
Modular Access Control via Strategic Rewriting

Daniel J. Dougherty1, Claude Kirchner2, Hélène Kirchner3, Anderson Santana de
Oliveira2

1 Worcester Polytechnic Institute
2 INRIA & LORIA ⋆

3 CNRS & LORIA

Abstract. Security policies, in particular access control, are fundamental elements
of computer security. We address the problem of authoring and analyzing policies in
a modular way using techniques developed in the field of term rewriting, focusing
especially on the use of rewriting strategies. Term rewriting supports a formaliza-
tion of access control with a clear declarative semantics based on equational logic
and an operational semantics guided by strategies. Well-established term rewriting
techniques allow us to check properties of policies such as completeness and the
absence of conflicts. A rich language for expressing rewriting strategies is used to
define a theory of modular construction of policies in which we can better under-
stand the preservation of properties of policies under composition. The robustness
of the approach is illustrated on the composition operatorsof XACML.

1 Introduction

Access control is at the heart of computer security. It has grown beyond mediating
operating-system interactions between users and files and now plays a central role in
web-based systems, legal policies, and business rules. Accompanying these expanded ap-
plications of access control, our conception of the mechanism of authorization now goes
beyond the classical model [29] of access-control matrices, and we now view access con-
trol decisions as the embodiment of a set of rules. We call such a set of rules an access-
controlpolicy. Although monitoring and enforcement mechanisms are important aspects
of the study of access control, the size and complexity of thesystems being treated mean
that the policies themselves are interesting software artifacts in their own right. They are
sensitive to complex conditions on the policy environment,which represents the data that
a program respecting the policy manipulates, such as attributes of subjects and resources
and relations among these. They are not easy to get right.

In light of these considerations it is now typical in large orcomplex systems to disen-
tangle policy from application code. They are written in domain-specific, typically declar-
ative languages, and reasoning about the correctness of policies is a subtle matter. It is
common wisdom that a key to designing, reasoning about, and maintaining a large sys-
tem is modularity, with corresponding attention to the mechanisms by which the models
in a system interact.

⋆ LORIA: UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP; Nancy, France.

In this paper we are interested in the question of building access-control policies in a
modular fashion, and taking some initial steps towards a theory of how parts of a policy
interact.

We proposeterm rewriting [39, 2] as a formalism for representing access control
policies. Rewriting is a well-established paradigm whose applications include theoretical
foundations for functional programming languages and theorem provers. It is flexible and
expressive enough to capture a wide range of policy framework arising in practice and
indeed it is a universal model of computation. It has a clean declarative semantics, based
on equational logic. There is an active research community supporting efficient imple-
mentations and tools for reasoning about properties such astermination and confluence
of systems. One can view rewrite systems as an intermediate language for policies; our
thesis in this paper is that some of the more interesting aspects of reasoning about policies
are profitably viewed in this context.

Indeed, term rewriting is not a single formalism but rather afamily of variations on a
robust paradigm of directed equality. It is easy to see that simple term rewriting can cap-
ture polices such as Unix file-permissions rules, the richersetting of conditional rewrit-
ing is as rich as the language of Datalog explored by several authors (notably in trust-
management research), and—as sketched below—coreXACML polices can be captured
by rewriting modulo associativity-commutativity.

To give a flavor of how term rewriting can capture policy ruleswe may consider the
following rules, adapted from theXACML specification [36]:

– A person, identified by his or her social security number, mayread any record for
which he or she is the designated patient:

req(patient(x), read, record(x))→permit.

Here patientnames the function from patient numbers to patients as Subjects and
record is a function from patient numbers to health records as Resources, whileread
is a constant symbol, of the sort Actions.
The variablex is implicitly universally quantified, so that the rewritingabove cap-
tures the generality of the authorization rule; and the repetition of the variable as a
parameter has the effect of enforcing the binding between the patient and her record.

– An administrator shall not be permitted to write to medical elements of a patient
record.

req(admin(x), write, record(y))→deny

Hereanyadministrator, as named perhaps by his/her employee numberis denied write
access toanyhealth record: note the use of distinct variables in the rule. Also note the
use of explicitdenyas a decision. It is crucially important to modularity of policies
thatdenyis not treated as the negation ofpermit: this will be further illustrated in the
body of the paper.

– (Inheritance of authority) It is straightforward to capture certain notions of authoriza-
tion hierarchy. For example, to say that subjects2 inherits from subjects1 all access
rights involving resourcer, it suffices to have the following rule in a policy.

req(s1, x, r)→req(s2, x, r)

2

Herex is a variable ranging over actions. Note that this rule is a refinement of the
type of inheritance typically incorporated into a Role-based Access Control Model (in
which one role may inherit all privileges from another, uniformly across all actions
and resources).

In a large organization, there are many classes of “Subjects” with different needs for
access to an immense variety of “Resources”. For example, ina hospital there will be rules
governing the access of patients to their health records, their financial records, and the like,
while at the same time, there will be rules for employee access to these same records as
well as to resources quite different from health records. Meanwhile, other entities such
as insurance carriers will be subject to yet another set of rules for access to this data and
more.

The different constituencies (patients, staff, insurers)are almost certainly going to
have somewhat different — even competing— requirements on their use of the data and
place different emphases on the security goals (confidentiality, availability, integrity) of
policies. It is natural to imagine that the sets of rules describing these various modes of
access should not be authored and maintained in a single monolithic policy. In this setting,
the theory of compositionof policies becomes crucially important.

