
Web Rule Languages to Carry Policies

Nima Kaviani1, Dragan Gašević1, Marek Hatala1, Gerd Wagner2

1Simon Fraser University Surrey, Canada
2Brandenburg University of Technology at Cottbus, Germany

{nkaviani, dgasevic, mhatala}@sfu.ca, wagnerg@tu-cottbus.de

Abstract

Recent efforts in the area of Web policy languages
show concerns on how to better represent both context
and rules of a domain to deal with large number of
resources and users. Interaction between domains with
different business rules is also another questionable
issue in this same area. Web rule languages have been
recently introduced as a means to facilitate interaction
between parties with dissimilar policies and business
rules. Efforts have been placed to further review the
possibility of the proposed solutions and extend them
to work with other Web technologies. In this paper, we
introduce REWERSE Rule Markup Language (R2ML)
as a Web rule language that can be employed to make
concepts, policies, and elements of a domain digestible
by another domain through the use of vocabularies,
rules, and annotations. We also show how R2ML
elements can model the concepts and elements of
different policy languages and assist systems with
diverse policies with their interactions.

1. Introduction

Integrating various technologies and services (e.g.,
mobile devices and Web) offers many opportunities for
sharing resources in different contexts. For example,
creating a new Web service does not mean that it will
always be used in the same way and by the same users,
as it has originally been designed for. On the contrary,
a highly-dynamic nature of today’s environments [15]
requires the behavior of systems to dynamically
change. In such systems one can discover and negotiate
the use of new services. However, we need to define
ways how one can understand what services are
offered. It can be solved by using Semantic Web
ontologies [1, 5]. Moreover, we also need to specify
how, where, and by whom these services can be used.
In fact, policies are used to address this problem, as a
means to dynamically regulate the behavior of system
components without changing the system’s code and

without requiring the consent or cooperation of the
components being governed.

Currently, there are many different policy languages
including Rei, KAoS, and PeerTrust; but there is no
common agreement upon one universal policy language
[26]. Each policy language has its own syntax and
semantics that is usually grounded in a particular type
of logic such as first order logic or description logic.
This actually introduces a problem of mutual
understanding and sharing of policies between different
parties that use different policy languages.
Nevertheless, it is very important to inspect policies in
order to check whether there are some conflicting
policies or understand what they are referring to (e.g.,
with the help of domain ontologies [27]). This can be
very challenging having it in mind that different policy
languages are based on different logics (e.g.,
description logic (DL) and declarative logic). On the
other hand, Toninelli et al. [24] recognized that next-
generation of policy languages should combine features
of ontologies (i.e., description logic) and rule-based
systems, which actually affects the development of
languages such as Rei and KAoS. Finally, policies
should also be in compliance and/or combined with
business rules that can be defined by using various rule
languages (e.g., F-Logic, Jess, Semantic Web Rule
Language–SWRL, or Prolog) [2].

In this paper, we propose an approach to sharing
policies by using Web rule languages [12]. This
actually follows up two initiatives: the Rule
Interchange Format (RIF) [6], an initiative for the
standard for sharing rules on the Web, and Policy
RuleML [20], an initiative for sharing policies by using
various types of rules (e.g., derivation and production)
of the RuleML language [8]. However, to the best of
our knowledge, there has not been any practical attempt
responding to either of these initiatives. Here, we
propose using REWERSE Rule Markup Language
(R2ML), a general purpose rule language and a future
proposal for the RIF standard, to carry policies. To do
so, we first motivate our research by analyzing two

examples where there is a need to share policies that
have originally been encoded in different languages. In
Section 3, we describe three policy languages (KAoS,
Rei, and PeerTrust), while in section 4 we briefly
describe the most-known Web rule language efforts
and their potentials to carry policies. Section 5, is the
core section of the paper and it describes our approach
to using R2ML for sharing policies in detail.

2. Motivation

As it has been mentioned in the previous section
and based on the arguments in [24], there is a need to
combine the features of description logic and the
properties of the rule languages to define context-based
policies with supports for conflict resolution,
expansion, and classification on one hand, and rule
enforcement on the other hand.

However, due to the variety of the policies available
for protecting the resources and the approaches they
take to codify these policies, i.e., either rules with
ontologies as the backend knowledge bases [10, 18], or
DL and corresponding reasoners on top [27], the
process of information exchange becomes challenging
and sometimes hard to achieve. This diversity of
methods to describe rules and policies even sometimes
forces the requestors to accept the language of the
source entities for the sake of consistency and global
compliance. To make it more precise let us review two
of the scenarios addressed in the relevant literature.

In [24], the authors considered a scenario in which a
certain traveling company has provided its travelers
with wireless connectivity for their portable devices,
e.g., PDAs and laptops, as well as some other services
such as using public printers located in the airport.
Alice as a traveler may wish to access the printer and
print some of the available documents on her laptop.
So, she sends the request to the service provider at the
airport. The service provider checks Alice’s credentials
such as the boarding number and the name of the
traveling agency. In case they match, Alice is given the
right to access the printer to print the documents out.
This scenario works fine as long as the service provider
and the software agent on Alice’s laptop speak in the
same policy language.

The question that arises in this case is how Alice’s
web agent will communicate with the service provider
in case the policy language of Alice’s agent is different
from that of the service provider. Recall that there is
still no generally adopted agreement on defining and
using Semantic Web services and Web policy
languages. Thus, different Web entities may use
dissimilar policies to protect their services. Let us
assume that Alice’s web agent is using the Rei policy

language [11] and the printing service is defined based
on WSMO [5]. Is Alice going to convert her policy
language to F-Logic, which is the supported rule
language in WSMO, and use the WSMO rule engine,
or, is she going to expect the service provider to
understand her policies?

