Web Rule Languagesto Carry Policies

Nima Kavianf, Dragan Gase¥t, Marek Hatalg Gerd Wagnér
'Simon Fraser University Surrey, Canada
“Brandenburg University of Technology at Cottbustrgany
{nkaviani, dgasevic, mhatala}@sfu.ca, wagnerg@ttibess.de

Abstract without requiring the consent or cooperation of the

components being governed.
Recent efforts in the area of Web policy languages Currently, there are many different policy language
show concerns on how to better represent both gonte jncluding Rei, KAoS, and PeerTrust; but there is no

and rules of a domain to dgal with large numper O_f common agreement upon one universal policy language
resources and users. Interaction between domaitts wi [26]. Each policy language has its own syntax and
different business rules is also another questidﬂ]ab semantics that is usua”y grounded in a partictype
issue in this same area. Web rule Ianggage_s haea be of logic such as first order logic or descripti@yic.
recently introduced as a means to facilitate intgi@n This actually introduces a problem of mutual

between parties with dissimilar pOIiCieS and busme understanding and Sharing of po”cies between rdiffe
rules. Efforts have been plaCEd to further reviéw t parties that use different p0||Cy |anguages_
possibility of the proposed solutions and exterehth Nevertheless, it is very important to inspect fgekdn

to work with other Web technologies. In this papeg, order to check whether there are some conflicting
introduce REWERSE Rule Markup Language (R2ML) policies or understand what they are referringeta.(

as a Web rule language that can be employed to makeyjith the help of domain ontologies [27]). This da@
concepts, policies, and elements of a domain diest yery challenging having it in mind that differertlizy

by another domain through the use of Vocabularies, |anguages are based on different |Ogics (e_g_,
rUleS, and annotations. We also show how R2ML description |Ogic (DL) and declarative |Og|c) Cimet
elements can model the concepts and elements obther hand, Toninelli et al. [24] recognized thaktn
different policy languages and assist systems with generation of policy languages should combine featu
diverse policies with their interactions. of ontologies (i.e., description logic) and rulesbd

. systems, which actually affects the development of
1. Introduction languages such as Rei and KAoS. Finally, policies

Integrating various technologies and services ,(e.g. Should also be in compliance and/or combined with
mobile devices and Web) offers many opportunities f business rules that can be defined by using varigas
sharing resources in different contexts. For exampl languages (e.g., F-Logic, Jess, Semantic Web Rule
creating a new Web service does not mean thatlit wi Language-SWRL, or Prolog) [2]. _
always be used in the same way and by the same,user In this paper, we propose an approach to sharing
as it has originally been designed for. On thereopt ~ Policies by using Web rule languages [12]. This
a highly-dynamic nature of today’s environments][15 actually follows up two initiatives: the Rule
requires the behavior of systems to dynamically Interchange Format (RIF) [6], an initiative for the
change. In such systems one can discover and aggoti Standard for sharing rules on the Web, and Policy
the use of new services. However, we need to defineRuleML [20], an initiative for sharing policies sing
ways how one can understand what services arevarious types of rules (e.g., derivation and proidug
offered. It can be solved by using Semantic Web Of the RuleML language [8]. However, to the best of
ontologies [1, 5]. Moreover, we also need to sgecif Our knowledge, there has not been any practicamgtt
how, where, and by whom these services can be used’esponding to either of these initiatives. Here, we
In fact, policies are used to address this probesna ~ Propose using REWERSE Rule Markup Language
means to dynamically regulate the behavior of syste (R2ML), a general purpose rule language and aédutur

components without changing the system’s code andProposal for the RIF standard, to carry policies.db
so, we first motivate our research by analyzing two

examples where there is a need to share policas th language [11] and the printing service is definadeal
have originally been encoded in different languaiegs on WSMO [5]. Is Alice going to convert her policy
Section 3, we describe three policy languages (KAoS language to F-Logic, which is the supported rule
Rei, and PeerTrust), while in section 4 we briefly language in WSMO, and use the WSMO rule engine,
describe the most-known Web rule language effortsor, is she going to expect the service provider to
and their potentials to carry policies. SectiorisSthe understand her policies?

core section of the paper and it describes ourcgmbr Another example is based on [16] where the authors

to using R2ML for sharing policies in detail. try to integrate their policy language called Peast
L [18] with the description of a Semantic Web service

2. Motivation Among all the available semantic web service

description languages, including OWL-S [13], WSDL-
S [1], and WSMO, the authors choose WSMO as it
allows arbitrary use of logical expressions in the
description of the services and also uses F-Logic t
describe the logical expressions used in the daguoni

of the services [18]. In contrast, WSDL-S and OWL-S
are agnostic to employing rule and ontology langsag

b However, using F-Logic to define the concepts of
PeerTrust in WSMO means that the whole concepts of
PeerTrust need to be converted to a format suifable
an F-Logic-based inference engine. That is, oneldho
totally forget about the engine that already exists
PeerTrust and develop a new F-Logic engine that can
reason over the policies defined in PeerTrust.

As it has been mentioned in the previous section
and based on the arguments in [24], there is a teed
combine the features of description logic and the
properties of the rule languages to define corbesied
policies with supports for conflict resolution,
expansion, and classification on one hand, and rule
enforcement on the other hand.

