
Model Transformations to Share Rules

between SWRL and R2ML

Milan Milanović1, Dragan Gašević2, Adrian Giurca3,

Gerd Wagner3, and Vladan Devedžić1

1 FON-School of Business Administration, University of Belgrade, Serbia
milan@milanovic.org, devedzic@etf.bg.ac.yu

2 School of Interactive Arts and Technology, Simon Fraser University Surrey, Canada
dgasevic@sfu.ca

3 Institute of Informatics, Brandenburg Technical University at Cottbus, Germany
Giurca@tu-cottbus.de, G.Wagner@tu-cottbus.de

Abstract. Currently, there is no generally adopted standard for a Semantic Web

rule language, but there are several important evolving proposals such as Ru-
leML, Semantic Web Rule Language (SWRL), and REWERSE Rule Markup
Language (R2ML). Having that in mind, one may expect that various systems
(e.g. Web services) will use different rule languages, and thus introduce prob-
lems in sharing rules. In this paper, we show how model-driven engineering
techniques can be used to enable sharing rules between SWRL and R2ML. The
main benefit of this approach is that the transformations between languages are
completely based on the languages’ abstract syntax (i.e., metamodels). The

main benefit of this approach is that it keeps the focus on the language concepts
rather than on technical issues caused by different concrete syntax. Yet, we also
provide transformations that bridge between both languages’ concrete (XML)
and abstract (MOF) syntax.

1. Introduction

The Semantic Web is based on the use of ontologies that should provide an explicit

definition of the domain conceptualization. Employing the rich AI research expe-

rience and being driven by practical needs for the use on the Web, the W3C has
adopted the Web Ontology Language (OWL) as a standard ontology language [2].

Although the adoption of OWL means that Semantic Web applications can exchange

their ontologies and tool vendors can develop reasoners and query languages over

OWL, there is also a need to have some other mechanisms for defining knowledge.

This is mainly manifested through advanced mechanisms for enriching ontologies by

using rules. Thus, we should also define a standardized Semantic Web rule language

that will be based on OWL to provide an additional reasoning layer on top of OWL.

On the other hand, there are many Semantic Web applications that might use (OWL)

ontologies whose business logic is implemented by using various rule languages (e.g.,

F-Logic, Jess, and Prolog) [29]. In this case, the primary goal is to have a rule ex-

change language for sharing rules, and hence enabling reusability of their business
logics.

2

The above arguments motivated the research in the (Semantic) Web community to

look at their different aspects. The most important proposal for the first group of rule

language is Semantic Web Rule Language (SWRL) [11] that tends to be a standar-

dized reasoning layer built on top of OWL. However, this is just one submission to

such a language, while the research in Semantic Web services (e.g., WSMO and

SWSL) introduces/relies on other rule languages besides SWRL such as SWSL-Rules

or F-Logic [29]. In fact, this can be addressed by the second group of research efforts

for Semantic Web rules manifested in the Rule Interchange Format (RIF) initiative
[8], which tries to define a standard for sharing rules. That is, RIF should be expres-

sive enough, so that it can represent concepts of various rule languages. Besides RIF,

one should also develop a (two-way) transformation between RIF and any rule lan-

guage that should be shared by using RIF. Currently, there is no official submission to

RIF, but RuleML [9] and the REWERSE Rule Markup Language (R2ML) [30] are

two well-known RIF proposals.

In this paper, we propose transformations between R2ML and SWRL to enable in-

terchanging SWRL rules with various other rule languages (e.g., OCL) via R2ML.

However, we want our solution to be completely based on the abstract syntax of both

languages, unlike other similar approaches that mainly focus on a concrete syntax

(mainly XML-Schema-based) without efficient mechanisms to check whether the

implemented transformations are valid w.r.t. the abstract syntax. The problem of
sharing rules is further hampered by the lack of a transformation language for the

Semantic Web. Motivated by our positive experience with the recent OMG standard

of the Ontology Definition Metamodel (ODM) [7] [23], we propose using Model-

Driven Engineering (MDE) principles and model transformations to address this is-

sue. Consequently, we define the abstract syntax of R2ML and SWRL by means of

metamodels. While R2ML is actually fully built by using metamodeling principles,

SWRL is not, but there is already a comprehensive metamodel for SWRL, the Rule

Definition Metamodel (RDM) proposed in [5]. This means that our proposed model

transformations between R2ML and RDM will be based on the abstract syntax of both

languages. Our solution also covers mappings between the abstract syntax of both

languages and their XML-based concrete syntax, but this is completely decoupled
from the transformations between R2ML and RDM.

2. Motivation

In order to motivate sharing rules expressed in SWRL and R2ML, consider the fol-

lowing rule example: Each person that is a qualified driver can be added to a car

rental as additional driver. The rule representation in the SWRL XML-based con-
crete syntax is shown in Fig. 1. Since SWRL defines a rule language on top of OWL,

this rule presumes that there is an ontology defining Rental, Person, and Qualified-

Driver classes and the property additionalDriver. Inheriting the parts of the RuleML

syntax, this SWRL rule defines the antecedent of the rule by using the ruleml:body

element, while the consequent is defined by using ruleml:head.

 3

Given the great diversi-

ty of rule concepts and

existing rule languages, the

R2ML language supports

the following types of

rules: integrity, derivation,

reaction, and production

rules. This means, we first
have to decide to what type

of R2ML rules we should

transform the above

SWRL rule. Having in

mind the nature of the

SWRL rule above, which

defines that something

must hold under given

conditions, we actually

should transform the above

rule onto an R2ML integri-

ty rule, or more specifically alethic integrity rule [30]. In Fig. 2, we show the SWRL
rule from Fig. 1 in the R2ML XML-based concrete syntax. This R2ML alethic rule

has a universally quantified formula as its constraint, while this universally quantified

formula is an implication whose antecedent is obtained from SWRL ruleml:body and

consequent from SWRL ruleml:head.

