Modular Access Control via Strategic Rewriting

Daniel J. Dougherty;, Claude Kirchnet, Hélene Kirchnet, Anderson Santana de
Oliveira®

! Worcester Polytechnic Institute
2 INRIA& LORIA *
3 CNRS & LORIA

Abstract. Security policies, in particular access control, are fundatal elements
of computer security. We address the problem of authorinearalyzing policies in
a modular way using techniques developed in the field of tesmriting, focusing
especially on the use of rewriting strategies. Term remgitsupports a formaliza-
tion of access control with a clear declarative semanticeth@n equational logic
and an operational semantics guided by strategies. Welbkéshed term rewriting
techniques allow us to check properties of policies suchoaspteteness and the
absence of conflicts. A rich language for expressing remgistrategies is used to
define a theory of modular construction of policies in whick @an better under-
stand the preservation of properties of policies under asitipn. The robustness
of the approach is illustrated on the composition operadb’dSACML.

1 Introduction

Access control is at the heart of computer security. It hasvgrbeyond mediating
operating-system interactions between users and files andptays a central role in
web-based systems, legal policies, and business rulesrmganying these expanded ap-
plications of access control, our conception of the medrardf authorization now goes
beyond the classical model [29] of access-control matri@ed we now view access con-
trol decisions as the embodiment of a set of rules. We cah suset of rules an access-
controlpolicy. Although monitoring and enforcement mechanisms are itapbaspects
of the study of access control, the size and complexity oEttstems being treated mean
that the policies themselves are interesting softwaréaats in their own right. They are
sensitive to complex conditions on the policy environmesttich represents the data that
a program respecting the policy manipulates, such as ats$of subjects and resources
and relations among these. They are not easy to get right.

In light of these considerations it is now typical in largecomplex systems to disen-
tangle policy from application code. They are written in domspecific, typically declar-
ative languages, and reasoning about the correctnessiofgsols a subtle matter. It is
common wisdom that a key to designing, reasoning about, aidtaining a large sys-
tem is modularity, with corresponding attention to the masdbms by which the models
in a system interact.

* LORIA: UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP; Nancy, Fraac

In this paper we are interested in the question of buildirngeas-control policies in a
modular fashion, and taking some initial steps towards arghef how parts of a policy
interact.

We proposeerm rewriting [39, 2] as a formalism for representing access control
policies. Rewriting is a well-established paradigm whagsgligations include theoretical
foundations for functional programming languages andr@qrovers. It is flexible and
expressive enough to capture a wide range of policy framlewadsing in practice and
indeed it is a universal model of computation. It has a clezglatative semantics, based
on equational logic. There is an active research communipparting efficient imple-
mentations and tools for reasoning about properties suterasnation and confluence
of systems. One can view rewrite systems as an intermediatgibge for policies; our
thesis in this paper is that some of the more interestingasipé reasoning about policies
are profitably viewed in this context.

Indeed, term rewriting is not a single formalism but rathéamily of variations on a
robust paradigm of directed equality. It is easy to see tingple term rewriting can cap-
ture polices such as Unix file-permissions rules, the ricetting of conditional rewrit-
ing is as rich as the language of Datalog explored by sevettabas (notably in trust-
management research), and—as sketched below—@a@ML polices can be captured
by rewriting modulo associativity-commutativity.

To give a flavor of how term rewriting can capture policy rules may consider the
following rules, adapted from théACML specification [36]:

— A person, identified by his or her social security humber, mead any record for
which he or she is the designated patient:

req(patient(x), read, record(z))— permit.

Here patientnames the function from patient numbers to patients as Stsbgnd

recordis a function from patient numbers to health records as Ressuwhileread

is a constant symbol, of the sort Actions.

The variabler is implicitly universally quantified, so that the rewritirabove cap-

tures the generality of the authorization rule; and the tigpe of the variable as a

parameter has the effect of enforcing the binding betweempétient and her record.
— An administrator shall not be permitted to write to medickneents of a patient

record.

req(admin(z), write, record(y))— deny

Hereanyadministrator, as named perhaps by his/her employee nusbenied write
access tanyhealth record: note the use of distinct variables in the. ilgo note the
use of explicitdenyas a decision. It is crucially important to modularity of jpés
thatdenyis not treated as the negationprmit this will be further illustrated in the
body of the paper.

— (Inheritance of authority) It is straightforward to captrertain notions of authoriza-
tion hierarchy. For example, to say that subjectnherits from subject; all access
rights involving resource, it suffices to have the following rule in a policy.

req(s1,z,r)—req(sa, x,r)

Herex is a variable ranging over actions. Note that this rule isfaneenent of the
type of inheritance typically incorporated into a Role-&é#éccess Control Model (in
which one role may inherit all privileges from another, wmifily across all actions
and resources).