Another example is based on [16] where the authors
try to integrate their policy language called PeerTrust
[18] with the description of a Semantic Web service.
Among all the available semantic web service
description languages, including OWL-S [13], WSDL-
S [1], and WSMO, the authors choose WSMO as it
allows arbitrary use of logical expressions in the
description of the services and also uses F-Logic to
describe the logical expressions used in the description
of the services [18]. In contrast, WSDL-S and OWL-S
are agnostic to employing rule and ontology languages.
However, using F-Logic to define the concepts of
PeerTrust in WSMO means that the whole concepts of
PeerTrust need to be converted to a format suitable for
an F-Logic-based inference engine. That is, one should
totally forget about the engine that already exists for
PeerTrust and develop a new F-Logic engine that can
reason over the policies defined in PeerTrust.

Problems as such necessitate the development of a
unified method of policy exchange that supports the
conversion of different policy languages from one to
another. Additionally, it seems that the viability of the
future policy languages is tied to their capability in
combining rule- and ontology-based languages (i.e.,
declarative and descriptive logic) [24]. Thus, the
intermediary exchange language should have the
required constructs and elements to support both rules
and ontology concepts. Here we propose using a web
rule (markup) language to carry the policies from one
party to another one. Besides web rule languages, we
also need two way transformations between the web
rule language and policy languages, so that we can
fully address the problem of diversity of policy
languages.

3. Policy Languages

Policies in the domain of autonomous computing
are guiding plans that restrict the behavior of
autonomous agents in accessing the resources [24].
They also legitimatize the behavior of an agent by
identifying its liberties and suppressions during the
process of authorization. The main advantage in using
policies is the possibility to dynamically change the
behavior of the system by adjusting the policies without
interfering with the internal code of the system [3]. A
policy-aware system can be simply conducted to act

based on the role of the requesting entities and or the
context of its performance.

Policy-aware systems have been constantly evolved
starting from group-based policy systems (e.g.
operating systems) to role-based systems (e.g.
Cassandra and RT), and recently to context-based
systems. Although the earlier versions of policy-aware
systems are still applicable to the static contexts with
precise number of users, groups, and resources, they
are not applicable to the Web with its enormous
number of resources and users. Context-aware policy
systems are targeting the problem of extending the
number of to-be-protected resources and contexts as
well as treating unknown or partly-known requesting
entities[25].

KAoS [27] and Rei [11] are two of the most known
policy systems that go beyond the traditional policy
systems by giving special care to the context to which
the policies are applied. They are both enriched
semantically by using ontologies to define and describe
the entities involved in the process of authorization and
access control. PeerTrust [18] is another policy based
system that operates in a lower level of abstraction, as
compared to KAoS and Rei, and addresses access
control problems through the use of trust negotiation.
However, the similarities between PeerTrust, KAoS,
and Rei in using ontologies to describe the policies and
entities, as well as the semantic and logic that
PeerTrust chooses to address rule enforcement and
conflict resolution makes it an interesting language to
be compared to KAoS and Rei. Aside from the
conceptual differences in the level of access control
and authorization, KAoS, Rei, and PeerTrust also differ
in their syntax and also the types of the logic they are
based on.

All the above languages have similar constructs to
address Permission, Prohibition, Obligation, and
Dispensation, but they add additional elements and
building blocks to make the process of policy
definition, harmonization, and enforcement more
precise. [26] has already provided a detailed
comparison of KAoS, Rei, and a traditional policy
language called Ponder [4]. The comparison, however,
is based on the older version of Rei, namely Rei 1.0,
which was not as advanced as Rei 2.0 in defining and
annotating the resources semantically. The comparison
was also on the level of features and properties and not
on the level of syntax and logical foundations that
policy languages are built on. Here we give a quick
comparison of Rei and KAoS, pointing out some of
their properties that conform to the properties of
PeerTrust, and briefly review the syntactical and
logical differences they entail in their definitions.

KAoS and Rei are important for our purpose because
they are widely known in the level of context-aware
policy languages with markup syntax. PeerTrust helps
to show the possibility of applying the transformations
to a language with a more traditional EBNF structure.
The syntactical differences will be later argued when
deliberating the transformation problems between
policy and web rule languages.

KAoS is a policy language with the possibility of
specification, management, conflict resolution, and
enforcement of policies [27, 28]. The policies and
domain objects have been represented as OWL
ontologies which make the systems easily expandable
and adaptable to different domains. Each KAoS policy
rule is an instance of the Policy class (i.e., its
PosAuthorizationPolicy, NegAuthorizationPolicy,
PosObligationPolicy, and NegObligationPolicy
subclasses), with properties for resources to be
controlled, conditions, actors, triggering events and
actions, site of enforcement, etc. Thanks to the features
of OWL, policies can be defined to cover concepts like
minimum and maximum cardinality for the entities as
well as universal and existential quantifiers over the
objects instantiated from the concepts and classes.
However, the lack of mechanisms to define variables in
OWL has made the developers use role-value-map
technique to implement dynamic and runtime
role/entity assignment. The arity of the predicates
represented in KAoS is restricted to one or two
corresponding to their definitions in OWL. By using
and extending Stanford’s Java Theorem Prover (JTP),
KAoS enables static conflict resolution, intelligent
lookup and dynamic policy refinement. KAoS has its
enforcement engine, but it needs to be customized with
regards to the domain it is going to be deployed in.

