
How dark should a component black-box be?
The Reuseware Answer

Jakob Henriksson and Florian Heidenreich and Jendrik Johannes and Steffen Zschaler and Uwe Aßmann
Technische Universität Dresden

Email: {jakob.henriksson|florian.heidenreich|jendrik.johannes|steffen.zschaler|uwe.assmann}@tu-dresden.de

Short answer: Jet-black with plenty of holes, some of which
are not visible to everyone.

Long answer:

I. INTRODUCTION

The Software Technology Group at TU Dresden has long
experience with component-based software development and
techniques. For a recent addition to the public debate, see
the book entitled Invasive Software Composition [1]. Cur-
rently, the group is involved in projects (e.g. European NoE
REWERSE, IP ModelPlex, feasiPLe etc.) addressing compo-
sition for declarative languages. More precisely, languages
important for the development of the Semantic Web and in
software modeling are addressed. Such languages include,
for example, rule languages (Xcerpt, R2ML), Web query
languages (XQuery), ontology languages (OWL, Notation3)
and general modeling languages (MOF, UML, Ecore). To
enable component-based development for such languages, the
composition framework Reuseware1 is being developed [3],
both as a conceptual framework and as a tool.

Szyperski [4] defines a software component as follows:
”A software component is a unit of composition
with contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third parties.” [4]

This definition calls for components to be black-box com-
ponents where no information can be inferred beyond the
explicitly specified interfaces of the component. Such an
approach enforces strong encapsulation and is very useful for
reuse of components by third parties as these third parties need
only rely on the—relatively little—information provided in the
interface specifications.

For declarative languages, a pure black-box approach cannot
always be taken. We currently see two reasons for this. First,
not all declarative languages describe processing entities (e.g.
ontology languages). As such, there is not even a notion
of well-defined inputs and outputs to interface components,
which is an assumption made for black-boxes. Thus, a different
composition paradigm is needed to address certain declarative
languages. We argue that the grey-box and fragment-based
component paradigm is more suited for these languages.

1http://www.reuseware.org

The second reason is related to our desire to reuse existing
tools for the different languages. To achieve this, all referenced
components need to be composed before applying the tools.
As the tools are assumed to not have a prior understanding
of components (in the fragment-based sense of the word),
they do not understand the need for their restricted interac-
tion (essential for proper component encapsulation). For this
reason the components needs to be opened up such that their
interactions can statically be ensured in the composition result.
Again, this is not an idea supported by black-box component
environments, but possible in composition systems based on
grey-box approaches.

For some general-purpose languages (e.g. C++, C#, Java),
components can be described on different abstraction-levels—
either as run-time entities or as static source-code snippets
(as done for aspects in Java). But for most languages used
in software modeling or on the Semantic Web we do not
have much choice. Thus, for the languages in these important
fields, components necessarily consist of source artifacts—
snippets of descriptions—which can play roles in more com-
plex, complete, coherent and usable descriptions or declarative
programs. However, one should take care not to meddle
with one of the most powerful notions in component-based
development: the power of abstraction. Thus, it is of utmost
importance to properly encapsulate components—hide their
details—and to access them via well-defined composition in-
terfaces. Here, again, we are in line with Szyperski’s definition
from above: All access to the component should occur through
well-defined interfaces, all dependencies should be explicit.
We shall return to the issue of interfaces shortly.

Our work has its roots in Invasive Software Composition
(ISC) [1]. ISC takes a grey-box composition approach where
components, or fragments, are static source-code entities with
well-defined interfaces using the notion of hooks. A hook is a
location in a component which may effectively be replaced by
another component, thus, composed. As such, the hooks of a
component define its interface. The replacement of a hook with
some existing component constitutes the basic composition
technique of ISC. One of the conclusions from work on
ISC was the identification of a set of primitive composition
operators implementing the described composition technique.
Two of the identified primitive composition operators are bind
and extend, where bind replaces a hook with some component
once and extend possibly multiple times. The composition
technique and operators defined for ISC are very general

and applicable to many different languages and situations. It
should be noted that ISC is able to realize existing composition
approaches and techniques, such as aspect-orientation, view-
based programming, hyperspaces etc.