However, due to the variety of the policies avdéa
for protecting the resources and the approaches the
take to codify these policies, i.e., either ruleghw
ontologies as the backend knowledge bases [10018],
DL and corresponding reasoners on top [27], the
process of information exchange becomes challenging

and sometimes hard to achieve. This diversity of Probl h itate the devel t of
methods to describe rules and policies even sorastim roblems as such necessitate the development of a

forces the requestors to accept the language of thémiﬁeoI method of policy exchange that supports the

source entities for the sake of consistency antajlo conversion o_f_dlf'feren_t policy Ianguages_ frqm ooe t
compliance. To make it more precise let us review t another. Additionally, it seems that the viabildf/ the

of the scenarios addressed in the relevant litexatu future_ pollcy languages is tied to their capablllty_

In [24], the authors considered a scenario in which comblnlr_lg rule- and o_nt(_)logy-ba_lsed languages (i.e.,
certain traveling company has provided its traeler _detclarag_/e and rc]iescrlptllve logic) [ﬁ4]'|dTT1us’ trlﬁ
with wireless connectivity for their portable dess; intermediary exchange ‘anguage shou ave the
e.g., PDAs and laptops, as well as some othercearvi required constructs and elements to support _bd(als ru
such as using public printers located in the airpor and ontology concepts. Here we Propose using a web
Alice as a traveler may wish to access the priatet rule (markup) language to carry the policies frone o
print some of the available documents on her laptop party to another one. Besides vyeb rule languages, w
So, she sends the request to the service provideea also need two way transformations between the web

airport. The service provider checks Alice’s credds rule language and policy Ianguag_es, S0 that we can
such as the boarding number and the name of thefu"y address the problem of diversity of policy
traveling agency. In case they match, Alice is gitlee languages.
right to access the printer to print the documenis 3. Policy L anguages
This scenario works fine as long as the servicgiger
and the software agent on Alice’s laptop speakhen t Policies in the domain of autonomous computing
same policy language. are guiding plans that restrict the behavior of
The question that arises in this case is how Adice’ autonomous agents in accessing the resources [24].
web agent will communicate with the service provide They also legitimatize the behavior of an agent by
in case the policy language of Alice’s agent igedént identifying its liberties and suppressions durirge t
from that of the service provider. Recall that ¢hés process of authorization. The main advantage ingusi
still no generally adopted agreement on defining an policies is the possibility to dynamically chandee t
using Semantic Web services and Web policy behavior of the system by adjusting the policietheut
languages. Thus, different Web entities may use interfering with the internal code of the systerj |8
dissimilar policies to protect their services. Let policy-aware system can be simply conducted to act
assume that Alice’s web agent is using the Reicpoli

based on the role of the requesting entities anthe@r KAo0S and Rei are important for our purpose because
context of its performance. they are widely known in the level of context-aware

Policy-aware systems have been constantly evolvedpolicy languages with markup syntax. PeerTrust $ielp
starting from group-based policy systems (e.g. to show the possibility of applying the transforioas
operating systems) to role-based systems (e.g.to a language with a more traditional EBNF struetur
Cassandra and RT), and recently to context-basedThe syntactical differences will be later arguedewh
systems. Although the earlier versions of policyaeav deliberating the transformation problems between
systems are still applicable to the static contevith policy and web rule languages.
precise number of users, groups, and resourceg, the KAQS is a policy language with the possibility of
are not applicable to the Web with its enormous specification, management, conflict resolution, and
number of resources and users. Context-aware policyenforcement of policies [27, 28]. The policies and
systems are targeting the problem of extending thedomain objects have been represented as OWL
number of to-be-protected resources and contexts a®ntologies which make the systems easily expandable
well as treating unknown or partly-known requesting and adaptable to different domains. Each KAoS polic
entities[25]. rule is an instance of the Policy class (i.e., its

KAoS [27] and Rei [11] are two of the most known PosAuthorizationPolicy NegAuthorizationPolicy
policy systems that go beyond the traditional polic PosObligationPolicy and NegObligationPolicy
systems by giving special care to the context tchvh subclasses), with properties for resources to be
the policies are applied. They are both enriched controlled, conditions, actors, triggering eventsd a
semantically by using ontologies to define and dbec actions, site of enforcement, etc. Thanks to théufes
the entities involved in the process of authoraatnd of OWL, policies can be defined to cover concejbes |
access control. PeerTrust [18] is another policseda minimum and maximum cardinality for the entities as
system that operates in a lower level of abstracts well as universal and existential quantifiers otes
compared to KAoS and Rei, and addresses accessbjects instantiated from the concepts and classes.
control problems through the use of trust negatiati However, the lack of mechanisms to define variables
However, the similarities between PeerTrust, KAoS, OWL has made the developers use role-value-map
and Rei in using ontologies to describe the pdliecied technigue to implement dynamic and runtime
entities, as well as the semantic and logic that role/entity assignment. The arity of the predicates
PeerTrust chooses to address rule enforcement andepresented in KAoS is restricted to one or two
conflict resolution makes it an interesting langeidg corresponding to their definitions in OWL. By using
be compared to KAoS and Rei. Aside from the and extending Stanford’s Java Theorem Prover (JTP),
conceptual differences in the level of access obntr KA0S enables static conflict resolution, intelligen
and authorization, KAoS, Rei, and PeerTrust alfferdi lookup and dynamic policy refinement. KAoS has its
in their syntax and also the types of the logio/thee enforcement engine, but it needs to be customizgd w
based on. regards to the domain it is going to be deployed in

