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Abstract 

 

Recent efforts in the area of Web policy languages 
show concerns on how to better represent both context 
and rules of a domain to deal with large number of 
resources and users. Interaction between domains with 
different business rules is also another questionable 
issue in this same area. Web rule languages have been 
recently introduced as a means to facilitate interaction 
between parties with dissimilar policies and business 
rules. Efforts have been placed to further review the 
possibility of the proposed solutions and extend them 
to work with other Web technologies. In this paper, we 
introduce REWERSE Rule Markup Language (R2ML) 
as a Web rule language that can be employed to make 
concepts, policies, and elements of a domain digestible 
by another domain through the use of vocabularies, 
rules, and annotations. We also show how R2ML 
elements can model the concepts and elements of 
different policy languages and assist systems with 
diverse policies with their interactions. 
 

1. Introduction 
 

Integrating various technologies and services (e.g., 
mobile devices and Web) offers many opportunities for 
sharing resources in different contexts. For example, 
creating a new Web service does not mean that it will 
always be used in the same way and by the same users, 
as it has originally been designed for. On the contrary, 
a highly-dynamic nature of today’s environments [15] 
requires the behavior of systems to dynamically 
change. In such systems one can discover and negotiate 
the use of new services. However, we need to define 
ways how one can understand what services are 
offered. It can be solved by using Semantic Web 
ontologies [1, 5]. Moreover, we also need to specify 
how, where, and by whom these services can be used. 
In fact, policies are used to address this problem, as a 
means to dynamically regulate the behavior of system 
components without changing the system’s code and 

without requiring the consent or cooperation of the 
components being governed. 

Currently, there are many different policy languages 
including Rei, KAoS, and PeerTrust; but there is no 
common agreement upon one universal policy language 
[26]. Each policy language has its own syntax and 
semantics that is usually grounded in a particular type 
of logic such as first order logic or description logic. 
This actually introduces a problem of mutual 
understanding and sharing of policies between different 
parties that use different policy languages. 
Nevertheless, it is very important to inspect policies in 
order to check whether there are some conflicting 
policies or understand what they are referring to (e.g., 
with the help of domain ontologies [27]). This can be 
very challenging having it in mind that different policy 
languages are based on different logics (e.g., 
description logic (DL) and declarative logic). On the 
other hand, Toninelli et al. [24] recognized that next-
generation of policy languages should combine features 
of ontologies (i.e., description logic) and rule-based 
systems, which actually affects the development of 
languages such as Rei and KAoS. Finally, policies 
should also be in compliance and/or combined with 
business rules that can be defined by using various rule 
languages (e.g., F-Logic, Jess, Semantic Web Rule 
Language–SWRL, or Prolog) [2]. 

In this paper, we propose an approach to sharing 
policies by using Web rule languages [12]. This 
actually follows up two initiatives: the Rule 
Interchange Format (RIF) [6], an initiative for the 
standard for sharing rules on the Web, and Policy 
RuleML [20], an initiative for sharing policies by using 
various types of rules (e.g., derivation and production) 
of the RuleML language [8]. However, to the best of 
our knowledge, there has not been any practical attempt 
responding to either of these initiatives. Here, we 
propose using REWERSE Rule Markup Language 
(R2ML), a general purpose rule language and a future 
proposal for the RIF standard, to carry policies. To do 
so, we first motivate our research by analyzing two 



examples where there is a need to share policies that 
have originally been encoded in different languages. In 
Section 3, we describe three policy languages (KAoS, 
Rei, and PeerTrust), while in section 4 we briefly 
describe the most-known Web rule language efforts 
and their potentials to carry policies. Section 5, is the 
core section of the paper and it describes our approach 
to using R2ML for sharing policies in detail.  
 

2. Motivation 
 

As it has been mentioned in the previous section 
and based on the arguments in [24], there is a need to 
combine the features of description logic and the 
properties of the rule languages to define context-based 
policies with supports for conflict resolution, 
expansion, and classification on one hand, and rule 
enforcement on the other hand.  

However, due to the variety of the policies available 
for protecting the resources and the approaches they 
take to codify these policies, i.e., either rules with 
ontologies as the backend knowledge bases [10, 18], or 
DL and corresponding reasoners on top [27], the 
process of information exchange becomes challenging 
and sometimes hard to achieve. This diversity of 
methods to describe rules and policies even sometimes 
forces the requestors to accept the language of the 
source entities for the sake of consistency and global 
compliance. To make it more precise let us review two 
of the scenarios addressed in the relevant literature. 

In [24], the authors considered a scenario in which a 
certain traveling company has provided its travelers 
with wireless connectivity for their portable devices, 
e.g., PDAs and laptops, as well as some other services 
such as using public printers located in the airport. 
Alice as a traveler may wish to access the printer and 
print some of the available documents on her laptop. 
So, she sends the request to the service provider at the 
airport. The service provider checks Alice’s credentials 
such as the boarding number and the name of the 
traveling agency. In case they match, Alice is given the 
right to access the printer to print the documents out. 
This scenario works fine as long as the service provider 
and the software agent on Alice’s laptop speak in the 
same policy language. 

