
Policy-driven Negotiation for Authorization in the Grid

Ionut Constandache
Duke University, USA

ionut@cs.duke.edu

Daniel Olmedilla
L3S Research Center, Germany

olmedilla@L3S.de

Frank Siebenlist
Argonne National Laboratory, USA

franks@mcs.anl.gov

Abstract

In many Grid services deployments, the clients and
servers reside in different administrative domains. Hence,
there is a requirement both to discover each other’s autho-
rization policy, in order to be able to present the right as-
sertions that allow access, and to reveal as little as pos-
sible of the access policy details to unauthorized parties.
This paper describes a mechanism where the client and
servers are semantically annotated with policies that pro-
tect their resources. These annotations specify both con-
straints and capabilities that are used during a negotiation
to reason about and communicate the need to see certain
credentials from the other party and to determine whether
requested credentials can be obtained and revealed. The re-
sult of the negotiation is a state where both parties have sat-
isfied their policy constraints for a subsequent interaction
or where such interaction is disallowed by either or both.
Furthermore, we present an implementation of a prototype,
based on the PEERTRUST policy language, and a reasoning
engine that is integrated in the Web services runtime com-
ponent of the Globus Toolkit. The negotiation process is
facilitated through the implementation of WSRF-compliant
service interfaces for protocol message exchanges.

1 Introduction

Organizations join in collaborations for the benefit of
sharing resources for intensive computations, data storage
and query. Each organization is defined by its own admin-
istrative domain, while the overlaying collaboration, known
also as the virtual organization (VO), is defined by a mu-
tual agreement. Grid toolkits provide the middleware to
securely share resources in different domains. Essentially
such an infrastructure should provide to clients seamless
access to all resources they are authorized to use. How-
ever, in current Grids, users have to hardcode into their job
programs the details of gathering and providing appropri-
ate credentials in order for access to be granted at each do-
main. Because authentication along with single sign-on can

be automated by client delegation of X.509 Proxy Certifi-
cates to the job being submitted, most authorization mech-
anisms are being simplified to an identity based scheme, so
that they can be accommodated on the same infrastructure
as authentication. As a consequence, due to the potential
large number of users and different certification authorities,
identity based authorization leads to scalability problems.

To address these issues, we exploit annotation of Grid
services with machine understandable languages and bind
rule-based policies to resources in the context of authenti-
cation and authorization. These policies specify access con-
trol requirements that must be satisfied by a requester before
access is authorized. In addition, we claim that authoriza-
tion cannot rely on parties’ identities alone, because such
authorization does not scale. Authorization is, therefore, no
longer a one-time mechanism, but an iterative process, in
which the entities involved must be able to negotiate and
incrementally increase their level of trust based on other
party’s properties. The application of negotiation-driven
authorization mechanisms to Grid environments overcomes
current authorization limitations. Furthermore, policy based
negotiations provide scalability, advanced access control,
and automatic credential fetching. These features enable
a complete set of new scenarios in the context of autho-
rization in which user involvement is dramatically reduced
(from administrative and development points of view) in fa-
vor of automated interactions.

This paper extends the work performed in [6], identifies
current limitations in Grid authorization, suggests the ap-
plication of policy languages to protect access to resources,
and demonstrates the power and advantages of this ap-
proach. In addition, we propose an architecture in which
policy languages can be easily integrated into the Globus
Toolkit 4.0, allowing advanced access control and automatic
credential fetching. We also describe how this architecture
has been implemented by using the PEERTRUST policy lan-
guage for policy specification.



2 Grid-specific Authentication and Autho-
rization

The Globus Toolkit [13] offers a collection of software
that implements different protocols, specifications, stan-
dards, and interfaces to meet the requirements identified
by the Open Grid Services Architecture (OGSA) [29] for
supporting a Grid infrastructure. Since its inception in the
late 1990s, the Globus Toolkit has addressed issues such as
resource discovery, remote execution monitoring and man-
agement, data movement and replication, and security in
service-oriented distributed environments. In this section
we provide a short introduction to the Globus Toolkit 4.0
(GT4.0), focusing on its integrated Grid Security Infrastruc-
ture (GSI) [15].