Our experience with ISC and component-based develop-
ment for declarative languages has refined our requirements
for composition interfaces. Most importantly, we argue that
components for declarative languages shall indeed be grey-
boxes, but with tailored and refined composition interfaces to
answer the call from language-specific needs and language-
specifically developed composition operators.

II. DEDICATED COMPOSITION SYSTEMS AND
ENVIRONMENTS

Many domain-specific languages in software modeling and
on the Semantic Web do not provide sufficient constructs for
defining reusable entities—components. Many languages do
have some form of abstraction and reuse idea, but it is often
limited, inflexible and most of all—fixed. For example, rule
languages on the Semantic Web often allow rule chaining;
the possibility of sequencing rules in different chains of
computations. As such, the notion of the rule is the level of
reuse made possible by the language itself. No other entities
are reusable; there is no other level of abstraction. That is,
the set of abstractions provided by the language is fixed.
Thus, once the language has been designed and its relevant
tools have been developed, the language as such is very
inflexible to be changed for new abstractions. It should be
noted that the expressiveness provided by languages is usually
adequate, since the languages certainly were developed against
use-cases and specific requirements. We exploit the fact that
appropriate expressiveness is provided for by reusing existing
tools developed for the different languages when processing
the composition results. However, we will address the issue
that a flexible level of abstraction is not to be found.

We argue that instead of redesigning an individual language,
additional levels of abstraction, and thus reuse, can be provided
via composition. We propose to layer a light-weight dedicated
composition system (LWDCS)2 on top of a targeted core lan-
guage and its tools (see Figure 1) to provide richer abstractions
and allow programmers to think about their programs in new
and interesting ways. The composition system is dedicated
because it addresses issues for a single targeted language, and
light-weight since once developed and deployed it is assumed
to be operable without its users directly being aware of it. The
LWDCS injects a core language with additional constructs,
giving users the possibility to define reusable components and
to compose them in desired ways, all tailored for the need at
hand. The LWDCS is responsible for interpreting the newly
introduced constructs and for composing specified components
into programs or descriptions of the core language. Thus,
the existing and already developed tools are reused and the
semantics of the core language is appropriately retained (as
mentioned, we deem the core languages already capable of

2Pronounced low-deeze; pl. LWDCSs (low-deezes).

expressing what they should). Furthermore, a LWDCS is type-
safe, ensuring that resulting descriptions (programs) are (syn-
tactically) valid with respect to the underlying core language.
Ensuring semantically correct results is also possible, but not
further discussed here.

Light-weight dedicated composition system (LWDCS)

Tools

P1 P4P3P2Programs Output

Core language

P1
P2

P5

Define components Compose programs
Improved

Abstraction
Level

Composition
layer

Core layer

Fig. 1. A light-weight composition system can be layered on top of a
language and its associated tools to improve and add the level of abstraction
provided by the underlying language itself.

A composition system can be seen as a triple consisting
of: a component model, a composition language, and a com-
position technique [1]. We argue that a LWDCS should be
constructed as a refinement of a generic composition system,
where the triple comprising the system is specialized for
the task at hand—indeed tailored (see Figure 2). As can be
seen from Figure 2, the dedicated composition language is
adapted for the specialized task and refined from a more
general-purpose language. Furthermore, the dedicated compo-
nent model references an upper-level component model where
general composition system concepts are modeled. Finally,
instead of including a general composition technique and
generic operators in the dedicated composition system, it is
shipped with a set of predefined, specialized, composition
operators.

The most important detail to notice in Figure 2 in order to
answer the question about the desired darkness of components
is the relationship between the set of dedicated operators and
the dedicated component model. The detail to notice is that the
component model, which effectively determines the darkness
of the components used in a composition system, heavily
depends on the specific composition operators included in the
LWDCS. We shall return to this issue with a more detailed
discussion in Section IV. First, before describing our notion
of refined composition interfaces, we will briefly describe how
a dedicated composition system may be semi-automatically
generated. In particular, how a component model may be
derived from a core language.