Rei is a rule-based approach to specify, analyze and
reason over the policies in pervasive environments
[10]. Although the first version of Rei was following a
Prolog-like syntax with a Prolog engine as the reasoner,
Rei 2.0 migrated to a new representation format,
exploiting the RDF notations to define policies [22].
Thus, in the new version, Rei expressions are defined
as triples compliant to the RDF format. Unlike KAoS,
in which the knowledge about the domain and the
policies are all defined in OWL, Rei only uses
ontologies as knowledge bases to keep the information
of the domain and although its syntax is in the form of
RDF, the semantics follow the rule-based language
conventions. Rei relies on a rich set of speech acts for
the purpose of message passing and dynamic exchange
of the rights between the entities. A main drawback in
Rei is that there is no enforcement engine designed for
it and the process of rule enforcement should be

addressed outside the Rei engine. Moreover, because
the Rei policy engine treats the inferences from OWL
axioms as virtual fact base, there are no capabilities for
ontological reasoning and consequently no chance for
policy disclosure and conflict resolution as opposed to
KAoS. However, the syntax used by Rei is much easier
to grasp for the users with a basic understanding of rule
languages. Rei is suitable for a lower level of security
than KAoS, dealing with identification of entities and
concepts.

PeerTrust is a trust negotiation engine with the
possibility of dynamic exchange of certificates and
establishment of trust without any third party being
involved in the process of trust act [18]. Similar to Rei,
PeerTrust also uses a Prolog-based engine to reason
over the defined policies for the exchange of trust
information but instead of dealing with contexts (as in
KAoS) or the identities of the entities (as in Rei), it
goes further down in the level of security and defines
policies over attributes of the resources and the entities.
PeerTrust uses its own EBNF syntax for the
representation of policies with possibility of defining n-
ary predicates in the rules, but the policies can be
imported to the PeerTrust engine in the form of RDF
metadata as well. PeerTrust has been deployed and
used in the ELENA distributed e-learning environment.

While KAoS is based on description logic, Rei and
PeerTrust follow the conventions of declarative logic
programs. This makes a lot of difference in the way
they refer to existence or nonexistence of objects and
the relations between classes and elements of the
classes. So, a mapping between the languages goes
beyond a conceptual matching in the level of policies
and has to delineate the mappings in the level of logic
as well (see Section 5.2 for details).

Figure 1 summarizes features of the three languages
mentioned above. It compares KAoS, Rei, and
PeerTrust in terms of the format they use to describe
their rules, the possibility of expanding the concepts of
the languages, and also the way they store the domain
information and reason over it.

4. Web Rule Languages for Policies

In Section 2, we have shown the existence of a need
to define a medium for transforming the rules, and
specifically policies, among different resources. We
have also discussed the necessity of a support for both
ontological definition and rule based representation of
the policies for the purpose of achieving conflict
resolution, harmonization, and enforcement.

 Decreased level of Abstraction

 KAoS Rei PeerTrust
Policy

Representatio
n

OWL
Rei (RDF
format)

PeerTrust

Expandability High High Low

Knowledge
Base

OWL RDF/OWL Prolog

Reasoning
Support

JTP
Prolog
Engine

Prolog Engine P
ro

pe
rt

ie
s

Enforcement
Engine

Extending
KAoS
engine

No engine
Domain
specific

(for ELENA)

Figure 1. Comparison of the features in KAoS, Rei,
and PeerTrust

We believe that Semantic Web Rule languages are
the solution to the problem. To be precise, let us start
with reviewing some of the proposed Semantic Web
Rule Languages and then we will review the properties
they offer to facilitate the exchange of policies.

Rule Interchange Format (RIF) [6] is one of the
most important initiatives in this area. It defines a set of
use cases and requirements for sharing rules on the
Web. However, as it is desired in our case, the purpose
of RIF is to serve as an intermediary language between
various languages and not as a formally defined
semantic foundation for the purpose of reasoning on
the Web. Among all the use cases defined for RIF,
special care has been given to policies by relating three
of the ten introduced use cases to the issues specific to
policies. These use cases are: Collaborative Policy
Development for Dynamic Spectrum Access, Access to
Business Rules of Supply Chain Partners, and
Managing Inter-Organizational Business Policies and
Practices. Still there has been no concrete example on
how to use RIF for this purpose.

Here we point out some of the main efforts in the
area of Semantic Web Rules.

Semantic Web Rule Language (SWRL) is a rule
language based on the W3C Web ontology language
OWL [9]. A SWRL rule is also in the form of an
implication and is considered to be another type of an
axiom on top of the other OWL axiom types. This
means that SWRL rules are usually used for defining
derivation and integrity rules. Both consequent and
antecedent are collections (i.e., conjunctions) of atoms.
We should say that the purpose of SWRL is not to be a
universal rule interchange language, but its purpose is
to define an additional logic layer over the present
ontology languages (i.e., OWL). As such it can not
represent many linguistic constructs of other rule
languages (e.g., F-Logic, Rei, or OCL).

RuleML is a markup language for publishing and
sharing rule bases on the World Wide Web [8].

RuleML builds a hierarchy of rule sublanguages upon
XML, RDF, XSLT, and OWL and currently supports
rules in the form of derivation (e.g., SWRL, FOL) and
production (e.g., Jess). It is based on Datalog and
defined as an implication between antecedent and
consequent. The antecedent part of the rule is evaluated
as true whenever the consequent of the rule holds.
However, an important constraint of RuleML is that it
can not fully represent all the constructs of various
languages such as OCL or SWRL.

Built upon the concepts of RuleML, the Policy
RuleML Technical Group [20] has been formed as a
committee to outline the use of RuleML as a semantic
interoperation vehicle for heterogeneous policy
languages, standards, protocols, and mechanisms; both
currently existing and those developed in the near
future. The goal was stated as encoding, translating and
integrating rules between disparate policy systems.
They have addressed their long-term plan as
incorporation of deontic expressive features such as
logics to capture rights, obligations, and empowerment
as aspects of policy rules. The deontic rules they
consider to model policy languages are enlisted as
Permission and Prohibition, Duty Assignment, and
Empowerment. Nevertheless, to the best of our
knowledge, there is still no real work done by the
Policy RuleML technical committee in this area. In the
next section, we explain our efforts to address these
goals by using R2ML [12].