As a very simple example, imagine that rules for patient dataaccess and rules for staff
data access are composed in separate policy documents,℘p and℘s respectively. What
should we say about the decision of℘p in the context of a request by an administrator
to write a health record? Assuming℘p will not explicitly compute a decision (permit or
deny) upon such a request, we must uniformly assume adefaultdecision, perhaps default-
deny, for all requests not handled directly. But this immediately leads to the conclusion
that composing policies is something more subtle than taking their union. Consider by
contrast a request by an administrator to read the next-of-kin information for a patient.
A default-deny by℘p for this request would mean that when℘p was combined with℘s,
which may explicitly compute apermit for this request, the resulting logical theory, taken
in a naive sense, would be contradictory.

So at the very least one must make a distinction between a policy decision which is
computed in a “direct” way from the policy rules, and one taken as a default. The situation
is even more interesting if two modules of a policy compute contradictory decisions: if the
policy is to be coherent in practice there must be a principled way to combine the modules,
a mechanism that lends itself to clean design and supports analysis and verification. The
combination method we explore in this paper is that ofrewriting strategies.

The need for flexibility is addressed by the design of recent proposals of specifica-
tion languages for access control [12, 21, 36]. These languages associate a rule-based
formalism with partial policy specifications, that assume not only positive and negative
authorization rules, but dispose of a larger set of possibledecisions, such aspermit, deny,
not applicable,. . .

The remaining sections of this paper are organized as follows: we recall in Section 2
the main notions on rewrite rules and strategies used in thispaper. In Section 3 we give
the definition, suitable properties and examples of an access control policies expressed in
the rewrite-based framework. We formalize policy composition in Section 4, as well as
suitable properties of policy composition and we illustrate our approach in particular on
the composition operators ofXACML. We discuss related and further works in Section 5.

3

2 Background

Basic definitions on term rewriting can be found in [39, 2]. Let us recall those which are
used in the following. A many-sorted signature(S,F), or F for short, is a set of sorts
S and a set of function symbolsF . Eachf ∈ F has a profilef : S1 × . . . × Sn→S,
whereS1, . . . Sn, S ∈ S, and is associated to a natural number by the arity function
(ar : F → N). Whenar(f) = 0, the function symbolf is called a constant.

T (F ,X) is the set of well-sorted terms built from a given finite setF of function
symbols and a denumerable setX of variables. The set of variables occurring in a termt

is denoted byVar(t). If Var(t) is empty,t is called aground termandT (F) is the set of
ground terms. Forf ∈ F , f(T (F), . . . , T (F)) denotes the set of ground terms withf as
top symbol.

A substitutionσ is an assignment fromX to T (F ,X), with a finite domain
{x1, . . . , xk} and writtenσ = {x1 7→ t1, . . . , xk 7→ tk}.

A rewrite rule is an ordered pair of terms, denoted asl→r, l, r ∈ T (F ,X), where
l is not a variable andVar(r) ⊆ Var(l) such thatl andr belong to the same sort. The
termsl andr are respectively called the left-hand side and the right-hand side of the rule.
A rewrite system is a (finite or infinite) set of rewrite rules.Rules can be labeled to easily
distinguish among them. A rewrite rulel→r is acollapsing ruleif r is a variable. It is a
duplicating ruleif there exists a variable that has more occurrences inr than inl.

Given a rewrite systemR onT (F ,X), a function symbol which is not the top symbol
of any rule inR is called aconstructor. Others symbols are calleddefined functions.
A constructor system(C,D, R) is defined by a set of constructorsC, a set of defined
functionsD and a set of rewrite rulesR, such that every left-hand side of any rule inR is
of the formf(t1, ..., tn) with f ∈ D andt1, ..., tn ∈ T (C,X). Two constructor systems
(C1,D1, R1) and (C2,D2, R2) share constructors ifD1, D2 andC1 ∪ C2 are pairwise
disjoint.

Given a rewrite systemR, a termt rewrites to a termt′, which is denotedt→Rt′

if there exists a rewrite rulel→r of R, a positionω in t, a substitutionσ, satisfying
t|ω = σ(l), such thatt′ = t[σ(r)]ω .

A rewriting derivation of the rewrite systemR is any sequence of rewriting steps
t1→Rt2→R Thesourceof such a derivation ist1. When the derivation is finite, its
last term is called itstarget. R induces a derivability relation

∗
−→R on terms:t

∗
−→R t′ if

there exists a rewriting derivation fromt to t′. If the derivation contains at least one step,

it is denoted by
+
−→R. A rewrite system is terminating (or strongly normalizing)if all

rewriting derivations are finite. A termt is R-normalized (or inR-normal form) when the
empty derivation is the only one with sourcet; a derivation isnormalizingwhen its target
is R-normalized. A rewrite systemR is weakly terminatingif every termt is the source
of a normalizing derivation. It is confluent if for all termst, u ,v, t

∗
−→R u andt

∗
−→R s

impliesu
∗

−→R s andv
∗

−→R s, for somes. When it is clear from the context, we may
omit the indexR.

The notion of strategy is fundamental in general as well as inthis paper, and we give
here a general presentation of the main ideas. We use a general definition, slightly different
from the one used in [39]: arewrite strategyζ for the rewrite systemR is a subset of the
set of all derivations ofR. Theapplication of a strategyζ on a termt is denoted[ζ](t)

4

and defined as the set of all targetst′ of the derivations of sourcet in ζ. Thedomainof a
strategy is the set of terms that are source of a derivation inζ. When no derivation inζ has
for sourcet, we say that the strategy application ont fails. The result of the application
of a failing strategy on a termt is the empty set. In this paper, we will consider only
strategies that are stable by concatenation (i.e.t

∗
−→R t′ ∈ ζ andt′

∗
−→R t′′ ∈ ζ implies

t
∗

−→R t′
∗

−→R t′′ ∈ ζ). Note that the rewrite rules inR can be considered as elementary
or atomic strategies.

For instance, ifa andb are constants, the application of the rewrite rulea→b to the
terma is denoted[a→b](a) and evaluates to{b}.

