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Abstract. Currently, there is no generally adopted standard for a Semantic Web 

rule language, but there are several important evolving proposals such as Ru-
leML, Semantic Web Rule Language (SWRL), and REWERSE Rule Markup 
Language (R2ML). Having that in mind, one may expect that various systems 
(e.g. Web services) will use different rule languages, and thus introduce prob-
lems in sharing rules. In this paper, we show how model-driven engineering 
techniques can be used to enable sharing rules between SWRL and R2ML. The 
main benefit of this approach is that the transformations between languages are 
completely based on the languages’ abstract syntax (i.e., metamodels). The 

main benefit of this approach is that it keeps the focus on the language concepts 
rather than on technical issues caused by different concrete syntax. Yet, we also 
provide transformations that bridge between both languages’ concrete (XML) 
and abstract (MOF) syntax. 

1. Introduction 

The Semantic Web is based on the use of ontologies that should provide an explicit 

definition of the domain conceptualization. Employing the rich AI research expe-

rience and being driven by practical needs for the use on the Web, the W3C has 
adopted the Web Ontology Language (OWL) as a standard ontology language [2]. 

Although the adoption of OWL means that Semantic Web applications can exchange 

their ontologies and tool vendors can develop reasoners and query languages over 

OWL, there is also a need to have some other mechanisms for defining knowledge. 

This is mainly manifested through advanced mechanisms for enriching ontologies by 

using rules. Thus, we should also define a standardized Semantic Web rule language 

that will be based on OWL to provide an additional reasoning layer on top of OWL. 

On the other hand, there are many Semantic Web applications that might use (OWL) 

ontologies whose business logic is implemented by using various rule languages (e.g., 

F-Logic, Jess, and Prolog) [29]. In this case, the primary goal is to have a rule ex-

change language for sharing rules, and hence enabling reusability of their business 
logics. 
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The above arguments motivated the research in the (Semantic) Web community to 

look at their different aspects. The most important proposal for the first group of rule 

language is Semantic Web Rule Language (SWRL) [11] that tends to be a standar-

dized reasoning layer built on top of OWL. However, this is just one submission to 

such a language, while the research in Semantic Web services (e.g., WSMO and 

SWSL) introduces/relies on other rule languages besides SWRL such as SWSL-Rules 

or F-Logic [29]. In fact, this can be addressed by the second group of research efforts 

for Semantic Web rules manifested in the Rule Interchange Format (RIF) initiative 
[8], which tries to define a standard for sharing rules. That is, RIF should be expres-

sive enough, so that it can represent concepts of various rule languages. Besides RIF, 

one should also develop a (two-way) transformation between RIF and any rule lan-

guage that should be shared by using RIF. Currently, there is no official submission to 

RIF, but RuleML [9] and the REWERSE Rule Markup Language (R2ML) [30] are 

two well-known RIF proposals. 

In this paper, we propose transformations between R2ML and SWRL to enable in-

terchanging SWRL rules with various other rule languages (e.g., OCL) via R2ML. 

However, we want our solution to be completely based on the abstract syntax of both 

languages, unlike other similar approaches that mainly focus on a concrete syntax 

(mainly XML-Schema-based) without efficient mechanisms to check whether the 

implemented transformations are valid w.r.t. the abstract syntax. The problem of 
sharing rules is further hampered by the lack of a transformation language for the 

Semantic Web. Motivated by our positive experience with the recent OMG standard 

of the Ontology Definition Metamodel (ODM) [7] [23], we propose using Model-

Driven Engineering (MDE) principles and model transformations to address this is-

sue. Consequently, we define the abstract syntax of R2ML and SWRL by means of 

metamodels. While R2ML is actually fully built by using metamodeling principles, 

SWRL is not, but there is already a comprehensive metamodel for SWRL, the Rule 

Definition Metamodel (RDM) proposed in [5]. This means that our proposed model 

transformations between R2ML and RDM will be based on the abstract syntax of both 

languages. Our solution also covers mappings between the abstract syntax of both 

languages and their XML-based concrete syntax, but this is completely decoupled 
from the transformations between R2ML and RDM.  

2. Motivation 

In order to motivate sharing rules expressed in SWRL and R2ML, consider the fol-

lowing rule example: Each person that is a qualified driver can be added to a car 

rental as additional driver. The rule representation in the SWRL XML-based con-
crete syntax is shown in Fig. 1. Since SWRL defines a rule language on top of OWL, 

this rule presumes that there is an ontology defining Rental, Person, and Qualified-

Driver classes and the property additionalDriver. Inheriting the parts of the RuleML 

syntax, this SWRL rule defines the antecedent of the rule by using the ruleml:body 

element, while the consequent is defined by using ruleml:head.  
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Given the great diversi-

ty of rule concepts and 

existing rule languages, the 

R2ML language supports 

the following types of 

rules: integrity, derivation, 

reaction, and production 

rules. This means, we first 
have to decide to what type 

of R2ML rules we should 

transform the above 

SWRL rule. Having in 

mind the nature of the 

SWRL rule above, which 

defines that something 

must hold under given 

conditions, we actually 

should transform the above 

rule onto an R2ML integri-

ty rule, or more specifically alethic integrity rule [30]. In Fig. 2, we show the SWRL 
rule from Fig. 1 in the R2ML XML-based concrete syntax. This R2ML alethic rule 

has a universally quantified formula as its constraint, while this universally quantified 

formula is an implication whose antecedent is obtained from SWRL ruleml:body and 

consequent from SWRL ruleml:head. 