Once we transform the SWRL rule into R2ML, we can further transform it onto all

other rule languages supporting integrity rules by exploiting the existing transforma-

tions for R2ML [26] (e.g., OCL invariants [20]). In a similar way, we may translate

SWRL derivation rules into their R2ML counterparts. Moreover, we can visualize the

SWRL rule by using the UML-based Rule Modeling Language (URML) [17], since

R2ML is employed for serialization of URML rules.

From the above

example, it is ob-
vious that in both

cases we have been

using XML-based

concrete syntax.

However, the lan-

guage definition is

done by using ab-

stract syntax, while

concrete (visual or

textual) syntax is

employed to
represent physically

rules. Thus, defin-

ing and implement-

ing mappings be-

<ruleml:Implies

 xmlns:ruleml="http://www.ruleml.org/0.9/xsd"

 xmlns:owlx="http://www.w3.org/2003/05/owl-xml"

 xmlns:swrlx="http://www.w3.org/2003/11/swrlx"

 xmlns:srv="http://www.eurobizrules.org/ebrc2005/eurentcs">

 <ruleml:body>

 <swrlx:classAtom>

 <owlx:Class owlx:name="srv:Rental"/>

 <ruleml:var>rental</ruleml:var>

 </swrlx:classAtom>

 <swrlx:classAtom>

 <owlx:Class owlx:name="srv:Person"/>

 <ruleml:var>person</ruleml:var>

 </swrlx:classAtom>

 <swrlx:classAtom>

 <owlx:Class owlx:name="srv:QualifiedDriver"/>

 <ruleml:var>person</ruleml:var>

 </swrlx:classAtom>

 </ruleml:body>

 <ruleml:head>

 <swrlx:individualPropertyAtom

 swrlx:property="srv:additionalDriver">

 <ruleml:var>rental</ruleml:var>

 <ruleml:var>person</ruleml:var>

 </swrlx:individualPropertyAtom>

 </ruleml:head>

</ruleml:Implies>
Fig. 1. A SWRL rule: Each additional driver of a car rental
must be a qualified driver

<r2ml:AlethicIntegrityRule xmlns:srv="http://www.eurobizrules.org/ebrc2005/eurentcs">

 <r2ml:constraint>

 <r2ml:UniversallyQuantifiedFormula>

 <r2ml:ObjectVariable r2ml:name="person" r2ml:classID="srv:Person"/>

 <r2ml:Implication>

 <r2ml:antecedent>

 <r2ml:Conjunction>

 <r2ml:ObjectClassificationAtom r2ml:classID="srv:Rental">

 <r2ml:ObjectVariable r2ml:name="rental"/>

 </r2ml:ObjectClassificationAtom>

 <r2ml:ObjectClassificationAtom r2ml:classID="srv:QualifiedDriver">

 <r2ml:ObjectVariable r2ml:name="person"/>

 </r2ml:ObjectClassificationAtom>

 </r2ml:Conjunction>

 </r2ml:antecedent>

 <r2ml:consequent>

 <r2ml:ReferencePropertyAtom

 r2ml:referencePropertyID="srv:additionalDriver">

 <r2ml:subject>

 <r2ml:ObjectVariable r2ml:name="person" r2ml:classID="srv:Person"/>

 </r2ml:subject>

 <r2ml:object>

 <r2ml:ObjectVariable r2ml:name="rental"/>

 </r2ml:object>

 </r2ml:ReferencePropertyAtom>

 </r2ml:consequent>

 </r2ml:Implication>

 </r2ml:UniversallyQuantifiedFormula>

 </r2ml:constraint>

</r2ml:AlethicIntegrityRule>

Fig. 2. An R2ML (alethic) integrity rule equivalent to the SWRL rule

from Fig. 1

4

tween languages should be done on the level of their abstract syntax, as this actually

allows us to focus on mappings between language constructs, rather than on the im-

plementation details of their concrete syntax. We should mention that the Semantic

Web community has already recognized the importance of using the software engi-

neering metamodeling-based standards for defining the abstract syntax of ontology

[23] and rule languages [5][31]. Being driven by this approach, in the rest of the pa-

per, we describe mappings between R2ML and SWRL on the level of their abstract

syntax, and yet bridge the gap between R2ML and SWRL’s abstract and concrete
syntaxes by using MDE principles.

3. Model Transformations for Semantic Web Rules

In this section, we describe the basic principles of MDE (e.g., metamodeling, MDA,

and model transformations), how MDE standards are used for defining Semantic Web

rule languages, and our solution for bridging between R2ML and SWRL.

3.1 Model Driven Engineering: Basics

Model Driven Engineering is a new software engineering discipline in which the

process heavily relies on the use of models [4]. Models are the central MDE concepts

and they are specified by using modeling languages (e.g., UML or ODM), while

modeling languages are defined by metamodels. A metamodel is a model of a model-

ing language. That is, a metamodel makes statements about what can be expressed in

the valid models of a certain modeling language [28]. The OMG’s Model Driven
Architecture (MDA) is a possible architecture for MDE [19]. MDA consists of three

layers, namely: M1 (model) layer for defining models of systems under study; M2

(metamodel) layer for defining model languages (e.g., ODM is defined on this layer);

and M3 (metametamodel) layer where only one metamodeling language is defined

(i.e. MOF) [22]. The relations between different MDA layers can be considered as

instance-of or conformant-to, which means that a model is an instance of a metamo-

del, and a metamodel is an instance of a metametamodel. The MDA architecture uses

XML Metadata Interchange (XMI), the OMG's standard that defines mappings of

MDA-based metametamodels, metamodels, and models onto XML documents and

XML Schemas [25]. Another MDE architecture is Eclipse Modeling Framework

(EMF), which is different from MDA just in using Ecore on the M3 layer instead of
MOF.