GSI provides integrity protection, confidentiality, and
authentication for sensitive information passed over the net-
work, as well as the facilities to securely traverse the differ-
ent organizations that are part of a collaboration. The funda-
mental security mechanism used by the GSI infrastructure
relies on public key cryptography and the associated PKIX
X.509-based Public Key Infrastructure (PKI) [16]. GSI em-
ploys X.509 identity certificate to bind a public key to a
unique name (called Distinguished Name, or DN) identify-
ing the private key holder. A trusted certification authority
(CA) guarantees through its signing policy that the two be-
long together and attests to this by signing the certificate.

GSI supports a delegation mechanism through the use
of X.509 Proxy Certificates [33]. The user can delegate
his rights to agents, intermediaries, or resources such that
they can interact with other resources on the user’s behalf.
The mechanism consisits of the agent generating a new key
pair and the user signing and issuing a proxy certificate that
holds the agent’s public key. A proxy certificate can be
signed by an end entity certificate or by another proxy cer-
tificate. During authentication the whole chain of (proxy)
certificates is exchanged between the parties, allowing them
to obtain the user identity information from the end entity
certificate at the root of the chain.1

GT4.0 provides an authorization framework for enforc-
ing authorization on both service and client side. On the
service side, authorization mechanisms rely on a configured
chain of policy decision points (PDPs) to determine whether
authorization should be granted or denied for a client invo-
cation. The decision regarding authorization is based on the
conjunction of all PDP decisions; that is, authorization is
granted only if all PDPs have returned a permit decision.
The PDP’s decision logic can be implemented based on the
client’s DN, the resource accessed, and the operation in-
voked. On the client side, service authorization options are
self (identity of the service and client are expected to be

1The user’s identity information is authenticated if that user’s end entity
certificate is signed by a trusted CA.

Figure 1. Simple Grid Scenario

the same), host (a certain host name is expected of the
service accessed), or identity (a certain identity of the
service is expected where identity refers to the DN present
in service certificate).

On the service side, a number of PDP implementations
for different authorization options are part of the GT4.0
distribution. These PDPs are configured either at the ser-
vice level or for the entire GT4.0 container running the ser-
vice. The options include self, host, and identity
as well as gridmap (the identity of the client must be
mapped to a local user account on the resource in a grid-
mapfile), samlCallout (a SAML authorization callout
to an external OGSA Authorization compliant service),
and userName (username- and password-based authoriza-
tion).

3 Example Scenario: Interaction between
Jobs and Services in GT4.0

Let us consider the following illustrative scenario de-
picted in Figure 1. Alice, a scientist at University “ABC”
(ABC), would like to obtain data regarding oceanic water
waves for developping signaling instruments for high waves
hazards avoidance. Fortunately, the university and the local
Navy Institute have an agreement that allows ABC mem-
bers to use any of the institute’s scientific instruments as
long as they are not already in use and ABC has not ex-
ceeded its maximum number of monthly allocated hours
for institute’s resources usage. Both the university and the
Navy Institute support the Globus Toolkit 4.0, which pro-
vides the common interoperable middleware layer to collect
data from a wave tank available at the institute site.

Alice’s client program submits a job over the Grid infras-
tructure to ABC HPC Center Linux cluster. There the job
will retrieve the input data required to setup the wave tank,
perform CPU-intensive computations, refine the output data
and store the results. However, first, the Linux cluster has to
authenticate and authorize the submitted job. Alice’s client
program authenticates using Alice’s X.509 End Entity Cer-
tificate signed by ABC Certification Authority trusted at the



Linux cluster site. Further, authorization is granted as a
grid-mapfile entry maps Alice’s DN to a local user account
allowing the job to start with the privileges of the associated
local user.

Since the job needs additional resources, a new X509
Proxy Certificate is delegated by Alice to ABC Linux clus-
ter. Using this proxy certificate, the job can authenticate and
gain access to other Grid resources. For example, the job
will contact ABC Reliable File Transfer Service (RFT) [3]
and will retrieve the input data after authentication and au-
thorization are fullfiled based on Alice’s DN at the root of
the certificate chain.

Alice is aware of the Navy Institute policy requir-
ing proof of university affiliation before allowing access,
so she has coded into the job the retrieval of a SAML
statement from the ABC Community Authorization Ser-
vice(CAS) [22] attesting her involvement with the univer-
sity. After the required authentication and identity-based
authorization with ABC CAS, the job-processing applica-
tion obtains the assertion and creates a new X.509 Proxy
Certificate embedding it. This proxy certificate will ensure
access at the Navy Institute wave tank site.2

When the data is ready, the Linux cluster contacts the
ABC RFT service, and after another round of authentica-
tion and authorization verification, the final results are made
available to Alice at the university file server.