Once we transform the SWRL rule into R2ML, we can further transform it onto all 

other rule languages supporting integrity rules by exploiting the existing transforma-

tions for R2ML [26] (e.g., OCL invariants [20]). In a similar way, we may translate 

SWRL derivation rules into their R2ML counterparts. Moreover, we can visualize the 

SWRL rule by using the UML-based Rule Modeling Language (URML) [17], since 

R2ML is employed for serialization of URML rules.  

From the above 

example, it is ob-
vious that in both 

cases we have been 

using XML-based 

concrete syntax. 

However, the lan-

guage definition is 

done by using ab-

stract syntax, while 

concrete (visual or 

textual) syntax is 

employed to 
represent physically 

rules. Thus, defin-

ing and implement-

ing mappings be-

<ruleml:Implies  

    xmlns:ruleml="http://www.ruleml.org/0.9/xsd"  

    xmlns:owlx="http://www.w3.org/2003/05/owl-xml"  

    xmlns:swrlx="http://www.w3.org/2003/11/swrlx"  

    xmlns:srv="http://www.eurobizrules.org/ebrc2005/eurentcs"> 

     <ruleml:body> 

       <swrlx:classAtom> 

         <owlx:Class owlx:name="srv:Rental"/> 

         <ruleml:var>rental</ruleml:var> 

       </swrlx:classAtom> 

       <swrlx:classAtom> 

         <owlx:Class owlx:name="srv:Person"/> 

         <ruleml:var>person</ruleml:var> 

       </swrlx:classAtom> 

       <swrlx:classAtom> 

         <owlx:Class owlx:name="srv:QualifiedDriver"/> 

         <ruleml:var>person</ruleml:var> 

       </swrlx:classAtom> 

     </ruleml:body> 

     <ruleml:head>        

       <swrlx:individualPropertyAtom  

        swrlx:property="srv:additionalDriver"> 

         <ruleml:var>rental</ruleml:var> 

         <ruleml:var>person</ruleml:var> 

       </swrlx:individualPropertyAtom> 

     </ruleml:head> 

</ruleml:Implies>  
Fig. 1. A SWRL rule: Each additional driver of a car rental 
must be a qualified driver 

<r2ml:AlethicIntegrityRule xmlns:srv="http://www.eurobizrules.org/ebrc2005/eurentcs"> 

  <r2ml:constraint> 

    <r2ml:UniversallyQuantifiedFormula> 

 <r2ml:ObjectVariable r2ml:name="person" r2ml:classID="srv:Person"/> 

  <r2ml:Implication> 

   <r2ml:antecedent> 

     <r2ml:Conjunction> 

  <r2ml:ObjectClassificationAtom r2ml:classID="srv:Rental"> 

    <r2ml:ObjectVariable r2ml:name="rental"/> 

  </r2ml:ObjectClassificationAtom> 

  <r2ml:ObjectClassificationAtom r2ml:classID="srv:QualifiedDriver"> 

    <r2ml:ObjectVariable r2ml:name="person"/> 

  </r2ml:ObjectClassificationAtom> 

     </r2ml:Conjunction> 

    </r2ml:antecedent> 

    <r2ml:consequent> 

       <r2ml:ReferencePropertyAtom  

             r2ml:referencePropertyID="srv:additionalDriver"> 

    <r2ml:subject> 

      <r2ml:ObjectVariable r2ml:name="person" r2ml:classID="srv:Person"/> 

    </r2ml:subject> 

    <r2ml:object> 

      <r2ml:ObjectVariable r2ml:name="rental"/> 

    </r2ml:object> 

       </r2ml:ReferencePropertyAtom> 

    </r2ml:consequent> 

 </r2ml:Implication> 

    </r2ml:UniversallyQuantifiedFormula> 

  </r2ml:constraint> 

</r2ml:AlethicIntegrityRule>  

Fig. 2. An R2ML (alethic) integrity rule equivalent to the SWRL rule 

from Fig. 1 

 



4      

tween languages should be done on the level of their abstract syntax, as this actually 

allows us to focus on mappings between language constructs, rather than on the im-

plementation details of their concrete syntax. We should mention that the Semantic 

Web community has already recognized the importance of using the software engi-

neering metamodeling-based standards for defining the abstract syntax of ontology 

[23] and rule languages [5][31]. Being driven by this approach, in the rest of the pa-

per, we describe mappings between R2ML and SWRL on the level of their abstract 

syntax, and yet bridge the gap between R2ML and SWRL’s abstract and concrete 
syntaxes by using MDE principles. 