5. R2ML for Representing Policies

This section presents our approach to sharing
policies by using Web Rule Languages, that is based on
the REWERSE Rule Markup Language (R2ML). We
first describe R2ML features and how they can be used
to represent various types of policies. We then further
clarify our idea by demonstrating how we mapped
some of the policy languages such as KAoS and Rei to
R2ML, and thus address the problem of sharing
policies between diverse policy languages. As it was
already discussed the problem of mapping KAoS to Rei
and back is not only a matter of policy term matching,
but it is also a transformation from description logic to
declarative logic, which KAoS and Rei are respectively
based on. The main reason we chose KAoS and Rei in
our first attempt for providing a mapping, beside their
reputation in the area, was their XML-like syntax with
easier practical implementation of transformation to
triples of type subject-predicate-object.

5.1. R2ML: An overview

R2ML is a general rule interchange language that
tries to address all RIF requirements. The abstract

syntax of R2ML language is defined with a metamodel
by using the OMG’s Meta-Object Facility (MOF). This
means that the whole language definition can be
represented by using UML diagrams, as MOF uses
UML’s graphical notation. The current version of
R2ML is 0.4 [21]. The full description of R2ML in the
form of UML class diagrams is given in [21], while
more details about the language can be found in [29].
The language also has an XML concrete syntax defined
by an XML schema, while there are a number of
transformations implemented between R2ML and rule
based languages (e.g., OCL, SWRL, Jess, and F-
Logic).

Vocabulary. R2ML provides a vocabulary that
enables users to define their own world in the form of
objects and elements available in the domain of
discourse. The vocabulary can be defined as a
combination of Basic Content Vocabulary, Relational
Content Vocabulary, and Functional Content
Vocabulary. Basic Content Vocabulary allows the user
to specify the basic elements of the domain such as
individual objects and data values, classes and data
types, and object and data variables. Relational Content
Vocabulary helps to associate different objects from
different classes through defining n-ary association and
association classes. Finally, Functional Content
Vocabulary assists with defining functors that
correspond to the standard logic of functions. The
functions can be data operations to manipulate data
values, they can be object operation functions that
define object-value operations, or they can be role
functions which correspond to functional association
(binary association) of the class elements. In [14],
authors showed how the basic constructs and elements
of the OWL language can be transferred and modeled
by R2ML atoms and elements. For example sameAs in
OWL is equivalent to an EqualityAtom in R2ML and
oneOf in OWL carries the same meaning as
Disjunction of a set of atoms in R2ML. This means any
language with its concepts defined based on OWL
(including KAoS and Rei) can be modeled with R2ML
constructs elaborately.

Rules. Having the objects and concepts of a domain
defined, R2ML makes the definition and harmonization
of rules over these concepts possible through the use of
four different types of rules: Integrity Rules, Derivation
Rules, Reaction Rules, and Production Rules. Since in
this paper we are limited in space, we only review the
first two rules and more information about the other
rules and constructs of the language can be found in
[29].

R2ML integrity rules, also known as (integrity)
constraints, consist of a constraint assertion, which is a

sentence in a logical language such as first-order
predicate logic or OCL (see Figure 2a). R2ML
supports two kinds of integrity rules: the alethic and the
deontic ones. The alethic integrity rule can be
expressed by a phrase, such as “it is necessarily the
case that” and the deontic one can be expressed by
phrases, such as “it is obligatory that” or “it should be
the case that”. A LogicalStatement is a
LogicalFormula that has no free variables, i.e., all the
variables from this formula are quantified. In terms of
policy languages, integrity rules can be considered as
constraints that must hold consistently especially in the
level of rule enforcement, e.g. “it is necessary to give a
higher priority to the commands of the administrator
than to the commands of the regular users on a
system.”

a)

b)

Figure 2. The R2ML definition of Integrity (a) and
Derivation Rules (b)

A R2ML derivation rule has conditions and a
conclusion (see Figure 2b) with the ordinary meaning
that the conclusion can be derived whenever the
conditions hold. While the conditions of a derivation
rule are instances of the AndOrNafNegFormula class,
representing quantifier-free logical formulas with
conjunction, disjunction and negation; conclusions are
restricted to quantifier-free disjunctive normal forms
without NAF (Negation as Failure, i.e. weak negation).
In the context of policies, we consider each deontic
policy rule as a single derivation rule with the
constraints making the conditions of the derivation rule
and the policy decision forming the conclusion of the
rule, e.g. “If the user is from Simon Fraser University
with a valid student ID then give her the permission to
enter the area of the university.” It may sound more
expressive to define deontic policy rules with deontic
integrity rules in R2ML. However, our attempts in
doing so showed that deontic rules in the context of
policies carry a different meaning from their
interpretation in R2ML. In R2ML, a deontic integrity
rule represents a constraint that should be satisfied or
must hold with a concrete proof for its truthfulness,

though a doentic policy demonstrates concerns over
performing a duty or obligation as a result of satisfying
a series of related conditions [19, 23].

Atoms are the basic logical constituents of a rule
which are compatible with the concepts of OWL,
RuleML, and SWRL. Atoms connect objects to values,
classes to instances, and objects to objects, put
restrictions on the objects and data values, and so on.
Here we briefly represent some of the atoms that are
relevant to our purpose of representing policy
languages. ReferencePropertyAtoms associate object
terms as subjects with other terms (objects or data
values) as objects. A ReferencePropertyAtom in R2ML
corresponds to an OWL (and similarly a KAoS) object
property, or to the OWL concept of value for an
individual-valued property. ObjectDescriptionAtoms
are another class of useful atoms for our purpose. They
refer to a class as a base type and to zero or more
classes as categories, and consist of a number of
property/term pairs (i.e., attribute data term pairs and
reference property object term pairs). Any instance of
such atom refers to one particular object that is
referenced by an objectID, if it is not anonymous. This
atom corresponds to the instantiation of an object from
a class in OWL, which matches a deontic object, with
all its properties instantiated, in either Rei or KAoS.