4 Current Limitations and Assumptions

During the interactions depicted in the previous scenario,
authorization decisions were based on user identity. The
user already had an account at the remote locations with a
grid-mapfile entry mapping her X.509 certificate’s subject’s
DN to her local account. Another assumption was that the
ABC CA was trusted at each location the job needed access
to (ABC resources and Navy Institute wave tank). There
was no intermediary step for the job and resources to argue
about trusted authorities. The trusted CAs of each site were
expected to be known by the client, who was further ex-
pected to provide an appropriate certificate. In these condi-
tions, mapping client identities to local accounts raises se-
rious scalability problems because of the large number of
potential users. Even more unrealistic is the requirement
of having a single trusted Certification Authority when the
Grid spans multiple organizations each having its own au-
thentication infrastructure.

Managing identity-based access control lists requires site
administrators to keep track of all possible clients allowed
to request services. This is a complicated task because the
user mapping entries are the result of the user’s associations
with certain organizations and projects. Once such relations

2Further we assume that the wave tank is not in use and ABC has not
exceeded its allocated hours, so that all Navy Institute policies are satisfied.

cease to exist, the resource administrators have to remove
all these entries to ensure that access is no longer allowed.
On the other hand, as soon as new users are required to
deploy the Grid infrastructure, new mapping entries have
to be entered in all relevant access lists.

Keeping track of all the different credentials, in relation
to the resources and the domains where they are needed, is a
burden on the client side as well, because of the difficulty in
predicting the job’s needs prior to its execution. When the
job is expected to present a required and missing creden-
tial, the user may not be available. Alternatively, providing
the job with all the user’s credentials might imply disclos-
ing sensitive information, a situation that the user may not
be comfortable with. The issue for the user or job is to pro-
vide just the right credentials to the Grid service it tries to
access—no more, no less.

In all the previously described interactions, the autho-
rization decision was a one-step process, without the client
asking about the resource access requirements and without
any negotiation for granting authorization. The client was
simply expected to be aware of and be able to satisfy the
service requirements. This approach seems infeasible for
large-scale Grid deployments, where each of the compu-
tational resources may be under a different authority and
where entities with no previous interactions may have to
communicate.

Some of the deployed Grids authorize users based on as-
sertions issued by infrastructure services established at the
virtual organization level (e.g., CAS). However, Grid ser-
vice providers may feel uncomfortable relying only on re-
mote assertions, especially in the case of a large Grid en-
vironment. As a result, some service providers may use,
publish, and enforce policies in the local domain such that
the administrators keep fine-grained access control over the
resources they provide.3

We argue in the following sections that when Grid de-
ployments support the specification, advertisement, and en-
forcement of service-level access control policies, together
with capabilities for the automatic fetching of credentials,
large-scale collection of resources can indeed be supported.
Such a mechanism will also enable dynamic negotiation for
authorization and access granting based on the properties of
both parties.

5 Rule-based Policy Languages

Rule-based policy languages have been used extensively
in the context of security policies, trust management, and
business rules [5]. The reason researchers have typically

3Even if authorization statements are made by third parties at the VO
level, the authorization decision may involve local information and state
(e.g., the wave tank should not be in use, and the ABC use of instruments
should not have exceeded a certain limit).



selected rule-based languages to express policies is not ar-
bitrary. Their semantics is closer to the way humans think
and is especially useful for access control protection where
one specifies what conditions are to be fulfilled by the re-
quester, without specifying how. Furthermore, rule-based
policies provide self-described statements that can be ex-
changed, shared, and reused among parties and that allow
one to reason over them, hence enabling interoperability.

Security in distributed environments such as the World
Wide Web, peer-to-peer systems, or Grids was traditionally
built under the assumption that service providers and con-
sumers are known to each other. In common scenarios, be-
fore allowing access to (possibly) sensitive resources, trust
relations are established by having clients create an account,
store a profile, or requiring administrators to add identities
to some kind of access control lists.