3. Model Transformations for Semantic Web Rules 

In this section, we describe the basic principles of MDE (e.g., metamodeling, MDA, 

and model transformations), how MDE standards are used for defining Semantic Web 

rule languages, and our solution for bridging between R2ML and SWRL.  

3.1 Model Driven Engineering: Basics 

Model Driven Engineering is a new software engineering discipline in which the 

process heavily relies on the use of models [4]. Models are the central MDE concepts 

and they are specified by using modeling languages (e.g., UML or ODM), while 

modeling languages are defined by metamodels. A metamodel is a model of a model-

ing language. That is, a metamodel makes statements about what can be expressed in 

the valid models of a certain modeling language [28]. The OMG’s Model Driven 
Architecture (MDA) is a possible architecture for MDE [19]. MDA consists of three 

layers, namely: M1 (model) layer for defining models of systems under study; M2 

(metamodel) layer for defining model languages (e.g., ODM is defined on this layer); 

and M3 (metametamodel) layer where only one metamodeling language is defined 

(i.e. MOF) [22]. The relations between different MDA layers can be considered as 

instance-of or conformant-to, which means that a model is an instance of a metamo-

del, and a metamodel is an instance of a metametamodel. The MDA architecture uses 

XML Metadata Interchange (XMI), the OMG's standard that defines mappings of 

MDA-based metametamodels, metamodels, and models onto XML documents and 

XML Schemas [25]. Another MDE architecture is Eclipse Modeling Framework 

(EMF), which is different from MDA just in using Ecore on the M3 layer instead of 
MOF. 

Model transformations play an important role and represent the central operation 

for handling models in the MDA [19]. Model transformations are the process of pro-

ducing one model from another model of the same system [19]. The OMG adopted 

the MOF2 Query View Transformation (QVT) specification [24] to address this need. 

In our research, we have decided to use ATLAS Transformation Language (ATL) [1] 

as the primary language and tool for model transformations, as it is one of the most 

important contributions to QVT, is the official Eclipse recommendation for model-to-

model transformations, and yet is an open-source solution. However, the actual ATL 

implementation is different from the QVT standard. ATL integrates an important 
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concept – technical spaces [16]. In our case, this is important when bridging between 

abstract and concrete syntax of the same rule language (e.g., between MOF-based 

based R2ML metamodel and R2ML XML-Schema). This practically means that ATL 

has tools for automatic injection/extraction of XML rules into/from the MOF repre-

sentation. Therefore, we can use the same transformation language for bridging be-

tween a language’s concrete and abstract syntax and between abstract syntax of dif-

ferent languages, which reduces the learning curve of technologies needed to provide 

a complete solution.  

3.2 Ontology Definition Metamodel (ODM) 

The OMG’s ODM specification is closely related to our work [7] [23], as it specifies 

MOF-based metamodels for the Semantic Web ontology languages RDFS and OWL, 

i.e. it defines the abstract syntax of RDFS and OWL by using MOF. The ODM speci-

fication also defines QVT-based mappings between the ODM and RDFS metamodels 

with metamodels of languages such as UML, Common Logics, Topic Maps, and 

Entity-Relationship models. However, all these transformations are defined at the 
level of metamodels, thus everything happens in the MOF technical space [7]. This 

means that, for example, there is a gap between the RDF/XML syntax [3] usually 

supported by OWL tools (as a concrete syntax of the OWL language) and the OWL 

metamodel (i.e., an abstract syntax of OWL). Our approach shows how this can be 

overcome, so that one can achieve the full compatibility between abstract and con-

crete syntax of a Web language for knowledge representation.  

Following the ODM specification, Brockmans & Haase [5] proposed a Rule Defi-

nition Metamodel (RDM), based on ODM (see [6]), as an abstract syntax for SWRL. 

To the best of our knowledge, they have not provided mappings between RDM and 

SWRL XML-based concrete syntax or mappings between RDM and other rule lan-

guages. Here we address both of these issues.   

3.3 Proposed Metamodel-based Solution 

Our solution consists of two transformation steps. The first one (see Fig. 3) is from 

SWRL rules represented in the SWRL XML format (SWRL.xsd and OWL.xsd) [10] 

to models compliant with RDM [5]. 
Since SWRL is actually based on OWL, we also consider transforming OWL on-

tologies along with SWRL rules, that is, transforming the OWL XML-based concrete 

syntax onto ODM. This is done by using the XML injection (ATL feature) of 

OWL/SWRL documents by instantiating the MOF-based metamodel of XML. Then, 

such MOF-based SWRL rules (XML models) are transformed to models compliant 

with RDM. This transformation between the XML metamodel and RDM is imple-

mented in both ways, and it is a bridge between SWRL concrete and abstract syntax. 