Model transformations play an important role and represent the central operation

for handling models in the MDA [19]. Model transformations are the process of pro-

ducing one model from another model of the same system [19]. The OMG adopted

the MOF2 Query View Transformation (QVT) specification [24] to address this need.

In our research, we have decided to use ATLAS Transformation Language (ATL) [1]

as the primary language and tool for model transformations, as it is one of the most

important contributions to QVT, is the official Eclipse recommendation for model-to-

model transformations, and yet is an open-source solution. However, the actual ATL

implementation is different from the QVT standard. ATL integrates an important

 5

concept – technical spaces [16]. In our case, this is important when bridging between

abstract and concrete syntax of the same rule language (e.g., between MOF-based

based R2ML metamodel and R2ML XML-Schema). This practically means that ATL

has tools for automatic injection/extraction of XML rules into/from the MOF repre-

sentation. Therefore, we can use the same transformation language for bridging be-

tween a language’s concrete and abstract syntax and between abstract syntax of dif-

ferent languages, which reduces the learning curve of technologies needed to provide

a complete solution.

3.2 Ontology Definition Metamodel (ODM)

The OMG’s ODM specification is closely related to our work [7] [23], as it specifies

MOF-based metamodels for the Semantic Web ontology languages RDFS and OWL,

i.e. it defines the abstract syntax of RDFS and OWL by using MOF. The ODM speci-

fication also defines QVT-based mappings between the ODM and RDFS metamodels

with metamodels of languages such as UML, Common Logics, Topic Maps, and

Entity-Relationship models. However, all these transformations are defined at the
level of metamodels, thus everything happens in the MOF technical space [7]. This

means that, for example, there is a gap between the RDF/XML syntax [3] usually

supported by OWL tools (as a concrete syntax of the OWL language) and the OWL

metamodel (i.e., an abstract syntax of OWL). Our approach shows how this can be

overcome, so that one can achieve the full compatibility between abstract and con-

crete syntax of a Web language for knowledge representation.

Following the ODM specification, Brockmans & Haase [5] proposed a Rule Defi-

nition Metamodel (RDM), based on ODM (see [6]), as an abstract syntax for SWRL.

To the best of our knowledge, they have not provided mappings between RDM and

SWRL XML-based concrete syntax or mappings between RDM and other rule lan-

guages. Here we address both of these issues.

3.3 Proposed Metamodel-based Solution

Our solution consists of two transformation steps. The first one (see Fig. 3) is from

SWRL rules represented in the SWRL XML format (SWRL.xsd and OWL.xsd) [10]

to models compliant with RDM [5].
Since SWRL is actually based on OWL, we also consider transforming OWL on-

tologies along with SWRL rules, that is, transforming the OWL XML-based concrete

syntax onto ODM. This is done by using the XML injection (ATL feature) of

OWL/SWRL documents by instantiating the MOF-based metamodel of XML. Then,

such MOF-based SWRL rules (XML models) are transformed to models compliant

with RDM. This transformation between the XML metamodel and RDM is imple-

mented in both ways, and it is a bridge between SWRL concrete and abstract syntax.

Second, RDM-based models obtained in the previous step are transformed into

R2ML models, which are compliant to the R2ML metamodel (see Fig. 4). This is

actually a (two-way) transformation between the SWRL and R2ML abstract syntax

and the core of our solution. R2ML models can later be serialized into R2ML XML-
based concrete syntax or we can import R2ML XML-based syntax into the represen-

6

tation compliant with the R2ML metamodel. This has also been implemented and

described elsewhere [21]. Having in mind all the above transformations, we have the

core of the solution that is based on the abstract syntax, but we actually can transform

between SWRL and R2ML XML-based rules.

Fig. 3. First step in the transformation scenario: the OWL/SWRL XML format into the in-

stances of the RDM metamodel

Fig. 4. Second step in the transformation scenario: the transformation of the models compliant

to the RDM metamodel into the models compliant to the R2ML metamodel

4. Mappings between R2ML and SWRL

In this section, we first describe the parts of the R2ML abstract syntax relevant for

representing SWRL rules, and consider how the R2ML language constructs

correspond to elements of SWRL and OWL. We then describe mappings between

these two languages in detail..

4.1 Definition of Abstract Syntax

The R2ML metamodel is defined by using the MOF metamodeling language. R2ML

supports four kinds of rules, namely, integrity rules, derivation rules, production rules,

and reaction rules. R2ML covers almost all of the use case requirements of the W3C

 7

RIF WG [8]. Since SWRL rules can represent both integrity rules and derivation

rules, we just describe R2ML integrity rules

here. An integrity rule, also known as (inte-

grity) constraint, consists of a constraint

assertion, which is a sentence in a logical

language such as first-order predicate logic

or OCL (see Fig. 5). The R2ML framework

supports two kinds of integrity rules: the

alethic and deontic ones. An alethic integrity

rule can be expressed by a phrase, such as
“it is necessarily the case that” and a deontic one can be expressed by phrases, such

as “it is obligatory that” or “it should be the case that.”