The question that arises in this case is how Alice’s 
web agent will communicate with the service provider 
in case the policy language of Alice’s agent is different 
from that of the service provider. Recall that there is 
still no generally adopted agreement on defining and 
using Semantic Web services and Web policy 
languages. Thus, different Web entities may use 
dissimilar policies to protect their services. Let us 
assume that Alice’s web agent is using the Rei policy 

language [11] and the printing service is defined based 
on WSMO [5]. Is Alice going to convert her policy 
language to F-Logic, which is the supported rule 
language in WSMO, and use the WSMO rule engine, 
or, is she going to expect the service provider to 
understand her policies? 

Another example is based on [16] where the authors 
try to integrate their policy language called PeerTrust 
[18] with the description of a Semantic Web service. 
Among all the available semantic web service 
description languages, including OWL-S [13], WSDL-
S [1], and WSMO, the authors choose WSMO as it 
allows arbitrary use of logical expressions in the 
description of the services and also uses F-Logic to 
describe the logical expressions used in the description 
of the services [18]. In contrast, WSDL-S and OWL-S 
are agnostic to employing rule and ontology languages. 
However, using F-Logic to define the concepts of 
PeerTrust in WSMO means that the whole concepts of 
PeerTrust need to be converted to a format suitable for 
an F-Logic-based inference engine. That is, one should 
totally forget about the engine that already exists for 
PeerTrust and develop a new F-Logic engine that can 
reason over the policies defined in PeerTrust. 

Problems as such necessitate the development of a 
unified method of policy exchange that supports the 
conversion of different policy languages from one to 
another. Additionally, it seems that the viability of the 
future policy languages is tied to their capability in 
combining rule- and ontology-based languages (i.e., 
declarative and descriptive logic) [24]. Thus, the 
intermediary exchange language should have the 
required constructs and elements to support both rules 
and ontology concepts. Here we propose using a web 
rule (markup) language to carry the policies from one 
party to another one. Besides web rule languages, we 
also need two way transformations between the web 
rule language and policy languages, so that we can 
fully address the problem of diversity of policy 
languages. 
 

3. Policy Languages 
 

Policies in the domain of autonomous computing 
are guiding plans that restrict the behavior of 
autonomous agents in accessing the resources [24]. 
They also legitimatize the behavior of an agent by 
identifying its liberties and suppressions during the 
process of authorization. The main advantage in using 
policies is the possibility to dynamically change the 
behavior of the system by adjusting the policies without 
interfering with the internal code of the system [3]. A 
policy-aware system can be simply conducted to act 



based on the role of the requesting entities and or the 
context of its performance. 

Policy-aware systems have been constantly evolved 
starting from group-based policy systems (e.g. 
operating systems) to role-based systems (e.g. 
Cassandra and RT), and recently to context-based 
systems. Although the earlier versions of policy-aware 
systems are still applicable to the static contexts with 
precise number of users, groups, and resources, they 
are not applicable to the Web with its enormous 
number of resources and users. Context-aware policy 
systems are targeting the problem of extending the 
number of to-be-protected resources and contexts as 
well as treating unknown or partly-known requesting 
entities[25]. 

KAoS [27] and Rei [11] are two of the most known 
policy systems that go beyond the traditional policy 
systems by giving special care to the context to which 
the policies are applied. They are both enriched 
semantically by using ontologies to define and describe 
the entities involved in the process of authorization and 
access control. PeerTrust [18] is another policy based 
system that operates in a lower level of abstraction, as 
compared to KAoS and Rei, and addresses access 
control problems through the use of trust negotiation. 
However, the similarities between PeerTrust, KAoS, 
and Rei in using ontologies to describe the policies and 
entities, as well as the semantic and logic that 
PeerTrust chooses to address rule enforcement and 
conflict resolution makes it an interesting language to 
be compared to KAoS and Rei. Aside from the 
conceptual differences in the level of access control 
and authorization, KAoS, Rei, and PeerTrust also differ 
in their syntax and also the types of the logic they are 
based on.  

All the above languages have similar constructs to 
address Permission, Prohibition, Obligation, and 
Dispensation, but they add additional elements and 
building blocks to make the process of policy 
definition, harmonization, and enforcement more 
precise. [26] has already provided a detailed 
comparison of KAoS, Rei, and a traditional policy 
language called Ponder [4]. The comparison, however, 
is based on the older version of Rei, namely Rei 1.0, 
which was not as advanced as Rei 2.0 in defining and 
annotating the resources semantically. The comparison 
was also on the level of features and properties and not 
on the level of syntax and logical foundations that 
policy languages are built on. Here we give a quick 
comparison of Rei and KAoS, pointing out some of 
their properties that conform to the properties of 
PeerTrust, and briefly review the syntactical and 
logical differences they entail in their definitions. 

KAoS and Rei are important for our purpose because 
they are widely known in the level of context-aware 
policy languages with markup syntax. PeerTrust helps 
to show the possibility of applying the transformations 
to a language with a more traditional EBNF structure. 
The syntactical differences will be later argued when 
deliberating the transformation problems between 
policy and web rule languages. 