All the above languages have similar constructs to Rei is a rule-based approach to specify, analyze and
address Permission, Prohibition, Obligation,and reason over the policies in pervasive environments
Dispensation but they add additional elements and [10]. Although the first version of Rei was follavg a
building blocks to make the process of policy Prolog-like syntax with a Prolog engine as the oeas,
definition, harmonization, and enforcement more Rei 2.0 migrated to a new representation format,
precise. [26] has already provided a detailed exploiting the RDF notations to define policies J[22
comparison of KAoS, Rei, and a traditional policy Thus, in the new version, Rei expressions are défin
language called Ponder [4]. The comparison, however as triples compliant to the RDF format. Unlike KAoS
is based on the older version of Rei, namely R@j 1. in which the knowledge about the domain and the
which was not as advanced as Rei 2.0 in definir an policies are all defined in OWL, Rei only uses
annotating the resources semantically. The congraris ontologies as knowledge bases to keep the infoomati
was also on the level of features and propertielsnan of the domain and although its syntax is in therfaf
on the level of syntax and logical foundations that RDF, the semantics follow the rule-based language
policy languages are built on. Here we give a quick conventions. Rei relies on a rich set of speech fact
comparison of Rei and KAoS, pointing out some of the purpose of message passing and dynamic exchange
their properties that conform to the properties of of the rights between the entities. A main drawbiack
PeerTrust, and briefly review the syntactical and Rei is that there is no enforcement engine desidmed
logical differences they entail in their definitn it and the process of rule enforcement should be

addressed outside the Rei engine. Moreover, because

the Rei policy engine treats the inferences fromlOW
axioms as virtual fact base, there are no capiaiilior
ontological reasoning and consequently no chance fo
policy disclosure and conflict resolution as opgbs®
KAo0S. However, the syntax used by Rei is much easie
to grasp for the users with a basic understandimgle
languages. Rei is suitable for a lower level ofusigg
than KAo0S, dealing with identification of entitiesd
concepts.

PeerTrust is a trust negotiation engine with the
possibility of dynamic exchange of certificates and
establishment of trust without any third party logein
involved in the process of trust act [18]. SimilarRei,

Decreased level of Abstraction .

KAoS Rei Peer Trust
Policy .
Representatio OWL Rfe| (RDF PeerTrust
n ormat)
¢ | Expandability High High Low
| Knowledge OWL | RDF/OWL Prolog
8_ Base
Pt Reasoning Prolog .
a Support JTP Engine Prolog Engine
Enfor cement Extending Domain
Enqine KAoS No engine specific
9 engine (for ELENA)

Figure 1. Comparison of the featuresin KAQS, Rei,
and Peer Trust

PeerTrust also uses a Prolog-based engine to reason We believe that Semantic Web Rule languages are

over the defined policies for the exchange of trust
information but instead of dealing with contexts (a
KA0S) or the identities of the entities (as in Ref)
goes further down in the level of security and rlesi
policies over attributes of the resources and thities.
PeerTrust uses its own EBNF syntax for

representation of policies with possibility of defig n-
ary predicates in the rules, but the policies can b
imported to the PeerTrust engine in the form of RDF

the

metadata as well. PeerTrust has been deployed an

used in the ELENA distributed e-learning environtmen
While KAoS is based on description logic, Rei and
PeerTrust follow the conventions of declarativeidog
programs. This makes a lot of difference in the way
they refer to existence or nonexistence of objacts
the relations between classes and elements of th

the solution to the problem. To be precise, lestast
with reviewing some of the proposed Semantic Web
Rule Languages and then we will review the properti
they offer to facilitate the exchange of policies.

Rule Interchange Format (RIF) [6] is one of the
most important initiatives in this area. It defireeset of
use cases and requirements for sharing rules on the
Web. However, as it is desired in our case, thpqae

S/f RIF is to serve as an intermediary language &etw

arious languages and not as a formally defined
semantic foundation for the purpose of reasoning on
the Web. Among all the use cases defined for RIF,
special care has been given to policies by relatinge
of the ten introduced use cases to the issuesfigpieci
olicies. These use cases afeollaborative Policy
evelopment for Dynamic Spectrum Access, Access to

classes. So, a mapping between the languages 9068 ;siness Rules of Supply Chain Partpemnd

beyond a conceptual matching in the level of petci
and has to delineate the mappings in the levebgitl
as well (see Section 5.2 for details).

Figure 1 summarizes features of the three languages

mentioned above. It compares KAo0S, Rei, and
PeerTrust in terms of the format they use to dbscri
their rules, the possibility of expanding the cqutseof

the languages, and also the way they store the idoma

information and reason over it.

4. Web Rule Languages for Policies

Managing Inter-Organizational Business Policies and
Practices Still there has been no concrete example on
how to use RIF for this purpose.

Here we point out some of the main efforts in the
area of Semantic Web Rules.

Semantic Web Rule Language (SWRL) is a rule
language based on the W3C Web ontology language
OWL [9]. A SWRL rule is also in the form of an
implication and is considered to be another typarof
axiom on top of the other OWL axiom types. This
means that SWRL rules are usually used for defining

In Section 2, we have shown the existence of a needderivation and integrity rules. Both consequent and

to define a medium for transforming the rules, and
specifically policies, among different resourcese W
have also discussed the necessity of a suppoltofbr
ontological definition and rule based representatd
the policies for the purpose of achieving conflict
resolution, harmonization, and enforcement.

antecedent are collections (i.e., conjunctiongjtoms.
We should say that the purpose of SWRL is not ta be
universal rule interchange language, but its pw@des
to define an additional logic layer over the preésen
ontology languages (i.e., OWL). As such it can not
represent many linguistic constructs of other rule
languages (e.g., F-Logic, Rei, or OCL).

RuleML is a markup language for publishing and
sharing rule bases on the World Wide Web [8].