A strategy could be described by enumerating all its elements or more suitably by a
strategy language. From elementary strategies expressions directly issued from a rewrite
systemR, more elaborated strategies expressions are built like inELAN [25], Strat-
ego [42],Tom [3] or more recently MAUDE [32]. The semantics of such a language is
naturally described in the rewriting calculus [9, 10]. We describe below the main ele-
ments of the strategy language of interest in this paper. Most of them are available in
Tom [35]4.

Given a rewrite systemR over T (F ,X), a strategy expression is either a rewrite
rule in R or an expression described below. A strategy expressionζ may take arguments
ζ1, . . . , ζn, and the resulting expression is expressed functionally:ζ(ζ1, . . . , ζn). Notice
that this is consistent with the notationζ(R) as soon as the definition ofζ does not depend
on is arguments order. When it is clear from the context, we identify the strategy expres-
sion and the strategy (i.e. the set of derivations it represents). In a consistent way, the
application of a strategy expression to a term is defined as the application of the strategy
it represents.

A simple strategy is the sequential application of two rules. It is described
by the concatenation operator “seq”. For instance[seq(l1→r1, l2→r2)](t) denotes
[l2→r2]([l1→r1](t)). This strategy operator extends naturally to multiple arguments:

[seq(ζ1, . . . , ζn)](t) = [ζn]([ζn−1](. . . [ζ1](t)))

Identity and failure are strategies easy to imagine:

[id](t) = {t}
[fail](t) = ∅

The strategy computing all derivations issued from the application of a rewrite systemR
is calleduniversal; it takes as argument the set of rules under consideration:

[universal(R)](t) = {t′ | t
∗

−→R t′}

For instance, we have:

[universal(a→a)](a) = {a}
[universal(f(x)→f(f(x))](f(a)) = {f(a), f(f(a)), f(f(f(a))), . . .}

4 http://tom.loria.fr

5

One can successively try to apply several strategies using thechoice operator (which
corresponds tofirst in ELAN): its first argument is applied if it does not fail, otherwisethe
second one is applied (and may fail too).

[choice(ζ1, ζ2)](t) = [ζ1](t) if [ζ1](t) 6= ∅
[choice(ζ1, ζ2)](t) = [ζ2](t) if [ζ1](t) = ∅

Clearlychoice is associative and therefore its syntax is extended to be applicable to a
list of strategies:

choice(ζ1, ζ2, . . . , ζn) = choice(ζ1, choice(ζ2, . . . , ζn))

Other strategies allow controlling the application of rules over sub-terms of a term.
The strategyone must succeed on at least one of the sub-terms of a term. On the other
hand,all application must succeed on each sub-term, otherwise, the result is failure:

[one(ζ)](f(t1, . . . , tn)) = f(t1, . . . , [ζ](ti), . . . , tn), if [ζ](ti) 6= ∅

[all(ζ)](f(t1, . . . , tn)) = f([ζ](t1), . . . , [ζ](tn)), if ∀i ∈ {1, . . . , n}, [ζ](ti) 6= ∅

Using the above set of operators, we can define recursive oneswhich iterate the applica-
tion of a strategy to a term, for example:

try(ζ) = choice(ζ, id)

repeat(ζ) = try(seq(ζ, repeat(ζ)))

It is worth noticing thattry andrepeat never fail. Other high level strategies imple-
ment term traversal and normalization on terms and are well-known in the rewrite system
literature:

topDown(ζ) = seq(ζ, all(topDown(ζ)))

bottomUp(ζ) = seq(all(bottomUp(ζ)), ζ)

OnceTopDown(ζ) = choice(ζ, one(OnceTopDown(ζ)))

OnceBottomUp(ζ) = choice(one(OnceBottomUp(ζ)), ζ)

innermost(ζ) = repeat(onceBottomUp(ζ))

outermost(ζ) = repeat(onceTopDown(ζ))

Example 1.Some examples of strategy application are:

[universal(a→b, a→c)](a) = {a, b, c}
[choice(a→b, a→c)](a) = {b}
[choice(a→c, a→b)](b) = ∅
[try(b→c)](a) = {a}
[repeat(choice(b→c, a→b))](a) = {c}

3 Rewrite-Based Policies

Classically, access control concerns establishing which actions are allowed to be exe-
cuted by the active entities of a system (e.g. users, processes, roles, etc), calledprincipals

6

or subjects, over its protected entities (files, databases, printers, etc), calledresourcesor
objects[15]. Recent developments are aimed to express various constraints on the en-
vironment where policies run, in order to capture real worldrequirements from policy
authors, such as time, location, and any other condition involving attributes of principals
and objects.

In this context, it is important to embark expressive computational power in the def-
inition of policies. As the notion of pattern and of rule is quite natural in the context of
policies specifications, we propose here a quite general definition of access control, based
on the full power of strategic rewriting.

In our model, authorization decisions are computed by a set of rewrite rules that trans-
form the input terms, representing access requests, into authorization terms. In order to
take the raw computational power of term rewriting and to enhance the agility of the pol-
icy specification language, we use strategies to explicitlycontrol the rules application. We
define rewrite-based policies as follows, whereQ stands for queries (or requests) andD

for decisions.

Definition 1 (Security Policy). A access control security policy,℘, is a 5-tuple
(F , D, R, Q, ζ) such that:

1. F is a signature;
2. D is a non-empty set of ground terms:D ⊆ T (F);
3. R is a set of rewrite rules overT (F ,X);
4. Q is a set of terms fromT (F): Q ⊆ T (F);
5. ζ is a rewrite strategy forR.

Let us explain the main design choices made in this definition.