III. GENERATED COMPONENT MODELS

We intend to build upon the language-independent composi-
tion technique introduced in ISC. This means that components
may contain hooks that can be replaced by other components.
We refer to these positions in components by the more general
term variation points. Thus, the variation points declared in
components define the components’ interfaces. From these

Refined
language

Dedicated
composition
system

Dedicated
Comp. model

Dedicated
operators

Composition
language

Upper-level
Comp. model

Composition
technique

Generic
composition
system

UseInheritsRefines

Dictates requirements

Fig. 2. A dedicated composition system is a specialization of a generic
composition system where the tailored composition operators addressing
particular issues in a declarative language dictate the form and detail of the
dedicated component model and thus, the components’ interfaces.

requirements, one can automatically generate a component
model from a core language description (grammar or model
based) [3]. Figure 3 (a) shows a simple (partial) model of
some rule language. The model states that programs of the
rule language consist of one or more rules, which in turn are
composed from a head and a body (what they are in detail has
been left out here).

Assume the simple case that we want to be able to write
rule programs in our rule language where certain rules are
not explicitly given, but left unspecified (the program as a
whole is underspecified). The underspecified program is a
component with an interface, given by the variation points
programmed into the component. In order to be able to declare
variation points we inject the core language with constructs for
this purpose. This modification can be seen in Figure 3 (b).
The concept of the rule has here been made variable. Rule
programs may now consist of normal rules (concept Rule
in Figure 3 (b)) and rule slots (concept RuleSlot in Fig-
ure 3 (b)). The abstract super-concept AbsRule is introduced
to represent this choice. A Slot, as can be seen in the upper-
level component model is a kind of variation point. Here it
is assumed that a slot has some concrete syntax such that
variation points can explicitly be declared in components. The
model in Figure 3 (b) properly describes what our simple
rule components look like and defines how the composition
technique is allowed to modify the components (by replacing
variation points with other suitable components). The only
access points to the components are the declared variation
points (expressed using slots), everything else is properly
encapsulated. As such, the derived language model in Fig-
ure 3 (b), along with references to the upper-level component
model, is the component model for our simple components. It
is possible to automate such transformations.

IV. REFINED AND CONTROLLED COMPOSITION
INTERFACES

It is useful to be able to reuse common composition
techniques across different dedicated composition systems
targeting different languages (see relationship between the
generic composition technique and the dedicated operators

AbsRuleProgram

Rule

1
*

Head Body

1
11

1

(a)

Rule

Head Body

1
11

1

(b)

RuleSlot

Program
1 *

Generate
Component model

Variation
Point

Slot

Upper-level component model

Fig. 3. The abstract syntax description of a simple rule language on the
left-hand-side can be extended into the abstract syntax description on the
right-hand-side to allow programs to be underspecified with unknown rules,
to be composed into the program at a later point.

in Figure 2). This is beneficial since the basic technology
does not have to be reimplemented for each composition
system and targeted language. However, in order to support
and realize the appropriate kinds of reuse abstractions, differ-
ent languages require special-purpose composition operators.
Thus, it is desirable that the dedicated composition operators
are defined in terms of, that is, reuse, the primitive composition
operators implementing the general composition technique
(see Figure 4). Furthermore, if a specific reuse abstraction
concept is desired for different languages, using the same basic
and underlying composition technique is again advantageous
for practical reasons. Examples of reuse concepts not limited
to a specific language are modules and aspects (disregarding
the exact detail of their purpose and how they look in the
specific languages).

As our work extends that of ISC, which provides a very
general composition technique, we aim at reusing this tech-
nique and its primitive composition operators for creating
LWDCSs. While a single operation of a primitive operator
only can describe a low-level composition step, a properly
defined sequence of such primitive composition operators can
achieve a more advanced desired effect on a set of fragments—
a high-level composition step. If such a high-level sequence
is found useful for different fragments, one would like to
be able to encapsulate the sequence as a single reusable
atomic composition operator. We call such an operator a
complex composition operator. Thus, a complex composition
operator is able to encapsulate and realize a non-obvious reuse
abstraction. This notion gives us the possibility to develop
language-tailored composition operators to be included in
LWDCSs.

One thing to notice about complex composition operators
is that they may not only encapsulate a sequence of primitive
operators, but also components. That is, some composition
operators may require internal components, needed for the re-
alization of the (abstraction) construct they are implementing.
Such components are not visible, or indeed known, to pro-
grams using the operators; they are completely encapsulated
within the operator definitions.

to-module() import()

Primitive
composition
operators

Complex
composition
operators

bind extend
*

From generic
composition system

= encapsulated component

Set of dedicated
composition
operators for
language Xcerpt

1

…

Language: Xcerpt L2 L3 L4

1
1

Fig. 4. Complex and dedicated composition operators for a dedicated
composition system are defined in terms of general composition operators and
techniques from invasive software composition. The operators to-module() and
import() address specific issues in the core language Xcerpt.