The corresponding LogicalFormula must have no free variables, that is, all the va-

riables from this formula must be quantified. R2ML defines the general concept of

LogicalFormula (see Fig. 6) that can be Conjunction, Disjunction, NegationAsFailure,

StrongNegation, and Implication. The concept of a QuantifiedFormula is essential for

R2ML integrity rules, and it subsumes existentially quantified formulas and universal-

ly quantified formulas. Fig. 6 also contains elements such as AtLeastQuantifiedFormu-

la, AtMostQuantifiedFormula, and AtLeastAndAtMostQuantifiedFormula for defining

cardinality constraints with R2ML rules.

Fig. 6. The concept of a logical formula in R2ML

Atoms are basic constituents of formulas in R2ML. Atoms are compatible with all

important concepts of OWL/SWRL.

R2ML distinguishes object atoms, data

atoms, and generic atoms. Here we

present just R2ML atoms necessary for
our goal, that is, atoms used in SWRL –

object and data (see [26] for a complete

description and use of all supported

atoms). An R2ML ObjectClassificationA-

tom refers to a class and consists of an

object term (see Fig. 7). Its role is for

object classification, i.e., an ObjectTerm

is an instance of the referred class.

Fig. 5. The metamodel of integrity rules

Fig. 7. R2ML ObjectClassificationAtom

8

A ReferencePropertyAtom associates an object term as “subject” with another ob-

ject term as “object” (see Fig. 8). It corresponds to the UML and OWL concept of an

object-valued property.

Fig. 8. R2ML ReferencePropertyAtom

Terms are the basic constituents of atoms. Similarly to atoms, the R2ML language

distinguishes between object terms, data terms and generic terms. An ObjectTerm is
an ObjectVariable, an ObjectName, a ReferencePropertyFunctionTerm, or an Objec-

tOperationTerm (see Fig. 9).

Fig. 9. R2ML Object Terms

An ObjectOperationTerm is formed with the help of a contextArgument, a user-

defined operation, and an ordered collection of arguments. The RoleFunctionTerm

corresponds to a functional association end (of a binary association) in a UML class

model. ObjectNames in R2ML are the same artifacts like Object in UML. They also

correspond to the Individual concept of OWL. Variables are provided in the form of

ObjectVariable (i.e. variables that stand for objects), DataVariable (i.e. variables that

stand for data literals), and GenericVariable (i.e. variables that do not have a type).

The concept of data value in R2ML is related to the RDF concept of data literal.

Following OWL, R2ML distinguishes between plain and typed literals. A DataTerm

is a DataVariable, a DataLiteral, or DataFunctionTerm, which can be of three differ-

ent types: DataOperationTerm, AttributeFunctionTerm, and DatatypeFunctionTerm.

We have already mentioned that we use RDM as an abstract syntax for SWRL lan-

guage, but instead of using it with the ODM proposed in [6], we have adapted it to

rely on the standard OMG ODM [23]. Due to space constraints for the paper, we do

not explain RDM here in detail, but refer readers to the complete reference given in

[5]. We just explain how RDM defines rules. The RDM Rule concept is a subclass of
OntologyElement, while OntologyElement is defined in the ODM metamodel [23] as

 9

an element of the ODM Ontology class. An RDM (as well as SWRL) rule consists of

an antecedent and a consequent, also referred to as the body and head of the rule,

respectively. Both the RDM antecedent and consequent consist of a set of atoms

which can possibly be empty. In the rest of the section, we define mappings between

RDM and R2ML.

4.2 Conceptual mappings between SWRL and R2ML

In order to share rules between SWRL and R2ML, we define mappings between the

constructs of SWRL and R2ML on the level of their abstract syntax. Every SWRL

(i.e., RDM) rule (i.e., Implies element) is mapped to an R2ML AlethicIntegrityRule

whose constraint is a UniversallyQuantifiedFormula and that formula is an Implica-

tion. In Tables 1, 2 and 3, we show mappings between SWRL and R2ML atoms in

detail. As OWL (as well as SWRL/RDM) and R2ML distinguish between data values

and objects, we accordingly divided mappings in the first two tables. In all the map-

pings shown in the tables, CD represents Class Description from [10], an expression T

is a translation operator of a SWRL element to an R2ML element, and t is a variable.

We should notice that SWRL rules semantics in these mappings is completely pre-

served.

Table 1. Mappings of SWRL Classification Atoms to R2ML Atoms

SWRL expression R2ML expression
ClassAtom(classID, t) ObjectClassificationAtom(classID, t)

ClassAtom(UnionOf(CD1, CD2), t) Disjunction(T(ClassAtom(CD1, t)),

 T(ClassAtom(CD2, t)))

ClassAtom(IntersectionOf(CD1, CD2), t) Conjuction(T(ClassAtom(CD1, t)),

 T(ClassAtom(CD2, t)))

ClassAtom(ComplementOf(CD), t) StrongNegation(T(ClassAtom(CD, t)))

ClassAtom(OneOf({objID1,...,objIDn}), t) Disjunction(EqualityAtom(objID1, t),...,

 EqualityAtom(objIDn ,t))

ClassAtom(ObjectRestriction(

 objPropID, allValuesFrom(CD)), t)

UniversallyQuantifiedFormula(x,

 Implication(ReferencePropertyAtom(

 objPropID, t, x), T(ClassAtom(CD, t)))

ClassAtom(ObjectRestriction(

 objPropID, someValuesFrom(CD)), t)

