
transformation rules.

The act of sending a message is denoted by the logical atomsend (s,m, t),
wheres is the sender object,m is the message, andt is the target object.
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Note that from a mathematical viewpoint, messages have the same structure
as authorization triples (subject,action,object).

Policies consist of sets oflaws. Laws are functions that map each message
send (s,m, t) onto an action of the formdeliver (m′, t′) or fail . It may
be the case thatt 6= t′ (the message is redirected to another object) orm 6= m′
(the message contents are modified).

Each law can be composed of several rules that are interpreted according to
the procedural semantics of Prolog. The syntax is inspired by definite clause
grammars (the symbol ‘--> ’ is equivalent to ‘:- ’). Consider the following
example:

r1: send(S, ˆM, T) -->
isa(T, module) &
T.owner=S &
deliver(ˆM,T).

r2: send(S, @M, T) -->
isa(S,module) &
isa(T,module) &
deliver(@M,T).

The first rule prescribes that every objectS can send a metamessageˆM (such
asˆnew , to create objects, orˆkill to destroy objects) to any subclassT of
the classmodule , provided thatS is the owner ofT. The second rule allows
arbitrary messages between the system’s modules (note thatˆ and@specify
the message type). In these rules, the message and the target are not modified.

The implementation follows two approaches. In the first approach, called
dynamic, messages are intercepted and transformed by interpreting the policy.
The second approach, calledstatic, is more efficient. By means of static anal-
ysis, program modules are checked to see whether the policy will be obeyed
at run time. When the policy prescribes message modification, the code may
have to be changed. Of course, the static approach is applicable only to local
modules under the control of the security administrator.

The second paper [117] adapts these ideas to the framework of electronic
commerce. Changes mainly concern the set of primitive operations; rule struc-
ture is preserved. Moreover, the language distinguishes the act of sending a
message from the actual message delivery.

The level of abstraction and the expressiveness of these policy languages are
appealing. Unfortunately, the semantics is described procedurally by relying
on the user’s understanding of Prolog interpreters. No equivalent declarative
formulation is provided, even if it seems possible to give a declarative reading
to law rules, for example, in abductive terms.

Another interesting option is applying a policy description language based
on event-condition-action rules, such asPDL [51, 108], to message-handling
policies. However, so far,PDL has been considered only in the framework of
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network management, and static analysis techniques have not been considered
as an implementation technique.

2. Policy-Based Trust Management
The concept oftrust has come with many different meanings and it has

been used in many different contexts like security, credibility, etc. Work on
authentication and authorization allows to perform access control based on the
requester’s identity or properties. Trust in this sense provides confidence in the
source or in the author of a statement. In addition, trust might also refer to the
quality of such a statement.

Typically access control systems are identity-based. It means that the iden-
tity of the requester is known and authorization is based on a mapping of the
requester identity to a local database in order to check if he/she is allowed to
perform the requested action. For example, given that Alice asks Bob for ac-
cess to a resource, she must first authenticate to Bob. This way, Bob can check
if Alice should be allowed to access that resource.

Nowadays, however, due to the amount of information and the increase of
the World Wide Web, establishment of trust between strangers is needed, i.e.,
between entities that have never had any common transaction before. Identity-
based mechanisms are not sufficient. For example, an e-book store might give a
discount to students. In this case, the identity of the requester is not important,
but whether he/she is a student or not. These mechanisms are property-based
and, contrary to identity-based systems, provide the scalability necessary for
distributed environments.

This section offers a historical review of existing research and describe in
detail the state of the art of policy-based trust management.

Trust Management
Existing authorization mechanisms are not enough to provide expressive-

ness and robustness for handling security in a scalable manner. For exam-
ple, Access Control Lists (ACL) are lists describing the access rights a prin-
cipal (entity) has on an object (resource). An example is the representation
of file system permissions used in the UNIX operating system. However, al-
though ACLs are easy to understand and they have been used extensively, they
lack [34]:

Authentication: ACL requires that entities are known in advance. This
assumption might not hold in true distributed environments where an
authentication step (e.g. with a login/password mechanism) is needed.

Delegation: Entities must be able to delegate to other entities (not nec-
essarily to be a Certification Authority) enabling decentralization.
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Expressibility and Extensibility: A generic security mechanism should
be extendable with new conditions and restrictions without the need to
rewrite applications.

Local trust policy: As policies and trust relations can be different among
entities, each entity must be able to define its own local trust policy.

In order to solve the problems stated above and provide scalability to secu-
rity frameworks, a new approach calledtrust management[36] was introduced.

In general, the steps a system must perform in order to process a request
based on a signed message (e.g. using PGP [154] or X.509 [96]) can be sum-
marized as “Is the key, with which the request was signed, authorized to per-
form the requested action?”. However, some of the steps involved in answering
such a question are too specific and can be generalized, integrating policy spec-
ifications with the binding of public keys to authorized actions. Therefore, the
question can be replaced by “Given a set of credentials, do they prove that the
requested action complies with a local policy?”. In [36, 34] the “trust man-
agement problem” is defined as a collective study of security policies, security
credentials and trust relationships. The solution proposed is to express privi-
leges and restrictions using a programming language.

The next subsections describe systems that provided a scalable framework
following these guidelines.

PolicyMaker and KeyNote. PolicyMaker [36, 37] addresses the
trust management problem based on the following goals:

Unified mechanism: Policies, credentials, and trust relationships are ex-
pressed using the same programming language.

Flexibility: Both standard certificates (PGP [154] and X.509 [96]) as
well as complex trust relationships can be used (with small modifica-
tions).

Locality of control: Each party is able to decide whether it accepts a cre-
dential or on whom it relies on as trustworthy entity, avoiding a globally
known hierarchy of certification authorities.

Separation of mechanisms from policies: PolicyMaker uses general
mechanisms for credential verification. Therefore, it avoids having
mechanisms depending on the credentials or on a specific application.

PolicyMaker consists of a simple language to express trusted actions and
relationships and an interpreter in charge of receiving and answering queries.
PolicyMaker maps public keys into predicates that represent which actions the
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key are trusted to be used for signing. This interpreter processes “assertions”
which confer authority on keys.

KeyNote [33, 35] extends the design principles used in PolicyMaker with
standardization and ease of integration into applications. Keynote performs
signature verification inside the trust management engine while PolicyMaker
leaves it up to the calling application. In addition, KeyNote requires creden-
tials to be written in an assertion language designed for KeyNote’s compliance
checker.

In KeyNote, the calling application sends a list of credentials, policies and
requester public keys to the evaluator together with an “action environment”.
This action environment contains all the information relevant to the request
and necessary to make the trust decision. The identification of the attributes,
which are required to be included in the action environment, is the most impor-
tant task in integrating KeyNote into different applications. The result of the
evaluation is an application-defined string which is returned to the application.

It is important to note that neither PolicyMaker nor KeyNote enforce poli-
cies but give advice to applications that make calls to them. It is up to the
calling application whether to follow their advice or not. In addition, although
their languages are not rule based, we included them in this section for com-
pletion and as a motivation for rule based policy languages.

REFEREE. REFEREE [52] (Rule-controlled Environment For Evalua-
tion of Rules, and Everything Else) is a trust management system that provides
policy-evaluation mechanisms for Web clients and servers and a language for
specifying trust policies. Its authors define trust as “undertaking a potentially
dangerous operation knowing that it is potentially dangerous”. The elements
necessary to make trust decisions are based on credentials and policies.

REFEREE uses PICS labels [128] as credentials. A PICS label states some
properties of a resource in the Internet. In this context, policies specify which
credentials must be disclosed in order to grant an action.

In REFEREE credentials are executed and their statements can examine
statements made by other credentials and even fetch credentials from the Inter-
net. Policies are needed to control which credentials are executed and which
are nottrusted. The policies determine which statements must be made about
a credential before it is safe to run it.

The main difference compared with PolicyMaker [36, 37] is that Policy-
Maker assumes that credential-fetching and signature verification are done by
the calling application. PolicyMaker receives all the relevant credentials and
assumes that the signatures have been already verified before the call to the
system.
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SD3. SD3 [98] (Secure Dynamically Distributed Datalog) is a trust
management system consisting of a high-level policy language, a local policy
evaluator and a certificate retrieval system. It provides three main features:

Certified evaluation: At the same time an answer is computed, a proof
that the answer is correct is computed, too.

High-level language: SD3 abstracts from signature verification and cer-
tificate distribution. It makes policies easy to write and understand.

SD3 is programmable: Policies can be easily written and adopted to
different domains.