Alternatively, through semantic annotations, rule-
oriented access control policies, and trust negotiation [34],
entities can automatically build a trust relationship, through
which they will feel comfortable sharing selected private
information. The trust negotiation process evolves through
disclosure of credentials and requests for credentials in an
iterative and bilateral process. The requests for credentials
are in fact authorization policies that have to be satisfied.
The trust level reached through a negotiation between one
client and a resource is in fact an authorization decision
about whether to allow access to the resource. This ap-
proach distinguishes itself from identity-based access con-
trol because trust is established based on properties of pre-
viously unknown parties .

Trust negotiation is triggered when one party requests
access to a resource owned by another party. The goal
of a trust negotiation is to find a sequence of credentials
C1, · · · , Ck, R, where R is the resource where access is
attempted, such that when credential Ci is disclosed, its
access control policy has been satisfied by credentials dis-
closed earlier in the sequence, or to determine that no such
credential disclosure sequence exists.

The PEERTRUST language [12, 23] for expressing access
control policies is based on definite Horn clauses (the basis
for logic programs [19]), namely, rules of the form

lit0 ← lit1, . . . , litn

In the remainder of this section, we concentrate on the syn-
tactic features that are unique to the PEERTRUST language
(check [12, 23] for more information) and we will consider
only positive authorizations.

References to Other Peers The ability to reason about
statements made by other parties is central to trust negoti-
ation. For example, suppose that an online library requires
a student id, issued by University ABC, before it allows ac-
cess to the available online books. One can think of this as a

case of the library delegating evaluation of the query “Is the
requester a student?” to the University “ABC” (ABC). To
express delegation of evaluation to another party, we extend
each literal liti with an additional Issuer argument,

liti @ Issuer

where Issuer specifies the party who is responsible for eval-
uating liti or has the authority to evaluate liti. For example,
the library’s policy may be expressed as

Library:
allowAccess(Book,X)←

student(X) @ ’ABC’.

where X represents the requester whose quality of student
should be evaluated by ’ABC’. For clarity, we prefix each
rule by the party in whose knowledge base it is included.

The Issuer argument can be a nested term containing a
sequence of issuers, which are evaluated starting at the out-
ermost layer. For example, it is unlikely that ABC will an-
swer all the requests directly from the library, so a more
practical approach is to ask the requester to evaluate the
query himself, that is, to disclose his student id:

Library:
allowAccess(Book,X)←

student(X) @ ’ABC’ @ X.

The library can refer to the party who asked a particular
query by including a Requester argument in literals, so that
we now have literals of the form

liti @ Issuer $ Requester

Using the Issuer and Requester arguments, we can delegate
evaluation of literals to other parties and also express inter-
actions and the corresponding negotiation process between
parties. Therefore, the final shape of the rule of the online
library would look like the following:

Library:
allowAccess(Book) $ Req←

student(Req) @ ’ABC’ @ Req.

Local Rules and Signed Rules Each party defines the set
of access control policies that apply to its resources, in the
form of a set of definite Horn clause rules that may refer
to the properties of those resources. These and any other
rules that the party defines on its own are its local rules. A
party may also have copies of rules defined by other parties
(credentials), and it may use these rules in its proofs in cer-
tain situations. For example, Alice can use a rule that was
defined by ABC to prove that she is really a student:

Alice:
student(’Alice’) @ ’ABC’

signedBy [’ABC’].



In this example, the “signedBy” term indicates that the rule
has ABC’s digital signature on it. A signed rule has an ad-
ditional argument that says who issued the rule.

Guards To guarantee a certain evaluation order for the lit-
erals in the body of a rule, we split the body’s literals into a
sequence of sets, divided by the symbol “|”. All but the last
set are guards, and all the literals in one set must evaluate
to true before any literals in the next set are evaluated. For
example, if the library offers a special price for students in-
terested in a paperback copy of a book, the policy could be
expressed as

Library:
order(Book) $ Req←

student(Req) @ Institution @ Requester |
applyDiscount(Book).

The requester would have first to prove he is a student. Then
the library would apply a discount for the requested book.

6 Distributed Policy-Based Negotiation for
Grid Services Authorization

This section addresses some of the current Grid Security
Infrastructure limitations by describing how PEERTRUST
policies4 can be integrated to accommodate a large, loosely
coupled Grid environment.

In our initial example (see Figure 1) we illustrated how
different resources may be used in a Grid environment
based on the Globus Toolkit 4.0. The fact that resources
are often expensive in terms of cost, maintenance, and man-
agement normally results in more complex access policies
than the already established conditions of two previously
acquainted partners (in our example, ABC and Navy Insti-
tute). Jobs may use discovery and scheduling services to lo-
cate the best available resources, which make it even more
difficult to predict what service instances will be used.