In a large organization, there are many classes of “Sulijedtis different needs for
access to an immense variety of “Resources”. For exampdehaspital there will be rules
governing the access of patients to their health records,fihancial records, and the like,
while at the same time, there will be rules for employee asteshese same records as
well as to resources quite different from health recordsaMehile, other entities such
as insurance carriers will be subject to yet another setlesrior access to this data and
more.

The different constituencies (patients, staff, insurens) almost certainly going to
have somewhat different — even competing— requirement$ein tise of the data and
place different emphases on the security goals (confidéptiavailability, integrity) of
policies. It is natural to imagine that the sets of rules dbsty these various modes of
access should not be authored and maintained in a singlelitampolicy. In this setting,
the theory of compositioof policies becomes crucially important.

As a very simple example, imagine that rules for patient dateess and rules for staff
data access are composed in separate policy documgnts)d o respectively. What
should we say about the decisionf in the context of a request by an administrator
to write a health record? Assuming, will not explicitly compute a decision (permit or
deny) upon such a request, we must uniformly assudefaultdecision, perhaps default-
deny, for all requests not handled directly. But this imnagely leads to the conclusion
that composing policies is something more subtle than taltieir union. Consider by
contrast a request by an administrator to read the nexiroirkormation for a patient.
A default-deny by, for this request would mean that whep was combined withp,,
which may explicitly compute permitfor this request, the resulting logical theory, taken
in a naive sense, would be contradictory.

So at the very least one must make a distinction between aypadicision which is
computed in a “direct” way from the policy rules, and one take a default. The situation
is even more interesting if two modules of a policy computettadictory decisions: if the
policy is to be coherentin practice there must be a prindiplay to combine the modules,
a mechanism that lends itself to clean design and suppaatgsam and verification. The
combination method we explore in this paper is thatesiriting strategies

The need for flexibility is addressed by the design of receappsals of specifica-
tion languages for access control [12, 21, 36]. These lagpgmassociate a rule-based
formalism with partial policy specifications, that assuno¢ anly positive and negative
authorization rules, but dispose of a larger set of possibtasions, such ggermit, deny,
not applicable,...

The remaining sections of this paper are organized as fellawe recall in Section 2
the main notions on rewrite rules and strategies used inpdgier. In Section 3 we give
the definition, suitable properties and examples of an acu@strol policies expressed in
the rewrite-based framework. We formalize policy comgositn Section 4, as well as
suitable properties of policy composition and we illustratir approach in particular on
the composition operators ®FACML. We discuss related and further works in Section 5.

2 Background

Basic definitions on term rewriting can be found in [39, 2]t e recall those which are
used in the following. A many-sorted signatui®, F), or F for short, is a set of sorts
S and a set of function symbolg. Eachf € F has a profilef : S; x ... x S,—S,
where Sq,...5,,5 € S, and is associated to a natural number by the arity function
(ar: F — N). Whenar(f) = 0, the function symbof is called a constant.

T(F,X) is the set of well-sorted terms built from a given finite gétof function
symbols and a denumerable sef variables. The set of variables occurring in a term
is denoted byar(t). If Var(t) is empty is called aground termand7 (F) is the set of
ground terms. Fof € F, f(T(F),...,T(F)) denotes the set of ground terms wjtkas
top symbol.

A substitutiono is an assignment fron to 7 (F,X), with a finite domain
{z1,..., 2} and writteno = {x1 — t1,..., 2% — ti}.

A rewrite rule is an ordered pair of terms, denotedas, I, € 7(F,X), where
[is not a variable andar(r) C Var(l) such that andr belong to the same sort. The
termsl andr are respectively called the left-hand side and the rigimidrsade of the rule.
A rewrite system is a (finite or infinite) set of rewrite rulé&ules can be labeled to easily
distinguish among them. A rewrite rule-r is acollapsing ruleif r is a variable. It is a
duplicating ruleif there exists a variable that has more occurrencegivan ini.

Given a rewrite systenk on7 (F, X), a function symbol which is not the top symbol
of any rule inR is called aconstructor Others symbols are calledefined functions
A constructor systeniC, D, R) is defined by a set of constructafs a set of defined
functionsD and a set of rewrite ruleR, such that every left-hand side of any rulefns
of the form f (¢4, ..., t,,) with f € D andty,...,t, € T(C,X). Two constructor systems
(C1,D1, Ry) and (Ca, D2, R2) share constructors iD;, D, andC; U Co are pairwise
disjoint.

Given a rewrite systenk, a termt rewrites to a term’, which is denoted— pt’
if there exists a rewrite rulé—r of R, a positionw in ¢, a substitutions, satisfying
tiw = o(l), such that’ = tjo(r)]..