– First we consider that the policy specification and its environment are described as
terms built over the signatureF . The set of possible decisions to be taken by the policy
is denoted byD. Indeed,D is often a set of constants and the two main constants inD

are usuallypermit anddeny. But since it is crucial to model also policies that do not
directly take decision, it can be useful to have a constantnot applicable that simply
expresses the fact that the current policy in the current context cannot decide about
the access. Moreover, the result returned by a policy could be more elaborated than
just a constant and can be a ground term containing further information. Whatever the
setD contains, we assume it to be non-empty. What is significant isnot treating the
failure to derive a permission as a denial. In contrast to [21], in which this later design
is followed, we can treat explicitly decisions such asdeny andnot applicable. This
is a crucial advantage for merging rules, since in purely logic-based works, there is
no way to handle in the theory what happens when a policy whichderivesdeny for a
requestq is merged with another which then derivespermit explicitly, for the same
q.

– The rewrite systemR describes the behavior of the policy as well as some necessary
computations which explain how its environment evolves. The role of the strategy is
to point derivations ofR whose interest is to produce decisions.

– The requests are a subset of ground terms. They typically express questions of the
form: is a certain entity authorized to access a resource given the current configuration
of the policy environment.

7

– The last component is the strategy which allows one to finely specify the evaluation
order of the policy rules.

One of the main nice consequences of this approach, in addition to its expressivity, which
we illustrate on the examples below, is that it allows us to take advantage of all the results
obtained by the rewriting community since the last thirty years. Amongst such results, we
investigate confluence and termination.

Example 2.A simple example, inspired from [5], illustrates the above definition by as-
signing authorizations based on a “user id” which is represented by a natural number: all
requests from user whose “id” is bigger than three are denied.

– Let the policy signature be:F = {0 : Nat, s : Nat→Nat, + : Nat ×
Nat→Nat, auth : Nat→A, permit : A, na : A, deny : A}

– The set of of constant symbols representing decisions isD = {permit, na, deny}
– ConsiderR as the following set of rules (the operators gives the successor of a

number,+ is the usual sum operator,x, y are variables of sortNat:):

x + s(y) → s(x + y)
x + 0 → x

auth(0) → permit

auth(s(0)) → permit

auth(s(s(0))) → na

auth(s(s(s(x)))) → deny

– the setQ contains ground terms with top symbolauth;
– A possible strategy for this policy, among others that guarantee a normalization pro-

cess, isζ = innermost(R).

This defines a security police as all conditions of Definition1 are satisfied. An example
of request evaluation is:[ζ](auth(s(0) + s(s(s(0))))) = {deny}

Example 3.As already suggested in the introduction, we can model a policy for a clinical
system (this example is adapted from theXACML specification [36], and first presented
in the rewrite-based formalism in [12]).

– The policy signature,F , contains the following symbols:

auth : Request× Condition → A

req : Subject× Action × Object → Request

read, write : → Action

permit, deny, na : → A

patient, phy : Number → Subject

admin, per : Number → Subject

record : Number → Object

guard : Subject× Subject → Condition,

respPhy : Subject× Subject → Condition

urgency : → Condition

8

– The set of decisions isD = {permit, deny, na}.
– R is the following set of rules, where variables arex, y : Number; r : Object; c :

Condition:

auth(req(patient(x), read, record(x)), c) → permit

auth(req(per(x), read, record(y)), guard(per(x), patient(y)))) → permit

auth(req(phy(x), read, record(y)), respPhy(phy(x), patient(y))) → permit

auth(req(phy(x), write, record(y)), respPhy(phy(x), patient(y))) → permit

auth(req(admin(x), read, r), c) → deny

auth(req(admin(x), write, r), c) → deny.

In the order of appearance these rules state that: a patient can read his own record, the
guardian of a person can read the record for that person, the responsible physician of
a patient can read or write data for her record, the last two rules deny any access of
administrators to records.

– The set of requests, Q, is the set of all terms of the formauth(T (F), T (F)).
– One could adopt the strategyζ = choice(R, auth(q, c)→na), which introduces

a default rule for this policy, whereq : Request. The terms inQ which are not
reduced by the rules fromR will be rewritten intona, which ensures completeness.
The example presented here is a security policy according toDefinition 1.

The policy illustrated in this example has some desirable properties; for example the
evaluation of a request is guaranteed to return a unique result, as will be demonstrated
shortly.

A security policy is consistent if it computes at most one authorization decision:

Definition 2 (Consistency).A security policy℘ = (F , D, R, Q, ζ) is consistent if for
every queryq ∈ Q, ζ applied toq returns at most one result:∀q ∈ Q, the cardinality of
[ζ](q) is less than or equal to1.

This means that for every query evaluation, a deterministicresult is computed by the
application ofζ on the terms ofQ. In the case where the strategy leads to a derivation
that does not terminate onq, the cardinality of[ζ](q) is 0, the policy is still considered as
consistent.

Example 4.Consider the following policy:

℘1 = (F1 = {g : A × A→A, permit : A, deny : A},
D1 = {permit, deny},
R1 = {g(x, y)→x, g(x, y)→y},
Q1 = g(T (F), T (F)),
ζ1 = universal(R))

Then℘1 is a security policy under the conditions expressed in Definition 1, but it clearly
fails to be consistent, since[ζ](g(permit, deny)) = {permit, deny}.

Since we assume strategies to be closed by concatenation, confluence under strategy can
be simply expressed:

9

Definition 3 (Confluence under strategy).A rewrite systemR is confluent under a strat-
egyζ when∀u, v1, v2 ∈ T (F ,X) such that{v1, v2} ⊆ [ζ](u) then[ζ](v1) ∩ [ζ](v2) 6= ∅.