ExistentiallyQuantifiedFormula(x,

 Conjuction(T(ClassAtom(CD, t)),

 ReferencePropertyAtom(objPropID, t, x)))

ClassAtom(ObjectRestriction(

 objPropID, hasValue(objID)), t)

ReferencePropertyAtom(objPropID, t, objID)

ClassAtom(ObjectRestriction(

 objPropID, mincardinality(n)), t)

AtLeastQuantifiedFormula(n, x,

 ReferencePropertyAtom(objPropID, t, x))

ClassAtom(ObjectRestriction(

 objPropID, maxcardinality(n)), t)

AtMostQuantifiedFormula(n,x,

 ReferencePropertyAtom(objPropID, t, x))

ClassAtom(ObjectRestriction(

 objPropID, mincardinality(m),

 maxcardinality(n)), t)

AtLeastAndAtMostQuantifiedFormula(m,n,x,

 ReferencePropertyAtom(objPropID, t, x))

ClassAtom(ObjectRestriction(

 objPropID, cardinality(n)), t)

AtLeastAndAtMostQuantifiedFormula(n,n,x,

 ReferencePropertyAtom(objPropID, t, x))

10

Table 2. Mappings of SWRL Datarange Atoms to R2ML Atoms

SWRL expression R2ML expression
DatarangeAtom(datatypeID, t) DataClassificationAtom(datatypeID, t)

DatarangeAtom(

 OneOf({objID1,...,objIDn}), t)

Disjunction(DatatypePredicateAtom(

 swrlb:equal, objID1, t), ...

 DatatypePredicateAtom(swrlb:equal,objIDn,t))

DatarangeAtom(DataRestriction(

 dataPropID,

 allValuesFrom(dataTypeID)), t)

UniversallyQuantifiedFormula(x,

 Implication(AttributionAtom(dataPropID,t,x),

 T(DatarangeAtom(datatypeID, t)))

DatarangeAtom(DataRestriction(

 dataPropID,

 someValuesFrom(datatypeID), t)

ExistentiallyQuantifiedFormula(x,

 Conjuction(T(DatarangeAtom(datatypeID,t)),

 AttributionAtom(dataPropID, t, x))

DatarangeAtom(DataRestriction(

 dataPropID,

 allValuesFrom(OneOf({dataLiteral}))), t)

UniversallyQuantifiedFormula(x,

 Implication(AttributionAtom(dataPropID,t,x),

 T(DatarangeAtom(OneOf({objID1, ..., objIDn}), t))

DatarangeAtom(DataRestriction(

 dataPropID, someValuesFrom(

 OneOf({dataLiteral}))), t)

ExistentiallyQuantifiedFormula(x,

 Conjuction(T(DatarangeAtom(

 OneOf({objID1, ..., objIDn}), t)),

 AttributionAtom(dataPropID, t, x))

DatarangeAtom(DataRestriction(

 dataPropID, hasValue(dataLiteral), t)

AttributionAtom(dataPropID, t, dataLiteral)

DatarangeAtom(DataRestriction(

 dataPropID, mincardinality(n)), t)

AtLeastQuantifiedFormula(n, x,

 AttributionAtom(dataPropID, t, x))

DatarangeAtom(DataRestriction(

 dataPropID, maxcardinality(n)), t)

AtMostQuantifiedFormula(n, x,

 AttributionAtom(dataPropID, t, x))

DatarangeAtom(DataRestriction(

 dataPropID, mincardinality(m),

 maxcardinality(n)), t)

AtLeastAndAtMostQuantifiedFormula(m, n, x,

 AttributionAtom(dataPropID, t, x))

Table 3. Mappings of other SWRL Atoms to R2ML Atoms

SWRL expression R2ML expression
IndividualvaluedPropertyAtom(

 objectID1, objectID2)

ReferencePropertyAtom(individualvaluedPropertyID,

 objectID1, objectID2)

DatavaluedPropertyAtom(objectID,

 dataLiteral)

AttributionAtom(datavaluedPropertyID, objectID,

 dataLiteral)

SameAs(objectID1, objectID2) EqualityAtom(objectID1, objectID2)

DifferentFrom(objectID1, objectID2) InequalityAtom(objectID1, objectID2)

BuiltIn(builtinID, t) DatatypePredicateAtom(builtinID, t)

Using mappings between SWRL and R2ML shown in the tables above, we now il-

lustrate the transformation process with the example SWRL rule from Fig. 1 and its

corresponding R2ML rule from Fig. 2. The SWRL Implies element is transformed to

an R2ML AlethicIntegrityRule with UniversallyQuantifiedFormula element as its

constraint, where UniversallyQuantifiedFormula has an Implication for its formula.

The SWRL atoms from the body element of the Implies element are transformed to a

Conjunction of the R2ML atoms in the antecedent part of the R2ML Implication

element, and the atom from the head part of the SWRL Implies element is trans-

formed to the R2ML atom in the consequent part of the R2ML Implication. As it is

shown in Table 1, SWRL ClassAtoms with Class as their predicate symbol are trans-

formed to R2ML ObjectClassificationAtoms. In this case, it is important to point out

that variables used in the SWRL ClassAtoms are transformed to R2ML ObjectVaria-

ble of the R2ML ObjectClassificationAtom. In a similar way, we transform other two

 11

ClassAtoms from the SWRL rule shown in Fig. 1. The SWRL individualPropertyAtom

is transformed to R2ML ReferencePropertyAtom, as it is shown in Table 3. Variables

used in the SWRL individualPropertyAtom are transformed to ObjectVariables, as the

subject and object of the R2ML ReferencePropretyAtom.