A rewriting derivation of the rewrite system® is any sequence of rewriting steps
ti—rta—r Thesourceof such a derivation ig;. When the derivation is finite, its
last term is called itsarget R induces a derivability relation™— on termst ——p ¢’ if
there exists a rewriting derivation frotrto ¢'. If the derivation contains at least one step,

it is denoted by—" . A rewrite system is terminating (or strongly normalizirifgll
rewriting derivations are finite. A termis R-normalized (or inR-normal form) when the
empty derivation is the only one with sourge derivation ismormalizingwhen its target
is R-normalized. A rewrite systen® is weakly terminatingf every term¢ is the source
of a normalizing derivation. It is confluent if for all termisu ,v, t — u andt ——g s
impliesu sk sandv —>5 s, for somes. When it is clear from the context, we may
omit the indexR.

The notion of strategy is fundamental in general as well akigpaper, and we give
here a general presentation of the main ideas. We use a ¢§éetinition, slightly different
from the one used in [39]: sewrite strategy for the rewrite systenk is a subset of the
set of all derivations of?. Theapplication of a strategy on a termt is denoted(](t)

and defined as the set of all targétef the derivations of sourcein (. Thedomainof a
strategy is the set of terms that are source of a derivatign\wthen no derivation iig has
for sourcet, we say that the strategy application ofails. The result of the application
of a failing strategy on a term is the empty set. In this paper, we will consider only
strategies that are stable by concatenation#(i-6- 5 t' € ¢ andt’ ——x t” € ¢ implies

t =gt g t" € (). Note that the rewrite rules iR can be considered as elementary
or atomic strategies.

For instance, iz andb are constants, the application of the rewrite ruleb to the
terma is denoteda—b](a) and evaluates tfb}.

A strategy could be described by enumerating all its elemientnore suitably by a
strategy language-rom elementary strategies expressions directly issued & rewrite
system R, more elaborated strategies expressions are built likELAN [25], Strat-
ego [42],Tom [3] or more recently MUDE [32]. The semantics of such a language is
naturally described in the rewriting calculus [9, 10]. Wesdébe below the main ele-
ments of the strategy language of interest in this paper.tMbghem are available in
Tom [35)*.

Given a rewrite systenk over 7 (F, X), a strategy expression is either a rewrite
rule in R or an expression described below. A strategy expressimay take arguments
(1, ---,Cn, and the resulting expression is expressed functionéllit, . . ., ¢,,). Notice
that this is consistent with the notatigfiR) as soon as the definition ¢fdoes not depend
on is arguments order. When it is clear from the context, veaiifly the strategy expres-
sion and the strategy (i.e. the set of derivations it repres3eln a consistent way, the
application of a strategy expression to a term is definedesgiplication of the strategy
it represents.

A simple strategy is the sequential application of two rulésis described
by the concatenation operatos€q”. For instance[seq(l;—r1,lo—712)](t) denotes
[la—72]([l1—r1](¢)). This strategy operator extends naturally to multiple argnts:

[seq(Cry - G)l(t) = [Gal([Gnal(-- - [C1](£)))

Identity and failure are strategies easy to imagine:

[1d](?) {t}
0

[fail](¢)

The strategy computing all derivations issued from the igppibn of a rewrite systeni
is calleduni ver sal ; it takes as argument the set of rules under consideration:

[universal(R)|(t) = {t' |t ——grt'}
For instance, we have:

[universal(a—a)](a) = {a}

[universal(f(z)—f(f(2))](f(a)) = {f(a),f(f(a)), f(f(f(a))),- -}

4 http://tom.loria.fr

One can successively try to apply several strategies usewtoi ce operator (which
corresponds téirstin ELAN): its first argumentis applied if it does not fail, otherwtbe
second one is applied (and may fail too).

[choice(Cr,)](t) = [G](£) if [Ci](F) # 0
[choice(Cr,)I(t) = [G[(t) if [G]() =0

Clearlychoi ce is associative and therefore its syntax is extended to bkcapfe to a
list of strategies:

choice((1,(2,...,(,) = choice((y,choice((a,...,(n))

Other strategies allow controlling the application of sitever sub-terms of a term.
The strategyone must succeed on at least one of the sub-terms of a term. Onhbe o
hand,al | application must succeed on each sub-term, otherwisegth#tiis failure:

[one(()](f(tl,) tn)) = f(tla ceey [C](ti)7 HERE) tn)’ if [C](tz) 7& @
[all(C)](f(th AR tn)) f([d(tl)’ R [C](tn))7 if Vi € {17 R TL}, [C](tl) 7é 0

Using the above set of operators, we can define recursivewanies iterate the applica-
tion of a strategy to a term, for example:

try(¢) = choice((,1d)
repeat(() = try(seq((,repeat(()))

It is worth noticing that r y andr epeat never fail. Other high level strategies imple-
ment term traversal and normalization on terms and are kvadian in the rewrite system
literature:

topDown(() = seq((,all(topDown(()))
bottomUp(() = seq(all(bottomUp(()), ()
OnceTopDown(¢{) = choice((,one(OnceTopDown(()))
OnceBottomUp(¢) = choice(one(OnceBottomUp(()),()
innermost(() = repeat(onceBottomUp(())
outermost(() = repeat(onceTopDown(())