Second, RDM-based models obtained in the previous step are transformed into 

R2ML models, which are compliant to the R2ML metamodel (see Fig. 4). This is 

actually a (two-way) transformation between the SWRL and R2ML abstract syntax 

and the core of our solution. R2ML models can later be serialized into R2ML XML-
based concrete syntax or we can import R2ML XML-based syntax into the represen-
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tation compliant with the R2ML metamodel. This has also been implemented and 

described elsewhere [21]. Having in mind all the above transformations, we have the 

core of the solution that is based on the abstract syntax, but we actually can transform 

between SWRL and R2ML XML-based rules.  

 

Fig. 3. First step in the transformation scenario: the OWL/SWRL XML format into the in-

stances of the RDM metamodel 

 

Fig. 4. Second step in the transformation scenario: the transformation of the models compliant 

to the RDM metamodel into the models compliant to the R2ML metamodel 

4. Mappings between R2ML and SWRL 

In this section, we first describe the parts of the R2ML abstract syntax relevant for 

representing SWRL rules, and consider how the R2ML language constructs 

correspond to elements of SWRL and OWL. We then describe mappings between 

these two languages in detail..    

4.1 Definition of Abstract Syntax 

The R2ML metamodel is defined by using the MOF metamodeling language. R2ML 

supports four kinds of rules, namely, integrity rules, derivation rules, production rules, 

and reaction rules. R2ML covers almost all of the use case requirements of the W3C 
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RIF WG [8]. Since SWRL rules can represent both integrity rules and derivation 

rules, we just describe R2ML integrity rules 

here. An integrity rule, also known as (inte-

grity) constraint, consists of a constraint 

assertion, which is a sentence in a logical 

language such as first-order predicate logic 

or OCL (see Fig. 5). The R2ML framework 

supports two kinds of integrity rules: the 

alethic and deontic ones. An alethic integrity 

rule can be expressed by a phrase, such as 
“it is necessarily the case that” and a deontic one can be expressed by phrases, such 

as “it is obligatory that” or “it should be the case that.” 

The corresponding LogicalFormula must have no free variables, that is, all the va-

riables from this formula must be quantified. R2ML defines the general concept of 

LogicalFormula (see Fig. 6) that can be Conjunction, Disjunction, NegationAsFailure, 

StrongNegation, and Implication. The concept of a QuantifiedFormula is essential for 

R2ML integrity rules, and it subsumes existentially quantified formulas and universal-

ly quantified formulas. Fig. 6 also contains elements such as AtLeastQuantifiedFormu-

la, AtMostQuantifiedFormula, and AtLeastAndAtMostQuantifiedFormula for defining 

cardinality constraints with R2ML rules. 

 

Fig. 6.  The concept of a logical formula in R2ML 

Atoms are basic constituents of formulas in R2ML. Atoms are compatible with all 

important concepts of OWL/SWRL. 

R2ML distinguishes object atoms, data 

atoms, and generic atoms. Here we 

present just R2ML atoms necessary for 
our goal, that is, atoms used in SWRL – 

object and data (see [26] for a complete 

description and use of all supported 

atoms). An R2ML ObjectClassificationA-

tom refers to a class and consists of an 

object term (see Fig. 7). Its role is for 

object classification, i.e., an ObjectTerm 

is an instance of the referred class.  

 

Fig. 5. The metamodel of integrity rules 

 

 

Fig. 7. R2ML ObjectClassificationAtom 
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A ReferencePropertyAtom associates an object term as “subject” with another ob-

ject term as “object” (see Fig. 8). It corresponds to the UML and OWL concept of an 

object-valued property. 

 

Fig. 8. R2ML ReferencePropertyAtom 

Terms are the basic constituents of atoms. Similarly to atoms, the R2ML language 

distinguishes between object terms, data terms and generic terms. An ObjectTerm is 
an ObjectVariable, an ObjectName, a ReferencePropertyFunctionTerm, or an Objec-

tOperationTerm (see Fig. 9).  

 

Fig. 9. R2ML Object Terms 

An ObjectOperationTerm is formed with the help of a contextArgument, a user-

defined operation, and an ordered collection of arguments. The RoleFunctionTerm 

corresponds to a functional association end (of a binary association) in a UML class 

model. ObjectNames in R2ML are the same artifacts like Object in UML. They also 

correspond to the Individual concept of OWL. Variables are provided in the form of 

ObjectVariable (i.e. variables that stand for objects), DataVariable (i.e. variables that 

stand for data literals), and GenericVariable (i.e. variables that do not have a type). 

The concept of data value in R2ML is related to the RDF concept of data literal. 

Following OWL, R2ML distinguishes between plain and typed literals. A DataTerm 

is a DataVariable, a DataLiteral, or DataFunctionTerm, which can be of three differ-

ent types: DataOperationTerm, AttributeFunctionTerm, and DatatypeFunctionTerm. 