SD3 language is an extension of datalog. The language is extended with
SDSI global names [54]. A rule in SD3 is of the form:

T(x,y) :- K$E(x,y) ;

In the previous rule,T(x,y)holds if a digital credential assertingE(x,y)and
signed with the private key ofE was given. Whenever a global name is used,
an authentication step is needed. In addition, SD3 can refer to assertions in
remote computers. Given the rule

T(x,y) :- (K@A)$E(x,y) ;

the query evaluator must query a remote SD3 evaluator at an IP addressA.
This gives SD3 the possibility to create “chains of trust”.

Trust Negotiation
Often, shared information in traditional distributed environments tells which

parties can provide what kind of services and which parties are entitled to make
use of those services. Then, trust between parties is a straightforward matter.
Even if on some occasions there is a trust issue, as in traditional client-server
systems, the question is whether the server should trust the client, and not vice
versa. Trust establishment is often handled by uni-directional access control
methods, such as having the client log in as a pre-registered user.

In contrast, in new environments like the Web parties may make connec-
tions and interact without being previously known to each other. In many
cases, before any meaningful interaction starts, a certain level of trust must be
established from scratch. Generally, trust is established through exchange of
information between the two parties. Since neither party is known to the other,
this trust establishment process should be bi-directional: both parties may have
sensitive information that they are reluctant to disclose until the other party has
proved to be trustworthy at a certain level. As there are more service providers
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emerging on the Web every day, and people are performing more sensitive
transactions (for example, financial and health services) via the Internet, this
need for building mutual trust will become more common.

Trust negotiationis an approach to automated trust establishment. It is an
iterative process where trust is established gradually by disclosing credentials
and requests for credentials. This differs from traditional identity-based access
control and release systems mainly in the following aspects:

Trust between two strangers is established based on parties’ properties,
which are proved through disclosure of digital credentials.

Every party can define access control and release policies (policies, for
short) to control outsiders’ access to their sensitive resources. These
resources can include services accessible over the Internet, documents
and other data, roles in role-based access control systems, credentials,
policies, and capabilities in capability-based systems.

In the approaches to trust negotiation developed so far, two parties es-
tablish trust directly without involving trusted third parties, other than
credential issuers. Since both parties have policies, trust negotiation is
appropriate for deployment in a peer-to-peer architecture, where a client
and server are treated equally. Instead of a one-shot authorization and
authentication, trust is established incrementally through a sequence of
bilateral credential disclosures.

A trust negotiation is triggered when one party requests to access a resource
owned by another party. The goal of a trust negotiation is to find a sequence
of credentials(C1, . . . , Ck, R), whereR is the resource to which access was
originally requested, such that when credentialCi is disclosed, its policy has
been satisfied by credentials disclosed earlier in the sequence—or to determine
that no such credential disclosure sequence exists.

A detailed discussion on general criteria for trust negotiation languages as
well as important features (like well-defined semantics, expression of complex
conditions, sensitive policies and delegation) can be found in [137].

Regulating Service Access and Information Release. A for-
mal framework to specify information disclosure constraints and the inference
process necessary to reason over them and to filter relevant policies given a
request is presented in [40]. A new language is presented with the following
elements:

credential(c,K)wherec is a credential term andK is a public key term.

declaration(attributename=valueterm)
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cert authorityy(CA,KCA) where CA represents a certification authority
andKCA its public key.

State predicateswhich evaluates the information currently available at
the site

Abbreviation predicates

Mathematic predicateslike =, 6=, <.

Using the elements described above, rules can be specified in order to reg-
ulate the negotiation. There are two kind of rules:service accessibility rules
andportfolio disclosure rules. A service is a functionality that a server offers
in the form of e.g. an application that a client can execute. A portfolio is the
set of properties that a party can disclose during a negotiation in order to ob-
tain access to or offer services. Therefore service accessibility rules specify
the requirements that a client must satisfy in order to get access to a service
and portfolio disclosure rules specify the conditions a requester must satisfy in
order to receive information from the portfolio.

Portfolio requisite rules define required credentials and declarations that
other party must satisfy before portfolio information (credentials or declara-
tions) are disclosed.

These basic elements and rules are all needed to perform a negotiation be-
tween a server which offers services and a client who wants to consume them.
In order to allow the server to select applicable rules a policy filtering mech-
anism is needed. This mechanism filters the rules related to a specific re-
quest from the server’s knowledge base. Those selected rules will be then
pre-evaluated locally and/or sent to the client. Figure 1.2 shows an example
scenario of the interaction process between client and server.

RT: Role-based Trust-Management. The RT framework [106,
104, 105] is a set of languages for representing policies and credentials. It



20

is specially suited for “decentralized collaborative systems” (systems where
they do not have to loose the authority over the resources they control) and
for attribute-based access control (ABAC). Those systems must be able to ex-
press decentralized attributes, delegation of attribute authority, inference of
attributes, attribute field and attribute-based delegation of attribute authority.

RT uses roles in order to represent attributes. An entity has an attribute if it
is a member of the corresponding role. The RT framework consists of several
components:

RT0 It is the most basic language of the RT set. It addresses all the require-
ments described above except “attribute fields”.

In RT0 policy statements take the form of role definitions. Role def-
initions have a head of the formKA.R and a body. KA represents
a principal whileR is a role term.RT0 allows constructions for sim-
ple membership, simple containment, linking containment, intersection
containment, simple delegation and linking delegation.

RT1 In RT0 roles do not take any paremeters.RT1 role definitions have the
same form as inRT0 but they may contain parameterized roles. InRT1

a role is of the formr(p1, . . . , pn). r is the role name andpi can be
name = c, name =?X[∈ S] (∈ S is optional) orname ∈ S where
name represents a name of a parameter,c represents a constant,?X is a
variable andS is a value set.

RT2 RT2 adds toRT1 logical objects (also o-set) in order to group permis-
sions between objects. A credential inRT2 is either an o-set-definition
or a role-definition. An o-set-definition is formed by an entity followed
by an o-set identifier (K.o(h1, . . . , hn) and allows to constrain variables
with dynamic value sets (inferred from roles or o-sets).

RT T Sometimes it is required that two or more different entities are responsi-
ble to perform a sensitive task together for its completion.RT T provides
manifold roles and role-product operators. A manifold role defines a set
of principals sets. Each of these sets is a set of principals whose collab-
oration satisfies the manifold role.

RTD RTD provides delegation of role activations which express selective use
of capacities and delegation of these capacities. A delegation credential

presented by a principalD takes the form ofD
D as A.R←− B0. With it a

principalD activates the roleA.R to use in a sessionB0. In additionB0

can further delegate this role activation withB0
D as A.R←− B1.
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PEERTRUST. PEERTRUST [72, 119] builds upon previous work on
policy-based access control and release for the Web and implements automated
trust negotiation for such a dynamic environment.

PEERTRUST’s language is based on first order Horn rules (definite Horn
clauses), i.e., rules of the form “lit0 ← lit1, . . . , litn” where eachliti is a
positive literalPj(t1, . . . , tn), Pj is a predicate symbol, and theti are the ar-
guments of this predicate. Eachti is a term, i.e., a function symbol and its
arguments, which are themselves terms. The head of a rule islit0, and its body
is the set ofliti. The body of a rule can be empty.

Definite Horn clauses are the basis for logic programs, which have also
been used as the basis for the rule layer of the Semantic Web and specified in
the RuleML effort ([83, 85]) as well as in the recent OWL Rules Draft [91].
Definite Horn clauses can be easily extended to include negation as failure,
restricted versions of classical negation, and additional constraint handling ca-
pabilities such as those used in constraint logic programming. Although all of
these features can be useful in trust negotiation, here we describe instead other
more unusual required language extensions.

References to Other Peers. The ability to reason about statements
made by other peers is central to trust negotiation. To express delegation of
evaluation to another peer, each literalliti is extended with an additionalAu-
thority argument,

liti @ Authority

whereAuthorityspecifies the peer who is responsible for evaluatingliti or has
the authority to evaluateliti. The Authority argument can be a nested term
containing a sequence of authorities, which are then evaluated starting at the
outermost layer.

A specific peer may need a way of referring to the peer who asked a particu-
lar query. This is accomplished by including aRequesterargument in literals,
so that now literals are of the form

liti @ Issuer $ Requester

TheRequesterargument can be nested, too, in which case it expresses a chain
of requesters, with the most recent requester in the outermost layer of the
nested term.

Using theIssuerandRequesterarguments, it is possible to delegate eval-
uation of literals to other parties and also express interactions and the corre-
sponding negotiation process between parties.

Signed Rules. Each peer defines a policy for each of its resources, in
the form of a set of definite Horn clause rules. These and any other rules that
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the peer defines on its own are itslocal rules. A peer may also have copies of
rules defined by other peers, and it may use these rules in its proofs in certain
situations.