Example 1.Some examples of strategy application are:

[universal(a—b,a—c)](a) = {a,b,c}
[choice(a—b, a—c)](a) = {b}
[choice(a—c, a—b)](D) =0
[ery(—c)l(a) - {a)
[repeat(choice(b—c,a—b))](a) = {c}

3 Rewrite-Based Policies

Classically, access control concerns establishing whatlores are allowed to be exe-
cuted by the active entities of a system (e.g. users, presesses, etc), callegrincipals

or subjectsover its protected entities (files, databases, printéc3, ealledresourcesor
objects[15]. Recent developments are aimed to express varioudraints on the en-
vironment where policies run, in order to capture real wadduirements from policy
authors, such as time, location, and any other conditionliig attributes of principals
and objects.

In this context, it is important to embark expressive corafiahal power in the def-
inition of policies. As the notion of pattern and of rule isitgunatural in the context of
policies specifications, we propose here a quite generalitiefi of access control, based
on the full power of strategic rewriting.

In our model, authorization decisions are computed by afsetwite rules that trans-
form the input terms, representing access requests, irttmaration terms. In order to
take the raw computational power of term rewriting and toaerde the agility of the pol-
icy specification language, we use strategies to explicalytrol the rules application. We
define rewrite-based policies as follows, whéetands for queries (or requests) abd
for decisions.

Definition 1 (Security Policy). A access control security policyy, is a 5-tuple
(F,D,R,Q,¢) such that:

. Fis a signature;

. Dis a non-empty set of ground term3:C 7 (F);
. Ris a set of rewrite rules ovef (F, X);

. Qis asetofterms frorf (F): Q C 7 (F);

¢ is a rewrite strategy foiR.

arwWN R

Let us explain the main design choices made in this definition

— First we consider that the policy specification and its emwvinent are described as
terms built over the signatutg. The set of possible decisions to be taken by the policy
is denoted byD. Indeed,D is often a set of constants and the two main constants in
are usuallypermit anddeny. But since it is crucial to model also policies that do not
directly take decision, it can be useful to have a constahtupplicable that simply
expresses the fact that the current policy in the currentecdrtannot decide about
the access. Moreover, the result returned by a policy coelthbre elaborated than
just a constant and can be a ground term containing furtfemation. Whatever the
setD contains, we assume it to be non-empty. What is significambigreating the
failure to derive a permission as a denial. In contrast t¢, [@lwhich this later design
is followed, we can treat explicitly decisions suchdasy andnot applicable. This
is a crucial advantage for merging rules, since in purelyddzpased works, there is
no way to handle in the theory what happens when a policy wihictvesdeny for a
requesyy is merged with another which then derives-mit explicitly, for the same
q.

— The rewrite systeni describes the behavior of the policy as well as some negessar
computations which explain how its environment evolvese Tdie of the strategy is
to point derivations of? whose interest is to produce decisions.

— The requests are a subset of ground terms. They typicallyesgmuestions of the
form: is a certain entity authorized to access a resouranglve current configuration
of the policy environment.

— The last component is the strategy which allows one to finecsy the evaluation
order of the policy rules.

One of the main nice consequences of this approach, in adddiits expressivity, which
we illustrate on the examples below, is that it allows us ke tadvantage of all the results
obtained by the rewriting community since the last thirtyagse Amongst such results, we
investigate confluence and termination.

Example 2.A simple example, inspired from [5], illustrates the abowdiition by as-
signing authorizations based on a “user id” which is repnesg by a natural number: all
requests from user whose “id” is bigger than three are denied

— Let the policy signature beF = {0 : Nat,s : Nat—Nat,+ : Nat x
Nat—Nat, auth : Nat— A, permit : A,na: A, deny : A}

— The set of of constant symbols representing decisiofs s {permit, na, deny}

— ConsiderR as the following set of rules (the operatemgives the successor of a
number+ is the usual sum operatat, y are variables of soVat:):

z +5(y) — s(z+y)
z+0 — X
auth(0) — permit
auth(s(0) — permit

(s(0))
auth(s(s(0))) — na
auth(s(s(s(x)))) — deny

— the set) contains ground terms with top symhalth;

— A possible strategy for this policy, among others that gotea a normalization pro-
cess, IS = innermost(R).

This defines a security police as all conditions of Definitioare satisfied. An example
of request evaluation i$¢](auth(s(0) + s(s(s(0))))) = {deny}

Example 3.As already suggested in the introduction, we can model &ypfdr a clinical
system (this example is adapted from X&CML specification [36], and first presented
in the rewrite-based formalism in [12]).