If we consider theuniversal strategy, the above definition reduces to the usual one of
confluence. Therefore:

Proposition 1. The policy(F , D, R, Q, universal) is consistent as soon asR is con-
fluent onT (F ,X).

A second fundamental property is termination:

Definition 4 (Termination). A security policy℘ = (F , D, R, Q, ζ) is terminating if for
everyq ∈ Q, all derivations of sourceq in ζ are finite.

It is a fundamental property of term-rewriting systems thata system that is terminating
confluent enjoys the property than any term evaluates to a unique normal form.

Example 5.The policy from Example 3 is terminating and confluent, whichcan be easily
checked by analyzing the rules inR. This guarantees that the evaluation of any request
will return a unique decision.

Example 6.Consider the policy:

℘2 = (F2 = {a : A, permit : A, deny : A},
D2 = {permit, deny},
R2 = {a→a, a→deny},
Q2 = {a},
ζ2 = universal(R))

℘2 is a security policy. In contrast to the previous example, this policy is consistent (since
the corresponding rewrite relation is confluent), but it is not terminating.

Some simple sufficient conditions allows us to apply termination results from rewrite
theory:

Proposition 2. A policy(F , D, R, Q, ζ) terminates provided that all derivations inζ are
finite or if R is strongly terminating (i.e. all derivations inuniversal(R) are finite).

To ensure strong termination, classical quite powerful termination tools can be used like
recursive path orderings [13] or dependency pairs [1]. Termination allows one to localize
confluence check following Newmann’s lemma and this can be made operational via the
completion algorithm [26]. Therefore we inherit sufficientcondition for policies using the
universal strategy. Since in general we use the finer notion of termination and conflu-
ence under strategies, this opens new research questions toestablish sufficient conditions
also for rich strategies.

Another expected property of a policy strategy is that it is able to evaluate every
incoming request into an authorization term, following itsstrategy. This is expressed
through the completeness property:

Definition 5 (Completeness).A security policy℘ = (F , D, R, Q, ζ) is complete if∀q ∈
Q, [ζ](q) ⊆ D and[ζ](q) 6= ∅.

10

This definition is close to the definition of sufficient completeness of a rewrite system,
which states that every ground term evaluates to a term exclusively built with construc-
tors and possibly variables [11, 24]. Several algorithms have been developed to check
sufficient completeness or to complete a set of patterns to ensure this property [8].

Proposition 3. A policy (F , D, R, T (F), universal(R)) is complete provided thatD
is a set of constructors forR and thatR is terminating and sufficiently complete.

The strong sufficient conditions of this proposition may be relaxed to a weakly terminating
systemR and an innermost strategy, as shown in [18].

4 Policy Composition

Let us now focus on the problem ofcombiningpolicies in a modular way, relying on
the long history of research in combining rewrite systems. This combination consists in
taking the union of signatures and rules of the two policies components, choosing the
sets of requests and decisions, and building a strategy for the combination of the two
strategic rewriting in each component of the composition. However, combining access-
control policies naively results in inconsistent or non terminating policies and we show
how syntactic conditions and strategies may help to keep these suitable properties for
the composition of two policies. Based on the example ofXACML policy combiners, we
explore the idea of a rich combination language for policiesbased on rewriting strategies.

4.1 Definition and properties of policy composition

Definition 6 (Policy Composition). The composition of the two policies℘i =
(Fi, Di, Ri, Qi, ζi) (i = 1, 2) is the policy℘ = (F , D, R, Q, ζ), where:

1. F = F1 ∪ F2;
2. D1 ∪ D2 ⊆ D ⊆ T (F1 ∪ F2);
3. R = R1 ∪ R2;
4. Q1 ∪ Q2 ⊆ Q ⊆ T (F1 ∪ F2);
5. ζ is a rewrite strategy forR.

The main design choices behind this definition are the following: when defining the com-
position of two policies, we must ensure that the generated policy satisfies the conditions
declared in Definition 1; the set of requests for the combinedpolicy contains terms of
the form determined by its sub-policies, but may also contain any additional well-formed
closed term that can be constructed from the combined policysignature. For example,
suppose thatF1 = {0, f}, Q1 = f(T (F1)) andF2 = {g}, Q2 = g(T (F2)), then a
valid request would beg(f(0)); the combination strategy is in charge of defining how
the composed policy rewrites request terms. It may or not be built in a modular way by
composingζ1 andζ2. It often can be expressed as a functional composition of component
strategies.

Example 7.We take the policy from Example 3, to show how we can extend policies with
additional rules. Consider the access control ruleR′ below:

11

auth(req(phy(x), write, r), urgency)→permit

A strategyζ′ = choice(R′, R, auth(q, c)→na) extends the previous policy by enforcing
the rule for urgency cases first, and at the same time does not interfere with the decisions
generated by the previous set of rules. This is a direct consequence of the semantics of the
choice strategy.

The next example illustrates that much care must be taken in composing two policies.

Example 8.Consider the policies℘1, from Example 4, and the policy℘3 below.

℘3 = (F3 = {permit : A, deny : A, g : A × A→A, f : A × A × A→A}
D3 = {permit, deny}
R3 = {f(permit, deny, x)→f(x, x, x),

f(deny, permit, x)→f(x, x, x),
f(x, x, x)→x},

Q3 = f(T (F2), T (F2), T (F2)),
ζ3 = universal(R2))

The composition℘ of ℘1 and℘2 can be defined in a straightforward way as℘ =:

(F = F1 ∪ F3, D = D1 = D3, R = R1 ∪ R3, Q = T (F1 ∪ F3), ζ = universal(R))

These two policies as clearly terminating and share only symbolspermit anddeny . It
is therefore quite intuitive to believe that their composition will be also terminating. But
this is false since the following request has an infinite derivation:

f(g(permit, deny), g(permit.deny), g(permit, deny))→
f(permit, g(permit, deny), g(permit, deny))→
f(permit, deny, g(permit, deny))→
f(g(permit, deny), g(permit.deny), g(permit, deny)) . . .