Our solution proposes, on one hand, that each Grid ser-
vice advertises its authorization requirements through ac-
cess control policies and, on the other hand, that each client
specifies his credential disclosure policies and is able to
query for resource’s access policies. When such policies are
advertised, services and clients can negotiate, increasing in-
crementally their trust relationship based on satisfying the
other party’s policies. We will change our initial scenario
in order to accommodate the new capabilities highlighted
above.

Alice’s research group needs the data as soon as possible,
so Alice’s client program queries the National Monitoring

4Although we use the PEERTRUST language for policy specification in
our examples and implementation, all the ideas presented in this paper are
extensible to any other policy language with delegation of authority and
negotiation capabilities [25].

and Discovery Hierarchical Service (NMDHS) for the best
Linux cluster in terms of memory size and number of avail-
able processors. Alice program will send a request of the
form queryingAllowed() to the NMDHS. The service
policy requires any client to have a credential signed by one
of the recognized state institutions (check the id policy be-
low), so Alice’s client provides Alice X.509 End Entity Cer-
tificate issued by the ABC CA. Since the credential is not
protected by any policy, Alice’s client program discloses it,
authorization is fulfilled, and the requested information is
delivered.

NMDHS:
queryingAllowed() $ Req←

validCredential(Req).
validCredential(Req)←

id(Req,’ABC CA’) @ ’ABC CA’ @ Req.
validCredential(Req)←

id(Req,’Navy Ins. CA’) @ ’Navy Ins. CA’ @ Req.
...

The best available Linux cluster belongs to the Research
Center for Aeronautical Sciences (RCAS), so Alice’s client
program initiates a new negotiation process for submitting
Alice’s job. The RCAS Linux cluster policy restricts access
to jobs acting on behalf of members of projects listed in the
Ministry of Education (MinEdu) database.

RCAS Cluster:
submit(Job) $ Req←

actingOnBehalfOf(User,Job),
member(User,Project) @ ’MinEdu CAS’ @ Req.

Alice’s client program demonstrates that the job is acting
on Alice’s behalf by providing Alice’s certificate, but it does
not yet have a credential proving that Alice is a member of a
listed project. To solve this situation, Alice’s client forwards
a query to the Ministry of Education CAS server (MinEdu
CAS) and retrieves an assertion attesting that Alice partici-
pates in a project regarding signaling instrumentation. This
credential is disclosed to the RCAS Linux cluster, and job
submission is granted. Since the job needs to contact other
resources, a proxy credential gets delegated on behalf of Al-
ice, to the RCAS Linux Cluster.

When Alice’s job starts its execution, it has to retrieve
the input data from the ABC Reliable File Transfer Service
(ABC RFT). ABC RFT policies require the job to prove that
it is acting on behalf of an ABC staff member.

ABC RFT Service:
retrieve(File) $ Req←

member(Req,’Staff’) @ ’ABC CAS’ @ Req |
check(Rights,Req,File) @ ’ABC CAS’.

store(File) $ Req←
member(Req,’Staff’) @ ’ABC CAS’ @ Req.



Figure 2. Job Negotiations

Therefore, using its delegated credential, the job authenti-
cates to the ABC CAS, demonstrates it is acting on Alice’s
behalf, and retrieves a credential attesting that Alice is part
of the university staff. Once this credential is released to
the ABC RFT service, the service checks by itself, with the
same ABC CAS if the required file can be accessed by Al-
ice. ABC RFT acquires an assertion identifying the input
file as belonging to Alice, and in this way the file retrieval
operation is allowed.

Now the job contacts the Navy Institute wave tank (with
a query access(’Wave Tank’)) and discovers that it
has two options: either to provide an identity certificate
signed by ABC CA or one issued by the Navy Institute CA
(see Figure 2). By disclosing Alice’s delegated certificate,
the job demonstrates it is acting on behalf of an entity cer-
tified by ABC CA. Further, the wave tank informs Alice’s
job that it should reveal Alice’s role at the university.