— The policy signatureF, contains the following symbols:

auth : Request x Condition — A

req . Subject x Action x Object — Request
read, write — Action
permit, deny, na — A

patient, phy : Number — Subject
admin, per : Number — Subject
record : Number — Object
guard : Subject x Subject — Condition,
respPhy : Subject x Subject — Condition
urgency : — Condition

— The set of decisions iB = {permit, deny, na}.
— R is the following set of rules, where variables arg; : Number; r : Object; ¢ :

Condition:

auth(req(patient(z), read, record(x)), c) — permit
auth(req(per(zx), read, record(y)), guard(per(z), patient(y)))) — permit
auth(req(phy(z), read, record(y)), respPhy(phy(x), patient(y))) — permit
auth(req(phy(z), write, record(y)), respPhy(phy(x), patient(y))) — permit
auth(req(admin(z), read,r), c) — deny
auth(req(admin(z), write, r), c) — deny.

In the order of appearance these rules state that: a patiemead his own record, the
guardian of a person can read the record for that personetiponsible physician of
a patient can read or write data for her record, the last tMesrdeny any access of
administrators to records.

— The set of requests, Q, is the set of all terms of the fotth (7 (F), T (F)).

— One could adopt the strategy = choice(R, auth(q, c)—na), which introduces
a default rule for this policy, where : Request. The terms in@Q which are not
reduced by the rules frorR will be rewritten intona, which ensures completeness.
The example presented here is a security policy accordibgfmition 1.

The policy illustrated in this example has some desirabdperties; for example the
evaluation of a request is guaranteed to return a uniquédtresuwill be demonstrated

shortly.
A security policy is consistent if it computes at most onéhattzation decision:

Definition 2 (Consistency).A security policyp = (F, D, R, @, () is consistent if for
every query; € Q, ¢ applied toq returns at most one resultq € @, the cardinality of
[€](q) is less than or equal td.

This means that for every query evaluation, a determinigsult is computed by the
application of¢ on the terms of). In the case where the strategy leads to a derivation
that does not terminate an the cardinality of¢](¢) is 0, the policy is still considered as
consistent.

Example 4.Consider the following policy:

p1=(F1 = {g:Ax A—A,permit: A ,deny : A},
Dy = {permit,deny},
Ry = {g(z,y)—z, g(z,y)—y},
Q1 = g(T(F), T(F)),
(1 = universal(R))

Theng; is a security policy under the conditions expressed in Didimil, but it clearly
fails to be consistent, sindé](g(permit, deny)) = {permit, deny}.

Since we assume strategies to be closed by concatenatidtyermce under strategy can
be simply expressed:

Definition 3 (Confluence under strategy)A rewrite systeng is confluent under a strat-
egy¢ whenVu, vy, vy € T(F, X) such that{vi, v2} C [¢](u) then[(](v1) N [¢](ve) # 0.

If we consider thamniversal strategy, the above definition reduces to the usual one of
confluence. Therefore:

Proposition 1. The policy(F, D, R, Q,universal) is consistent as soon &3 is con-
fluenton7 (F, X).

A second fundamental property is termination:

Definition 4 (Termination). A security policyp = (F, D, R, Q, {) is terminating if for
everyq € @, all derivations of source in ¢ are finite.

Itis a fundamental property of term-rewriting systems #haystem that is terminating
confluent enjoys the property than any term evaluates toguamormal form.

Example 5.The policy from Example 3 is terminating and confluent, wiieh be easily
checked by analyzing the rules ia This guarantees that the evaluation of any request
will return a unique decision.

Example 6.Consider the policy:

po=(F2 = {a:Apermit: A deny: A},

Dy = {permit,deny},
Ry = {a—a,a—deny},
QQ = {CL},

¢ = universal(R))

9 IS a security policy. In contrast to the previous examplis, plolicy is consistent (since
the corresponding rewrite relation is confluent), but itdas terminating.

Some simple sufficient conditions allows us to apply terrtigmaresults from rewrite
theory:

Proposition 2. A policy(F, D, R, Q, ¢) terminates provided that all derivations §nare
finite or if R is strongly terminating (i.e. all derivations imiversal(R) are finite).

To ensure strong termination, classical quite powerfuhiaation tools can be used like
recursive path orderings [13] or dependency pairs [1]. Teaton allows one to localize
confluence check following Newmann’s lemma and this can beéenogerational via the
completion algorithm [26]. Therefore we inherit sufficiexndition for policies using the
uni ver sal strategy. Since in general we use the finer notion of terrignatnd conflu-
ence under strategies, this opens new research questiestatdish sufficient conditions
also for rich strategies.

Another expected property of a policy strategy is that it lideato evaluate every
incoming request into an authorization term, following stsategy. This is expressed
through the completeness property:

Definition 5 (Completeness)A security policyp = (F, D, R, Q, () is complete if/q €
Q. [¢](g) € D and[¢](q) # 0.