KAoS is a policy language with the possibility of 
specification, management, conflict resolution, and 
enforcement of policies [27, 28]. The policies and 
domain objects have been represented as OWL 
ontologies which make the systems easily expandable 
and adaptable to different domains. Each KAoS policy 
rule is an instance of the Policy class (i.e., its 
PosAuthorizationPolicy, NegAuthorizationPolicy, 
PosObligationPolicy, and NegObligationPolicy 
subclasses), with properties for resources to be 
controlled, conditions, actors, triggering events and 
actions, site of enforcement, etc. Thanks to the features 
of OWL, policies can be defined to cover concepts like 
minimum and maximum cardinality for the entities as 
well as universal and existential quantifiers over the 
objects instantiated from the concepts and classes. 
However, the lack of mechanisms to define variables in 
OWL has made the developers use role-value-map 
technique to implement dynamic and runtime 
role/entity assignment. The arity of the predicates 
represented in KAoS is restricted to one or two 
corresponding to their definitions in OWL. By using 
and extending Stanford’s Java Theorem Prover (JTP), 
KAoS enables static conflict resolution, intelligent 
lookup and dynamic policy refinement. KAoS has its 
enforcement engine, but it needs to be customized with 
regards to the domain it is going to be deployed in.  

Rei is a rule-based approach to specify, analyze and 
reason over the policies in pervasive environments 
[10]. Although the first version of Rei was following a 
Prolog-like syntax with a Prolog engine as the reasoner, 
Rei 2.0 migrated to a new representation format, 
exploiting the RDF notations to define policies [22]. 
Thus, in the new version, Rei expressions are defined 
as triples compliant to the RDF format. Unlike KAoS, 
in which the knowledge about the domain and the 
policies are all defined in OWL, Rei only uses 
ontologies as knowledge bases to keep the information 
of the domain and although its syntax is in the form of 
RDF, the semantics follow the rule-based language 
conventions. Rei relies on a rich set of speech acts for 
the purpose of message passing and dynamic exchange 
of the rights between the entities. A main drawback in 
Rei is that there is no enforcement engine designed for 
it and the process of rule enforcement should be 



addressed outside the Rei engine. Moreover, because 
the Rei policy engine treats the inferences from OWL 
axioms as virtual fact base, there are no capabilities for 
ontological reasoning and consequently no chance for 
policy disclosure and conflict resolution as opposed to 
KAoS. However, the syntax used by Rei is much easier 
to grasp for the users with a basic understanding of rule 
languages. Rei is suitable for a lower level of security 
than KAoS, dealing with identification of entities and 
concepts.  

PeerTrust is a trust negotiation engine with the 
possibility of dynamic exchange of certificates and 
establishment of trust without any third party being 
involved in the process of trust act [18]. Similar to Rei, 
PeerTrust also uses a Prolog-based engine to reason 
over the defined policies for the exchange of trust 
information but instead of dealing with contexts (as in 
KAoS) or the identities of the entities (as in Rei), it 
goes further down in the level of security and defines 
policies over attributes of the resources and the entities. 
PeerTrust uses its own EBNF syntax for the 
representation of policies with possibility of defining n-
ary predicates in the rules, but the policies can be 
imported to the PeerTrust engine in the form of RDF 
metadata as well. PeerTrust has been deployed and 
used in the ELENA distributed e-learning environment.  

While KAoS is based on description logic, Rei and 
PeerTrust follow the conventions of declarative logic 
programs. This makes a lot of difference in the way 
they refer to existence or nonexistence of objects and 
the relations between classes and elements of the 
classes. So, a mapping between the languages goes 
beyond a conceptual matching in the level of policies 
and has to delineate the mappings in the level of logic 
as well (see Section 5.2 for details). 

Figure 1 summarizes features of the three languages 
mentioned above. It compares KAoS, Rei, and 
PeerTrust in terms of the format they use to describe 
their rules, the possibility of expanding the concepts of 
the languages, and also the way they store the domain 
information and reason over it. 

 

4. Web Rule Languages for Policies 
 

In Section 2, we have shown the existence of a need 
to define a medium for transforming the rules, and 
specifically policies, among different resources. We 
have also discussed the necessity of a support for both 
ontological definition and rule based representation of 
the policies for the purpose of achieving conflict 
resolution, harmonization, and enforcement.  
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Figure 1. Comparison of the features in KAoS, Rei, 
and PeerTrust 
 

We believe that Semantic Web Rule languages are 
the solution to the problem. To be precise, let us start 
with reviewing some of the proposed Semantic Web 
Rule Languages and then we will review the properties 
they offer to facilitate the exchange of policies. 

Rule Interchange Format (RIF) [6] is one of the 
most important initiatives in this area. It defines a set of 
use cases and requirements for sharing rules on the 
Web.  However, as it is desired in our case, the purpose 
of RIF is to serve as an intermediary language between 
various languages and not as a formally defined 
semantic foundation for the purpose of reasoning on 
the Web. Among all the use cases defined for RIF, 
special care has been given to policies by relating three 
of the ten introduced use cases to the issues specific to 
policies. These use cases are: Collaborative Policy 
Development for Dynamic Spectrum Access, Access to 
Business Rules of Supply Chain Partners, and 
Managing Inter-Organizational Business Policies and 
Practices. Still there has been no concrete example on 
how to use RIF for this purpose.  