RuleML builds a hierarchy of rule sublanguages upon syntax of R2ML language is defined with a metamodel
XML, RDF, XSLT, and OWL and currently supports by using the OMG’s Meta-Object Facility (MOF). This
rules in the form of derivation (e.g., SWRL, FOlfjda means that the whole language definition can be
production (e.g., Jess). It is based on Datalog andrepresented by using UML diagrams, as MOF uses
defined as an implication between antecedent andUML’s graphical notation. The current version of
consequent. The antecedent part of the rule isiated R2ML is 0.4 [21]. The full description of R2ML imé
as true whenever the consequent of the rule holdsform of UML class diagrams is given in [21], while
However, an important constraint of RuleML is titat more details about the language can be found ih [29
can not fully represent all the constructs of vasio The language also has an XML concrete syntax difine
languages such as OCL or SWRL. by an XML schema, while there are a number of
Built upon the concepts of RuleML, the Policy transformations implemented between R2ML and rule
RuleML Technical Group [20] has been formed as a based languages (e.g., OCL, SWRL, Jess, and F-
committee to outline the use of RuleML as a semanti Logic).
interoperation vehicle for heterogeneous policy Vocabulary. R2ML provides a vocabulary that
languages, standards, protocols, and mechanisrits; bo enables users to define their own world in the fafm
currently existing and those developed in the nearobjects and elements available in the domain of
future. The goal was stated as encoding, tranglatiral discourse. The vocabulary can be defined as a
integrating rules between disparate policy systems.combination ofBasic Content VocabulanRelational
They have addressed their long-term plan asContent Vocabulary and Functional Content
incorporation of deontic expressive features sush a Vocabulary.Basic Content Vocabulary allows the user
logics to capture rights, obligations, and empovesrin to specify the basic elements of the domain such as
as aspects of policy rules. The deontic rules theyindividual objects and data values, classes and dat
consider to model policy languages are enlisted astypes, and object and data variables. Relationatelm
Permission and ProhibitignDuty Assignmentand Vocabulary helps to associate different objectsnfro
Empowerment Nevertheless, to the best of our different classes through defining n-ary assoaméiod
knowledge, there is still no real work done by the association classes. Finally, Functional Content
Policy RuleML technical committee in this areatte Vocabulary assists with defining functors that
next section, we explain our efforts to addressehe correspond to the standard logic of functions. The

goals by using R2ML [12]. functions can be data operations to manipulate data
. . . values, they can be object operation functions that
5. R2ML for Representing Policies define object-value operations, or they can be role

This section presents our approach to Sharingfunctions which C0rreSp0nd to functional assocratio

policies by using Web Rule Languages, that is based ~(binary association) of the class elements. In [14]
the REWERSE Rule Markup Language (R2ML). We authors showed how the basic constructs and elsment
first describe R2ML features and how they can eelus Of the OWL language can be transferred and modeled
to represent various types of policies. We thethrr by R2ZML atoms and elements. For examgaeneAsn
clarify our idea by demonstrating how we mapped OWL is equivalent to arfEqualityAtomin R2ML and
some of the policy languages such as KAoS anddei t 0neOf in OWL carries the same meaning as
R2ML, and thus address the problem of sharing Disjunctionof a set of atoms in R2ZML. This means any
policies between diverse policy languages. As is wa language with its concepts defined based on OWL
already discussed the problem of mapping KAoS tio Re (including KAoS and Reiyan be modeled with R2ML
and back is not only a matter of policy term maighi ~ constructs elaborately.

but it is also a transformation from descriptiogitoto Rules. Having the objects and concepts of a domain
declarative logic, which KAoS and Rei are respetiv defined, R2ML makes the definition and harmonizatio
based on. The main reason we chose KAoS and Rei irPf rules over these concepts possible through seeofi

our first attempt for providing a mapping, besitieit four different types of ruledntegrity RulesDerivation
reputation in the area, was their XML-like syntaithw Rules, Reaction Ruleand Production RulesSince in
easier practical implementation of transformation t this paper we are limited in space, we only reviee/

triples of type subject-predicate-object. first two rules and more information about the othe
) rules and constructs of the language can be foond i
5.1. R2ZML: An overview [29].

R2ML is a general rule interchange language that ~R2ML integrity rules, also known as (integrity)
tries to address all RIF requirements. The abstractcOnStraints, consist of a constraint assertionciis a

sentence in a logical language such as first-orderthough a doentic policy demonstrates concerns over
predicate logic or OCL (see Figure 2a). R2ML performing a duty or obligation as a result of sfging
supports two kinds of integrity rules: takethicand the a series of related conditions [19, 23].

deontic ones. The alethic integrity rule can be Atoms are the basic logical constituents of a rule
expressed by a phrase, such“iags necessarily the which are compatible with the concepts of OWL,
case that”and the deontic one can be expressed byRuleML, and SWRL. Atoms connect objects to values,
phrases, such & is obligatory that” or “it should be classes to instances, and objects to objects, put
the case that” A LogicalStatement is a restrictions on the objects and data values, andnso
LogicalFormula that has no free variables, i.d. tre Here we briefly represent some of the atoms that ar
variables from this formula are quantified. In terof relevant to our purpose of representing policy
policy languages, integrity rules can be considaasd languages.ReferencePropertyAtomassociate object
constraints that must hold consistently especiallhe terms as subjects with other terms (objects or data
level of rule enforcement, e Gt is necessary to give a values) as objects. ReferencePropertyAtom R2ML
higher priority to the commands of the administrato corresponds to an OWL (and similarly a KAoS) object
than to the commands of the regular users on aproperty, or to the OWL concept of value for an

system.” individual-valued property. ObjectDescriptionAtoms
ety oot are another class of useful atoms for our purpbkey
contain any free variabie} T constrant refer to a class as a base type and to zero or more
! classes as categories, and consist of a number of
I/ ityRule LogicalF I . . . -
property/term pairs (i.e., attribute data term paind

reference property object term pairs). Any instaate
such atom refers to one particular object that is

[Retue] - [oeoniomearimie]

a
.) referenced by anbjectID, if it is not anonymous. This
[DervationRule j@—— atom corresponds to the instantiation of an olfjech
conditions 1.4 | conclusions a class in OWL, which matches a deontic objecth wit
AndOrNafNegFormuta) [LiteralCon} all its properties instantiated, in either Rei gkdS.
1.*
b) 5.2 TheLogic of Transformation
Figure2. The R2ML definition of Integrity (a) and Providing transformations from Rei and KAoS to
Derivation Rules (b) R2ML and then from R2ML to KAoS or Rei, as we