5.2 The Logic of Transformation

Providing transformations from Rei and KAoS to
R2ML and then from R2ML to KAoS or Rei, as we
mentioned before, is not just a straightforward keyword
matching using lookup tables. KAoS models the world
by specifying the elements and the objects in
description logic while Rei assembles its world with
declarative logic building blocks. So, the problem of
transformation expands to the problem of bridging the
declarative logic world to its descriptive logic
counterpart. It is important for R2ML because we need
R2ML to serve as a conductor between the two worlds.
R2ML has been designed having the properties of both
open world (i.e. descriptive logic) and close world (i.e.
declarative logic) in mind. Knowing the logic of
transformation from declarative logic to descriptive
logic and back would help in providing more
meaningful transformations with less information loss.

[7] gives an elaborate method of mapping the basic
elements of description logic to declarative logic. OWL
as a subset of RDFS corresponds to a fragment of
classical FOL. It is shown in [7] that OWL elements
are convertible to definite Horn FOL elements which in
turn are convertible to definite Datalog Logic Programs
as a restricted model of Logic Programs (LPs). For
example, classes and class expressions are equivalent

to FOL formulae with one free variable, and properties
(and property expressions when supported by
description logic) are equivalent to FOL formulae with
two free variables. Classes and property inclusion
axioms are also considered as FOL sentences
consisting of an implication between two formulae with
the free variables universally quantified at the outer
level.

Figure 3 shows a selection of OWL constructs with
their corresponding description logic syntax and FOL
expressions. Details of the definitions can be found in
[7].

OWL Constructor DL Syntax FOL Expressions
subClassOf DC ⊆ CD ←

transitiveProperty PP ⊆+),()),((),((,, zxPzyPyxPzyx →∧∀

inverseOf −≡ QP),(),(, xyQyxyPx ⇔∀

intersectionOf nCC ∩∩ ...1
)(...)(1 xCxC n∧∧

unionOf nCC ∪∪...1
)(...)(21 xCxC ∨∨

complementOf C¬)(xC¬

oneOf },...,{ 1 naa
naxax =∨∨= ...1

hasClass CP.∃))(),((yCyxPy ∧∃

toClass CP.∀))(),((yCyxPy →∀

Figure 3. Some of the OWL constructors and the
equivalent description logic and FOL expressions

For the purpose of transforming policies from
KAoS to Rei, we need R2ML rules that can precisely
transfer the deontic meaning of the policy rules in the
same way we explained in the previous section. These
R2ML rules also have to either implicitly or explicitly
demonstrate the possibility of reasoning over the
content which is transferred. Furthermore, as it has
been also argued in [7], class and property inclusions
are better to be declared in the form of implications.
Considering all the points above, we finally chose
derivation rules as the most suitable rules for this
purpose. Derivation rules precisely support implication
and show derivation of new facts upon reasoning on a
priori facts.

Let us further clarify the idea by reviewing an
intuitive example of the policy languages. Consider that
we need to define a policy to “prohibit our system from
using data that is accepted by the members of a group
called UserActors”. Figure 4 shows an excerpt of the
policy rule in KAoS to define this policy.

The highlighted parts in the policy of Figure 4 show
the main elements that carry the intended meaning of
the policy. During the process of transformation these
elements should be captured and converted to the
appropriate R2ML elements

<policy:NegAuthorizationPolicy rdf:ID="AcpDataP">

<policy:controls rdf:resource="#Plcy _Action"/>
<policy:hasPriority>2</policy:hasPriority>

</policy:NegAuthorizationPolicy>

<owl:Class rdf:ID="Plcy _Action ">
<owl:intersectionOf>

<owl:Class rdf:about="#AcceptData"/>
 <owl:Class>
 <owl:Restriction>
 <owl:onProperty rdf:resource="
 #performedBy"/>
 <owl:allValuesFrom>

<owl:Class rdf:about="#UserActors"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:Class>
 </owl:intersectionOf>
</owl:Class>

1

3

1

2
4

Figure 4. An excerpt of a KAoS policy rule

R2ML in our transformation plays the same role as
definite Horn FOL plays in description logic programs
in [7], i.e. an intermediary world to capture similarities
between logic programs and description logic. In order
to make the idea easier to grasp, we start with a
conversion of the policy in Figure 4 to definite Horn
FOL according to the mappings from Figure 3 and then
further develop it to the identical R2ML representation.
Figure 5 shows the result of applying the conversions
to the code above.

←)(xcyzationPoliNegAuthori
 ∧∧∃)(_),(yActionPlcyyxcontrols
)2,(Pr xiorityhas

←)(xAcceptData)(_ xActionPlcy
←)(yUserActors ∧)(_ xActionPlcy

),(yxyperformedB

Figure 5. The KAoS policy from Figure 4 described
in the definite Horn FOL

Similar to the conversion in Figure 5, our R2ML
transformation should syntactically demonstrate the
possibilities to evaluate AcceptData(x), UserActors(y),
and eventually NegAuthorizationPolicy(x) as TRUE
knowing that Plcy_Action(x) and performedBy(y, x) are
true for the instantiated variables x and y. It also has to
show that NegAuthorizationPolicy(x) is a logical
consequence of AcceptData(x) and UserActors(y). To
model the desired rule we place the values for
Plcy_Action(x) and performedBy(y, x) in the head, and
AcceptData(x) and UserActors(y) in the tail of the
R2ML transformation rule. Note that the policy rule is
fired when action x as a PolicyAction is performed by
actor y who belongs to the group of UserActors, so the
values for x and y become known.
NegAuthorizationPolicy(x) is the ultimate result of the
derivation rule, which we keep as a conclusion in the
head of the derivation rule, converted to Prohibition, to
show the final result of authorization. Finally, the result

of a mapping from KAoS to R2ML based on this
argument can be formulated similar to Figure 6.