We have already mentioned that we use RDM as an abstract syntax for SWRL lan-

guage, but instead of using it with the ODM proposed in [6], we have adapted it to 

rely on the standard OMG ODM [23]. Due to space constraints for the paper, we do 

not explain RDM here in detail, but refer readers to the complete reference given in 

[5]. We just explain how RDM defines rules. The RDM Rule concept is a subclass of 
OntologyElement, while OntologyElement is defined in the ODM metamodel [23] as 
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an element of the ODM Ontology class. An RDM (as well as SWRL) rule consists of 

an antecedent and a consequent, also referred to as the body and head of the rule, 

respectively. Both the RDM antecedent and consequent consist of a set of atoms 

which can possibly be empty. In the rest of the section, we define mappings between 

RDM and R2ML. 

4.2 Conceptual mappings between SWRL and R2ML 

In order to share rules between SWRL and R2ML, we define mappings between the 

constructs of SWRL and R2ML on the level of their abstract syntax. Every SWRL 

(i.e., RDM) rule (i.e., Implies element) is mapped to an R2ML AlethicIntegrityRule 

whose constraint is a UniversallyQuantifiedFormula and that formula is an Implica-

tion. In Tables 1, 2 and 3, we show mappings between SWRL and R2ML atoms in 

detail. As OWL (as well as SWRL/RDM) and R2ML distinguish between data values 

and objects, we accordingly divided mappings in the first two tables. In all the map-

pings shown in the tables, CD represents Class Description from [10], an expression T 

is a translation operator of a SWRL element to an R2ML element, and t is a variable. 

We should notice that SWRL rules semantics in these mappings is completely pre-

served. 

Table 1. Mappings of SWRL Classification Atoms to R2ML Atoms 

SWRL  expression R2ML expression 
ClassAtom(classID, t) ObjectClassificationAtom(classID, t) 

ClassAtom(UnionOf(CD1, CD2), t) Disjunction(T(ClassAtom(CD1, t)),  

   T(ClassAtom(CD2, t))) 

ClassAtom(IntersectionOf(CD1, CD2), t) Conjuction(T(ClassAtom( CD1, t)),  

   T(ClassAtom(CD2, t))) 

ClassAtom(ComplementOf(CD), t) StrongNegation(T(ClassAtom(CD, t))) 

ClassAtom(OneOf({objID1,...,objIDn}), t) Disjunction(EqualityAtom(objID1, t),...,  

   EqualityAtom(objIDn ,t)) 

ClassAtom(ObjectRestriction(     

   objPropID, allValuesFrom(CD)), t) 

UniversallyQuantifiedFormula(x, 

   Implication(ReferencePropertyAtom(  

   objPropID, t, x),  T(ClassAtom(CD, t)))  

ClassAtom(ObjectRestriction(   

   objPropID,  someValuesFrom(CD)), t) 

ExistentiallyQuantifiedFormula(x,  

   Conjuction(T(ClassAtom(CD, t) ),  

   ReferencePropertyAtom(objPropID, t, x))) 

ClassAtom(ObjectRestriction(  

   objPropID, hasValue(objID)), t) 

ReferencePropertyAtom(objPropID, t, objID) 

ClassAtom(ObjectRestriction(     

   objPropID, mincardinality(n)), t)  

AtLeastQuantifiedFormula(n, x,  

   ReferencePropertyAtom(objPropID, t, x))  

ClassAtom(ObjectRestriction(      

   objPropID, maxcardinality(n)), t) 

AtMostQuantifiedFormula(n,x,  

    ReferencePropertyAtom(objPropID, t, x))  

ClassAtom(ObjectRestriction(    

   objPropID, mincardinality(m),                                                  

   maxcardinality(n)), t) 

AtLeastAndAtMostQuantifiedFormula(m,n,x,  

   ReferencePropertyAtom(objPropID, t, x)) 

ClassAtom(ObjectRestriction(  

   objPropID, cardinality(n)), t) 

AtLeastAndAtMostQuantifiedFormula(n,n,x,  

   ReferencePropertyAtom(objPropID, t, x)) 
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Table 2. Mappings of SWRL Datarange Atoms to R2ML Atoms 

SWRL  expression R2ML expression 
DatarangeAtom(datatypeID, t) DataClassificationAtom(datatypeID, t) 

DatarangeAtom(  

   OneOf({objID1,...,objIDn}), t) 

Disjunction(DatatypePredicateAtom(  

   swrlb:equal, objID1, t), ...                    