A R2ML derivation rule has conditions and a mentiqned b.efore, is not just a straightforwardvieng
conclusion (see Figure 2b) with the ordinary megnin matchmg_ugmg lookup tables. KAoS models the wor!d
that the conclusion can be derived whenever thePy specifying the elements and the objects in
conditions hold. While the conditions of a derigati ~ description logic while Rei assembles its world hwit
rule are instances of thendOrNafNegFormulaclass, ~ declarative logic building blocks. So, the probled
representing quantifier-free logical formulas with transformation expands to the problem of bridging t
conjunction, disjunction and negation; conclusians ~ declarative logic world to its descriptive logic
restricted to quantifier-free disjunctive normakrfs ~ counterpart. It is important for RZML because wede
without NAF (Negation as Failure, i.e. weak negation). R2ML to serve as a conductor between the two worlds
In the context of policies, we consider each deonti R2ML has been designed having the properties df bot
policy rule as a single derivation rule with the OPen world (i.e. descriptive logic) and close wdild.
constraints making the conditions of the derivatiole ~ declarative logic) in mind. Knowing the logic of
and the policy decision forming the conclusion lnét transformation from declarative logic to descriptiv
rule, e.g.If the user is from Simon Fraser University 10gic and back would help in providing more
with a valid student ID then give her the permiasio meaningful transformations with less informatiosdo
enter the area of the universitylt may sound more [7] gives an elaborate method of mapping the basic
expressive to define deontic policy rules with deon elements of description logic to declarative lo@dVL
integrity rules in R2ML. However, our attempts in @S @ subset of RDFS corresponds to a fragment of
doing so showed that deontic rules in the contéxt o classical FOL. It is shown in [7] that OWL elements
policies carry a different meaning from their are convertible to definite Horn FOL elements whith
interpretation in R2ML. In R2ML, a deontic integrit ~ turn are convertible to definite Datalog Logic Prags
rule represents a constraint that should be sedigir ~ @S @ restricted model of Logic Programs (LPs). For
must hold with a concrete proof for its truthfulags example, classes and class expressions are equivale

to FOL formulae with one free variable, and projesrt
(and property expressions when supported by
description logic) are equivalent to FOL formulaihw
two free variables. Classes and property inclusion

axioms are also considered as FOL sentences

consisting of an implication between two formulaghw
the free variables universally quantified at thdeou
level.

Figure 3 shows a selection of OWL constructs with
their corresponding description logic syntax andLFO
expressions. Details of the definitions can be ¢bim

[71.

OWL Constructor | DL Syntax FOL Expressions
subClassOf cab D-C

transitiveProperty| P* O P |Xy.ZPXY) C(AY,2) -Px2
inverseOf P=Q | IXYP(XYy) = Q(y,x)

intersectionof |[C, n...nC, C(LC...CC,(¥
unionOf ¢ 0..0C | C((XLC..CC,(X
complementOf -C - C(x)
oneOf {a,....a,} x=a [L..Cx=4a,
hasClass CP.C Cy(P(x,y) EC(¥))
toClass opPC Oy(P(x,y) —» C(y))

policy:NegAuthorizationPolicy rdf:ID="AcpDataP"> 4
<policy:controls rdf:resource="#PIcy _Action"/> 2
<policy:hasPriority>2</policy:hasPriority> <=

</policy:NegAuthorizationPolicy>
i<owl:Class rdf:ID="PIcy _Action ">
<owl:intersectionOf>
<owl:Class rdf:about="#AcceptData"/>
<owI.Class>
<owl:Restriction>
<owl:onProperty rdf:resource=
#performedBy"/>
<owr-allvaluesFrom>
<owl:Class rdf:about="#UserActors"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:Class>
</owl:intersectionOf>
</owl:Class>

Figure 4. An excerpt of a KAoS policy rule

w] [=]

11]

R2ML in our transformation plays the same role as
definite Horn FOL plays in description logic progra
in [7], i.e. an intermediary world to capture sianities
between logic programs and description logic. ldeor
to make the idea easier to grasp, we start with a
conversion of the policy in Figure 4 to definite iHo
FOL according to the mappings from Figure 3 and the
further develop it to the identical R2ML represéiata
Figure 5 shows the result of applying the conversio
to the code above.

Figure 3. Some of the OWL constructors and the
equivalent description logic and FOL expressions

For the purpose of transforming policies from
KAoS to Rei, we need R2ML rules that can precisely
transfer the deontic meaning of the policy ruleshia

NegAuthorationPoley(x) —
Ccontrolgx, y) C Plcy_ Action(y) C
hasPriority (x,2)
AcceptDatx) — Plcy_ Action(x)
UserActorgy) — Plcy _ Action(x) C
performedBy(X, y)

same way we explained in the previous section. @hes
R2ML rules also have to either implicitly or exjiig
demonstrate the possibility of reasoning over the
content which is transferred. Furthermore, as & ha
been also argued in [7], class and property inchssi
are better to be declared in the form of implicasio
Considering all the points above, we finally chose
derivation rules as the most suitable rules fos thi
purpose. Derivation rules precisely support impiaa
and show derivation of new facts upon reasoningon
priori facts.

Let us further clarify the idea by reviewing an
intuitive example of the policy languages. Consithait
we need to define a policy tprohibit our system from
using data that is accepted by the members of agro
called UserActors! Figure 4 shows an excerpt of the
policy rule in KAoS to define this policy.