<r2ml:DerivationRule>
 <r2ml:conditions>
 <r2ml:ReferencePropertyAtom
 r2ml:propertyID="#instanceOf"
 <r2ml:subject>
 <r2ml:ObjectVariable r2ml:name="x"/>
 </r2ml:subject>
 <r2ml:object>
 <r2ml:ObjectName r2ml:objectID="#AcceptData "/>
 </r2ml:object>
 </r2ml:ReferencePropertyAtom>
 <r2ml:ReferencePropertyAtom>
 r2ml:propertyID="#instanceOf">
 <r2ml:subject>
 <r2ml:ObjectVariable r2ml:name="y"/>
 </r2ml:subject>
 <r2ml:object>
 <r2ml:ObjectName r2ml:objectID="#UserActors "/>
 </r2ml:object>
 </r2ml:ReferencePropertyAtom>
 </r2ml:conditions>
 <r2ml:conclusion>
 <r2ml:ObjectDescriptionAtom
 r2ml:classID="Prohibition">
 <r2ml:subject>
 <r2ml:ObjectVariable r2ml:name="AcpDataP "/>
 </r2ml:subject>

 <r2ml:ObjectSlot
 r2ml:referencePropertyID="controls"/>
 <r2ml:ObjectVariable r2ml:name=”x”
 r2ml:classID=”#Plcy_Action”>
 </r2ml:ObjectSlot>

 <r2ml:ObjectSlot
 r2ml:referencePropertyID="performedBy">
 <r2ml:ObjectVariable r2ml:name="y"/>
 </r2ml:ObjectSlot>
 </r2ml:ObjectDescriptionAtom>

 </r2ml:conclusion>
</r2ml:DerivationRule>

1

2

3

4

Figure 6. R2ML representation of the KAoS policy
rule from Figure 4

The parts of Figure 4 and 6 numbered similarly are
the conceptually equivalent pieces in the referred
languages, namely KAoS and R2ML. As we have
already mentioned and it can also be seen in the
transformations, R2ML ReferencePropertyAtom is
used to model property values in OWL and
ObjectDescriptionAtom is used to model the
instantiation of the objects in OWL.

A ReferencePropertyAtom connects the objects of a
class to the objects from other classes with properties
as connectors. In this sense a ReferencePropertyAtom
neatly models a triple similar to their representation in
RDF. Now that we have the KAoS policy simulated in
the form of triples in R2ML, mapping the result to the
RDF format of Rei is easy to achieve. Figure 7 shows
the corresponding Rei model for the above R2ML code
snippet (Figure 6).

Although the policy that we have reviewed here has
only few constraints, the other constraints for the other
properties of a policy rule in KAoS (such as triggering
constraints, preconditions, and effects) follow the same
procedure and are eventually converted to constraints
which are placed in the condition part of an R2ML
rule.

The transformation of the policies from Rei to
R2ML is much simpler because the R2ML rule

representation that we have chosen is closer to the
model of expressing the rules in Rei (the same way that
def Horn FOL is closer to LP). Yet grouping of the
R2ML atoms as classes in order to keep the derivation
rules consistent with the format of OWL and KAoS is
important. To achieve that, we group
ReferencePropertyAtoms with a common subject
element in the form of an instantiated object from a
class. The restrictions placed over the subject part of a
ReferencePropertyAtom can then be shown as
restrictions in the OWL class.

We shorten the discussion at this point, but note that
we have implemented transformations from Rei and
KAoS to R2ML and also from R2ML to Rei and KAoS
using XSLT which fully follow mapping rules
discussed in this section. All these transformations can
be found in [30].

<entity:Variable rdf:ID=”x”/>
<entity:Variable rdf:ID=”y”/>
<entity:Variable rdf:ID=”negAuth”/>
<constraint:SimpleConstraint rdf:ID= "constraint1 " >
 <constraint:subject rdf:resource= "#x " />
 <constraint:predicate rdf:resource= "&rdfs;type " />
 <constraint:object rdf:resource= "#AcceptData " />
</constraint:SimpleConstraint>

<constraint:SimpleConstraint rdf:ID= "constraint2 " >
 <constraint:subject rdf:resource= "#y " />
 <constraint:predicate rdf:resource= "&rdfs;type " />
 <constraint:object rdf:resource= "#UserActors " />
</constraint:SimpleConstraint>

<constraint:And rdf:ID= "conditions " >
 <constraint:first rdf:resource= "#constraint1 " />
 <constraint:second rdf:resource= "#constraint2 " />
</constraint:And>

<constraint:SimpleConstraint rdf:ID= "actor_value " >
 <constraint:subject rdf:resource= "#y " />
 <constraint:predicate rdf:resourc= "#performedBy " />
 <constraint:object rdf:resource= "#x " />
</constraint:SimpleConstraint>

<constraint:SimpleConstraint rdf:ID= "actio_value " >
 <constraint:subject rdf:resource= "#x " />
 <constraint:predicate rdf:resource= "controls " />
 <constraint:object rdf:resource= "#Plcy_Action " />
</constraint:SimpleConstraint>

<deontic:Prohibition rdf:ID=”AcpDataP”>
 <deontic:actor rdf:resource=”#actor_value”/>
 <deontic:action rdf:resource=”#action_value”/>
 <deontic:constraint rdf:resource=”#conditions”/ >
</deontic:Prohibition>

1

3

2

4

Figure 7. A Rei equivalent of the R2ML rule from
Figure 6

6. Discussion and Conclusion

Despite a wide recognition of necessity to integrate
business rules and specially policy rules [2, 6, 20], our
approach to representing the policy languages seems to
be the first practical attempt in this area. We have
shown the possibility of providing interoperability
between two well-known policy languages, namely,
KAoS and Rei, through the use of R2ML as a mediator
language. We have also discussed how the concepts of
description logic can be converted to declarative logic

and back. PeerTrust, due to its similarities to Rei in
following the conventions of declarative logic, can
equally be transformed to R2ML and then from R2ML
to any other language that has a transformation from
R2ML, such as KAoS or Rei.