Many modularity results for confluence and termination of rewrite systems have been
produced and the interested reader can refer for instance to[37] for a survey. Confluence
and termination are in general not modular properties for rewrite systems. In the con-
text of rewrite system on disjoint signatures, confluence ismodular, while termination
is not [40]. However, adding syntactic conditions on rewrite rules or existence of a sim-
plification ordering, allows getting positive results. Relying on the results of the rewrite
system community [41, 38, 33, 19, 27], we can state the following useful results about
composition of security policies.

Proposition 4. Let us consider two policies℘i = (Fi, Di, Ri, Qi, universal) (i = 1, 2)
such thatF1 andF2 are disjoint and their composition℘ = (F1 ∪ F2, D1 ∪ D2, R1 ∪
R2, T (F1∪F2), universal). If ℘1 and℘2 are consistent, then℘ is consistent. If℘1 and
℘2 are terminating, then so is℘, provided:

1. neitherR1 nor R2 contain collapsing rules, or
2. neitherR1 nor R2 contain duplicating rules, or
3. R1 or R2 contains neither collapsing rules nor duplicating rules, or

12

4. termination ofR1 and ofR2 are proved by simplification ordering.

Relaxing the disjointness assumption of signatures in the previous results led to consider
constructor-sharing systems [28], composable systems [34] or hierarchical combinations
of rewrite systems generalizing the previous ones by allowing a certain sharing of defined
symbols [14].

The interest of rewriting strategies appears again in theircomposition. For instance,
in contrast to termination, innermost termination has a nice modular behavior, for dis-
joint disjoint unions, constructor-sharing systems, composable systems and for cer-
tain hierarchical combinations. We can take advantage of such results about innermost
termination[20] to state the following result:

Proposition 5. Let us consider two policies℘i = (Fi, Di, Ri, Qi, innermost) (i = 1, 2)
such thatF1 andF2 are disjoint or share only constructors, and℘ be their composition
(F1 ∪ F2, D1 ∪ D2, R1 ∪ R2, T (F1 ∪ F2), innermost). Then℘ is terminating as soon
as℘1 and℘2 are.

Example 9.Let us consider again the policies℘1, from Example 4 and℘3, from Exam-
ple 8, but now with different strategiesζ′1 = innermost(R1) andζ′3 = innermost(R3).
Their combination℘ = (F1 ∪ F3, D, R1 ∪ R3, T (F1 ∪ F3), innermost(R)) is termi-
nating according to Proposition 5.

4.2 Semantics ofXACML Policy Combiners

In this section, we give an executable semantics of the composition operators of
XACML [36] using the formalism proposed above. Using rewriting and strategies it is
possible to give such a semantics to Core-XACML [16], by translating a its rule sets into
rewrite rules. We do not detail this process in this paper dueto the lack of space. Basically,
these operators were designed to disambiguate different decisions that a policy (or a set
of policies) may generate. The combiners described in theXACML specification are5:

– permit-overrides: wheneveroneof the policies answers to a request with agranting
decision, the final authorization for the composed policy will be granted. The policy
will generate adenial only in the case at least one of the sub-policies denies the
request, and all others returnnot-applicable.

– deny-overrides: this combiner has a similar semantics topermit-overrides, with the
difference that denials takes precedence.

– first-applicable: the decision produced by the combined policy corresponds to the
authorization determined by the first sub-policy that does not fail, and whose decision
is different fromnot-applicable.

Consider the signature and query terms of Example 3, and the set of rules below:

p1 : auth(req(p, write, record(x)), respPhy(p, patient(x))) → permit

p2 : auth(req(phy(p), write, r), c) → deny

p3 : auth(req(phy(p), write, r), urgency) → permit

p4 : auth(q, c) → na

5 Additionally, the specification brings the “only-one-applicable” and ordered versions of these
policy combiners.

13

These rules are clearly overlapping: since the variablec captures different conditions
for access to the medical record. A naive way of translating the conflict resolution oper-
ators ofXACML into rewriting strategies, is to take into account the orderof the rules
presented above, and use the strategychoice:

ζpo = choice(p1, p3, p2, p4)
ζdo = choice(p2, p1, p3, p4)
ζfa = choice(p1, p2, p3, p4)

However, this encoding ofXACML operators would work only for this example, and
would not have the expected results for other policies like for instance in Example 8. This
is due to the fact that the right-hand sides of the rules are variables, and we cannot decide
which priority order for the rules on a strategy will override with permit, or deny decision.

A general encoding of these conflict resolution operators require more advanced
strategies. A raw encoding of thepermit-overridesoperator as a rewriting-based policy
simply takes the strategy components as arguments, as defined below (deny-overridescan
be encoded in a similar way):

[ζpo(ζ1, ζ2)](q) =



















{permit} if ([ζ1](q) = {permit} ∨ [ζ2](q) = {permit})

{deny} if ([ζ1](q) = {deny} ∨ [ζ2](q) = {deny})

∧ ([ζ1](q) = {na} ∨ [ζ2](q) = {na})

{na} if ([ζ1](q) = {na} ∧ [ζ2](q) = {na})

A more natural encoding using strategic rewriting is simply:

[ζpo(ζ1, ζ2)](q) = choice(seq(ζ1(q), permit→permit),
seq(ζ2(q), permit→permit),
seq(ζ1(q), deny→deny),
seq(ζ2(q), deny→deny),
ζ1(q), ζ2(q))

It works as follows: thechoice strategy ensures that only its first succeeding argument
will be returned. Its first argumentseq(ζ1(q), permit→permit) evaluates in sequence
ζ1(q). In case it evaluates topermit, the rulepermit→permit applies and trivially returns
permit, otherwise the application ofpermit→permit fails and therefore the full strategy
fails.