The highlighted parts in the policy of Figure 4 sho
the main elements that carry the intended meaning o
the policy. During the process of transformatioasth

Figure 5. The KAoS policy from Figure 4 described
in thedefinite Horn FOL

Similar to the conversion in Figure 5, our R2ML
transformation should syntactically demonstrate the
possibilities to evaluatAcceptData(x) UserActors(y)
and eventuallyNegAuthorizationPolicy(x)Jas TRUE
knowing thatPlcy Action(x)andperformedBy(y, xare
true for the instantiated variablgsandy. It also has to
show that NegAuthorizationPolicy(x)is a logical
consequence ohcceptData(x)and UserActors(y) To
model the desired rule we place the values for
Plcy_Action(x)andperformedBy(y, xjn the head, and
AcceptData(x)and UserActors(y)in the tail of the
R2ML transformation rule. Note that the policy ruge
fired when actiorx as aPolicyActionis performed by
actory who belongs to the group tfserActors so the
values for x and y become known.
NegAuthorizationPolicy(xjs the ultimate result of the
derivation rule, which we keep as a conclusionha t

elements should be captured and converted to thehead of the derivation rule, convertedPimhibition, to

appropriate R2ML elements

show the final result of authorization. Finallyetresult

of a mapping from KAoS to R2ML based on this
argument can be formulated similar to Figure 6.

[1]

<r2ml:DerivationRule>
<r2ml:conditions>
[<rZmI-ReferencePropertyAtom
r2ml:propertylD="#instanceOf"
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name="x"/>
</r2ml:subject>
<r2ml:object>
<r2ml:ObjectName r2ml:objectID="#AcceptData
</r2ml:object>
</r2ml:ReferencePropertyAtom>
<r2ml:ReferencePropertyAtom>
r2ml:propertylD="#instanceOf">
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name="y"/>
</r2ml:subject>
<r2ml:object>
<r2ml:ObjectName r2ml:objectID="#UserActors
</r2ml:object>

ropertyAtom>

<
</r2ml:conditions>
< N on>
<r2ml:ObjectDescriptionAtom
r2ml:classID="Prohibition">
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name="AcpDataP
</r2ml:subject>

<r2ml:ObjectSlot
r2ml:referencePropertylD="controls"/>
<r2ml:ObjectVariable r2ml:name="x"
r2ml:classID="#Plcy_Action">
</r2ml:ObjectSlot>

<r2ml:ObjectSlot
r2ml:referencePropertylD="performedBy">
<r2ml:ObjectVariable r2ml:name="y"/>
</r2ml:ObjectSlot>
</r2ml:ObjectDescriptionAtom>
</r2ml:conclusion>
</r2ml:DerivationRule>

Figure 6. R2ML representation of the KAoS policy
rulefrom Figure 4

The parts of Figure 4 and 6 numbered similarly are
the conceptually equivalent pieces in the referred
languages, namely KAoS and R2ML. As we have

already mentioned and it can also be seen in the

transformations, R2ML ReferencePropertyAtomis
used to model property values in OWL and
ObjectDescriptionAtom is used to model the
instantiation of the objects in OWL.

A ReferencePropertyAtononnects the objects of a
class to the objects from other classes with piagser
as connectors. In this sensdRaferencePropertyAtom
neatly models a triple similar to their represantain
RDF. Now that we have the KAoS policy simulated in
the form of triples in R2ML, mapping the resulttte
RDF format of Rei is easy to achieve. Figure 7 show
the corresponding Rei model for the above R2ML code
shippet (Figure 6).

Although the policy that we have reviewed here has
only few constraints, the other constraints for dittger
properties of a policy rule in KAoS (such as tringg
constraints, preconditions, and effects) follow saene
procedure and are eventually converted to consérain
which are placed in theondition part of an R2ML
rule.

The transformation of the policies from Rei to
R2ML is much simpler because the R2ML rule

representation that we have chosen is closer to the
model of expressing the rules in Rei (the same tivaly
def Horn FOL is closer to LP). Yet grouping of the
R2ML atoms as classes in order to keep the deoivati
rules consistent with the format of OWL and KAOS is
important. To achieve that, we group
ReferencePropertyAtomanith a common subject
element in the form of an instantiated object fram
class. The restrictions placed over the subjedt gfaa
ReferencePropertyAtomcan then be shown as
restrictions in the OWL class.

We shorten the discussion at this point, but riea t
we have implemented transformations from Rei and
KAO0S to R2ML and also from R2ML to Rei and KA0S
using XSLT which fully follow mapping rules
discussed in this section. All these transformatioan
be found in [30].

<entity:Variable rdf:ID="x"/>
<entity:Variable rdf:ID="y"/>
<entity:Variable rdf:ID="negAuth”/>
[<constraint:SimpleConstraint rdf:ID=

"constraintl

=]

<constraint:subject rdf:resource= "H#X" >
<constraint:predicate rdf:resource= "&rdfs;type " />
<constraint:object rdf:resource= "#AcceptData " />
</constraint:SimpleConstraint>
i<constraint:SimpleConstraint rdf:ID= "constraint2 ">
<constraint:subject rdf:resource= "H#y" [>
<constraint:predicate rdf:resource= "&rdfs;type " />
<constraint:object rdf:resource= "#UserActors " />
</constraint:SimpleConstraint>
<constraint:And rdf:ID= "conditions " >
<constraint:first rdf:resource= "#constraintl ">
<constraint:second rdf:resource= "#constraint2 " />

</constraint:And>

Tactor_value "3 3

[<constraint:SimpleConstraint rdf:ID=

<constraint:subject rdf:resource= "H#y" [>

<constraint:predicate rdf:resourc= "#performedBy " />

<constraint:object rdf:resource= "HX" >
[</constraint:SimpleConstraint>

]

<constraint:SimpleConstraint rdf:ID= "actio_value " >E

<constraint:subject rdf:resource= "H#X" >

<constraint:predicate rdf:resource= "controls " />

<constraint:object rdf:resource= "#Plcy_Action " />

</constraint:SimpleConstraint>

Ixdeontic:Prohibition rdf:ID="AcpDataP">
<deontic:actor rdf:resource="#actor_value”/>
<deontic:action rdf:resource="#action_value”/>
<deontic:constraint rdf:resource="#conditions”/
I</deontic:Prohibition>