Wave Tank:
access(Resource) $ Req←

checkUser(Req,CA), |
notInUse(Resource),
timeLimitNotExceeded(CA).

checkUser(Req,’Navy Ins. CA’)←
id(Req,’Navy Ins. CA’) @ ’Navy Ins. CA’ @ Req.

checkUser(Req,’ABC CA’)←
id(Req,’ABC CA’) @ ’ABC CA’ @ Req, |

role(Req,Role) @ ’ABC CAS’ @ Req |
Role = ’Researcher’.

bbbMember(’Wave Tank’,’BBB’) @ ’BBB’
signedBy [’BBB’].

In this case, Alice had provided a policy to the job, stat-
ing that Alice’s roles are revealed only to entities that have
proved their liability by disclosing a Better Business Bureau
(BBB) membership credential.

Job:
role(’Alice’,Role) @ ’ABC CAS’ $ Req←

member(Req,’BBB’) @ ’BBB’.

The wave tank has no policy protecting its BBB credential;
therefore, after its disclosure, the job contacts ABC CAS
to retrieve Alice’s roles. Since Alice is a researcher and
assuming that the other local policies are fulfilled, the job is
granted access to the wave tank.

The refined and corrected data generated by the Linux
cluster is saved by using the ABC RFT Service, which al-
lows file storage if the action is requested by a university
staff member (see the RFT policy above). The job has
cached this credential (during a previous interaction) and
does not need to ask for it again from the ABC CAS. By
revealing this proof of Alice’s university staff membership,
the job is allowed to use the ABC RFT for storing its output
files.

This scenario shows that the job has been submitted with
only one credential and dynamically negotiated authoriza-
tion at each resource accessed. This negotiation involved
learning from resources themselves which credentials are
needed (specified in policies) and where to retrieve them
from. Resources were shared with no implied previous in-
teractions and with no further involvement of administrators
other than to set policies for access control and credential
disclosure.

7 Architecture and Implementation

One of our main design goals was direct integration with
Grid services paradigms. To achieve this goal, we de-
vised an extension that is easily pluggable into any GT4.0-
compliant Grid service or client. In this section, we present
the technical details of our implementation (see also Fig-
ure 3). Because this implementation was developed for
the GT4.0 Java Container, it is entirely written in Java and
therefore requires Java-based Grid services and clients for a
straightforward integration.

As we have seen in our discussions regarding the
PEERTRUST capabilities, a service might allow different
possibilities for granting access (in our example the wave
tank was requiring for an identity certificate signed by ABC
CA or one issued by Navy Institute CA), and the client may



Figure 3. High-Level Architecture

choose which one to follow, according to his own credential
protection policies.5 Because of the GT4.0 limitation in the
PDPs decision composition (no disjunction supported), we
have relied on the toolkit PDP support only for protection
against unauthorized calls. We have used the PEERTRUST
language and implemented its logic outside PDPs to per-
mit policy combinations as both conjunctions and disjunc-
tions. Our Interceptor PDP, part of the Client Call Inter-
ceptor(see Figure 3) intercepts client operation invocations
and allows or denies the calls according to the existence of
a previous successfully completed negotiation. If the an-
swer is positive, the PDP grants the Grid service operation
invocation. If the answer is negative, the PDP throws a ne-
gotiation exception to inform the client that a trust nego-
tiation should be initiated and completed successfully be-
fore access is granted. In the latter case, the client Nego-
tiation Module must start a negotiation with the homolo-
gous module on the Grid service (with a query of the form
request(‘OperationName’)). This triggers the ne-
gotiation process, in which policies and credentials are ex-
changed. The entire negotiation process is automated and
requires no explicit user intervention.6

The Negotiation Module is responsible for the negotia-
tion management. It handles the communication with other
parties using Grid connectors (the Notification Listener and
Send Wrapper interface on the client side and Negotiation
Topic and Negotiation Provide on the service side - all im-
plemented with Globus Toolkit 4.0) and interfaces with the

5For instance, the client might choose the one where less sensitive in-
formation is revealed or might choose a path with first required credentials
available locally.

6Although we refer most of the time to fully automated negotiations, it
would of course be possible to monitor and require confirmation from the
user for all or some steps of the negotiation.

PEERTRUST Module. Whenever a negotiation succeeds, the
Negotiation Module caches the identity of the client and the
operation granted, in order to avoid the same negotiation
in (presumably) successive calls. Ideally, the authorization
decision should be invalidated once the shortest-lived cre-
dential (between those disclosed) has expired; but since we
plan to experiment with a wide variety of credential formats,
each requiring an independent parsing, the current imple-
mentation relies only on the expiration time of the client
proxy certificate (the one used by the client for authentica-
tion).