10

This definition is close to the definition of sufficient comigleess of a rewrite system,
which states that every ground term evaluates to a term sixely built with construc-
tors and possibly variables [11, 24]. Several algorithmghaeen developed to check
sufficient completeness or to complete a set of patternsdorerthis property [8].

Proposition 3. A policy (¥, D, R, 7 (F),universal(R)) is complete provided thab
is a set of constructors fak and thatR is terminating and sufficiently complete.

The strong sufficient conditions of this proposition may&lexed to a weakly terminating
systemR and an innermost strategy, as shown in [18].

4 Policy Composition

Let us now focus on the problem gbmbiningpolicies in a modular way, relying on
the long history of research in combining rewrite systentsisTombination consists in
taking the union of signatures and rules of the two policiesiponents, choosing the
sets of requests and decisions, and building a strategyhéocombination of the two

strategic rewriting in each component of the compositioawver, combining access-
control policies naively results in inconsistent or nomiarating policies and we show
how syntactic conditions and strategies may help to keegetiseitable properties for
the composition of two policies. Based on the exampl¥AEML policy combiners, we

explore the idea of a rich combination language for polibased on rewriting strategies.

4.1 Definition and properties of policy composition

Definition 6 (Policy Composition). The composition of the two policiep; =
(Fi, Dy, R, Qi, () (1 = 1,2) is the policyp = (F, D, R, Q, ¢), where:

. F=FUFy;
.D1UDy CDCT(FUF);
. R=R1URy;

L Q1UQ2 CQCT(F1UF);
¢ is a rewrite strategy foiR.

arwNpR

The main design choices behind this definition are the fahgamwhen defining the com-
position of two policies, we must ensure that the generatdidypsatisfies the conditions
declared in Definition 1; the set of requests for the combipelity contains terms of
the form determined by its sub-policies, but may also corgiay additional well-formed
closed term that can be constructed from the combined pslayature. For example,
suppose tha#; = {0, f}, Q1 = f(T(F1)) andF, = {g}, Q2 = g(7(F2)), then a
valid request would bg(f(0)); the combination strategy is in charge of defining how
the composed policy rewrites request terms. It may or notuik in a modular way by
composing;; and(,. It often can be expressed as a functional composition opoorant
strategies.

Example 7.We take the policy from Example 3, to show how we can extenitigslwith
additional rules. Consider the access control fléelow:

11

auth(req(phy(z), write, r), urgency)—permit

A strategy(’ = choice(R/, R, auth(q, c)—na) extends the previous policy by enforcing
the rule for urgency cases first, and at the same time doesteotdre with the decisions
generated by the previous set of rules. This is a direct cpresgce of the semantics of the
choi ce strategy.

The next example illustrates that much care must be takeonposing two policies.

Example 8.Consider the policiep;, from Example 4, and the poligys below.

p3 = (F3 = {permit: A,deny : A, g: Ax A—A, f: Ax Ax A—A}
D3 = {permit, deny}
Rs3 = {f(permit, deny, x)— f(z, z,),
f(deny, permit, x)— f(z,z, x),
f(z,z,2)—a},
Qs = f(T(F2), T(F2), T (F2)),
(s = universal(Ry))

The compositiorp of p; andp, can be defined in a straightforward waygas-:
(F=F1UF3,D=Dy=D3,R=RiUR3,Q =T (F, UF3),(=universal(R))

These two policies as clearly terminating and share onlytejapermit anddeny . It
is therefore quite intuitive to believe that their compisitwill be also terminating. But
this is false since the following request has an infinite\dgion:

f
f
f
f

Many modularity results for confluence and termination ofrite systems have been
produced and the interested reader can refer for instan@’1dor a survey. Confluence
and termination are in general not modular properties farrite systems. In the con-
text of rewrite system on disjoint signatures, confluencenélular, while termination

is not [40]. However, adding syntactic conditions on revritiles or existence of a sim-
plification ordering, allows getting positive results. {Rab on the results of the rewrite
system community [41, 38, 33, 19, 27], we can state the fatigwiseful results about
composition of security policies.

g(permit, deny), g(permit.deny), g(permit, deny))—
permit, g(permit, deny), g(permit, deny))—

permit, deny, g(permit, deny))—

g(permit, deny), g(permit.deny), g(permit, deny)) . ..

NN S

Proposition 4. Let us consider two policigs; = (F;, D;, R;, Q;,universal) (1 = 1,2)
such thatF; and F; are disjoint and their compositiop = (F; U F»2, D1 U Dy, Ry U
Ro, T (F1UF,),universal). If p; andp, are consistent, thep is consistent. If; and
po are terminating, then so ig, provided:

1. neitherR; nor R, contain collapsing rules, or
2. neitherR; nor Rs contain duplicating rules, or
3. Ry or R, contains neither collapsing rules nor duplicating rules, o

12

4. termination ofR; and of R, are proved by simplification ordering.