The strategyfirst-applicablecan be encoded in a similar fashion: We first check if
applying the strategies result inpermit or deny, and we choose the first strategy that
returns one of these results. Thenot-applicabledecision will always cause the strategy
seq to fail, unless it is the only decision generated by the sub-policies.

[ζfa(ζ1, ζ2)](q) = choice(seq(ζ1(q), permit→permit),
seq(ζ1(q), deny→deny),
seq(ζ2(q), permit→permit),
seq(ζ2(q), deny→deny),
ζ1(q), ζ2(q))

In the examples above,XACML operators for combining policies can be encoded in this
unambiguous manner.

14

5 Related and further works

Several approaches define logic languages for access control [17, 21, 22, 23], each fo-
cusing on different aspects of access control, e.g. roles orobligations, and providing
different levels of expressivity. Some of them propose policy composition operators to
disambiguate conflicting policy decisions, like inXACML. In these works, access con-
trol is basically defined as inferring the truth value of a certain predicate of the form
access(subject, action, object) in the underlying logic. We claim that rewriting pro-
vides a suitable theoretical and practical framework for expressing flexible access control
rules. The strength of the approach relies on the expressivity of strategic rewriting, on
the logical background of rewriting logic [31], on the computational efficiency of rewrite
rules, and on the existence of several theoretical results and tools, which are readily ap-
plicable in a consistent way to access control policies.

With respect to policy composition, a number of works have a close relationship with
the formalism introduced here. Bonatti et al. [7] address the composition problem through
an algebra of composition operators that is able, for example, to define policy templates,
among other operations. The operator definitions can be adapted to several languages and
situations since their definition is orthogonal to the underlying authorization language.
Basically, in [7], a policy is a set of ground decisions, or authorization terms, and the
composition operators are defined over the sets of decisions, but not on the rules used
to derive them, which is the originality of our work. Other works follow the same direc-
tion, with slight differences on the modeling of policies [43]. Another existing alternative
for composing access control policies is implemented by thePolymer system [6], which
proposes rather classical operators on policies (conjunction, precedence, etc), and that
allows reusing the policy objects, modifying them by executing additional actions, in or-
der to specialize or enforce the policy. Finally, in [30], aninteresting approach for policy
composition is taken, based on the non-monotonic properties of defeasible logic (where
defeasible rules are used to draw conclusions that can be later invalidated). Authors show
how this can be used to encode meta-policies describing the content of the security re-
quirements and how the policy is to be combined in the case of composition. This way,
a single operator is proposed, which takes into account a precedence relation among the
policies. We advocate that this kind of composition can alsobe achieved using rewriting
strategies, by defining priorities on the rules, in the same way as in defeasible logic.

In comparison, our main contributions in this paper are first, to provide a formal def-
inition for access control policies using term rewriting that allows us to describe flexible
policies and that supports reasoning about properties likeconsistency, completeness and
termination; and second to give the formal semantics for composition operators in an
uniform manner using rewrite strategies.

A first approach for the implementation of rewrite-based policies is to design them in
a rewrite environment such as MAUDE or ELAN, in order to get a prototype and study
their behavior and properties. The next step is to embed policies in a target language, such
as JAVA , using the formal island approach [4]. TheTom system supports the compilation
process of our access control policies into JAVA classes, that in turn can be instantiated in
any application to evaluate access requests to sensitive resources, given that a mapping
(called “anchoring” in the Formal Island metaphor), linking these objects to the symbols
of signature on the policy level is provided.

15

References

[1] T. Arts and J. Giesl. Termination of term rewriting usingdependency pairs.Theoretical
Computer Science, 236:133–178, 2000.

[2] F. Baader and T. Nipkow.Term Rewriting and all That. Cambridge University Press, 1998.
[3] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles. Tom Manual. LORIA,

Nancy (France), version 2.4 edition, October 2006.
[4] E. Balland, C. Kirchner, and P.-E. Moreau. Formal islands. In M. Johnson and V. Vene,

editors,AMAST, volume 4019 ofLecture Notes in Computer Science, pages 51–65. Springer,
2006.

[5] S. Barker and M. Fernández. Term rewriting for access control. In E. Damiani and P. Liu,
editors,DBSec, volume 4127 ofLecture Notes in Computer Science, pages 179–193. Springer,
2006.

[6] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with polymer. In V. Sarkar
and M. W. Hall, editors,PLDI, pages 305–314. ACM, 2005.

[7] P. A. Bonatti, S. D. C. di Vimercati, and P. Samarati. An algebra for composing access control
policies.ACM Trans. Inf. Syst. Secur., 5(1):1–35, 2002.

[8] A. Bouhoula. Spike: a system for sufficient completenessand parameterized inductive proofs.
In A. Bundy, editor,CADE, volume 814 ofLecture Notes in Computer Science, pages 836–
840. Springer, 1994.

[9] H. Cirstea and C. Kirchner. The rewriting calculus — PartI and II. Logic Journal of the
Interest Group in Pure and Applied Logics, 9:427–498, May 2001.

[10] H. Cirstea, C. Kirchner, L. Liquori, and B. Wack. Rewrite strategies in the rewriting calculus.
In B. Gramlich and S. Lucas, editors,Electronic Notes in Theoretical Computer Science,
volume 86. Elsevier, 2003.

[11] H. Comon. Sufficient completness, term rewriting systems and ”anti-unification”. In J. H.
Siekmann, editor,CADE, volume 230 ofLecture Notes in Computer Science, pages 128–140.
Springer, 1986.