A signed rule has an additional argument that says who signed the rule. The
cryptographic signature itself is not included in the logic program, because
signatures are very large and are not needed by this part of the negotiation
software. The signature is used to verify that the issuer really did issue the
rule. It is assumed that when a peer receives a signed rule from another peer,
the signature is verified before the rule is passed to the DLP evaluation en-
gine. Similarly, when one peer sends a signed rule to another peer, the actual
signed rule must be sent, and not just the logic programmatic representation
of the signed rule. More complex signed rules often represent delegations of
authority.

Putting it together. Figure 1.3 depicts an implemented scenario in
an e-learning domain [72, 140] (PEERTRUST has also been applied, among
other scenarios, to Grid [21] and Semantic Web Services [123]). Alice and
E-Learn obtain trust negotiation software signed by a source that they trust
(PEERTRUST Inc.) and distributed byPEERTRUST Inc. or another site, either
as a Java application or an applet. After Alice requests the Spanish course from
E-Learn’s web front end, she enters into a trust negotiation with E-Learn’s
negotiation server. The negotiation servers may also act as servers for the
major resources they protect (the Learning Management Servers (LMS)), or
may be separate entities, as in our figure. Additional parties can participate
in the negotiation, if necessary, symbolized in our figure by the InstitutionA
and InstitutionB servers. If access to the course is granted, E-Learn sets up
a temporary account for Alice at the course provider’s site, and redirects her
original request there. The temporary account is invisible to Alice.

Cassandra. Cassandra [23, 24] is a role-based trust management system.
It uses a policy language based on datalog with constraints and its expressive-
ness can be adjusted by changing the constraint domain. Policies are specified
using the following predicates which govern access control decisions:

permits(e, a) specifies who can perform which action

canActivate(e, r) defines who can activate which role (e is a member
of r)

hasActivated(e, r) defines who is active in which role

canDeactivate(e, r) specifies who can revoke which role

isDeactivated(e, r) is used to define automatically triggered role revo-
cation



Rule-based Policy Specification 23

Alice's Browser/AppAlice's Browser/App

1a
Alice requests

the Spanish course and
downloads the applet

2
The applet/app

loads the
local policies

4-6
Negotiation 8

E-Learn grants
Alice access
to the course

9
Alice accesses

the Spanish course

E-Learn Security
(Negotiation Server)

7
E-Learn creates a
temporary account

at the
corresponding LMS

E-Learn Web
(Web Server)

InstitutionB Security
(Negotiation Server)

3
Secure

communication
Is established

Negotiation

0a
PeerTrust Inc. gives

a signed applet
to E-Learn Web

0b
PeerTrust Inc. gives

an app. to Alice

PeerTrust Inc.

1b
Alice starts the app.

and requests
the Spanish course

Negotiation

Distributed 
Repository

InstitutionA Security
(Negotiation Server)

Figure 1.3. PEERTRUST: Automated Trust Negotiation for Peers on the Semantic Web

canReqCred(e1, e2, p(e)) specifys the requirements that a request must
satisfy in order to issue and disclose credentials

This way, policy managers can define and use new predicates as they need.
A Cassandra predicate also contains anissuerand alocation like

loc @ iss.p(e)

wherelocation represents the entity where the assertion applies (and there-
fore it allows queries over the network) and the issuer is the entity that asserts
it.

Although Cassandra does not provide special constraints to specify role va-
lidity periods, auxiliary roles, role hierarchy, separation of duties, role delega-
tion, automated trust negotiation and credential discovery, it can express these
kind of policies. That way the language and its semantics are simpler and
makes easier the extension of the language.

A policy rule in Cassandra is of the form:

Eloc@Eiss.p0(e0)← loc1@iss1.p1(e1), . . . , locn@issn.pn(en), c

wherepi are the names of the predicates,ei is a set of expression tuples and
c is a constraint.

A rule with only a constraintc in its body like

Eloc@Eiss.p0(e0)← c

represents a credential signed and issued byEiss assertingp0(e0) which is
stored atEloc.
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PROTUNE. The PRovisional TrUst NEgotiation frameworkPRO-
TUNE [42] aims at combining distributed trust management policies with
provisional-style business rules and access-control related actions.PROTUNE’s
rule language extends the PAPL [40] andPEERTRUST [72] languages and it
provides a powerful declarative metalanguage for driving some critical ne-
gotiation decisions, and integrity constraints for monitoring negotiations and
credential disclosure.PROTUNEwill be further described in section 5.0.

3. Action Languages
Reasoning about action and change is a kind of temporal reasoning where,

instead of reasoning abouttime itself, we reason onphenomenathat take place
in time. Action theoriesare formal theories for reasoning about action and
change, that describe adynamic worldchanging because of the execution of
actions. Properties characterizing the dynamic world are usually specified by
propositions which are calledfluents. The wordfluentstresses the fact that the
truth value of these propositions depends on time and may vary depending on
the changes which occur in the world.

The problem of reasoning about the effects of actions in a dynamically
changing world is considered one of the central problems in knowledge repre-
sentation theory. Different approaches in the literature took different assump-
tions on the temporal ontology and they developed different abstraction tools
to cope with dynamic worlds. However, most of action theories describe dy-
namic worlds according to the so-calledstate-action model. In the state-action
model the world is described in terms of states and actions that cause the tran-
sition from a state to another. More precisely, there are some assumptions that
typically hold in action theories referring to thestate-action model, that we list
below:

the dynamic world to be modeled is always in a determined state;

change is interpreted as a transition from a world state to another;

the world persists in its state unless it is modified by an action execution
that causes the transition to a new state (persistency assumption).

Based on the above conceptual assumptions, the main target of action theo-
ries is to use a logical framework to describe the effects of actions on a world
whereall changes are caused by the execution of actions. More precisely, a
formal theory for representing and reasoning about actions allows us to spec-
ify:

(a) causal laws, i.e. axioms that describe domain’s actions in terms of their
preconditions and effects on the fluents;

(b) action sequences that are executed from the initial state;
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(c) observationsdescribing the fluent’s value in theinitial state;

(d) observationsdescribing the fluent’s value after some action execution.

In the following, the termdomain descriptionis used to refer to a set of propo-
sitions that express causal laws, observations of the fluents value in a state and
possibly other information for formalizing a specific problem. Given a domain
description, the principal reasoning tasks aretemporal projection(or predic-
tion), temporal explanation(or postdiction) andplanning. Intuitively, the aim
of temporal projectionis to predict action’s future effects based on (even par-
tial) knowledge about the actual state (reasoning from causes to effects). On
the contrary, the target oftemporal explanationis to infer something on the
past states of the world by using knowledge about the actual situation. The
third reasoning task,planning, is aimed at finding an action sequence that,
when executed starting from a given state of the world, produces a new state
where certain desired properties hold.

Usually, by varying the reasoning task, a domain description will contain
different elements that provide a basis for inferring the new facts. For instance,
when the task is to formalize the temporal projection problem, a domain de-
scription will contain information on (a), (b) and (c), then the logical frame-
work will provide the inference mechanisms for reconstructing information on
(d). Otherwise, when the task is to deal with the planning problem, the domain
description will contain the information on (a), (c), (d) and we will try to infer
(b), i.e. which action sequence has to be executed on the state described in (c)
for achieving a state with the properties described in (d).

A relevant formalization difficulty is known as thepersistency problem. It
concerns the characterization of the invariants of an action, i.e. those aspects
of the dynamic world that are not changed by an action. If a certain fluentf ,
representing a fact of the world, holds in a certain state and it is not involved
by the next execution of an actiona, then we would like to have an efficient
inference mechanism to conclude thatf still holds in the state resulting from
the execution ofa.

A second formalization difficulty, known as theramification problem, arises
in presence of the so-called indirect effects (or ramifications) of actions and
concerns the problem of formalizingall the changes caused by an action’s ex-
ecution. Indeed, action’s execution might cause a change not only on those
fluents that represent its direct effects, but also on other fluents which are indi-
rectly involved by the chain of events started by the action’s execution.

Various approaches in the literature can be broadly classified in two cate-
gories: those choosing classical logics as knowledge representation language
[113, 101] and those addressing the problem by using non-classical logics [48,
136, 77] or computational logics [74, 20, 109, 15]. In the following, we will
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briefly review the most popular logic-based approaches to reason about action
and change.

Expressing policies by means of declarative languages is surely useful be-
cause it simplifies the verification of properties; in particular using the action
metaphor for modelling policies is one of the most intuitive ways. Different to
the standard use of actions, in this case there are further situations that might
be taken into account. For example, as suggested in [130], it might be useful
to enrich the action description by adding mid-conditions, i.e. conditions that
might become true at execution time. The idea is to capture specific conditions
that are relevant in modelling security. On the other hand, research in action
theory has proposed extensions that deal with reasoning about complex actions
that we believe are useful to increase the expressiveness of security policies.