5. Implementation Experience

In this section, we explain the transformation steps undertaken to transform between

SWRL rules and R2ML. This is a full implementation of the mappings defined in the

previous section. Here we refer to Fig. 3 and Fig. 4 from Section 3.3 in order to posi-

tion each specific transformation/step in this process of transformation. As we have

already said in Section 3.3, the transformation process between R2ML and SWRL is

split into two major steps.

In the first step, we bridge between the SWRL XML concrete syntax and the

SWRL abstract syntax (i.e., RDM). To do this, we first use the XML injector, (see

Fig. 3, step 1: XML injection), a part of ATL that automatically transforms SWRL

XML documents like the one given in Fig. 1 (without any manually written transfor-
mation) into the models conforming to the MOF-based XML metamodel that defines

XML (e.g., Node, Element, and Attribute). Once we inject SWRL XML rules into a

MOF-based representation (Rules_XML in Fig. 3), we can manipulate with them like

with any other type of MOF-based models. Thus, such XML models can be

represented in the XML XMI format (in Fig. 3, step 2: XMI export). This is again an

integrated ATL feature that requires no manual work. Now we transform between

XML models (Rules_XML from Fig. 3) and RDM-compliant models (Rules_RDM

from Fig. 3). This actually requires writing two ATL transformations (Fig. 3, step 3:

XML2RDM.alt and step 5: RDM2XML.atl), and hence this is the bridge between the

SWRL XML-based concrete syntax and the SWRL abstract syntax. Both transforma-

tions are executed on the M1 level, but they require the input and output models to be

compliant to the input and output metamodels (i.e., XML and RDM), respectively.
This way we check validity of all input SWRL XML-based rules w.r.t. the RDM

metamodel. Since we have implemented transformations in both directions, we can

transform RDM rules into the XML models, that can be later exported into SWRL

XML concrete syntax (Fig. 3, step 6: XML export) and obtain the rules in the from

given in Fig. 1, which is important when transforming R2ML rules into the SWRL

XML concrete syntax. Note also that once we transform SWRL rules into the RDM

representation, we can also export SWRL rules in the RDM XMI format (Fig. 7, step

7: XMI export), and thus we can share SWRL rules with any MOF-compliant reposi-

tory. This is another important contribution to the RDM metamodel itself [5] that

improves its practical value to be used by other MOF-based tools. Finally, say that we

have also changed the RDM metamodel [5], so that it is now based on the standard
ODM metamodel [23] instead of being based on the one defined in [6].

The second step is the core of our transformation between the SWRL abstract syn-

tax (i.e., RDM) and the R2ML abstract syntax (Fig. 4, steps 8 and 9). This transforma-

tion step is fully based on the conceptual mappings between the elements of the RDM

and R2ML metamodel described in Section 4. The transformations between the RDM

12

metamodel and the R2ML metamodel are defined as a sequence of rules in the ATL

language (Fig. 4, steps 8 and 9: RDM2R2ML.atl and R2ML2RDM.atl). In these ATL

transformations, we use ATL constructs such as matched rules, (unique) lazy rules,

and helpers. In order to illustrate a part of these transformations, let us consider a

matched rule. It basically matches a given type of a source model element, and gene-

rates one or more kinds of target model elements. Fig. 10 gives an example of a

matched rule, which is, in fact, an excerpt of the RDM2R2ML.atl transformation for

RDM individualPropertyAtoms that are transformed into R2ML ReferencePropertyA-

toms. Note also that an additional step can be performed in order to transform rules

between the R2ML abstract syntax and the R2ML XML concrete syntax. We pre-
viously implemented this bridge [21] in a similar way like we have done it for SWRL,

in this paper. This means that we can transform all rules between the R2ML concrete

(Fig. 2) syntax and the R2ML abstract syntax. Hence, we provide the whole chain of

transformations bridging between R2ML XML rules and SWRL XML rules, but the

core of this bridge is done on the level of the abstract syntax of two rule languages

making sure that all rules being shared are valid w.r.t. their abstract syntax.

rule IndividualPropertyAtom2ReferencePropertyAtom{

 from i : RDM!Atom (

 i.name = 'IndividualPropertyAtom'

)

 to refpropat : R2ML!ReferencePropertyAtom (

 isNegated <- false,

 referenceProperty <- i.hasPredicateSymbol,

 subject <- thisModule.IndividualVariable2ObjectVariable(i.terms->last()),

 object <- thisModule.IndividualVariable2ObjectVariable(i.terms->first())

)

}

Fig. 10. An excerpt of the ATL transformation: A matched rule that transforms an RDM Indi-

vidualPropertyAtom to an R2ML ReferencePropertyAtom

All the transformations mentioned are available at [27] and [32], while we have al-

so implemented a Java API, so that one can use the transformations in any Java based

applications.

6. Related work and Conclusion

The current transformation between the R2ML and SWRL abstract syntax fully cap-

tures the definition of SWRL, so that all SWRL constructs can be translated onto their

counterparts in R2ML and they then can also be transformed back from R2ML to

SWRL. However, we have yet not finalized the implementation of all OWL (i.e.,

ODM) constructs to their R2ML equivalents (basically this is just for classes and

properties, while restrictions have already been covered). This means that all OWL

constructs used in the SWRL can be transformed in the R2ML, but separate OWL
ontology definition has not supported yet. Having in mind the nature of open-world

inference that OWL is based on, this is also allowed in SWRL as well as in R2ML.