Here we point out some of the main efforts in the 
area of Semantic Web Rules. 

Semantic Web Rule Language (SWRL) is a rule 
language based on the W3C Web ontology language 
OWL [9]. A SWRL rule is also in the form of an 
implication and is considered to be another type of an 
axiom on top of the other OWL axiom types. This 
means that SWRL rules are usually used for defining 
derivation and integrity rules. Both consequent and 
antecedent are collections (i.e., conjunctions) of atoms. 
We should say that the purpose of SWRL is not to be a 
universal rule interchange language, but its purpose is 
to define an additional logic layer over the present 
ontology languages (i.e., OWL). As such it can not 
represent many linguistic constructs of other rule 
languages (e.g., F-Logic, Rei, or OCL). 

RuleML is a markup language for publishing and 
sharing rule bases on the World Wide Web [8]. 



RuleML builds a hierarchy of rule sublanguages upon 
XML, RDF, XSLT, and OWL and currently supports 
rules in the form of derivation (e.g., SWRL, FOL) and 
production (e.g., Jess). It is based on Datalog and 
defined as an implication between antecedent and 
consequent. The antecedent part of the rule is evaluated 
as true whenever the consequent of the rule holds. 
However, an important constraint of RuleML is that it 
can not fully represent all the constructs of various 
languages such as OCL or SWRL.   

Built upon the concepts of RuleML, the Policy 
RuleML Technical Group [20] has been formed as a 
committee to outline the use of RuleML as a semantic 
interoperation vehicle for heterogeneous policy 
languages, standards, protocols, and mechanisms; both 
currently existing and those developed in the near 
future. The goal was stated as encoding, translating and 
integrating rules between disparate policy systems. 
They have addressed their long-term plan as 
incorporation of deontic expressive features such as 
logics to capture rights, obligations, and empowerment 
as aspects of policy rules. The deontic rules they 
consider to model policy languages are enlisted as 
Permission and Prohibition, Duty Assignment, and 
Empowerment. Nevertheless, to the best of our 
knowledge, there is still no real work done by the 
Policy RuleML technical committee in this area. In the 
next section, we explain our efforts to address these 
goals by using R2ML [12]. 

 

5. R2ML for Representing Policies 
 

This section presents our approach to sharing 
policies by using Web Rule Languages, that is based on 
the REWERSE Rule Markup Language (R2ML). We 
first describe R2ML features and how they can be used 
to represent various types of policies. We then further 
clarify our idea by demonstrating how we mapped 
some of the policy languages such as KAoS and Rei to 
R2ML, and thus address the problem of sharing 
policies between diverse policy languages. As it was 
already discussed the problem of mapping KAoS to Rei 
and back is not only a matter of policy term matching, 
but it is also a transformation from description logic to 
declarative logic, which KAoS and Rei are respectively 
based on. The main reason we chose KAoS and Rei in 
our first attempt for providing a mapping, beside their 
reputation in the area, was their XML-like syntax with 
easier practical implementation of transformation to 
triples of type subject-predicate-object. 
 

5.1. R2ML: An overview 
 

R2ML is a general rule interchange language that 
tries to address all RIF requirements. The abstract 

syntax of R2ML language is defined with a metamodel 
by using the OMG’s Meta-Object Facility (MOF). This 
means that the whole language definition can be 
represented by using UML diagrams, as MOF uses 
UML’s graphical notation. The current version of 
R2ML is 0.4 [21]. The full description of R2ML in the 
form of UML class diagrams is given in [21], while 
more details about the language can be found in [29]. 
The language also has an XML concrete syntax defined 
by an XML schema, while there are a number of 
transformations implemented between R2ML and rule 
based languages (e.g., OCL, SWRL, Jess, and F-
Logic). 

Vocabulary. R2ML provides a vocabulary that 
enables users to define their own world in the form of 
objects and elements available in the domain of 
discourse. The vocabulary can be defined as a 
combination of Basic Content Vocabulary, Relational 
Content Vocabulary, and Functional Content 
Vocabulary. Basic Content Vocabulary allows the user 
to specify the basic elements of the domain such as 
individual objects and data values, classes and data 
types, and object and data variables. Relational Content 
Vocabulary helps to associate different objects from 
different classes through defining n-ary association and 
association classes. Finally, Functional Content 
Vocabulary assists with defining functors that 
correspond to the standard logic of functions. The 
functions can be data operations to manipulate data 
values, they can be object operation functions that 
define object-value operations, or they can be role 
functions which correspond to functional association 
(binary association) of the class elements. In [14], 
authors showed how the basic constructs and elements 
of the OWL language can be transferred and modeled 
by R2ML atoms and elements. For example sameAs in 
OWL is equivalent to an EqualityAtom in R2ML and 
oneOf in OWL carries the same meaning as 
Disjunction of a set of atoms in R2ML. This means any 
language with its concepts defined based on OWL 
(including KAoS and Rei) can be modeled with R2ML 
constructs elaborately. 