A. Example – Modules for the Web Query Language Xcerpt

We have practical experience with targeting and building
a LWDCS for the Web query language Xcerpt [2]. Xcerpt is
a powerful rule-based language following the logic program-
ming paradigm for querying different kinds of semi-structured
data. An Xcerpt program consists of a finite set of rules. What
differentiates Xcerpt from some other well-known Web query
languages, e.g. XQuery, is that Xcerpt programs (i.e. their
rules) have a clear separation between data query parts and
data construct parts. As in other logic programming languages,
Xcerpt rules consist of a head and a body. The body of a
rule can match existing data, resulting in variable bindings.
The variable bindings produced by successful matching of the
body of a rule can then be applied to the head of the rule in
order to derive new data. As such, the rule bodies represent
the queries and the rule heads the construct parts.

An identified and desired (but so far lacking) abstraction
for Xcerpt was the notion of Xcerpt modules (much in the
style of other logic programming systems). An Xcerpt module
consists of a set of rules, which can be imported and reused
in different programs. A good example of a useful module is
a set of rules able to perform simple reasoning on ontology
documents (e.g. OWL). An example of such reasoning is
to derive implicit subclass-of relationships from explicitly
declared class-hierarchies.

As a module consists of a set of rules, they should all
be included in the importing program at composition-time,
such that they are available to the Xcerpt interpreter when the
composition result is executed. However, properly realizing
the module system is more subtle and complicated than just
executing the merger of different rule-sets. Since a module
from our point of view is a component, certain parts of the
module should be able to be encapsulated. From a usage
perspective, a module can almost be seen as a black-box with
an input rule and an output rule. The input rule is passed data
to process (possibly constructing intermediate results for rules
encapsulated in the module) and eventually data to be used by
the importing program is constructed by the output rule. At
the level of composition, however, we cannot consider modules
as black-boxes. In order to allow modules to be encapsulated,

one must ensure that inappropriate rule dependencies do not
occur when programs and modules are merged before being
executed. That is, programs should only have access to certain
rules in imported modules, and vice versa. This encapsulation
can be realized by transforming the heads and bodies of
the rules of the imported module in appropriate ways. The
details are left out since it is not relevant exactly how this is
realized. What is clear is this: If rules in modules are to be
transformed in some way at composition time, the way they
are transformed, and thus accessed by composition operators,
must properly be reflected in the relevant component model.

Core language
(Xcerpt)

Modularization
Concepts

Refined Language
(Modular Xcerpt)

Composition
Language

<<implemented in>>

Upper-level
Component Model<<use>>

Component User

Composition
System Developer

black-box view

grey-box view

Fig. 5. The Component User and the Composition System Developer are
working with different parts of the composition system and have different
views on the system.

To understand the requirements of the component model, it
is helpful to distinguish two different roles—or view-points—
with respect to a LWDCS (containing the component model).
Figure 5 illustrates these different view-points.

1) Component user role Users of the above-described
Xcerpt module system only want to be able to define (en-
capsulated) modules and import already existing ones.
The constructs for doing so should appear to be first-
class constructs of the core language rather than added
composition operators. As such, one should not require
the module programmers and users to define precisely
how and where their modules must be transformed dur-
ing composition. That is, they should not be required to
describe how the underlying encapsulated composition
operators realize the module system and, thus, access
the modules (components).

2) Composition system developer role The composition
system seen from the view of the system developer is
however much different. The system developer cannot
assume the black-box view of the users, but rather
a grey-box view in line with our arguments of this
necessity for declarative languages. The system devel-
oper must develop the complex composition operators
responsible for realizing the module system and provide
an appropriate component model reflecting the intended
interfaces of the components. We recall from Section I

the argument for the need to ensure proper component
interactions statically. Hence, the components do need to
be opened up in the deployment of the module system
and this responsibility lies on the composition system
developer.