On the service side, the Grid Connectors are composed
of two modules: the Negotiation Provider and the Negoti-
ation Topic. These modules are plugged into the Grid ser-
vice, enhancing its functionality with policy-based negotia-
tion capabilities. The client can use the additional Grid ser-
vice’s operations, implemented in the Negotiation Provider
Module, for pushing policy requirements and credentials to
the server side.

Negotiations are essentially asynchronous. A request
might, for instance, trigger a new policy negotiation with
a third party and so on, a situation that makes it difficult to
predict when the request will finish its evaluation. More-
over, a client might choose to continue its usual execu-
tion without waiting for the answer from the server (e.g.,
in order to start in parallel several negotiations with differ-
ent entities) and might simply prefer to be informed asyn-
chronously when each negotiation is finished.7

Asynchronous client notifications can be implemented
through GT 4.0 support for WS-Base Notification [1] and
WS-Topics [31], which standardize asynchronous commu-
nications between consumers and providers. We associate

7Note that a server might act as a client if it starts a new negotiation
with a third party.



each negotiation (triggered by the client request for a ser-
vice operation) with a topic of interest (Negotiation Topic)
through which messages can be delivered from the service
to the client side. The client subscribes to this topic via
a subscribe operation exposed by the notification producer
(in our case the Grid service). On the client side, the notifi-
cation consumer (in Figure 3 the Notification Listener) ex-
poses a notify function that the Grid service uses to inform
the client about its own requirements in terms of authoriza-
tion.

A Grid service describes its supported operations and
their associated parameters through a WSDL file. We have
defined a special WSDL file that describes all the interfaces
needed to perform our negotiations. Any Grid service can
use our negotiation capabilities by including these defini-
tions in its own WSDL description. Doing so, allows a Grid
service to expose additional operations that are used to push
messages to the Grid service during the trust negotiation
process. These operations are implemented externally to the
application-specific Grid service code in our Negotiation
Provider Module. This module is plugged into a Grid ser-
vice through the specification of a “provider” (our defined
TrustNegotiationProvider) in the Grid service deployment
descriptor (WSDD file). “Providers” are used by GT4.0 to
confer extra functionalities to Grid services. GT4.0 sup-
port for notifications is also plugged into a Grid service by
means of two providers (delivered with GT4.0) configured
in the same WSDD file. We emphasize that in order to con-
fer the negotiation capabilities to any Grid service we re-
quire small modifications to its descriptors (configuration)
files, but no modification to the application code itself.

For the client side, we have developed an API with a jar
file to facilitate easy integration of trust negotiation capabil-
ities with the client code. Through this API, the client needs
to set the Grid service address and must implement an inter-
face(Send Wrapper) to communicate with the service with
which trust is negotiated.

So far we have described how the policy-based negoti-
ations can be integrated into GT4.0, but we have not de-
scribed how the reasoning is performed. Queries for en-
forcement of policies are sent to the PEERTRUST Module,
which controls the access to the Inference Engine. The In-
ference Engine is built on the Minerva Prolog engine8 and
reasons on policies and credentials configured locally or re-
trieved during the negotiations undertaken. The Inference
Engine answers to the PEERTRUST module queries indi-
cating whether a request conforms to local policies (there-
fore allowing or disallowing the disclosure of credentials re-
quested) or whether extra conditions must first be satisfied
by the requester. The evaluation of a query allows one to
include a proof in any answer returned to other parties. The

8Minerva Prolog (http://www.ifcomputer.com/MINERVA/)
provides a java-based prolog engine that allows for an easy integration.

proof contains the policies and credentials (possibly third-
party credentials) required to attest the other party’s request.

Because our implementation uses internally an abstract
representation of credentials and policies, it can use differ-
ent kinds of formats (certificates, signed assertions, signed
RDF statements, etc). Currently we support X.509 v3 cer-
tificates, which can carry holder attributes in the extensions.
In addition, we have integrated the use of proxy certificates
that carry SAML assertions retrieved from a Community
Authorization Service.

8 Conclusions, and Related and Further
Work

Our main contribution to the Grid authorization solution
space is the presented negotiation process in which enti-
ties, distributed over the Grid, engage each other for access
granting. During this process, entities express their access
requirements and enumerate the required credentials with
their associated third-party issuers. Since credentials are
retrieved dynamically during the negotiations, the access
policies fulfillment is established at runtime. Furthermore,
services and clients are true peers in the negotiation, since
both are able to protect their local resources (e.g., creden-
tials and provided services) and to formulate requests for
the required credentials from the other party.