Nevertheless, this may have consequences if we want to map such SWRL rules from

R2ML, for example, into OCL constraints for which we strictly have to define all

elements of the underlying vocabulary. For instance, let us take a look at the SWRL

rule from Fig. 1. In that rule, we do not have any information about the first individua-

 13

lPropertyAtom's property (i.e., additionaDriver), that is, there is no explicitly defined

domain and range for this property. During the implementation of the transformations

between R2ML and OCL, we realized that the obtained R2ML rule from Fig. 2 can

not be translated into a valid OCL, since we can not determine the context of the OCL

invariant. Once we define ontology and all the properties referred to in the original

SWRL rules and transform them to elements of the R2ML Vocabulary, we can obtain

correct OCL invariants such as the following one:
context Rental

 inv: self.additionalDriver->notEmpty() implies

 self.additionalDriver->forall(d | d.oclIsTypeOf(QualifiedDriver)
Currently, we are working on supporting mappings between R2ML Vocabulary

and the complete definition of OWL and between R2ML Vocabulary and UML ele-

ments related to classes. Once we complete these transformations, we will be able to

evaluate to what extent we can share the rules between OCL and SWRL via R2ML.

We have also mentioned in Section 4, that in the current implementation of trans-

formations between the SWRL and R2ML languages (as well as OCL constraints), we
transform all SWRL rules into corresponding R2ML integrity rules. However, some

SWRL rules may be intended to represent explicit definitions of concepts, so they

should be transformed into R2ML derivation rules. While a derivation rule represents

an explicit constructive definition, an integrity rule rather complements a definition

by defining the admissible knowledge states with respect to the concepts constrained

by it. While the conditions of a derivation rule are instances of the AndOrNafNeg-

Formula class, representing quantifier-free logical formulas with conjunction, dis-

junction and negation; conclusions are restricted to quantifier-free disjunctive normal

forms without NAF (Negation as Failure). Generally, supporting the transformation of

SWRL rules into R2ML derivation rules will only require using a different type of

logical formulas, but much of the current transformation will be reused. Once we

support derivation rules, it will be possible to translate SWRL rules into F-Logic,

Jess, RuleML, since the present R2ML translators support transformation of deriva-
tion rules [27]. Nevertheless, there is an open issue how to determine automatically

whether we should translate a SWRL rule into an integrity rule or into a derivation

rule. This basically requires analyzing the context in which the rule is defined (i.e.,

based on the notion of ontology elements that the formulas of rules are based on).

To the best of our knowledge, there is no available solution to transforming rule

languages on the level of their abstract syntax and by using model transformation

languages. The main benefit of our solution is that the mappings between the abstract

syntax of rule languages (e.g., R2ML and SWRL in our case) are completely inde-

pendent of their concrete syntax. Thus, we do not have to reconsider the mappings

between two different languages when supporting various concrete syntax of the

languages under study. Since the mappings between the same language’s abstract and
concrete syntax are straightforward, the effort and the price of support for concrete

syntax are lower. For example, in the case of SWRL, we may use two concrete syn-

tax, namely, the RDF/XML concrete syntax [3] and the OWL XML presentation

syntax [10]. Currently, we only support the first one, but when we implement the

support for the second one, we will not reconsider the mappings between R2ML and

SWRL, but only between SWRL RDF concrete syntax and RDM, i.e., SWRL abstract

syntax.

14

A similar approach to ours is applied in the ODM specification [23] where the

(model) transformations between OWL and the languages such as UML, Topic Maps,

and ER models are defined at the level of their abstract syntax (i.e., metamodels). Our

solution goes one step further and demonstrates how to bridge between concrete and

abstract syntax of Semantic Web languages. Besides the obvious benefit of develop-

ing transformations between rule languages on the level of abstract syntax, the use of

model transformations and languages such as ATL is more suitable than XSLT. Al-

though, in principle, we could use XSLT to map between abstract syntax thanks to
XMI in which all MOF-based metamodels can be stored, the available analysis of the

use of XSLT for sharing knowledge indicates that XSLT is hard to maintain where

modifications of input and output formats can completely invalidate previous versions

of XSLTs [12]. Even some recent experiences in transforming rule languages

(SWRLp) report on constraints of XSLT (e.g., to transform unique symbols) that can

only be overcome by XSLT extensions implemented in other languages such as Java

and Jess [18]. In the case of using model transformations and engines such as ATL,

we also provide a convenient support for transforming semantic Web rules in the XMI

format, and thus interoperability with MOF-based tools and integration with the cur-

rent trends in software engineering.

In future research we plan to use the proposed approach to provide mappings be-

tween R2ML and OMG’s initiatives for Semantics of Business Vocabulary and Busi-
ness Rules (SBVR) and Production rules. This also nicely fits into the OMG’s initia-

tive for Business Rule Management (http://www.omg.org/busrulesmgmtrfi) by enabl-

ing the use of Semantic Web rules, which will be another important aspect of our

future research. Note that the proposed solution also complements our efforts for

sharing Semantic Web policies by using R2ML [13]. Providing the transformations

between R2ML and the policy languages KAoS and Rei, we can further transform

policies into metamodeling-based approaches to trust and security [15].

7. References

1. (2006). ATLAS Transformation Language (ATL). http://www.sciences.univ-
nantes.fr/lina/atl.