[12] A. S. de Oliveira. Rewriting-based access control policies. In M. Fernandez and C. Kirchner,
editors,Proceedings of the 1st International Workshop on Security and Rewriting Techniques
- SecRet’06, June 2006.

[13] N. Dershowitz. Termination of rewriting.Journal of Symbolic Computation, 3(1 & 2):69–116,
1987.

[14] N. Dershowitz. Hierarchical termination. InProceedings 4th International Workshop on
Conditional Term Rewriting Systems, Jerusalem (Israel), volume 968 ofLecture Notes in
Computer Science, pages 89–105. Springer-Verlag, 1994.

[15] S. D. C. di Vimercati, P. Samarati, and S. Jajodia. Policies, models, and languages for access
control. In S. Bhalla, editor,DNIS, volume 3433 ofLecture Notes in Computer Science, pages
225–237. Springer, 2005.

[16] D. J. Dougherty. Core XACML and term-rewriting systems. Unpublised, March 2007.
[17] D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and reasoning about dynamic

access-control policies. In U. Furbach and N. Shankar, editors, IJCAR, volume 4130 ofLec-
ture Notes in Computer Science, pages 632–646. Springer, 2006.

[18] I. Gnaedig and H. Kirchner. Computing constructor forms with non terminating rewrite pro-
grams. In A. Bossi and M. J. Maher, editors,PPDP, pages 121–132. ACM, 2006.

[19] B. Gramlich. Generalized sufficient conditions for modular termination of rewriting. In
H. Kirchner and G. Levi, editors,Proceedings of the 3rd Algebraic and Logic Program-
ming Conference, volume 632 ofLecture Notes in Computer Science, pages 53–68. Springer-
Verlag, September 1992.

16

[20] B. Gramlich. On proving termination by innermost termination. In H. Ganzinger, editor,
Proceedings 7th Conference on Rewriting Techniques and Applications, New Brunswick (New
Jersey, USA), volume 1103 ofLecture Notes in Computer Science, pages 93–107. Springer-
Verlag, July 1996.

[21] J. Y. Halpern and V. Weissman. Using first-order logic toreason about policies. InCSFW,
pages 187–201. IEEE Computer Society, 2003.

[22] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for multiple
access control policies.ACM Trans. Database Syst., 26(2):214–260, 2001.

[23] A. Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miege, C. Saurel,
and G. Trouessin. Organization based access control.Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International Workshop on, pages
120–131, 2003.

[24] D. Kapur, P. Narendran, D. J. Rosenkrantz, and H. Zhang.Sufficient-completeness, ground-
reducibility and their complexity.Acta Inf., 28(4):311–350, 1991.

[25] C. Kirchner, H. Kirchner, and M. Vittek. Designing clp using computational systems. In P. V.
Hentenryck and S. Saraswat, editors,Principles and Practice of Constraint Programming,
chapter 8, pages 133–160. MIT press, 1995.

[26] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, Oxford, 1970.

[27] M. Kurihara and A. Ohuchi. Modularity of simple termination of term rewriting systems.
Journal of IPS Japan, 31(5):633–642, 1990.

[28] M. Kurihara and A. Ohuchi. Modularity of simple termination of term rewriting systems with
shared constructors.Theor. Comput. Sci., 103(2):273–282, 1992.

[29] B. Lampson. Protection. ACM Operating Systems Review.Vol, 8:18–24, 1974.
[30] A. J. Lee, J. P. Boyer, L. Olson, and C. A. Gunter. Defeasible security policy composition

for web services. In M. Winslett, A. D. Gordon, and D. Sands, editors,FMSE, pages 45–54.
ACM, 2006.

[31] N. Martı́-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography.Theor. Comput.
Sci., 285(2):121–154, 2002.

[32] N. Martı́-Oliet, J. Meseguer, and A. Verdejo. Towards astrategy language for maude.Electr.
Notes Theor. Comput. Sci., 117:417–441, 2005.

[33] A. Middeldorp. A sufficient condition for the termination of the direct sum of term rewriting
systems. InProceedings 4th IEEE Symposium on Logic in Computer Science, Pacific Grove,
pages 396–401, 1989.

[34] A. Middeldorp and Y. Toyama. Completeness of combinations of constructor systems. In
Proceedings 4th Conference on Rewriting Techniques and Applications, Como (Italy), 1991.
also Report CS-R9058, CWI, 1990.

[35] P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern matching compiler for multiple target
languages. In G. Hedin, editor,CC, volume 2622 ofLecture Notes in Computer Science,
pages 61–76. Springer, 2003.

[36] T. Moses. eXtensible Access Control Markup Language (XACML) version 2.0. Technical
report, OASIS, 2005.

[37] E. Ohlebusch.Advanced Topics in Term Rewriting. Springer, 2002.
[38] M. Rusinowitch. On termination of the direct sum of termrewriting systems.Information

Processing Letters, 26(2):65–70, 1987.
[39] Terese.Term Rewriting Systems. Cambridge University Press, 2002.
[40] Y. Toyama. Counterexamples to termination for the direct sum of term rewriting systems.

Technical report, NTT Electrical Communications Laboratories Japan, 1987.
[41] Y. Toyama. On the church-rosser property for the directsum of term rewritig systens.Journal

of the ACM, 34(1):128–143, January 1987.

17

[42] E. Visser. Stratego: A language for program transformation based on rewriting strategies.
System description of Stratego 0.5. In A. Middeldorp, editor, Rewriting Techniques and Ap-
plications (RTA’01), volume 2051 ofLecture Notes in Computer Science, pages 357–361.
Springer-Verlag, May 2001.

[43] D. Wijesekera and S. Jajodia. A propositional policy algebra for access control.ACM Trans.
Inf. Syst. Secur., 6(2):286–325, 2003.

18