Figure 7. A Rel equivalent of the R2ML rule from
Figure6

4]

>

6. Discussion and Conclusion

Despite a wide recognition of necessity to integrat
business rules and specially policy rules [2, g, 80r
approach to representing the policy languages seems
be the first practical attempt in this area. We ehav
shown the possibility of providing interoperability
between two well-known policy languages, namely,
KAo0S and Rei, through the use of R2ZML as a mediator
language. We have also discussed how the concépts o
description logic can be converted to declaratogd

and back. PeerTrust, due to its similarities to Rei
following the conventions of declarative logic, can
equally be transformed to R2ML and then from R2ML
to any other language that has a transformatiom fro
R2ML, such as KAoS or Rei.

rule engine for PeerTrust. Any other user with any
other policy language can still communicate to the
service. Moreover, existence of vocabularies foMR2
facilitates defining the concepts that one usesystem
may want to share with the other parties with whtch

A question that arises in using Web rule languagesinteracts.

to share policies is whether the currently-defineles
(especially derivation rules) are sufficient foreth
purpose of transformation, or whether we need deont
rules (i.e., a sub-type of integrity rules in termf
R2ML) such asPermission and Prohibition to be

Beside all the abovementioned benefits, the
presence of some flaws and problems in the given
approach is inevitable. The level of abstraction in
protecting the resources of a domain varies irechffit
policy languages, as we have also shown in Figure 1

supported and defined by Web rules. Based on ourwhich is a big problem in providing accurate maggin

experiments with both policy rules (e.g., including
permission, prohibition, obligation, and dispensali
and web rules (e.g., derivation and integrity r)yléise
current Web rules (i.e., R2ML) are expressive ehoug
to carry the intended meaning of policy rules. Hagvi

in mind that Web rules are currently considered @sl
mediums and not as rules for the purpose of reagpni
the explicit discrimination between policy rules of
different types does not seem to be a must.
Additionally, Web rules can be annotated with respe
to the ontologies that hold the conceptual inforamat
about policy languages, policy domains, and patidg
elements. This in turn highly improves the readgbil
and machine understandability of the derived rales
exempts us of defining further components for Web
rules.

Given the appropriate transformation between
several policy languages and R2ML, the problems
mentioned in Section 2 can be proven to be solvable
Alice, as a traveler, should no more worry abod th
policy language used by the printing service prexid
The broker agents available either on Alice’s syste
the service provider's side can determine the polic
language used by the other party, once the rednaesst

This means, although the policy for a source laggua
can be transformed to R2ML, the transformed corscept
might not be available in the desired target laggua
For example, in KAoS there is support for keepimg t
history of actions and actors of a domain, whilé Re
does not explicitly keep the track of preformedatt
and their corresponding actors. Therefore, durhey t
process of transformation these concepts shouhereit
be addressed by expanding Rei or be ignored. In our
solution, we have taken the first approach, trymgdd
these concepts to Rei by defining ontologies toatc
those concepts. However, for languages with low
expandability support it might be impossible.

Furthermore, in Rei there is a rich set of Speech
Acts to manage remote policy control which are gdss
in KAoS. In our transformations from Rei to KAo0S,
although the speech act elements are converted from
Rei to the R2ML elements, they (and also theirtesla
constraints) are ignored during the conversion from
R2ML to KAoS.

Another problem is caused by the transformation
from declarative logic (e.g. Rei policy rules) to
descriptive logic (e.g. KAoS policy rules) or vicersa.
Ongoing efforts are being undertaken to make the

been sent or received. Through conversion of thetransformation from descriptive logic to declarativ

policies using the available transformations, huftthe
parties (i.e. the service provider and the requpstn
decide whether the constraints placed on
transaction by each of the two sides are accepteitiie
regards to the policies of the other side, ana,ftley
can start a healthy and authorized communication.
R2ML as a Web rule Ilanguage provides
transformations from/to many other business rulé an
Semantic Web languages.
from/to F-Logic, OCL, SWRL, UML, etc. In the case

It has transformationsexploit the transformations in real scenarios.

logic promising, however, it seems that more wark i
this area has to be done to solve all the probliems

the representing the concepts in these two domains.

Considering all the drawbacks and advantages, our
long term-goal is to make use of these transfonati
in a practical test bed (e.g., in the context ohaetic
Web services) and among several parties with @iffier
policy languages, showing the real opportunities to
By
expanding the transformations, we hope to target

of our second example in Section 2, existence of aeventually the goal of globalizing system interacton

conversion from F-Loigc to PeerTrust through R2ML
omits the need for developing a separate reasonin

the Web.

engine to work over PeerTrust rules defined in F-g7' Acknowledgment

Logic. One can simply transform the F-Logic rules t
PeerTrust rules and then take advantage of thérexis

The authors would like to thank Andrzej Uszok and
Lalana Kagal for their valuable comments and helps

the concepts mentioned in this paper. The reseairch

Simon Fraser University is supported by Canada’s
NSERC-funded LORNET Research Network, while the
research of Brandenburg University of Technology at [15]
Cottbus is supported by the EU IST-funded REWERSE

Network of Excellence.

8. References

[1] Akkiraju, R., et al, “WSDL-S Web Services
Semantics—WSDL-S,” W3C Member Submission
www.w3.org/Submission/WSDL-S/, 2005.

Bonatti, P. & Olmedilla, D. “Driving and Monitoring

Provisional Trust Negotiation with Metapoliciesli

Proc. of the 6th IEEE Int'l WSh. on Policies Forsbi

Sys. and Net&Vashington, DC, 2005, pp. 14-23.

Bradshaw, J. M, Jung, H., Kulkarni, S., Taysom, W.

“Dimension of adjustable autonomy and mixed-initiat

interaction”. In Klusch, G. Weiss, and M. Rovatsos

(Ed.), Computational Autonomy, Springer, Germany,

2004.