Logical Approaches
Among the various logic-based approaches to reasoning about actions one

of the most popular is still the situation calculus, introduced by Mc Carthy
and Hayes in the sixties [113]. The situation calculus represents the world and
its change by a sequence ofsituations. Each situation represents a state of
the world and it is obtained from a previous situation by executing an action.
A world is represented as a sequence of actions, called asituation, starting
from an initial situation S0. A binary function symboldo(a, s) denotes the
successor situation resulting from performing actiona in situations. For ex-
ample, the termdo(putdown(A), do(pickup(A), S0)) is a situation denoting
the world resulting from the sequence of actions [pickup(A), putdown(A)].
Fluents, i.e. relations whose truth values vary from situation to situation, are
denoted by predicate symbols taking a situation as their last argument. For ex-
ampleon(A,B, s) means that blockA is on blockB in situations. An action
theorycan be defined by givingpreconditionsandeffectsfor each action.

As pointed out by McCarthy and Hayes [113] formalizing an action theory
requires dealing withpersistency, by specifying those fluents which remain
unaffected by a given action. Since most of the fluents do not change from a
state to the next one, we want a parsimonious solution to this problem. The
main idea is to minimize change from one state to the next by making use
of nonmonotonic logics or of completion constructions. In particular, Reiter
[127] proposed a solution which relies on thecompleteness assumptionthat the
action theory describes all action laws affecting the truth value of any fluentf .
Under this assumption, it is possible to define asuccessor state axiomfor each
fluent, giving the value of this fluent in the next state.

Kowalski and Sergot have developed a different calculus to describe change
[101], calledevent calculus, in which eventsproducing changes are tempo-
rally located and they initiate and terminate action effects. Like the situation
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calculus, the event calculus is a methodology for encoding actions in first-
order predicate logic. However, it was originally developed for reasoning about
events and time in a logic-programming setting.

Another approach to reasoning about actions is the one based on the use of
modal logics. The suitability of dynamic logics or modal logics to formalize
reasoning about actions and change has been pointed out in various proposals
[60, 48, 136, 77]. Modal logics adopt essentially the same ontology of situa-
tion calculus by taking the state of the world as primary and by representing
actions as state transitions. In particular, actions are represented in a very nat-
ural way by modalities whose semantics is a standard Kripke semantics given
in terms of accessibility relations between worlds, while states are represented
as sequences of modalities. In modal logic, a primitive actiona can be repre-
sented by a modal operator[a], and a sequence of actionsa1, a2, . . . , an by the
modal operator[a1; a2; . . . ; an] ([ε] represents the empty sequence of actions,
i.e. the initial state). Furthermore we can use a modality2 to represent an
arbitrary sequence of actions. For instance , action effects can be expressed as
2[load]loaded, meaning that fluentloaded holds after execution of actionload
in any state, or2(loaded ⇒ [shoot]¬alive) and2[shoot]¬loaded, meaning
that after actionshoot fluentloaded will be false, and fluentalive will be false
if loaded holds before executing the action. Although the representation with
modal logic and the one with first-order logic are apparently similar, it is im-
portant to point out a significant difference between the two. In fact, if we do
not assume any particular property for the modal operators representing actions
(modal logic K), the two formulas¬[s]φ and [s]¬φ have different meanings,
whereas in the situation calculus both would be represented by¬φ(s). Thus,
differently from the situation calculus, we cannot derive¬loaded from the
above rules and[shoot]alive, i.e. action rules cannot be used contrapositively.

Computational Logic
Non-classical logics have successfully been used for developing agent the-

ories, for representing and reasoning about action and change as well as for
modeling mental attitudes as beliefs, knowledge and goals. This is due to
their capability of representingstructured and dynamic knowledge. However
a wide gap between the expressive power of the formal models and the prac-
tical implementations has emerged, due to the computational effort required
for verifying that properties granted by logical models hold in the systems that
implement them.

For this reason there is a growing interest on the use ofcomputational logic,
which allows one to express formal specifications that can be directly executed,
thanks to the fact that logic programs have a procedural interpretation, besides
the declarative one [146]. In ’93 Gelfond and Lifschitz have defined a sim-
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ple declarative language for describing actions, calledA [74]. The target is to
define a logical entailment relation between a domain description and simple
queriesof the form “f after a1, . . . , an” wheref is a fluent anda1, . . . , an are
elementary actions with the meaning of “Is it true that the fluentf holds after
the execution of actionsa1, . . . , an?”. As a difference of the computational
logic approach with respect to a logical approach, the domain description con-
tains causal laws for the domain’s actions and observations on fluents value
in the initial state, and for all of them and for the goal it is easy to give a
goal directed proof procedure, that is prolog-like. Alternatively, it is possi-
ble to translate the representation directly in Prolog. Actually, the languageA
has been formally defined by giving a translation into general logic program-
ming extended with explicit negation. Note that the entailment relation ofA is
nonmonotonic, and this aspect is modeled by thenegation as failureof logic
programming.

Various extensions ofA have been proposed in the last years with the inten-
tion to deal with nondeterministic actions [100, 17], concurrent actions [19],
ramifications [100, 79] or sensing actions [109, 20]. Most of the times, a sound
translation of such extensions into logical languages is provided.

Executable agent specification languages
The theory of computational agents plays a central role in Artificial Intel-

ligence, providing powerful conceptual tools for characterizing complex sys-
tems situated in dynamic environments [126, 152]. Software agents are usually
designed as highly autonomous entities (each agent has an internal state -i.e.
a set of attitudes like beliefs and goals- and uses it to take decisions), able to
react to variations in their environments (reactivity), able to achieve their goals
(proactiveness) by interacting, if necessary, with other agents (social capabili-
ties). Thus, they must be able to perform practical reasoning such as planning,
i.e. the process of deciding how to achieve agoal using the available means
(the actions which can be performed).

One of the core research issues in this field is the definition of formal
languages for specifying single agents (including the representation of their
knowledge and their reasoning techniques) and for modeling communication
and interaction among agents. Many theories about agency are based onlogic
formalisms[126, 56, 152, 53].

Modeling agent’s internal behaviour and attitude dynamics is a difficult
task. Generally speaking, it is impossible to assume eitherknowledge com-
pleteness(agents can have partial and incomplete views on the external world)
or knowledge uniqueness(different agents can have different views on the ex-
ternal world). In presence of incomplete knowledge, the output of reasoning
is not expected to be a fixed sequence of actions (linear plan), but a more
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general specification involving conditionals, in which the next action to per-
form depends on the result of a sensing actions (conditional plan). An agent
could start in the generation of a plan from scratch, as in standard planning
in AI. Alternatively, it could be provided with alibrary of plans, which have
been predefined by the designer: finding a plan to achieve a goal means ex-
tracting from the library a plan that, when executed, will have the goal as a
post-condition, and that is sound given the agent’s current beliefs. Predefined
plans can also be partially specified, by means of procedures, defining com-
plex actions the agent can perform. In this case the planning task is interpreted
as finding a terminating execution of the procedure that leads to a state where
the desired goal holds. The procedure definition constrains the search space in
which to look for the wanted sequence.

In order to cope with these issues, extensions of classical logics and new
reasoning techniques have been studied. Most of the approaches build on the
top of an action theory expressed in one of the formalisms reviewed in the
previous sections. Non-classical logics (like modal logics, deontic logic and
non-monotonic logics) have been successfully used for developing agent theo-
ries, both to represent and reason about actions, and to formalize mental states
and their dynamics. Computational logic is often used to developlogic-based
executable agent specificationsdue to its nature it also supports the verifica-
tion tasks. In fact, in logic programming, logicis the programming language
and agent programs can be specified as logical rules that can be executed by a
SLD-style proof procedure.

Logic-based, executable agent specification languages have been deeply in-
vestigated in the last decade [103, 16, 7, 68]. Both situation calculus and modal
action logics influenced the design of these languages, in particular, the cog-
nitive robotic project at University of Toronto has lead to the development of
a high-level agent programming language, called GOLOG, which is based on
situation calculus[103]. A modal action theoryhas been used as a basis for
specifying and executing agent behaviour in the logic programming language
DyLOG [16]. The language IMPACT is an example of use ofdeontic logic
for specifying agents. In the following, we will briefly recall the main fea-
tures of these three languages, which seem to be particularly promising for the
implementation of intelligent application systems, including security.