Rules. Having the objects and concepts of a domain 
defined, R2ML makes the definition and harmonization 
of rules over these concepts possible through the use of 
four different types of rules: Integrity Rules, Derivation 
Rules, Reaction Rules, and Production Rules. Since in 
this paper we are limited in space, we only review the 
first two rules and more information about the other 
rules and constructs of the language can be found in 
[29]. 

R2ML integrity rules, also known as (integrity) 
constraints, consist of a constraint assertion, which is a 



sentence in a logical language such as first-order 
predicate logic or OCL (see Figure 2a). R2ML 
supports two kinds of integrity rules: the alethic and the 
deontic ones. The alethic integrity rule can be 
expressed by a phrase, such as “it is necessarily the 
case that” and the deontic one can be expressed by 
phrases, such as “it is obligatory that” or “it should be 
the case that”. A LogicalStatement is a 
LogicalFormula that has no free variables, i.e., all the 
variables from this formula are quantified. In terms of 
policy languages, integrity rules can be considered as 
constraints that must hold consistently especially in the 
level of rule enforcement, e.g. “it is necessary to give a 
higher priority to the commands of the administrator 
than to the commands of the regular users on a 
system.” 

 
a) 

 

 
b) 

Figure 2. The R2ML definition of Integrity (a) and 
Derivation Rules (b) 
 

A R2ML derivation rule has conditions and a 
conclusion (see Figure 2b) with the ordinary meaning 
that the conclusion can be derived whenever the 
conditions hold. While the conditions of a derivation 
rule are instances of the AndOrNafNegFormula class, 
representing quantifier-free logical formulas with 
conjunction, disjunction and negation; conclusions are 
restricted to quantifier-free disjunctive normal forms 
without NAF (Negation as Failure, i.e. weak negation). 
In the context of policies, we consider each deontic 
policy rule as a single derivation rule with the 
constraints making the conditions of the derivation rule 
and the policy decision forming the conclusion of the 
rule, e.g. “If the user is from Simon Fraser University 
with a valid student ID then give her the permission to 
enter the area of the university.” It may sound more 
expressive to define deontic policy rules with deontic 
integrity rules in R2ML. However, our attempts in 
doing so showed that deontic rules in the context of 
policies carry a different meaning from their 
interpretation in R2ML. In R2ML, a deontic integrity 
rule represents a constraint that should be satisfied or 
must hold with a concrete proof for its truthfulness, 

though a doentic policy demonstrates concerns over 
performing a duty or obligation as a result of satisfying 
a series of related conditions [19, 23]. 

Atoms are the basic logical constituents of a rule 
which are compatible with the concepts of OWL, 
RuleML, and SWRL. Atoms connect objects to values, 
classes to instances, and objects to objects, put 
restrictions on the objects and data values, and so on. 
Here we briefly represent some of the atoms that are 
relevant to our purpose of representing policy 
languages. ReferencePropertyAtoms associate object 
terms as subjects with other terms (objects or data 
values) as objects. A ReferencePropertyAtom in R2ML 
corresponds to an OWL (and similarly a KAoS) object 
property, or to the OWL concept of value for an 
individual-valued property. ObjectDescriptionAtoms 
are another class of useful atoms for our purpose. They 
refer to a class as a base type and to zero or more 
classes as categories, and consist of a number of 
property/term pairs (i.e., attribute data term pairs and 
reference property object term pairs). Any instance of 
such atom refers to one particular object that is 
referenced by an objectID, if it is not anonymous. This 
atom corresponds to the instantiation of an object from 
a class in OWL, which matches a deontic object, with 
all its properties instantiated, in either Rei or KAoS. 
 

5.2 The Logic of Transformation 
 

Providing transformations from Rei and KAoS to 
R2ML and then from R2ML to KAoS or Rei, as we 
mentioned before, is not just a straightforward keyword 
matching using lookup tables. KAoS models the world 
by specifying the elements and the objects in 
description logic while Rei assembles its world with 
declarative logic building blocks. So, the problem of 
transformation expands to the problem of bridging the 
declarative logic world to its descriptive logic 
counterpart. It is important for R2ML because we need 
R2ML to serve as a conductor between the two worlds. 
R2ML has been designed having the properties of both 
open world (i.e. descriptive logic) and close world (i.e. 
declarative logic) in mind. Knowing the logic of 
transformation from declarative logic to descriptive 
logic and back would help in providing more 
meaningful transformations with less information loss. 

[7] gives an elaborate method of mapping the basic 
elements of description logic to declarative logic. OWL 
as a subset of RDFS corresponds to a fragment of 
classical FOL. It is shown in [7] that OWL elements 
are convertible to definite Horn FOL elements which in 
turn are convertible to definite Datalog Logic Programs 
as a restricted model of Logic Programs (LPs). For 
example, classes and class expressions are equivalent 



to FOL formulae with one free variable, and properties 
(and property expressions when supported by 
description logic) are equivalent to FOL formulae with 
two free variables. Classes and property inclusion 
axioms are also considered as FOL sentences 
consisting of an implication between two formulae with 
the free variables universally quantified at the outer 
level.  

Figure 3 shows a selection of OWL constructs with 
their corresponding description logic syntax and FOL 
expressions. Details of the definitions can be found in 
[7]. 