A question that arises in using Web rule languages
to share policies is whether the currently-defined rules
(especially derivation rules) are sufficient for the
purpose of transformation, or whether we need deontic
rules (i.e., a sub-type of integrity rules in terms of
R2ML) such as Permission and Prohibition to be
supported and defined by Web rules. Based on our
experiments with both policy rules (e.g., including
permission, prohibition, obligation, and dispensation)
and web rules (e.g., derivation and integrity rules), the
current Web rules (i.e., R2ML) are expressive enough
to carry the intended meaning of policy rules. Having
in mind that Web rules are currently considered only as
mediums and not as rules for the purpose of reasoning,
the explicit discrimination between policy rules of
different types does not seem to be a must.
Additionally, Web rules can be annotated with respect
to the ontologies that hold the conceptual information
about policy languages, policy domains, and policy rule
elements. This in turn highly improves the readability
and machine understandability of the derived rules and
exempts us of defining further components for Web
rules.

Given the appropriate transformation between
several policy languages and R2ML, the problems
mentioned in Section 2 can be proven to be solvable.
Alice, as a traveler, should no more worry about the
policy language used by the printing service provider.
The broker agents available either on Alice’s system or
the service provider’s side can determine the policy
language used by the other party, once the request has
been sent or received. Through conversion of the
policies using the available transformations, both of the
parties (i.e. the service provider and the requester) can
decide whether the constraints placed on the
transaction by each of the two sides are acceptable with
regards to the policies of the other side, and if so, they
can start a healthy and authorized communication.

R2ML as a Web rule language provides
transformations from/to many other business rule and
Semantic Web languages. It has transformations
from/to F-Logic, OCL, SWRL, UML, etc. In the case
of our second example in Section 2, existence of a
conversion from F-Loigc to PeerTrust through R2ML
omits the need for developing a separate reasoning
engine to work over PeerTrust rules defined in F-
Logic. One can simply transform the F-Logic rules to
PeerTrust rules and then take advantage of the existing

rule engine for PeerTrust. Any other user with any
other policy language can still communicate to the
service. Moreover, existence of vocabularies for R2ML
facilitates defining the concepts that one user or system
may want to share with the other parties with which it
interacts.

Beside all the abovementioned benefits, the
presence of some flaws and problems in the given
approach is inevitable. The level of abstraction in
protecting the resources of a domain varies in different
policy languages, as we have also shown in Figure 1,
which is a big problem in providing accurate mappings.
This means, although the policy for a source language
can be transformed to R2ML, the transformed concepts
might not be available in the desired target language.
For example, in KAoS there is support for keeping the
history of actions and actors of a domain, while Rei
does not explicitly keep the track of preformed actions
and their corresponding actors. Therefore, during the
process of transformation these concepts should either
be addressed by expanding Rei or be ignored. In our
solution, we have taken the first approach, trying to add
these concepts to Rei by defining ontologies that cover
those concepts. However, for languages with low
expandability support it might be impossible.

Furthermore, in Rei there is a rich set of Speech
Acts to manage remote policy control which are missed
in KAoS. In our transformations from Rei to KAoS,
although the speech act elements are converted from
Rei to the R2ML elements, they (and also their related
constraints) are ignored during the conversion from
R2ML to KAoS.

Another problem is caused by the transformation
from declarative logic (e.g. Rei policy rules) to
descriptive logic (e.g. KAoS policy rules) or vice versa.
Ongoing efforts are being undertaken to make the
transformation from descriptive logic to declarative
logic promising, however, it seems that more work in
this area has to be done to solve all the problems in
representing the concepts in these two domains.

Considering all the drawbacks and advantages, our
long term-goal is to make use of these transformations
in a practical test bed (e.g., in the context of semantic
Web services) and among several parties with different
policy languages, showing the real opportunities to
exploit the transformations in real scenarios. By
expanding the transformations, we hope to target
eventually the goal of globalizing system interaction on
the Web.

7. Acknowledgment

The authors would like to thank Andrzej Uszok and
Lalana Kagal for their valuable comments and helps on

the concepts mentioned in this paper. The research of
Simon Fraser University is supported by Canada’s
NSERC-funded LORNET Research Network, while the
research of Brandenburg University of Technology at
Cottbus is supported by the EU IST-funded REWERSE
Network of Excellence.

8. References

[1] Akkiraju, R., et al., “WSDL-S Web Services
Semantics—WSDL-S,” W3C Member Submission,
www.w3.org/Submission/WSDL-S/, 2005.

[2] Bonatti, P. & Olmedilla, D. “Driving and Monitoring
Provisional Trust Negotiation with Metapolicies,” In
Proc. of the 6th IEEE Int’l WSh. on Policies For Dist.
Sys. and Nets, Washington, DC, 2005, pp. 14-23.

[3] Bradshaw, J. M, Jung, H., Kulkarni, S., Taysom, W.
“Dimension of adjustable autonomy and mixed-initiative
interaction”. In Klusch, G. Weiss, and M. Rovatsos
(Ed.), Computational Autonomy, Springer, Germany,
2004.