To support these different roles—considered attractive for
the users—the development of the specific composition op-
erators and the composition system as a whole dictate re-
quirements for the component model. We therefore need to
transform the core language model in a slightly different way
(Figure 6) as to what was done in Figure 3. As can be seen
in Figure 6 (b), in place of the head construct we introduce
a head variation point (HeadVP), which forms part of the
interface of components adhering to the component model.
At the variation point, either the original head construct can
directly be programmed in its place (as a default value for
the variation point), or a concrete variation point (slot) can be
used. This means that regardless of whether the head of some
rule consists of a core language head construct (Head) or is
left unspecified (using the introduced HeadSlot construct),
the component model describes it as accessible, as part of the
component’s interface.

HeadVP

Rule

Head Body

1
11

(a)

Rule

Body

1

11

1

HeadSlot Head

(b)

Variation
Point

Generate
Component model

Slot

Fig. 6. The original construct (here Head) must at composition time be
accessible to certain composition operators. Thus, the construct must be part
of the interface of the component, which is realized by making the variation
point (HeadVP) a super-class of Head.

The same kind of transformation can be done for the body
of rules. Again, it should be stressed that module programmers
working against the component model in Figure 6 (b) do not
have to express via some special mark-up that the rule heads
are part of the interface. They can write rules as they normally
would, but still expect the programmed modules to be usable
in the LWDCS realizing the module system.

So, the module system is realized by a set of dedicated com-
position operators (transforming rules), along with a dedicated
component model adjusted to the needs of the operators. Along
with a composition language (not discussed here) we can
create a LWDCS for Xcerpt realizing additional abstractions,
in this case the possibility of authoring encapsulated modules
and using them in Xcerpt programs.

The critical notion is the following: due to the encapsulation
of the complex composition operators, we find it necessary
to refine our notion of composition interfaces. This is a
consequence from the fact that was remarked upon earlier:
the set of dedicated composition operators included in a

targeted composition system dictates the form of the associated
component model, that is, how components look and interact
(see Figure 2).

In a similar fashion one can identify needed abstractions
for other declarative languages. Instead of re-designing the
language and its tools one can realize the abstraction by
implementing the necessary additional constructs as complex
composition operators in a LWDCS and generate an appropri-
ate and tailored component model with the appropriate shade
of darkness.

V. CONCLUSION

In this paper we have presented the Reuseware approach to
Invasive Software Composition in an attempt to answer the
question “How dark should a component black-box be?” for
components in declarative languages or in situations where
composition occurs on the source-code level.

Our short answer has been “Jet-black with plenty of holes,
some of which are not visible to everyone.” In the long answer
we showed that this means that we require encapsulated
components where composition can only occur in well-defined
places—hence they are “jet-black”. At the same time, however,
component developers and users should not have to worry
about all the details of the composition interface relating
to encapsulated composition operators. Rather, this part of
the interface should be described in the relevant component
model and taken advantage of by the complex composition
operators available in the dedicated composition system for
which the components have been written. Hence, components
“have plenty of holes”, but they are “not visible to everyone”.
More specifically, some parts are visible to developers of
dedicated composition systems (LWDCS), while component
developers and users only have to care about the part of the
interface relevant to them.

ACKNOWLEDGMENT

This research has been co-funded by the European Commis-
sion and by the Swiss Federal Office for Education and Sci-
ence within the 6th Framework Programme project REWERSE
number 506779 (cf. http://rewerse.net), as well as through
the 6th Framework Programme project Modelplex contract
number 034081 (cf. http://www.modelplex.org) and by the
German Ministry of Education and Research (BMBF) within
the project feasiPLe (cf. http://www.feasiple.de).

REFERENCES

[1] U. Aßmann. Invasive Software Composition. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2003.

[2] F. Bry and S. Schaffert. The XML query language Xcerpt: Design
principles, examples, and semantics. In Revised Papers from the NODe
2002 Web and Database-Related Workshops on Web, Web-Services, and
Database Systems, pages 295–310. Springer-Verlag, London, UK, 2003.

[3] J. Henriksson, J. Johannes, S. Zschaler, and U. Aßmann. Reuseware –
adding modularity to your language of choice. Proc. of TOOLS EUROPE
2007: Special Issue of the Journal of Object Technology (to appear),
2007.

[4] C. Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Component Software Series. Addison-Wesley Publishing Company,
second edition, 2002.