 

OWL Constructor DL Syntax FOL Expressions 
subClassOf DC ⊆  CD ←  

transitiveProperty PP ⊆+  ),()),((),((,, zxPzyPyxPzyx →∧∀  

inverseOf −≡ QP  ),(),(, xyQyxyPx ⇔∀  

intersectionOf nCC ∩∩ ...1
 )(...)(1 xCxC n∧∧  

unionOf nCC ∪∪...1
 )(...)( 21 xCxC ∨∨  

complementOf C¬  )(xC¬  

oneOf },...,{ 1 naa  
naxax =∨∨= ...1
 

hasClass CP.∃  ))(),(( yCyxPy ∧∃  

toClass CP.∀  ))(),(( yCyxPy →∀  

Figure 3. Some of the OWL constructors and the 
equivalent description logic and FOL expressions 
 

For the purpose of transforming policies from 
KAoS to Rei, we need R2ML rules that can precisely 
transfer the deontic meaning of the policy rules in the 
same way we explained in the previous section. These 
R2ML rules also have to either implicitly or explicitly 
demonstrate the possibility of reasoning over the 
content which is transferred. Furthermore, as it has 
been also argued in [7], class and property inclusions 
are better to be declared in the form of implications. 
Considering all the points above, we finally chose 
derivation rules as the most suitable rules for this 
purpose. Derivation rules precisely support implication 
and show derivation of new facts upon reasoning on a 
priori facts. 

Let us further clarify the idea by reviewing an 
intuitive example of the policy languages. Consider that 
we need to define a policy to “prohibit our system from 
using data that is accepted by the members of a group 
called UserActors”. Figure 4 shows an excerpt of the 
policy rule in KAoS to define this policy. 

The highlighted parts in the policy of Figure 4 show 
the main elements that carry the intended meaning of 
the policy. During the process of transformation these 
elements should be captured and converted to the 
appropriate R2ML elements 

 

 
<policy:NegAuthorizationPolicy rdf:ID="AcpDataP"> 

<policy:controls rdf:resource="#Plcy _Action"/> 
<policy:hasPriority>2</policy:hasPriority> 

</policy:NegAuthorizationPolicy> 
 

<owl:Class rdf:ID="Plcy _Action "> 
<owl:intersectionOf> 

<owl:Class rdf:about="#AcceptData"/> 
     <owl:Class> 
        <owl:Restriction> 
            <owl:onProperty rdf:resource="  
                            #performedBy"/> 
            <owl:allValuesFrom> 

<owl:Class rdf:about="#UserActors"/>  
            </owl:allValuesFrom> 
        </owl:Restriction> 
     </owl:Class> 
   </owl:intersectionOf> 
</owl:Class>  
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Figure 4. An excerpt of a KAoS policy rule 

 

R2ML in our transformation plays the same role as 
definite Horn FOL plays in description logic programs 
in [7], i.e. an intermediary world to capture similarities 
between logic programs and description logic. In order 
to make the idea easier to grasp, we start with a 
conversion of the policy in Figure 4 to definite Horn 
FOL according to the mappings from Figure 3 and then 
further develop it to the identical R2ML representation. 
Figure 5 shows the result of applying the conversions 
to the code above. 
 

←)(xcyzationPoliNegAuthori  
                                  ∧∧∃ )(_),( yActionPlcyyxcontrols  
                                  )2,(Pr xiorityhas  

←)(xAcceptData )(_ xActionPlcy  
←)(yUserActors  ∧)(_ xActionPlcy  

                            ),( yxyperformedB  

Figure 5. The KAoS policy from Figure 4 described 
in the definite Horn FOL 
 

Similar to the conversion in Figure 5, our R2ML 
transformation should syntactically demonstrate the 
possibilities to evaluate AcceptData(x), UserActors(y), 
and eventually NegAuthorizationPolicy(x) as TRUE 
knowing that Plcy_Action(x) and performedBy(y, x) are 
true for the instantiated variables x and y. It also has to 
show that NegAuthorizationPolicy(x) is a logical 
consequence of AcceptData(x) and UserActors(y). To 
model the desired rule we place the values for 
Plcy_Action(x) and performedBy(y, x) in the head, and 
AcceptData(x) and UserActors(y) in the tail of the 
R2ML transformation rule. Note that the policy rule is 
fired when action x as a PolicyAction is performed by 
actor y who belongs to the group of UserActors, so the 
values for x and y become known. 
NegAuthorizationPolicy(x) is the ultimate result of the 
derivation rule, which we keep as a conclusion in the 
head of the derivation rule, converted to Prohibition, to 
show the final result of authorization. Finally, the result 



of a mapping from KAoS to R2ML based on this 
argument can be formulated similar to Figure 6. 