GOLOG is a programming language, for the specification and the execution
of complex actions in dynamic domains based on the situation calculus [7]. It
is a procedural language mainly designed for programming high-level robot
control and intelligent software agents. Recently it has been used for allowing
the automatically composition of services on the semantic web in the context
of the DAML-S initiative [114, 115]. Primitive actions are specified by giving
their preconditions and effects in terms of suitable axioms. Formalization of
complex actions refers to an Algol-like paradigm and draws considerably from
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dynamic logic. In particular, action operators like sequence, nondeterministic
choice and iteration are provided. Second order logic is needed for defining
iteration and procedures. Once extracted, a GOLOG plan can be executed by
the agent. Thus, it is possible to implement rational agents alternating planning
and execution. Specific works in this direction has driven to the development
of IndiGolog [75]. The problem of dealing with concurrency instead has been
faced in [61, 62], by leading to the definition of CONGOLOG.

Like GOLOG, the languageDyLOG is designed for specifying agents be-
haviour and for modeling dynamic systems. As a main difference, it is fully set
inside the logic programming paradigm by defining programs by sets of Horn-
like rules and giving a SLD-style proof procedure.DyLOG has been used
for implementing avirtual tutor [14], that helps students to build personalized
study curricula, while in [10, 9, 11] the capability of reasoning about interac-
tion protocols, supported by the language, has been exploited for customizing
web service selection and composition w.r.t. to the user’s constraints, based
on a semantic description of the services. The language is based on a modal
theory of actions and mental attitudes wheremodalitiesare used for represent-
ing primitive and complexactionsas well as the agent beliefs [16]. Complex
actions are defined byinclusion axioms[8] and by making use of action op-
erators from dynamic logic, like sequence “;”, test “?” and non-deterministic
choice “∪”. DyLOG rules can be used also for giving a local representation
of interaction protocols, i.e. for defining conversation policies -building upon
FIPA-like speech-acts- that the agent follows when interacting with others.

DyLOG supports planning and temporal projection, by allowing to prove
existential properties of the kind “given a procedurep and a set of desiderata,
is there a legal sequence of actions conforming top that, when executed from
the initial state, also satisfies the desired conditions?”. In case we deal with
communicative behavior, this process is meant to find an answer to the query:
“given a conversation policyp and a set of desiderata, is there a specific conver-
sation, respecting the policy, that also satisfies the desired conditions”. As in
GOLOG the procedure definition constrains the search space. A goal-directed
proof procedure has been developed that implements such kinds of reasoning
and planning, and allows to automatically extract, fromDyLOG procedures,
linear or conditionalplans for achieving a given goal from an incompletely
specified initial state [16, 10].

The IMPACT agent architecture, introduced by Subrahmanian et al. [7],
provides a framework to build agents on top of heterogeneous sources of
knowledge. To agentize such sources, the authors introduce the notion of agent
program. Such agent programs and their semantics resemble logic programs
extended with deontic modalities. Indeed, they consist of a set of rules suitable
to specify, by means of deontic modalities, agent policies in normative terms,
that is what actions an agent is obliged to take in a given state, what actions it
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is permitted to take, and how it chooses which actions to perform. Thus, ifα(~t)
is an action with parameters~t, thenOα(~t), Pα(~t), Fα(~t), Doα(~t), Wα(~t), are
the so-called action status atoms possibly included in IMPACT rules, which
are read (respectively) asα(~t) is obligatory, permitted, forbidden, done, and
the obligation to doα(~t) is waived. In IMPACT, at every state transition, the
agent determines a set of actions to be executed, obeying some notion of de-
ontic consistency. IMPACT has been used to develop real applications ranging
from combat information management to aerospace applications.

Reasoning about interaction
Communication and dialogue have intensively been studied in the context of

formal theories of agency [93]. In particular, great attention has been devoted
to the definition ofstandard agent communication languages(ACL), such as
FIPA and KQML. The crucial issue was to achieve interoperability in open
agent systems, characterized by the interaction of heterogeneous agents; to
this aim it is fundamental to have a universally shared semantics.

Agent communication languages are complex structures because a commu-
nicative act must specify many kinds of information. The definition of a formal
semantics for individual communicative acts has been one of the major topics
of research in this field. Most of the proposals are based on the philosophical
theory of speech acts developed by Austin and Searle in the sixties: commu-
nications are not merely considered as the transmission of information but as
actionsthat, instead of modifying the external world, affect the mental states
of the involved agents. Thus, ACL semantics of individual speech acts is given
in terms of preconditions and effects on the mental attitudes (as it is commonly
done with action semantics). Standard techniques for reasoning about change
can be exploited for proving conversation properties, for planning communi-
cation with other agents and for answer selection as in [44, 67]. Therefore,
ACL-like speech act they can naturally be represented in agent programming
languages based on action theories, e.g. the languagesDyLOG.

Opposed to the mentalistic approach, followed by ACL-based agent lan-
guages asDyLOG, some authors have recently proposed asocial approachto
agent communication [139], in which communicative actions affect the “social
state” of the system rather than the internal states of the agents. The social
state records the social facts, like thepermissionsand thecommitmentsof the
agents, which are created and modified along the interaction. The birth of the
social approach is due to the difficulty of verifying, in a mentalistic framework,
that an agent acts according to a commonly agreed semantics, because its men-
tal state cannot be accessed [149], a problem known assemantics verification.
The social approach overcomes the semantics verification problem because it
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exploits a set of established commitmentsbetweenthe agents, that are stored
as part of the MAS social state.

Recently the attention has been moved towards the formalization of those as-
pects of communication that are related to the conversational context in which
communicative acts occur [111] with the introduction ofconversation policies
and interaction protocols. The need for the verification if a given property
holds for a given protocol has recently emerged as a fundamental requirement.
To such purpose formal languages and analysis tools are currently considered
aspects of primary importance, especially for security protocols, where formal
proofs of properties are indeed fundamental for the protocol itself [80]. The
research on protocol verification has greatly benefit from some important con-
tributions achieved in the distributed and concurrent systems research area. In
particular, the results obtained in model checking [55, 27] have been proved
extremely useful for the verification of protocols. A notable example is the
SPIN system [89, 90] where interacting entities can be defined as finite state
automata through PROMELA (PROtocol LAnguage Goal), and protocol prop-
erties can be expressed through formulas in temporal linear logic. In the area
of agent languages based on logic, some examples of definition of protocols
for guiding the agent communicative behavior can be found [66, 13, 12]. The
logical formalization supports the definition of elegant techniques for confor-
mance verification of agent policies w.r.t. public protocol specifications.

The basic idea is that protocols built upon a predefined set of speech acts.
The social approach provides a high-level specification of the protocol, and
does not require the rigid specification of all the allowed action sequences by
means of finite state diagrams, which is instead typical of mental approaches.
In a social framework it is possible to formally prove the correctness of pub-
lic interaction protocols with respect to the specifications outcoming from the
analysis phases; such proof can be obtained, for instance, by means of model
checking techniques [125, 149, 78, 26]. However, when one passes from the
public protocol specification to itsimplementationin some language (e.g. Java,
DyLOG), a program is obtained which, by definition, relies on the information
contained in the internal “state” of the agent for deciding which action to ex-
ecute. In this perspective, the use of a declarative language is helpful because
it allows the proof of properties of thespecific implementationin a straight-
forward way. In particular, the use of a language that explicitly represents and
uses the agent internal state is useful for proving to which extent certain prop-
erties depend on the agent mental state or on the semantics of the speech acts.
For instance, in [16, 10, 9, 11] the hypothetical reasoning about the effects
of conversations on the agent mental state is used to find conversation plans
which are proved to respect the implemented protocols, achieving at the same
time some desired goal.
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4. Business Rules
Business rules are “statements about how a business is done, i.e. about

guidelines and restrictions with respect to states and processes in an organi-
zation” [25]; they “formulate a law or custom that guides the behavior or ac-
tions of the actors connected to the organization” [145]. Business rules can
be formalized and explicitly managed, but they are often implicitly captured
in corporate documents, spreadsheets, workflow descriptions and information
systems, scattered all over the organization.

While many business rules are (implicitly) introduced from external sources
like the culture or the law, in many other cases, business rules are negotiated
between the members of the organizations or their representatives. The goal of
writing down those rules is to gain reliability and predictable operations of the
organization.

Galbraith summarizes the main reasons in favor of using formalized rules as
follows [71]: (a)Coordination: In complex situations, the execution of tasks
may need synchronization of the work done by several persons; (b)Preci-
sion: The execution of as far as possible formalized tasks is precise over time,
i.e. everybody knows what to do in every considered event; (c)Efficiency:
A machine(like) consistency of the task execution may lead to more efficient
production, like in the automobile industry; and (d)Fairness: Especially gov-
ernment organizations have to secure an equal treatment of every client; hence
they strive to formalize their behavior in order to protect clients and also em-
ployees.

Today, a number of business rules are explicitly written down, commonly in
organizational handbooks which contain systematically collected and specified
business rules; they describe the static and dynamic aspects of an organization:
the positions within the organization, verbal descriptions of rights and duties
of the employees, and the business processes, illustrating the tasks do be ac-
complished, their dependencies, time restrictions, and responsibilities.