   DatatypePredicateAtom(swrlb:equal,objIDn,t)) 

DatarangeAtom(DataRestriction(  

   dataPropID,  

   allValuesFrom(dataTypeID)), t) 

UniversallyQuantifiedFormula(x,  

   Implication(AttributionAtom(dataPropID,t,x),  

   T(DatarangeAtom(datatypeID, t)))  

DatarangeAtom(DataRestriction(  

   dataPropID,  

   someValuesFrom(datatypeID), t) 

ExistentiallyQuantifiedFormula(x,  

   Conjuction(T(DatarangeAtom(datatypeID,t)),  

   AttributionAtom(dataPropID, t, x))  

DatarangeAtom(DataRestriction(   

   dataPropID,  

   allValuesFrom(OneOf({dataLiteral}))), t) 

UniversallyQuantifiedFormula(x,  

   Implication(AttributionAtom(dataPropID,t,x),                             

   T(DatarangeAtom(OneOf({objID1, ..., objIDn}), t))  

DatarangeAtom(DataRestriction(  

   dataPropID, someValuesFrom(  

   OneOf({dataLiteral}))), t) 

ExistentiallyQuantifiedFormula(x,  

   Conjuction(T(DatarangeAtom(  

   OneOf({objID1, ..., objIDn}), t)),  

   AttributionAtom( dataPropID, t, x)) 

DatarangeAtom(DataRestriction(  

   dataPropID,  hasValue(dataLiteral), t) 

AttributionAtom(dataPropID, t, dataLiteral) 

DatarangeAtom(DataRestriction(  

   dataPropID, mincardinality(n)), t) 

AtLeastQuantifiedFormula(n, x,  

   AttributionAtom(dataPropID, t, x))  

DatarangeAtom(DataRestriction(  

   dataPropID,  maxcardinality(n)), t) 

AtMostQuantifiedFormula(n, x,  

   AttributionAtom(dataPropID, t, x))  

DatarangeAtom(DataRestriction(  

   dataPropID, mincardinality(m),  

   maxcardinality(n)), t) 

AtLeastAndAtMostQuantifiedFormula(m, n, x,  

   AttributionAtom(dataPropID, t, x)) 

Table 3. Mappings of other SWRL Atoms to R2ML Atoms 

SWRL  expression R2ML expression 
IndividualvaluedPropertyAtom(  

   objectID1, objectID2) 

ReferencePropertyAtom(individualvaluedPropertyID,  

   objectID1, objectID2) 

DatavaluedPropertyAtom(objectID, 

   dataLiteral) 

AttributionAtom(datavaluedPropertyID, objectID,  

   dataLiteral) 

SameAs(objectID1, objectID2) EqualityAtom(objectID1, objectID2) 

DifferentFrom(objectID1, objectID2) InequalityAtom(objectID1, objectID2) 

BuiltIn(builtinID, t) DatatypePredicateAtom(builtinID, t) 

 

Using mappings between SWRL and R2ML shown in the tables above, we now il-

lustrate the transformation process with the example SWRL rule from Fig. 1 and its 

corresponding R2ML rule from Fig. 2. The SWRL Implies element is transformed to 

an R2ML AlethicIntegrityRule with UniversallyQuantifiedFormula element as its 

constraint, where UniversallyQuantifiedFormula has an Implication for its formula. 

The SWRL atoms from the body element of the Implies element are transformed to a 

Conjunction of the R2ML atoms in the antecedent part of the R2ML Implication 

element, and the atom from the head part of the SWRL Implies element is trans-

formed to the R2ML atom in the consequent part of the R2ML Implication. As it is 

shown in Table 1, SWRL ClassAtoms with Class as their predicate symbol are trans-

formed to R2ML ObjectClassificationAtoms. In this case, it is important to point out 

that variables used in the SWRL ClassAtoms are transformed to R2ML ObjectVaria-

ble of the R2ML ObjectClassificationAtom. In a similar way, we transform other two 
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ClassAtoms from the SWRL rule shown in Fig. 1. The SWRL individualPropertyAtom 

is transformed to R2ML ReferencePropertyAtom, as it is shown in Table 3. Variables 

used in the SWRL individualPropertyAtom are transformed to ObjectVariables, as the 

subject and object of the R2ML ReferencePropretyAtom. 

5. Implementation Experience 

In this section, we explain the transformation steps undertaken to transform between 

SWRL rules and R2ML. This is a full implementation of the mappings defined in the 

previous section. Here we refer to Fig. 3 and Fig. 4 from Section 3.3 in order to posi-

tion each specific transformation/step in this process of transformation. As we have 

already said in Section 3.3, the transformation process between R2ML and SWRL is 

split into two major steps. 