 
<r2ml:DerivationRule> 
  <r2ml:conditions> 
    <r2ml:ReferencePropertyAtom  
      r2ml:propertyID="#instanceOf" 
      <r2ml:subject> 
        <r2ml:ObjectVariable r2ml:name="x"/> 
      </r2ml:subject> 
      <r2ml:object> 
        <r2ml:ObjectName r2ml:objectID="#AcceptData "/>  
      </r2ml:object> 
    </r2ml:ReferencePropertyAtom> 
    <r2ml:ReferencePropertyAtom>  
          r2ml:propertyID="#instanceOf"> 
      <r2ml:subject> 
        <r2ml:ObjectVariable r2ml:name="y"/> 
      </r2ml:subject> 
      <r2ml:object> 
        <r2ml:ObjectName r2ml:objectID="#UserActors "/>  
      </r2ml:object> 
    </r2ml:ReferencePropertyAtom> 
  </r2ml:conditions> 
  <r2ml:conclusion> 
    <r2ml:ObjectDescriptionAtom  
          r2ml:classID="Prohibition"> 
      <r2ml:subject> 
           <r2ml:ObjectVariable r2ml:name="AcpDataP "/>  
      </r2ml:subject> 
 
      <r2ml:ObjectSlot  
            r2ml:referencePropertyID="controls"/>  
       <r2ml:ObjectVariable r2ml:name=”x” 
                      r2ml:classID=”#Plcy_Action”> 
      </r2ml:ObjectSlot> 
 
      <r2ml:ObjectSlot  
            r2ml:referencePropertyID="performedBy">  
        <r2ml:ObjectVariable r2ml:name="y"/> 
      </r2ml:ObjectSlot> 
    </r2ml:ObjectDescriptionAtom> 
 

  </r2ml:conclusion> 
</r2ml:DerivationRule>  
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Figure 6. R2ML representation of the KAoS policy 
rule from Figure 4 
 

The parts of Figure 4 and 6 numbered similarly are 
the conceptually equivalent pieces in the referred 
languages, namely KAoS and R2ML. As we have 
already mentioned and it can also be seen in the 
transformations, R2ML ReferencePropertyAtom is 
used to model property values in OWL and 
ObjectDescriptionAtom is used to model the 
instantiation of the objects in OWL. 

A ReferencePropertyAtom connects the objects of a 
class to the objects from other classes with properties 
as connectors. In this sense a ReferencePropertyAtom 
neatly models a triple similar to their representation in 
RDF. Now that we have the KAoS policy simulated in 
the form of triples in R2ML, mapping the result to the 
RDF format of Rei is easy to achieve. Figure 7 shows 
the corresponding Rei model for the above R2ML code 
snippet (Figure 6).  

Although the policy that we have reviewed here has 
only few constraints, the other constraints for the other 
properties of a policy rule in KAoS (such as triggering 
constraints, preconditions, and effects) follow the same 
procedure and are eventually converted to constraints 
which are placed in the condition part of an R2ML 
rule. 

The transformation of the policies from Rei to 
R2ML is much simpler because the R2ML rule 

representation that we have chosen is closer to the 
model of expressing the rules in Rei (the same way that 
def Horn FOL is closer to LP). Yet grouping of the 
R2ML atoms as classes in order to keep the derivation 
rules consistent with the format of OWL and KAoS is 
important. To achieve that, we group 
ReferencePropertyAtoms with a common subject 
element in the form of an instantiated object from a 
class. The restrictions placed over the subject part of a 
ReferencePropertyAtom can then be shown as 
restrictions in the OWL class.  

We shorten the discussion at this point, but note that 
we have implemented transformations from Rei and 
KAoS to R2ML and also from R2ML to Rei and KAoS 
using XSLT which fully follow mapping rules 
discussed in this section. All these transformations can 
be found in [30]. 

 
<entity:Variable rdf:ID=”x”/> 
<entity:Variable rdf:ID=”y”/> 
<entity:Variable rdf:ID=”negAuth”/> 
<constraint:SimpleConstraint rdf:ID=  "constraint1  " > 
   <constraint:subject rdf:resource=  "#x  " /> 
   <constraint:predicate rdf:resource=  "&rdfs;type  " /> 
   <constraint:object rdf:resource=  "#AcceptData  " /> 
</constraint:SimpleConstraint> 
 
<constraint:SimpleConstraint rdf:ID=  "constraint2  " > 
   <constraint:subject rdf:resource=  "#y  " /> 
   <constraint:predicate rdf:resource=  "&rdfs;type  " /> 
   <constraint:object rdf:resource=  "#UserActors  " /> 
</constraint:SimpleConstraint> 
 
<constraint:And rdf:ID=  "conditions  " > 
   <constraint:first rdf:resource=  "#constraint1  " /> 
   <constraint:second rdf:resource=  "#constraint2  " /> 
</constraint:And> 
 
<constraint:SimpleConstraint rdf:ID=  "actor_value  " > 
   <constraint:subject rdf:resource=  "#y  " /> 
   <constraint:predicate rdf:resourc=  "#performedBy  " />  
   <constraint:object rdf:resource=  "#x  " /> 
</constraint:SimpleConstraint> 
 
<constraint:SimpleConstraint rdf:ID=  "actio_value  " > 
   <constraint:subject rdf:resource=  "#x  " /> 
   <constraint:predicate rdf:resource=  "controls  " /> 
   <constraint:object rdf:resource=  "#Plcy_Action  " /> 
</constraint:SimpleConstraint> 
 