2. Bechhofer, S. et al. (2004). “OWL Web Ontology Language Reference,” W3C Recommen-

dation, http://www.w3.org/TR/owl-ref/.
3. Beckett, D., Ed. (2004). “RDF/XML Syntax Specification (Revised),” W3C Recommenda-

tion, http://www.w3.org/TR/rdf-syntax-grammar/.
4. Bézivin, J. (2005). “On the unification power of models,” Software and System Modeling,

vol. 4, no. 2, pp. 171-188.
5. Brockmans, S. & Haase, P. (2006). “A Metamodel and UML Profile for Rule-extended

OWL DL Ontologies - A Complete Reference,” Universität Karlsruhe (TH) - Technical

Report.
6. Brockmans, S., et al. (2004). “Visual Modeling of OWL DL Ontologies Using UML,” In

Proc. of the 3rd Int’l Semantic Web Conference, Hiroshima, Japan, 2004, pp. 198-213.
7. Gašević, D., et al., (2006). Model Driven Architecture for Ontology Development, Springer,

Berlin-Heidelberg.
8. Ginsberg, A. (2006). “RIF Use Cases and Requirements,” W3C Working Draft,

http://www.w3.org/TR/rif-ucr/.

 15

9. Hirtle, D., et al. (2006). “Schema Specification of RuleML 0.91,”
http://www.ruleml.org/spec/.

10. Hori, M., Euzenat, J., Patel-Schneider, F. P. (2003). “OWL Web Ontology Language, XML

Presentation Syntax,” W3C Note, http://www.w3.org/TR/owl-xmlsyntax/.
11. Horrocks, I., et al. (2004). “SWRL: A Semantic Web Rule Language Combining OWL and

RuleML,” W3C Member Submission, http://www.w3.org/Submission/SWRL.
12. Jovanović, J. & Gašević, D. (2005). “XML/XSLT-Based Knowledge Sharing,” Expert

Systems with Applications, vol. 29, no. 3, 2005, pp. 535-553.
13. Kaviani, N., Gašević, D., Hatala, M., Clement, D., Wagner, G. (2006). “Towards Unifying

Rules and Policies for Semantic Web Services,” In Proceedings of the 3rd Annual LORNET

Conf. on Intelligent, Interactive, Learning Object Repositories Network, Montreal, Canada.
14. Klyne, G., Carroll J., Eds. (2004). “Resource Description Framework (RDF): Concepts and

Abstract Syntax,” W3C Recommendation, http://www.w3.org/TR/rdf-concepts/.
15. Koch, M. & Parisi-Presicce, F. (2006). “UML specification of access control policies and

their formal verification,” Software and Systems Modeling, vol. 5, no. 4, pp. 429-447.
16. Kurtev, I., Bézivin, J., & Aksit, M. (2002). “Technological Spaces: an Initial Appraisal,” In

Proceedings of the CoopIS, DOA'2002 Federated Conferences, Industrial track, Irvine,

USA.
17. Lukichev, S. & Wagner, G. (2005). “Visual Rules Modeling,” In Proce. of the 6th Interna-

tional Andrei Ershov Mem. Conf. Perspectives of System Informatics, Novosibirsk, Russia.
18. Matheus, C.J. (2004). “SWRLp: An XML-Based SWRL Presentation Syntax,” In Proceed-

ings of the 3rd International Workshop on Rules and Rule Markup Languages for the Se-
mantic Web, Hiroshima, Japan, pp. 194-199.

19. Miller, J. & Mukerji, J., Eds. (2003). “MDA Guide Version 1.0.1,” OMG Doc. omg/03-06-

01, http://www.omg.org/cgi-bin/doc?omg/03-06-01.
20. Milanović, M., et al. (2006). “On Interchanging between OWL/SWRL and UML/OCL,” In

Proceedings of the 6th Workshop. on OCL for (Meta-)Models in Multiple Application Do-
mains (OCLApps), Genoa, Italy, pp. 81-95.

21. Milanović, M., et al. (2006). “Model transformations to bridge concrete and abstract syntax
of Web rule languages: The R2ML experience,” International Journal of World Wide Web-

Internet and Web Information Systems, (submitted).
22. (2006). Meta Object Facility (MOF) Core, v2.0. OMG Document formal/06-01-01,

http://www.omg.org/cgi-bin/doc?formal/2006-01-01.
23. (2006). OMG Ontology Definition Metamodel (ODM), Sixth Revised Submission. OMG

Document ad/2006-05-01, http://www.omg.org/docs/ad/06-05-01.pdf.
24. (2005). MOF QVT Final Adopted Specification. OMG document 05-11-01,

http://www.omg.org/docs/ptc/05-11-01.pdf.

25. (2005). Meta Object Facility (MOF) 2.0 XMI Mapping Specification, v2.1. OMG Docu-
ment formal/2005-09-01, http://www.omg.org/cgi-bin/doc?formal/2005-09-01.

26. (2006). REWERSE I1 Rule Markup Language (R2ML). http://oxygen.informatik.tu-
cottbus.de/rewerse-i1/?q=node/6.

27. (2006). R2ML Translators. http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/15.
28. Seidewitz, E. (2003). “What Models Mean,” IEEE Software, vol., 20, no.5, pp. 26-32.
29. Sheth, A. et al. (2006). “Semantics to energize the full services spectrum,” Comm. of the

ACM, vol. 49, no. 7, pp. 55-61.
30. Wagner, G. et al. (2006). “A Usable Interchange Format for Rich Syntax Rules Integrating

OCL, RuleML and SWRL,” In Proceedings of the Workshop of Reasoning on the Web,
Edinburgh, UK.

31. Wagner, G., et al. (2004). “The Abstract Syntax of RuleML - Towards a General Web Rule
Language Framework,” In Proceedings of the IEEE/WIC/ACM International Conference
on Web intelligence, pp. 628-631.

32. http://www.eclipse.org/m2m/atl/atlTransformations/#R2ML2SWRL