Relaxing the disjointness assumption of signatures in teeigus results led to consider
constructor-sharing systems [28], composable systenjofderarchical combinations
of rewrite systems generalizing the previous ones by afigvai certain sharing of defined
symbols [14].

The interest of rewriting strategies appears again in tb@mnposition. For instance,
in contrast to termination, innermost termination has a mwdular behavior, for dis-
joint disjoint unions, constructor-sharing systems, cosgble systems and for cer-
tain hierarchical combinations. We can take advantage df sesults about innermost
termination[20] to state the following result:

Proposition 5. Let us consider two policigs; = (F;, D;, R;, Q;, innermost) (: = 1, 2)
such that#; and F; are disjoint or share only constructors, agdbe their composition
(F1 UFy, D1 U Dy, Ry U Ry, T(F, UFsy),innermost). Thenyp is terminating as soon
asgp; andp- are.

Example 9.Let us consider again the policigs, from Example 4 angs, from Exam-
ple 8, but now with different strategi€$ = innermost(R;) and(; = innermost(R3).
Their combinationp = (F1 U F3, D, Ry U R3,7 (F1 U F3), innermost(R)) is termi-
nating according to Proposition 5.

4.2 Semantics o)KACML Policy Combiners

In this section, we give an executable semantics of the ceitipo operators of
XACML [36] using the formalism proposed above. Using rewriting atrategies it is
possible to give such a semantics to CE¥#®EML [16], by translating a its rule sets into
rewrite rules. We do not detail this process in this papertdulee lack of space. Basically,
these operators were designed to disambiguate differengidas that a policy (or a set
of policies) may generate. The combiners described irKt(h€ ML specification are

— permit-overrideswhenevemwoneof the policies answers to a request witlgranting
decision, the final authorization for the composed policy bé granted. The policy

will generate adenial only in the case at least one of the sub-policies denies the

request, and all others retunot-applicable

— deny-overridesthis combiner has a similar semanticspermit-overrideswith the
difference that denials takes precedence.

— first-applicable the decision produced by the combined policy correspoadte
authorization determined by the first sub-policy that dag<ail, and whose decision
is different fromnot-applicable

Consider the signature and query terms of Example 3, ancetief sules below:

p1 : auth(req(p,write, record(z)), respPhy(p, patient(x))) — permit
pa @ auth(req(phy(p), write,r), c) — deny
p3 : auth(req(phy(p), write,r), urgency) — permit
pa : auth(q,c) — na

5 Additionally, the specification brings the “only-one-aispble” and ordered versions of these
policy combiners.

13

These rules are clearly overlapping: since the varialdaptures different conditions
for access to the medical record. A naive way of translatigdonflict resolution oper-
ators of XACML into rewriting strategies, is to take into account the ordethe rules
presented above, and use the stratelgyi ce:

(po = choice(p1,ps, P2, pa)
Cdo = choice(pa, p1,p3,pa)
Cfa = choice(p1, p2, 3, pa)

However, this encoding cKACML operators would work only for this example, and
would not have the expected results for other policies likdristance in Example 8. This
is due to the fact that the right-hand sides of the rules ariabi@s, and we cannot decide
which priority order for the rules on a strategy will overidvith permit, or deny decision.

A general encoding of these conflict resolution operatocgliire more advanced
strategies. A raw encoding of thpeermit-overridesoperator as a rewriting-based policy
simply takes the strategy components as arguments, asdibfmv (eny-overridesan
be encoded in a similar way):

Gl(q) = {permit} v [](q) = {permit})
Gl(g) = {deny} Vv [(2](q) = {deny})

([Gl(@) = {na} V[G](g) = {na})
{na} if ([G](q) = {na} A[G](q) = {na})

A more natural encoding using strategic rewriting is simply

{permit} if (

[
{deny} —if (|

[Cpo (€1, G2)](q) =

>

[Cpo(C1,(2)](q) = choice(seq((1(q), permit—permit),
seq((2(q), permit—permit),
seq(C1(q), deny—deny),
seq((2(q), deny—deny),

€1(q), ¢2(q))

It works as follows: theehoi ce strategy ensures that only its first succeeding argument
will be returned. Its first argumenteq((1(q), permit—permit) evaluates in sequence
¢1(q). In case it evaluates fermit the rulepermit—permit applies and trivially returns
permit, otherwise the application germit—permit fails and therefore the full strategy
fails.

The strategyfirst-applicablecan be encoded in a similar fashion: We first check if
applying the strategies result permit or deny, and we choose the first strategy that
returns one of these results. Thet-applicabledecision will always cause the strategy
seq to fail, unless it is the only decision generated by the salicies.

[Cra(C1,¢2)](q) = choice(seq((i(q), permit—permit),
seq(Ci(q), deny—deny),
seq(C2(q), permit—permit),
seq((2(q), deny—deny),

€1(q), ¢2(q))

In the examples abov&ACML operators for combining policies can be encoded in this
unambiguous manner.