<deontic:Prohibition rdf:ID=”AcpDataP”> 
    <deontic:actor rdf:resource=”#actor_value”/> 
    <deontic:action rdf:resource=”#action_value”/> 
    <deontic:constraint rdf:resource=”#conditions”/ > 
</deontic:Prohibition>  
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Figure 7. A Rei equivalent of the R2ML rule from 
Figure 6 
 

6. Discussion and Conclusion 
 

Despite a wide recognition of necessity to integrate 
business rules and specially policy rules [2, 6, 20], our 
approach to representing the policy languages seems to 
be the first practical attempt in this area. We have 
shown the possibility of providing interoperability 
between two well-known policy languages, namely, 
KAoS and Rei, through the use of R2ML as a mediator 
language. We have also discussed how the concepts of 
description logic can be converted to declarative logic 



and back. PeerTrust, due to its similarities to Rei in 
following the conventions of declarative logic, can 
equally be transformed to R2ML and then from R2ML 
to any other language that has a transformation from 
R2ML, such as KAoS or Rei.  

A question that arises in using Web rule languages 
to share policies is whether the currently-defined rules 
(especially derivation rules) are sufficient for the 
purpose of transformation, or whether we need deontic  
rules (i.e., a sub-type of integrity rules in terms of 
R2ML) such as Permission and Prohibition to be 
supported and defined by Web rules. Based on our 
experiments with both policy rules (e.g., including 
permission, prohibition, obligation, and dispensation) 
and web rules (e.g., derivation and integrity rules), the 
current Web rules (i.e., R2ML) are expressive enough 
to carry the intended meaning of policy rules. Having 
in mind that Web rules are currently considered only as 
mediums and not as rules for the purpose of reasoning, 
the explicit discrimination between policy rules of 
different types does not seem to be a must. 
Additionally, Web rules can be annotated with respect 
to the ontologies that hold the conceptual information 
about policy languages, policy domains, and policy rule 
elements. This in turn highly improves the readability 
and machine understandability of the derived rules and 
exempts us of defining further components for Web 
rules. 

Given the appropriate transformation between 
several policy languages and R2ML, the problems 
mentioned in Section 2 can be proven to be solvable. 
Alice, as a traveler, should no more worry about the 
policy language used by the printing service provider. 
The broker agents available either on Alice’s system or 
the service provider’s side can determine the policy 
language used by the other party, once the request has 
been sent or received. Through conversion of the 
policies using the available transformations, both of the 
parties (i.e. the service provider and the requester) can 
decide whether the constraints placed on the 
transaction by each of the two sides are acceptable with 
regards to the policies of the other side, and if so, they 
can start a healthy and authorized communication. 

R2ML as a Web rule language provides 
transformations from/to many other business rule and 
Semantic Web languages. It has transformations 
from/to F-Logic, OCL, SWRL, UML, etc. In the case 
of our second example in Section 2, existence of a 
conversion from F-Loigc to PeerTrust through R2ML 
omits the need for developing a separate reasoning 
engine to work over PeerTrust rules defined in F-
Logic. One can simply transform the F-Logic rules to 
PeerTrust rules and then take advantage of the existing 

rule engine for PeerTrust. Any other user with any 
other policy language can still communicate to the 
service. Moreover, existence of vocabularies for R2ML 
facilitates defining the concepts that one user or system 
may want to share with the other parties with which it 
interacts.  

Beside all the abovementioned benefits, the 
presence of some flaws and problems in the given 
approach is inevitable. The level of abstraction in 
protecting the resources of a domain varies in different 
policy languages, as we have also shown in Figure 1, 
which is a big problem in providing accurate mappings. 
This means, although the policy for a source language 
can be transformed to R2ML, the transformed concepts 
might not be available in the desired target language. 
For example, in KAoS there is support for keeping the 
history of actions and actors of a domain, while Rei 
does not explicitly keep the track of preformed actions 
and their corresponding actors. Therefore, during the 
process of transformation these concepts should either 
be addressed by expanding Rei or be ignored. In our 
solution, we have taken the first approach, trying to add 
these concepts to Rei by defining ontologies that cover 
those concepts. However, for languages with low 
expandability support it might be impossible.  

Furthermore, in Rei there is a rich set of Speech 
Acts to manage remote policy control which are missed 
in KAoS. In our transformations from Rei to KAoS, 
although the speech act elements are converted from 
Rei to the R2ML elements, they (and also their related 
constraints) are ignored during the conversion from 
R2ML to KAoS. 

Another problem is caused by the transformation 
from declarative logic (e.g. Rei policy rules) to 
descriptive logic (e.g. KAoS policy rules) or vice versa. 
Ongoing efforts are being undertaken to make the 
transformation from descriptive logic to declarative 
logic promising, however, it seems that more work in 
this area has to be done to solve all the problems in 
representing the concepts in these two domains. 

Considering all the drawbacks and advantages, our 
long term-goal is to make use of these transformations 
in a practical test bed (e.g., in the context of semantic 
Web services) and among several parties with different 
policy languages, showing the real opportunities to 
exploit the transformations in real scenarios. By 
expanding the transformations, we hope to target 
eventually the goal of globalizing system interaction on 
the Web. 
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