Although negotiations require in average more round-
trips and are therefore more expensive than conventional
approaches, it is a trade-off with the time and efforts needed
for hard-coded configurations and for out-of-band policy in-
formation exchange. We have performed an extensive set
of simulations in order to estimate how the overhead of our
proposed negotiations can be reduced. We have simulated
a Grid scenario in which 1100 clients and 100 grid services
interact in order to gain and allow access9. We assumed a
number of 16 messages exchanged on average for each in-
teraction10 and a service revisitation probability uniformly
distributed between 49% and 92% 11. Using an authoriza-
tion decision caching mechanism combined with client cre-
dential caching on the service side, we have been able to
reduce the number of messages exchanged to 7 (assuming
a revisitation probability of 49%) and close to the ideal 2
message interaction (for a revisitation probability of 92%).
Caching mechanisms reduced the message overhead with
percentages between 50% and 75% and may be an accept-
able mechanism to better benefit from the enhancements our
authorization negotiations provide.

9The ratio 1 to 11 of services to clients is consistent with current Web
statistics for server:client ratio [21, 17]. We used web statistics due to lack
of data about client and service distribution in real Grids.

1016 messages would accommodate simple scenarios in which each ac-
tor requires at most 4 credentials or interacts with at most 4 credential
issuers

11probabilities showed by studies on web surfing behavior [28, 9]



One of the current trends in Grid deployment is to move
from identity-based to attribute-based authorization or role-
based access control (RBAC). The main reasons for this
shift are the scalability issues associated with identity-based
policies and the ease of administration through abstrac-
tion mechanisms as groups and roles. Projects such as
VOMS [2], PERMIS [8], PRIMA [20], and XPOLA [11]
have proposed solutions for attribute-based access control.
GridShib [32], a recently started project with the goal of in-
tegrating Shibboleth [27] and the Globus Toolkit, aims to
transparently retrieve attribute assertions from a Shibboleth
service for the requester. The Community Authorization
Service(CAS) set at the VO level is an authorization service
where the client can ask for the access rights needed to in-
voke a request at a remote service. Despite the increased
scalability, however, all these authorization solutions rely
on fixed configurations of trust roots, on expected knowl-
edge of required credentials, and on expected knowledge
of authorities from which such credentials can be retrieved.
Their deployment is therefore inflexible, and policy changes
are expensive. In addition, most authorization schemes are
server policy centered, and no policy is enforced on the ser-
vice itself by the client.

The ATNAC framework [24] complements our work by
using suspicion levels based on the history of past interac-
tions and the federated knoweledge of client behavior over
the Grid in order to protect trust negations and access con-
trol against DoS attacks.

It is encouraging to see that some of the requirements for
policy advertisement and capability matching that we have
identified and addressed in our negotiation framework are
recognized in emerging standards and specifications such as
XACML [10], SAML [26], WS-Agreement [14], and WS-
Policy [30]. We are following their development closely
and hope to leverage in our own negotiation protocols work
some of the policy primitives that may result from these
efforts.

In the near future, we will investigate, further, the most
simple scenario, where only a two-step negotiation is re-
quired to query resource access policies and subsequently
fulfill them. Additionally, we also plan to refine our simula-
tions by using a Zipf distribution for the selection of clients
and servers. Zipf distributions are applicable in many fields
of daily life and in our case it would show how some clients
may interact more often than others, and how some servers
may be prefered over others. In addition, declarative poli-
cies may create loops during their distributed evaluation; we
plan to integrate existing techniques for loop detection [4]
and the avoidance of deadlocks [18].

A further area of research is the possible utilization of
our traceable negotiation process for accounting purposes,
such as billing and audit. Our infrastructure already sup-
ports the recording of the negotiation steps at each resource

involved. The iterative process of requests for and disclo-
sures of credentials may be extended to include the negotia-
tion for pricing and exchange of payment until an agreement
is reached.

Lastly, we plan the integration of a more expressive
language than PEERTRUST (e.g., PROTUNE [7]) into our
framework to allow, for example, the execution of arbitrary
operations when certain policies are satisfied (e.g., logging
information).
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