In the first step, we bridge between the SWRL XML concrete syntax and the 

SWRL abstract syntax (i.e., RDM). To do this, we first use the XML injector, (see 

Fig. 3, step 1: XML injection), a part of ATL that automatically transforms SWRL 

XML documents like the one given in Fig. 1 (without any manually written transfor-
mation) into the models conforming to the MOF-based XML metamodel that defines 

XML (e.g., Node, Element, and Attribute). Once we inject SWRL XML rules into a 

MOF-based representation (Rules_XML in Fig. 3), we can manipulate with them like 

with any other type of MOF-based models. Thus, such XML models can be 

represented in the XML XMI format (in Fig. 3, step 2: XMI export). This is again an 

integrated ATL feature that requires no manual work. Now we transform between 

XML models (Rules_XML from Fig. 3) and RDM-compliant models (Rules_RDM 

from Fig. 3). This actually requires writing two ATL transformations (Fig. 3, step 3: 

XML2RDM.alt and step 5: RDM2XML.atl), and hence this is the bridge between the 

SWRL XML-based concrete syntax and the SWRL abstract syntax. Both transforma-

tions are executed on the M1 level, but they require the input and output models to be 

compliant to the input and output metamodels (i.e., XML and RDM), respectively. 
This way we check validity of all input SWRL XML-based rules w.r.t. the RDM 

metamodel. Since we have implemented transformations in both directions, we can 

transform RDM rules into the XML models, that can be later exported into SWRL 

XML concrete syntax (Fig. 3, step 6: XML export)  and obtain the rules in the from 

given in Fig. 1, which is important when transforming R2ML rules into the SWRL 

XML concrete syntax. Note also that once we transform SWRL rules into the RDM 

representation, we can also export SWRL rules in the RDM XMI format (Fig. 7, step 

7: XMI export), and thus we can share SWRL rules with any MOF-compliant reposi-

tory. This is another important contribution to the RDM metamodel itself [5] that 

improves its practical value to be used by other MOF-based tools. Finally, say that we 

have also changed the RDM metamodel [5], so that it is now based on the standard 
ODM metamodel [23] instead of being based on the one defined in [6].  

The second step is the core of our transformation between the SWRL abstract syn-

tax (i.e., RDM) and the R2ML abstract syntax (Fig. 4, steps 8 and 9). This transforma-

tion step is fully based on the conceptual mappings between the elements of the RDM 

and R2ML metamodel described in Section 4. The transformations between the RDM 
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metamodel and the R2ML metamodel are defined as a sequence of rules in the ATL 

language (Fig. 4, steps 8 and 9: RDM2R2ML.atl and R2ML2RDM.atl). In these ATL 

transformations, we use ATL constructs such as matched rules, (unique) lazy rules, 

and helpers. In order to illustrate a part of these transformations, let us consider a 

matched rule. It basically matches a given type of a source model element, and gene-

rates one or more kinds of target model elements. Fig. 10 gives an example of a 

matched rule, which is, in fact, an excerpt of the RDM2R2ML.atl transformation for 

RDM individualPropertyAtoms that are transformed into R2ML ReferencePropertyA-

toms. Note also that an additional step can be performed in order to transform rules 

between the R2ML abstract syntax and the R2ML XML concrete syntax. We pre-
viously implemented this bridge [21] in a similar way like we have done it for SWRL, 

in this paper. This means that we can transform all rules between the R2ML concrete 

(Fig. 2) syntax and the R2ML abstract syntax. Hence, we provide the whole chain of 

transformations bridging between R2ML XML rules and SWRL XML rules, but the 

core of this bridge is done on the level of the abstract syntax of two rule languages 

making sure that all rules being shared are valid w.r.t. their abstract syntax. 

rule IndividualPropertyAtom2ReferencePropertyAtom{ 

 from i : RDM!Atom ( 

    i.name = 'IndividualPropertyAtom' 

     ) 

 to refpropat : R2ML!ReferencePropertyAtom ( 

    isNegated <- false, 

    referenceProperty <- i.hasPredicateSymbol, 

    subject <- thisModule.IndividualVariable2ObjectVariable( i.terms->last() ), 

    object <- thisModule.IndividualVariable2ObjectVariable( i.terms->first() ) 

      )  

}  

Fig. 10. An excerpt of the ATL transformation: A matched rule that transforms an RDM Indi-

vidualPropertyAtom to an R2ML ReferencePropertyAtom 

All the transformations mentioned are available at [27] and [32], while we have al-

so implemented a Java API, so that one can use the transformations in any Java based 

applications. 

6. Related work and Conclusion 

The current transformation between the R2ML and SWRL abstract syntax fully cap-

tures the definition of SWRL, so that all SWRL constructs can be translated onto their 

counterparts in R2ML and they then can also be transformed back from R2ML to 

SWRL. However, we have yet not finalized the implementation of all OWL (i.e., 

ODM) constructs to their R2ML equivalents (basically this is just for classes and 

properties, while restrictions have already been covered). This means that all OWL 

constructs used in the SWRL can be transformed in the R2ML, but separate OWL 
ontology definition has not supported yet. Having in mind the nature of open-world 

inference that OWL is based on, this is also allowed in SWRL as well as in R2ML. 