Another, usually smaller and more homogeneous subset of the business
rules of an organization is captured by information systems, which often are
also used toenforcethose rules. Clearly, not all business rules are candidates of
being explicitly written down and formalized. Schmidt [135] has established a
series of criteria which may help to decide which types of rules and tasks are
eligible of formalization. Rules that fit those criteria can be operationalized
by transforming them into executable rule expressions, e.g. into a declarative
logic based rule language.

Typology of Formalized Business Rules
In this section we are particulary concerned about the explicit formulation of

business rules. We follow the top-level classification illustrated by [142] and
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[147], which bases on [47] and distinguish three families of business rules:
Reaction rules, derivation rules and integrity constraints. In the following, we
will characterize these types of rules and their components.

Reaction Rules. Reaction rules are concerned with the invocation of
actions in response to events. They state the conditions under which actions
must be taken. They define the behavior of a system (or an agent) in response
to perceived environment events and to communication events [147]. Reaction
rules, often called ECA (Event-Condition-Action) rules, are conceptually of
the following type:

ON event
IF condition is fulfilled
THEN perform action

This concept assumes anevent controller, which monitors certain types of
events, and upon occurrence of such an event, the condition of the rule is eval-
uated. If the condition is true, the action associated to the rule is executed.

Production Rules. Production rules are similar to ECA rules; they
may even be considered a special case of the general concept of reaction rules
[147]. In rule based systems, productions rules are of the formIF C THEN
A, whereC is a condition andA is anykind of action, including external pro-
cedures/methods.

The inputs to production rule systems are a set of such production rules,
i.e. condition-action pairs of the form ifcondition then action. The other
two components of a production rule system are: (i)Working memory: The
memory holds the description of the current state of the world in a reasoning
process. Most production systems allow to create networks of objects, defined
by object templates which have one head and one or more slots (i.e. attribute
fields). (ii)Recognize-act cycle: The conditions (i.e. left hand side of the rules)
are continuously matched against the known facts in the working memory. If
one rule applies, it is fired, that is, its right hand side is executed. If more than
one rules apply, the conflicting rules are added to a goal agenda, ordered and
then executed sequentially. This cycle continues until all rules are satisfied.

The fact that production systems are responsible for determining the set of
applicable rules at a given time relieves the programmer (rule modeler) from
considering and codifying all the paths by which a rule may become applicable
or inapplicable.

The most efficient algorithm for implementing such production systems is
the Rete algorithm [69]. The Rete algorithm is the only known algorithm for
production systems whose performance is demonstrably independent of the
number of rules in the system. An algorithm similar to Rete is TREAT [118],
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which differs in several aspects of the organization of the internal working
memory of the algorithms.

Derivation Rules. Another class of rules that is widely used for the
specification of formal business rules are derivation rules. Derivation rules
allow to deriveknowledge from other knowledge by an inference or a mathe-
matical calculation [147].

Each rule expresses the knowledge that if one set of statements happens to
be true, then some other set of statements must also be true (or become true).
Using a set of such rules, it is possible to specify the behavior of systems by
means of logical specifications. This leads us to the termLogic Programming
[107], which is a well-known programming paradigm based on a subset of First
Order Logic, named Horn clause Logic.

The most prominent example of a language exploiting the advantageous
properties of Horn clauses isProlog. Prolog departs from pure logics by sup-
porting numerous extra-logical features, e.g. numeric operations and the CUT.
The CUT is a construct that can be used to steer the SLD resolution process.

A variant of Prolog,Datalog [49], is used to implement deductive database
systems. These systems are calleddeductive, because they are able to deduce
new facts from the data already stored in the database.

Datalog is used to define rules declaratively in conjunction with an existing
set of relations, which are themselves treated as literals in the language [58]. A
deductive database uses two main types of specifications: facts and rules. Facts
can be compared to relations in RDBM systems, while rules can be compared
to SQL views. One of the fundamental differences to SQL views, however, is
that Datalog based views (i.e. rules), may involve recursion and hence may
yield virtual relations that cannot be defined in terms of standard relational
views [58].

Integrity Constraints. An integrity constraint is an assertion that
must be satisfied in all evolving state and state transition histories of an enter-
prise viewed as a discrete dynamic system [142].

In the literature, the following types of integrity constraints are mentioned:

State constraints: These constraints must hold at any point in time. An
example of a state constraint is “a customer of the car rental company
EU-Rent must be at least 25 years old” [142].

Structural assertions: An important type of state constraints are struc-
tural assertions [88]. A structural assertion is a statement that something
of importance to the business either exists as a concept of interest or ex-
ists in relationship to another thing of interest. It details a specific, static
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aspect of the business, expressing things known or how known things fit
together.

Process constraints: These refer to the dynamic integrity of a system;
they restrict the admissible transitions from one state of the system
to another. An process constraint may, for example, declare that the
admissible state changes of a RentalOrder object are defined by the
following transition path:reserved → allocated → effective →
dropped− off [142].

Integrity constraints can be found in many different systems and use very
different notations; Constraints can be expressed as IF-THEN statements in
programming languages, as explicit assertion statements supported by pro-
gramming languages such as C++, Eiffel or in the recent Java 2 version 1.5,
as CHECK and CONSTRAINT clauses in SQL table definitions and as CRE-
ATE ASSERTION statements in SQL database schema definition[142], c.f.
also Section “Rules in Active DBMS” below. Finally, structural assertions can
be modeled as UML or entity/relationship diagrams and can be augmented by
state constraints represented as OCL (Object Constraint Language)

Integrity constraints can also be seen as a special case of ECA rules, because
they perform a certainaction(e.g. repair the database) in theeventof a violated
integrity constraint.

Implementation of Business Rules
Rules in Active DBMS. ActiveDBMS on the other hand, use rules –
mainly based on the ECA paradigm – to describe activities to be carried out by
the system. Active DBMS monitor events and then react appropriately; hence,
active databases present areactivebehavior (compared to the passive behavior
of typical DBMS): they execute not only user transactions, but also the rules
specified.

Many commercial relational systems like Oracle, DB2 Sybase offer this
functionality, in the form of triggers (standardised in SQL-3); other examples
for active relational DBMS are Ariel [87], Postgres [141] and Starbust [150].
There also exists object oriented active databases such as HiPac [59], Sentinel
[50] and EXACT [63].

Besides the reactive behavior, modern database systems are able to capture
and enforce another type of rules, i.e. integrity constraints. Constraints are
declarations of conditions about the database that must remain true. These
include attributed-based, tuple-based and referential integrity constraints. The
database system checks for the violation of the constraints on actions that may
cause a violation and aborts the action accordingly.
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Rule-Based Programming Environments. In the following we
briefly review popular rule engines.

Mandarax. Mandarax [64] is an open source java library for business
rules. This includes the representation, persistence, exchange, management
and processing (querying) of rule bases. The main objective of Mandarax is to
provide a pure object oriented platform for rule-based systems.

In Mandarax, rules are presented as clauses that consist of a body (the pre-
requisite or antecedent of the rule) and a head (i.e. the consequence of the
rule). The prerequisites and the conclusion arefacts, which themselves con-
sist oftermsandpredicatesassociating those terms. Under the object oriented
notation supported by Mandarax, terms represent objects while predicates on
the other hand represent relationships between terms. Terms can be constants,
variables or complex terms; complex terms are terms that can be computed
from other terms (functions).

The Mandarax engine uses an object oriented version of backward chain-
ing mechanism similar to Prolog; this is in contrast to popular rule engines
like ILOG or JESS, which use the forward chaining Rete algorithm [69]. The
Mandarax project offers several rule engines which slightly differ in some im-
plementation aspects (e.g. support of Prolog-like Cut, negation as failure).

The Mandarax project is also developing a reactive variant of the Mandarax
rule engine. The engine – called Mandarax ECA – is an extension that can be
used to program reactive agents; events have registered event listeners (han-
dlers), these listeners query the knowledge base for the next action that must
be performed.

ILOG. ILOG [94] is a rule engine and programming library that allows de-
velopers to combine rule-based and object-oriented programming to add busi-
ness rules to new and existing applications. The ILOG rule engine is exposed
to Java1 and C++ code via an application programmer interface (API). Rules
can be dynamically added, modified, or removed from the engine on the fly,
i.e. without shutting down or recompiling the application.

ILOG uses an optimized variant of the Rete algorithm, which makes it ca-
pable of handling large numbers of rules within an application and achieving
a high performance in handling rules. Further, ILOG offers a wide range of
enhancements, such as automatic rule optimizations which occur transparently
to the developer, auto hashing and indexing.