Damianou, N., Dulay, N., Lupu, E., and Sloman, M.

“The ponder policy specification languagéy’ Proc. of

the Workshop of Policies for Dist. Sys. and N&sstol

UK, 2001, pp. 18-38.

de Bruijn, J., et al.,, “WSMO Web Service Modeling

Ontology (WSMO),” W3C Member Submission

www.w3.org/Submission/WSMO/, 2005.

Ginsberg, A., “RIF Use Cases and Requiremems3C

Working Draft http://www.w3.org/TR/rif-ucr/, 2006.

Grosof, B. N., Horrocks, l., Volz, R., Decker, S.

“Description Logic Programs: Combining Logic

Programs with Description Logicln Proc. of the 12th

Int’l. Conf. on the World Wide WeBudapest, Hungary,

2003, pp. 48-57.

Hirtle, D., et al., “Schema Specification of RuleML

0.91,” http://www.ruleml.org/spec/, 2006

Horrocks, I., et al. “SWRL: A Semantic Web Rule

Language Combining OWL and RuleML,” W3C

Member Submission,

http://mww.w3.org/Submission/SWRL/.

[10] Kagal, L., Finin, T., and Joshi, A. “A policy langge
for a pervasive computing environmenti IEEE 4th
Int'l. Workshop of Policies for Dist. Sys. & Ne003,
pp. 6-74.

[11] Kagal, L., “A Policy-Based Approach to Governing
Autonomous Behavior in Distributed Environments”,
PhD Thesis, University of Maryland, 2004.

[12] Kaviani, N., GaSe¥i D., Hatala, M., Clement, D.,
Wagner, G., “Towards Unifying Rules and Policies fo
Semantic Web Servicesfh Proc. of the ¥ Annual
LORNET Conf. on Intelligent, Interactive, Learning
Object Repositories NetwgriMontreal, QC, Canada,
2006

[13] Martin, D. et al., “OWL-S: Semantic Markup for Web
Services,” W3C Member Submission
http://mww.w3.org/Submission/OWL-S/

[14] Milanovi¢, M., GaSew, D., Guirca, A., Wagner, G.,
DevedZ¢, V., “On Interchanging between OWL/SWRL

(2]

(3]

[4]

[5]

[6]
[7]

(8]
9]

and UML/OCL,” 6th Workshop on OCL for (Meta-

)Models in Multiple Application Domains (OCLAppsS)

Genoa, Italy, 2006, pp. 81-95.

Muller, G. “Guest Editor's Introduction: Privacyd

security in highly dynamic systemsZommunications of

the ACM vol. 49, no. 9, 2006, 28-31.

[16] Olmedilla, D. et al., “Trust negotiation for semianveb
services,” In Proc. of the 1st Int'l Workshop on
Semantic Web Services and Web Process Compaosition
San Diego, CA, USA, 2004, pp. 81-95.

[17] Nejdl, W., Olmedilla, D., and Winslett, M., Zhan@G,
C. ‘“Ontology-based policy specification and
management” In 2nd European Semantic Web
Conference (ESWC)LNCS 3532 Heraklion, Crete,
Greece, 2005, pp. 290-302

[18] NejdI, W., Olmedilla, D., and Winslett, M. “Peerhitu
automated trust negotiation for peers on the sdémant
web”. Technical Report2003.

[19] Ortalo, R. “Using Deontic Logic for Security Policy
Specification”, 1996
http://citeseer.ist.psu.edu/ortalo96using.html

[20] The Policy RuleML Technical Group. “The RuleML
Initiative”, March04 http://policy.ruleml.org

[21] R2ML Specification, http://oxygen.informatik.tu-
cottbus.de/R2ML/, 2006
[22] Rei Ontology Specification, Version 2.0,

http://www.cs.umbc.edu/~lkagall/rei/

[23] Sergot, M., “Deontic Logic in Policy Specificatignth
Proc. of the Policy Workshopristol, UK, 1999.

[24] Toninelli A., Bradshaw J., Kagal L., Montanari, R.
“Rule-based and Ontology-based Policies: Toward a
Hybrid Approach to Control Agents in Pervasive
Environments’In Proc. of the Semantic Web and Policy
Workshop Galway, Ireland, 2005.

[25] Toninelli A., Montanari, R, Kagal L., Lassila, OA*
Semantic Context-Aware Access Control Framework for
Secure Collaborations in Pervasive Computing
Environments”In Proc. of the ¥ Int'l Semantic Web
Conf.,Athens, Georgia, US, 2006.

[26] Tonti, G., Bradshaw, J., Jeffers, R., Montanarj, Ruri,

N. and Uszok, A. “Semantic Web Languages for Policy
Representation and Reasoning: A Comparison of KAoS,
Rei, and Ponder’In Proc. of the 2nd Int'l Semantic
Web Conf., LNCS 2872003, pp. 419-437

[27] Uszok, A. et. al., “KAoS policy and domain services
toward a description-logic approach to policy
representation, deconfliction, and enforcemenit’
Proc. of the 4th IEEE Int'l Workshop on Policies fo
Distributed Systems and NetwarR903 pp. 93-96.

[28] Uszok, A., Bradshaw, J., Jeffers, R. (2004). “KA@S:
Policy and Domain Services Framework for Grid
Computing and Semantic Web Servicds’Proc. of the
Second In’l Conf. on Trust Management (iTrust 2004)
Springer.

[29] Wagner, G. et al., “A Usable Interchange Format for
Rich Syntax Rules Integrating OCL, RuleML and
SWRL,” In Proc. of WSh. Reasoning on the Web
(RoW2006), Edinburgh, UK, 2006.

[30] XSLT transformations: http://cgi.sfu.ca/~nkaviagitc
bin/index.php?linkLocation=6projects