[4] Damianou, N., Dulay, N., Lupu, E., and Sloman, M.
“The ponder policy specification language,” In Proc. of
the Workshop of Policies for Dist. Sys. and Nets., Bristol
UK, 2001, pp. 18-38 .

[5] de Bruijn, J., et al., “WSMO Web Service Modeling
Ontology (WSMO),” W3C Member Submission,
www.w3.org/Submission/WSMO/, 2005.

[6] Ginsberg, A., “RIF Use Cases and Requirements,” W3C
Working Draft, http://www.w3.org/TR/rif-ucr/, 2006.

[7] Grosof, B. N., Horrocks, I., Volz, R., Decker, S.
“Description Logic Programs: Combining Logic
Programs with Description Logic”. In Proc. of the 12th
Int’l. Conf. on the World Wide Web, Budapest, Hungary,
2003, pp. 48–57.

[8] Hirtle, D., et al., “Schema Specification of RuleML
0.91,” http://www.ruleml.org/spec/, 2006

[9] Horrocks, I., et al. “SWRL: A Semantic Web Rule
Language Combining OWL and RuleML,” W3C
Member Submission,
http://www.w3.org/Submission/SWRL/.

[10] Kagal, L., Finin, T., and Joshi, A. “A policy language
for a pervasive computing environment,” In IEEE 4th
Int’l. Workshop of Policies for Dist. Sys. & Nets, 2003,
pp. 6-74.

[11] Kagal, L., “A Policy-Based Approach to Governing
Autonomous Behavior in Distributed Environments”,
PhD Thesis, University of Maryland, 2004.

[12] Kaviani, N., Gašević, D., Hatala, M., Clement, D.,
Wagner, G., “Towards Unifying Rules and Policies for
Semantic Web Services,” In Proc. of the 3rd Annual
LORNET Conf. on Intelligent, Interactive, Learning
Object Repositories Network, Montreal, QC, Canada,
2006

[13] Martin, D. et al., “OWL-S: Semantic Markup for Web
Services,” W3C Member Submission,
http://www.w3.org/Submission/OWL-S/

[14] Milanović, M., Gašević, D., Guirca, A., Wagner, G.,
Devedžić, V., “On Interchanging between OWL/SWRL

and UML/OCL,” 6th Workshop on OCL for (Meta-
)Models in Multiple Application Domains (OCLApps),
Genoa, Italy, 2006, pp. 81-95.

[15] Müller, G. “Guest Editor's Introduction: Privacy and
security in highly dynamic systems,” Communications of
the ACM, vol. 49, no. 9, 2006, 28-31.

[16] Olmedilla, D. et al., “Trust negotiation for semantic web
services,” In Proc. of the 1st Int’l Workshop on
Semantic Web Services and Web Process Composition,
San Diego, CA, USA, 2004, pp. 81-95.

[17] Nejdl, W., Olmedilla, D., and Winslett, M., Zhang, C.
C. “Ontology-based policy specification and
management” In 2nd European Semantic Web
Conference (ESWC), LNCS 3532, Heraklion, Crete,
Greece, 2005, pp. 290-302

[18] Nejdl, W., Olmedilla, D., and Winslett, M. “PeerTrust:
automated trust negotiation for peers on the semantic
web”. Technical Report, 2003.

[19] Ortalo, R. “Using Deontic Logic for Security Policy
Specification”, 1996
http://citeseer.ist.psu.edu/ortalo96using.html

[20] The Policy RuleML Technical Group. “The RuleML
Initiative”, March04 http://policy.ruleml.org

[21] R2ML Specification, http://oxygen.informatik.tu-
cottbus.de/R2ML/, 2006

[22] Rei Ontology Specification, Version 2.0,
http://www.cs.umbc.edu/~lkagal1/rei/

[23] Sergot, M., “Deontic Logic in Policy Specification”, In
Proc. of the Policy Workshop, Bristol, UK, 1999.

[24] Toninelli A., Bradshaw J., Kagal L., Montanari, R.
“Rule-based and Ontology-based Policies: Toward a
Hybrid Approach to Control Agents in Pervasive
Environments” In Proc. of the Semantic Web and Policy
Workshop, Galway, Ireland, 2005.

[25] Toninelli A., Montanari, R, Kagal L., Lassila, O. “A
Semantic Context-Aware Access Control Framework for
Secure Collaborations in Pervasive Computing
Environments” In Proc. of the 5th Int’l Semantic Web
Conf., Athens, Georgia, US, 2006.

[26] Tonti, G., Bradshaw, J., Jeffers, R., Montanari, R., Suri,
N. and Uszok, A. “Semantic Web Languages for Policy
Representation and Reasoning: A Comparison of KAoS,
Rei, and Ponder”. In Proc. of the 2nd Int’l Semantic
Web Conf., LNCS 2870, 2003, pp. 419-437

[27] Uszok, A. et. al., “KAoS policy and domain services:
toward a description-logic approach to policy
representation, deconfliction, and enforcement,” In
Proc. of the 4th IEEE Int’l Workshop on Policies for
Distributed Systems and Networks, 2003, pp. 93-96.

[28] Uszok, A., Bradshaw, J., Jeffers, R. (2004). “KAoS: A
Policy and Domain Services Framework for Grid
Computing and Semantic Web Services”. In Proc. of the
Second In’l Conf. on Trust Management (iTrust 2004),
Springer.

[29] Wagner, G. et al., “A Usable Interchange Format for
Rich Syntax Rules Integrating OCL, RuleML and
SWRL,” In Proc. of WSh. Reasoning on the Web
(RoW2006), Edinburgh, UK, 2006.

[30] XSLT transformations: http://cgi.sfu.ca/~nkaviani/cgi-
bin/index.php?linkLocation=6projects