ILOG rules employs the ILOG Rule Language, which has a Java-like syntax
and a variety of language extensions. Developers have at their disposal full

1The engine for Java is brandedJRules.
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support of operators in expressions and tests, Java-like syntax for interfaces,
arrays, and variable scope management.

The ILOG Rules rule engine can directly parse and output rules in an XML
representation, allowing the management of rules by standard XML tools. Fur-
ther, the ILOG tool suite offers a point-and-click editor to manipulate the rule
base.

Jess. Jess [70] is a Java based rule engine and scripting environment
inspired by the CLIPS [76, 129] expert system shell with its OPS5 [46] pro-
duction rule language. Just like Mandarax, Drooles and ILOG, Jess is aug-
mented by an object oriented language (i.e. Java) to increase its applicability
for commercial projects (which often have a large legacy code base to support).

Jess can directly make use and manipulate Java objects. Moreover, it is a
reference implementation for the JSR-94 standardization proposal, which aims
at providing a uniform Java application programming interface to rule engines.

Like CLIPS, Jess is based on the Rete algorithm [69], the forward chain-
ing mechanism for production rule systems. Like all production rule-based
systems, the functionality of Jess is comprised of the rule base, the working
memory and the recognize-act cycle (cf. Section “Production Rules”).

Rule Markup Language (RuleML). RuleML [39, 95] is a standard-
ization initiative that was started in 2000 with the goal to establish an open,
vendor neutral XML based rule language standard, permitting both forward
(bottom-up) and backward (top-down) rules in XML for deduction, rewriting,
and further inferential-transformational tasks.

RuleML foresees a classification of the rule it supports. RuleML encom-
passes a hierarchy of rules, from reaction rules, via integrity constraints and
derivation rules to facts (i.e. premiseless derivation rules). For these top-level
families, XML DTDs are provided, reflecting the structures of the rule fami-
lies.

In the first two years of RuleML, the emphasis has been on the expression of
derivation rules XML. Another goal of RuleML is to integrate the rule markup
language with ontology languages like DAML+OIL and subsequently OWL.
The current outcome of these efforts is a draft for SWRL (Semantic Web Rule
Language) [92], which is based on a combination of the OWL DL and OWL
Lite sub-languages of OWL with the Unary/Binary Datalog sublanguages of
RuleML.

Another goal has been to provide an object oriented extension to rule mod-
eling, as already showcased by several rule engines (c.f. Section “Implemen-
tation of Rules in Information Systems”). To date (Summer 2004) there exists
a system of XML DTDs forslotted(i.e. frame-based) RuleML sublanguages
including the Object-Oriented RuleML (OO RuleML) [38]. Recent efforts also
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went into defining MOF-RuleML [148], the abstract syntax of RuleML as an
MOF Model and aligning RuleML with UML’s Object Constraint Language
(OCL).

A critical review of RuleML is given in [147]. One of the weaknesses iden-
tified by that paper is the lack of support of ECA rules. This limitation is
currently being addressed by a working devoted to Reactive RuleML [1].

Dealing with Rule Conflicts and Inconsistency
Conflicts Among Rules - Causes. In many logical systems, like
Horn logic, there can be no conflicts between rules: once the premises of a rule
are satisfied, the rule is executed and its conclusion is drawn. This is due to the
fact that negation in the rule heads is not allowed.

Once we allow negation to appear in the rule head, the situation becomes
more complicated because it is possible that two rules may lead to contradic-
tory conclusions. Conflicting rules are not necessarily indications of an error
in the knowledge base, but may arise naturally in different ways.

Conflicting rules are useful as a modeling feature. For example, rules with
exceptions, found in many policies, can be expressed naturally using a set of
conflicting rules: a rule describing the general case, and rules expressing ex-
ceptions. For example, the general rule may say that all professors are tenured,
while an exception rule may say that visiting professors are not tenured.

Another type of application scenarios is reasoning with incomplete informa-
tion. In these scenarios, the available knowledge is insufficient to mace certain
decisions, but we have to make conclusions based on ”rules of thumb”. A typi-
cal scenario is emergency medical diagnosis, where initial diagnosis and treat-
ment needs to be made before the results of medical tests become available.
Note that new information may lead to a revision of the initial decisions. These
scenarios are closely linked to the area of nonmonotonic reasoning [112, 3].

Conflicting rules also naturally arise in knowledge integration, when knowl-
edge from different sources (and possibly authors) is combined. This scenario
is expected to be particularly wide-spread on the Semantic Web, where a key
idea is to import knowledge from various sources and adapt it for own pur-
poses.

Dealing with Conflicting Rules. The question is how to deal
with situations where rules with conflicting heads can potentially be applied.
In first-order logic and related approaches, contradictory conclusions may be
drawn but have trivialization effects: every conclusion can be drawn from a
contradictory set of premises.

This behaviour is deemed to be unacceptable for practical purposes. It con-
siders contradictions as error situations, but we explained previously that this
is not necessarily the case.
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Reasoning systems falling in this category are wide-spread in logic pro-
gramming, knowledge representation and the Semantic Web [2, 4, 82, 127].

One way of resolving conflicts is to use priorities among rules. For example,
the rule stating that visiting professors are not tenured is stronger than the
rue stating that professors are tenured. With this information incorporated in
the knowledge base, the conclusion that a particular visiting professor is not
tenured can be drawn even sceptically. The aforementioned works make use
of such priorities.

Obviously, we need ways of incorporating priorities in the reasoning process
even in complex cases. An extensive body of work is available in this directions
[2, 4, 82, 121, 134]. We should also mention work on developing rules systems
tailored to the Semantic Web that are able of dealing with inconsistent and
incomplete information, among them [84, 22].

The Origin of Priorities. Priorities may arise from internal or exter-
nal sources. Internal priorities are computed from a set of rules based on the
idea of specificity: a more specific rule is viewed as an exception to a more
general rule and should therefore be deemed to be stronger. For a system that
computes priorities based on specificity of rules see [32].

While useful, specificity is only one prioritization principle. To capture
other principles, most logical systems rely on priorities that are made available
externally. That is, priorities are considered to be a part of the knowledge base,
as are rules and facts. External priority information may be based on a number
of principles:

One rule may be preferred to another rule because it is an exception to
another rule. Such information is often stated explicitly in policies and
business rules [5].

One rule may be preferred to another because it is more recent. This
principle is often used in law and regulations.

Apart from these principles which apply to pairs of individual rules, priority
information may be based on comparing groups of rules. For example, in busi-
ness administration the rules originating from higher management have higher
authority than those originating from middle management. Or in knowledge
integration, one source of rules may be known to be more reliable than the
other. This preference of groups is propagated to individual rules.

5. Unifying Frameworks
Cleary all specifications we have described in the previous sections interact

tightly with each other. Trust management policy languages need to express
security policies and actions, business rules and action languages describe how



Rule-based Policy Specification 41

“things are done”, security specifications play an important role for business
rules and decisions. While it is hard or maybe even impossible to really inte-
grate all aspects described in the previous chapters in one framework, unify-
ing several of these aspects in one framework is necessary for comprehensive
applications of rule-based policy specifications, and makes explicit the inter-
action between the various features treated separately in many previous ap-
proaches. In this section, we will therefore describe two different approaches
towards a unifying framework: XACML andPROTUNE.

XACML
The eXtensible Access Control Markup Language (XACML) [122] is an

OASIS standard that describes both a policy language and an access control
decision request/response language (both in XML).

The policy language allows to specify access control conditions that must
be fulfilled by a requester. There are three kind of top-level elements:

<Rule> It is a boolean expression which is not intended to be evaluated in
isolation but can be reused by several policies.

<Policy> It is a set of rules and obligations that apply to a request. It contains
a set of rules and an algorithm describing how to combine the results of
their evaluation.

<PolicySet> It contains a set of policy and policy set elements together with
an algorithm describing how to combine the results of their evaluation.

The request/response language allows to send queries in order to check
whether a specific request should be allowed. There are four different valid
values for the answer in the response: Permit, Deny, Indeterminate (a decision
could not be made) or Not Applicable (the request can’t be answered by this
service)

They provide the basis for the separation of the so called Policy Enforce-
ment Point (PEP) which is the entity in charge of protecting a resource and
the Policy Decision Point (PDP) which is responsible for checking whether a
request is conformant with a given policy. In order to include the execution
of actions within the standard, the authors define the<Obligation> element.
An obligation is “an action that must be performed in conjunction with the en-
forcement of an authorization decision”. In the current version of XACML 2.0
there are no standard definitions for these actions.

XACML is a standard, so it includes many features among which we
higlight the following:

The language allows the use of attributes in order to perform authoriza-
tion decisions without relying exclusively on the identity of requester.
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Different arithmetic, set and boolean operators, and built-in functions are
provided as well as a method to extend the language with non-standard
functions.