Nevertheless, this may have consequences if we want to map such SWRL rules from 

R2ML, for example, into OCL constraints for which we strictly have to define all 

elements of the underlying vocabulary. For instance, let us take a look at the SWRL 

rule from Fig. 1. In that rule, we do not have any information about the first individua-
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lPropertyAtom's property (i.e., additionaDriver), that is, there is no explicitly defined 

domain and range for this property. During the implementation of the transformations 

between R2ML and OCL, we realized that the obtained R2ML rule from Fig. 2 can 

not be translated into a valid OCL, since we can not determine the context of the OCL 

invariant. Once we define ontology and all the properties referred to in the original 

SWRL rules and transform them to elements of the R2ML Vocabulary, we can obtain 

correct OCL invariants such as the following one: 
context Rental  

    inv: self.additionalDriver->notEmpty() implies  

          self.additionalDriver->forall(d | d.oclIsTypeOf(QualifiedDriver)   
Currently, we are working on supporting mappings between R2ML Vocabulary 

and the complete definition of OWL and between R2ML Vocabulary and UML ele-

ments related to classes. Once we complete these transformations, we will be able to 

evaluate to what extent we can share the rules between OCL and SWRL via R2ML. 

We have also mentioned in Section 4, that in the current implementation of trans-

formations between the SWRL and R2ML languages (as well as OCL constraints), we 
transform all SWRL rules into corresponding R2ML integrity rules. However, some 

SWRL rules may be intended to represent explicit definitions of concepts, so they 

should be transformed into R2ML derivation rules. While a derivation rule represents 

an explicit constructive definition, an integrity rule rather complements a definition 

by defining the admissible knowledge states with respect to the concepts constrained 

by it. While the conditions of a derivation rule are instances of the AndOrNafNeg-

Formula class, representing quantifier-free logical formulas with conjunction, dis-

junction and negation; conclusions are restricted to quantifier-free disjunctive normal 

forms without NAF (Negation as Failure). Generally, supporting the transformation of 

SWRL rules into R2ML derivation rules will only require using a different type of 

logical formulas, but much of the current transformation will be reused. Once we 

support derivation rules, it will be possible to translate SWRL rules into F-Logic, 

Jess, RuleML, since the present R2ML translators support transformation of deriva-
tion rules [27]. Nevertheless, there is an open issue how to determine automatically 

whether we should translate a SWRL rule into an integrity rule or into a derivation 

rule. This basically requires analyzing the context in which the rule is defined (i.e., 

based on the notion of ontology elements that the formulas of rules are based on).  

To the best of our knowledge, there is no available solution to transforming rule 

languages on the level of their abstract syntax and by using model transformation 

languages. The main benefit of our solution is that the mappings between the abstract 

syntax of rule languages (e.g., R2ML and SWRL in our case) are completely inde-

pendent of their concrete syntax. Thus, we do not have to reconsider the mappings 

between two different languages when supporting various concrete syntax of the 

languages under study. Since the mappings between the same language’s abstract and 
concrete syntax are straightforward, the effort and the price of support for concrete 

syntax are lower. For example, in the case of SWRL, we may use two concrete syn-

tax, namely, the RDF/XML concrete syntax [3] and the OWL XML presentation 

syntax [10]. Currently, we only support the first one, but when we implement the 

support for the second one, we will not reconsider the mappings between R2ML and 

SWRL, but only between SWRL RDF concrete syntax and RDM, i.e., SWRL abstract 

syntax.  
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A similar approach to ours is applied in the ODM specification [23] where the 

(model) transformations between OWL and the languages such as UML, Topic Maps, 

and ER models are defined at the level of their abstract syntax (i.e., metamodels). Our 

solution goes one step further and demonstrates how to bridge between concrete and 

abstract syntax of Semantic Web languages. Besides the obvious benefit of develop-

ing transformations between rule languages on the level of abstract syntax, the use of 

model transformations and languages such as ATL is more suitable than XSLT. Al-

though, in principle, we could use XSLT to map between abstract syntax thanks to 
XMI in which all MOF-based metamodels can be stored, the available analysis of the 

use of XSLT for sharing knowledge indicates that XSLT is hard to maintain where 

modifications of input and output formats can completely invalidate previous versions 

of XSLTs [12]. Even some recent experiences in transforming rule languages 

(SWRLp) report on constraints of XSLT (e.g., to transform unique symbols) that can 

only be overcome by XSLT extensions implemented in other languages such as Java 

and Jess [18]. In the case of using model transformations and engines such as ATL, 

we also provide a convenient support for transforming semantic Web rules in the XMI 

format, and thus interoperability with MOF-based tools and integration with the cur-

rent trends in software engineering. 

In future research we plan to use the proposed approach to provide mappings be-

tween R2ML and OMG’s initiatives for Semantics of Business Vocabulary and Busi-
ness Rules (SBVR) and Production rules. This also nicely fits into the OMG’s initia-

tive for Business Rule Management (http://www.omg.org/busrulesmgmtrfi) by enabl-

ing the use of Semantic Web rules, which will be another important aspect of our 

future research. Note that the proposed solution also complements our efforts for 

sharing Semantic Web policies by using R2ML [13]. Providing the transformations 

between R2ML and the policy languages KAoS and Rei, we can further transform 

policies into metamodeling-based approaches to trust and security [15]. 
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