The language includes a<Target> element in each rule, policy or policy
set in order to allow indexing and increase performance.

Different combination algorithms are provided for rule and policy com-
position: deny-overrides , ordered-deny-overrides ,
permit-overrides , ordered-permit-overrides ,
first-applicable andonly-one-applicable .

An XACML contextis define in order to provide a canonical form for rep-
resenting requests and responses. As it is encoded in XML, it is possible
to extract information from the context using XPath 2.0.

However, the current specification of XACML (v2.0 at the time being) is
not suitable as a policy language for protocols like trust negotiation (see sec-
tion 2.0). It still lacks some required expressivity like delegation of authority
(see [138] for a discussion on requirements for trust negotiation) which have
to be taken into consideration for next versions of the specification.

Protune
The PRovisional TrUst NEgotiation frameworkPROTUNE [42] aims at com-

bining distributed trust management policies with provisional-style business
rules and access-control related actions.PROTUNE’s rule language extends two
previous languages: PAPL [40], that until 2002 was one of the most complete
policy languages for trust negotiation [137], andPEERTRUST [72], that sup-
ports distributed credentials and a more flexible policy protection mechanism.
In addition, the framework features a powerful declarative metalanguage for
driving some critical negotiation decisions, and integrity constraints for moni-
toring negotiations and credential disclosure.

PROTUNE provides a framework with:

A trust management language supporting general provisional-style ac-
tions (possibly user-defined).

An extendible declarative metalanguage for driving decisions about re-
quest formulation, information disclosure, and distributed credential col-
lection.

A parameterized negotiation procedure, that gives a semantics to the
metalanguage and provably satisfies some desirable properties for all
possible metapolicies.
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Integrity constraints for negotiation monitoring and disclosure control.

General, ontology-based techniques for importing and exporting
metapolicies and for smoothly integrating language extensions.

ThePROTUNE rule language is based on normal logic program rules “A←
L1, . . . , Ln” whereA is a standard logical atom (called theheadof the rule)
andL1, . . . , Ln (thebodyof the rule) are literals, that is,Li equals eitherBi or
¬Bi, for some logical atomBi.

A policy is a set of rules, such that negation is applied neither toprovisional
predicates(defined below), nor to any predicate occurring in a rule head. This
restriction ensures that policies aremonotonicin the sense of [137], that is, as
more credentials are released and more actions executed, the set of permissions
does not decrease. Moreover, the restriction on negation makes policiesstrat-
ified programs; therefore negation as failure has a clear, PTIME computable
semantics that can be equivalently formulated as the perfect model semantics,
the well-founded semantics or the stable model semantics [18].

The vocabulary of predicates occurring in the rules is partitioned into the fol-
lowing categories:Decision Predicates(currently supporting “allow()” which
is queried by the negotiation for access control decisions and “sign()” which
is used to issue statements signed by the principal owning the policy,Ab-
breviation/Abstraction Predicates(as described in [40]),Constraint Predi-
cates(which comprise the usual equality and disequality predicates) andState
Predicates(which perform decisions according to the state). State Predi-
cates are further subdivided inState Query Predicates(which read the state
without modifying it) andProvisional Predicates(which may be made true
by means of associated actions that may modify the current state like e.g.
credential(C,K), declaration(), logged(X, logfile name)).

Furthermore, metapolicies consist of rules similar to object-level rules.
They allow to inspect terms, check groundness, call an object-level goalG
against the current state (using a predicateholds(G)), etc. In addition, a set
of reserved attributes associated to predicates, literals and rules (e.g., whether
a policy is public or sensitive) is used to drive the negotiator’s decisions. For
example, ifp is a predicate, thenp.sensitivity : private means that the
extension of the predicate is private and should not be disclosed. An assertion
p.type : provisional declaresp to be a provisional predicate; thenp can be
attached to the corresponding actionα by assertingp.action :α. If the ac-
tion is to be executed locally, then we assertp.actor : self, otherwise assert
p.actor : peer.

6. Summary and Open Research Issues
The termpolicy is used with different meanings in the existing literature

but generally refers to the “specification of the behaviour of a system”. The
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most important aspect of policy specification is the language issue, i.e. which
language to use to express those policies. In this chapter we provided an ex-
haustive overview on rule based policy specification encompassing security
and trust management policies, action languages and business rules.

Security Policiespose constraints on the behaviour of a system. They are
typically used to control permissions of users/groups while accessing resources
and services. The languages for specifying security policies are more and more
focussing on logic-based, and especially rule-based languages. After explor-
ing a number of different constructs (such as negation as failure, temporal op-
erators, deontic modalities, etc.) and different semantics (top down, tabled,
abductive, and dynamic, like event-condition-action rules) it is clear that such
languages are extremely flexible and capable of capturing the most diverse
policies arising in real application scenarios.

The term trust management refers to reputation based metrics and models,
or to policy based trust.Trust Management policy languagesare used to collect
user properties in open environments, where the set of potential users spans the
entire web. In this section we offered an extensive review of existing research
on policy-based trust management. Among other properties, all current lan-
guages have in common that they do not consider authorization as a one-shot
process anymore but instead rely on trust negotiations in order to establish trust
between strangers.

Action Languagesare used in reactive policy specification to execute ac-
tions like event logging, notifications, etc. Authorizations that involve actions
and side effects are sometimes called provisional. Action languages also allow
to reason about phenomena that take place in time and to describe a dynamic
world changing because of the execution of actions. Proposals based on (clas-
sical and non-classical) logics and computational logic are the most successful
ones. Besides the representation used, an action theory is formed by a set of
action laws that describe actions in term of preconditions and effects on the
world. Typical kinds of reasoning performed on an action theory are temporal
projection, temporal explanation, and planning.

Business Rulesare “statements about how a business is done” and are used
to formalize and automatize business decisions as well as for efficiency rea-
sons. We provided an overview of formal languages and approaches for ex-
pressing such rules, to gain readability and predictable operation of an organi-
zation. In particular, we provided a typology of formalized business rules and
described the main approaches.

All these kinds of specification interact tightly with each other and
new approaches are appearing aiming at their unification in a single lan-
guage/framework.

However, although the research community has achieved great advances in
the area, there still exist several open issues and challenges for policy specifi-
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cation. Some of the main research issues concernintegration, ease of useand
implementation.

A major integration issue concerns the harmonization of the different se-
mantics mentioned above (top down, tabled, etc.), when the policy comprises
both declarative and ECA rules. The problem is even more subtle in trust
negotiation, where action execution must be scheduled appropriately during
multiple negotiation steps.

Integration is also related to implementation. The powerful rule-based pol-
icy languages being developed might have a fast and widespread impact if we
could (sometimes) translate high-level rules into policies supported by com-
mon mechanisms (such as firewalls and the access control mechanisms of
DBMSs and web servers). Then high-level policy specifications would let se-
curity managers organize their policies in a homogeneous and coherent way,
without giving up the efficiency and robustness of lower-level security mecha-
nisms. It would be possible to have a centralized, global view of the system’s
policy without necessarily introducing bottlenecks such as centralized security
monitors.

One of the few open representation problems that has not yet been exten-
sively explored concernsdelegation: what can a peer do with a piece of in-
formation it receives? These policies should express in a simple and compact
way the requirements which the information owner poses on subsequent dis-
closures, as well as allow the receiver to add its own constraints (when possi-
ble) [99, 119, 153]. Expressing this kind of dynamic behavior appropriately
in a declarative way, accessible to a vast class of users, is a nontrivial chal-
lenge. The same is true of the development of a (cryptographic?) infrastruc-
ture capable of enforcing this kind of policies, that otherwise would be left
to voluntary compliance. Another issue is integration with trust and reputa-
tion models [140, 41] and with other security approaches and new applications
(e.g., Grids [131, 21]).

On the other hand, in the context of business rules, formal representation
is still an open problem. Work will continue on developing formal languages
combining sufficient expressive power, efficient reasoning support, and natu-
ralness of expression.

Last but not least, it will be important to give common users the ability
of understanding and personalizing their systems’ policies. This is essential
to bring the existing security mechanisms to their full potential, and increas-
ing user awareness about security problems. Adopting a rule language is not
enough for this purpose, because common users typically have no knowledge
about logics (and nonmonotonic logics in particular). It is necessary to provide
user-friendly front-ends that illustrate the policy in a language familiar to the
user, such as a graphical language, or maybe natural language. Actually, there
are already lines of research pursuing the formulation of policy rules in a con-
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trolled fragment of natural language. Moreover, very recent work is tackling
explanation mechanisms that support advanced queries to policies [43]. Such
an explanation tool is meant to guide the user in acquiring the permissions nec-
essary to get the desired services. This kind of support is crucial in e-business
applications: acooperative way of enforcing policiesmay be the key to success
in such application scenarios.
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