14

5 Related and further works

Several approaches define logic languages for access tfitrd®?1, 22, 23], each fo-
cusing on different aspects of access control, e.g. rolesbbigations, and providing
different levels of expressivity. Some of them propose gotomposition operators to
disambiguate conflicting policy decisions, like XACML. In these works, access con-
trol is basically defined as inferring the truth value of atair predicate of the form
access(subject, action, object)inthe underlying logic. We claim that rewriting pro-
vides a suitable theoretical and practical framework f@ressing flexible access control
rules. The strength of the approach relies on the expréggvistrategic rewriting, on
the logical background of rewriting logic [31], on the contgtional efficiency of rewrite
rules, and on the existence of several theoretical resntig@ols, which are readily ap-
plicable in a consistent way to access control policies.

With respect to policy composition, a number of works havéoaerelationship with
the formalism introduced here. Bonatti et al. [7] addressabimposition problem through
an algebra of composition operators that is able, for exampldefine policy templates,
among other operations. The operator definitions can beted#&p several languages and
situations since their definition is orthogonal to the uhdeg authorization language.
Basically, in [7], a policy is a set of ground decisions, othewization terms, and the
composition operators are defined over the sets of decismrisnot on the rules used
to derive them, which is the originality of our work. Other ks follow the same direc-
tion, with slight differences on the modeling of policieS]4Another existing alternative
for composing access control policies is implemented byRblgmer system [6], which
proposes rather classical operators on policies (cornpmcprecedence, etc), and that
allows reusing the policy objects, modifying them by exeauytidditional actions, in or-
der to specialize or enforce the policy. Finally, in [30],iateresting approach for policy
composition is taken, based on the non-monotonic propeofielefeasible logic (where
defeasible rules are used to draw conclusions that candrananlidated). Authors show
how this can be used to encode meta-policies describingahtet of the security re-
guirements and how the policy is to be combined in the casewiposition. This way,
a single operator is proposed, which takes into account@epence relation among the
policies. We advocate that this kind of composition can &ls@chieved using rewriting
strategies, by defining priorities on the rules, in the sarag as in defeasible logic.

In comparison, our main contributions in this paper are,fisprovide a formal def-
inition for access control policies using term rewritin@tfallows us to describe flexible
policies and that supports reasoning about propertieclikesistency, completeness and
termination; and second to give the formal semantics for pasition operators in an
uniform manner using rewrite strategies.

A first approach for the implementation of rewrite-basedqies is to design them in
a rewrite environment such asAUDE or ELAN, in order to get a prototype and study
their behavior and properties. The next step is to embedipslin a target language, such
as AVA, using the formal island approach [4]. Them system supports the compilation
process of our access control policies intwAlclasses, that in turn can be instantiated in
any application to evaluate access requests to sensiseaimees, given that a mapping
(called “anchoring” in the Formal Island metaphor), linfithese objects to the symbols
of signature on the policy level is provided.

15

References

(1]
(2]
(3]
(4]
(5]

(6]
(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

T. Arts and J. Giesl. Termination of term rewriting usidgpendency pairs.Theoretical
Computer Scienc®36:133-178, 2000.

F. Baader and T. NipkowTerm Rewriting and all ThatCambridge University Press, 1998.
E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and Alll&e Tom Manual. LORIA,
Nancy (France), version 2.4 edition, October 2006.

E. Balland, C. Kirchner, and P.-E. Moreau. Formal islandn M. Johnson and V. Vene,
editors,AMAST volume 4019 ot ecture Notes in Computer Scienpages 51-65. Springer,
2006.

S. Barker and M. Fernandez. Term rewriting for accesstimd. In E. Damiani and P. Liu,
editors,DBSegvolume 4127 of_ecture Notes in Computer Scienpages 179-193. Springer,
2006.

L. Bauer, J. Ligatti, and D. Walker. Composing securitfipies with polymer. In V. Sarkar
and M. W. Hall, editorsPLDI, pages 305-314. ACM, 2005.

P. A. Bonatti, S. D. C. di Vimercati, and P. Samarati. Agedira for composing access control
policies. ACM Trans. Inf. Syst. Secug(1):1-35, 2002.

A. Bouhoula. Spike: a system for sufficient completersass parameterized inductive proofs.
In A. Bundy, editor,CADE, volume 814 ofLecture Notes in Computer Scienpages 836—
840. Springer, 1994.

H. Cirstea and C. Kirchner. The rewriting calculus — PaandIl. Logic Journal of the
Interest Group in Pure and Applied Logic®427-498, May 2001.

H. Cirstea, C. Kirchner, L. Liquori, and B. Wack. Reveritrategies in the rewriting calculus.
In B. Gramlich and S. Lucas, editorgJectronic Notes in Theoretical Computer Science
volume 86. Elsevier, 2003.

H. Comon. Sufficient completness, term rewriting syséeand "anti-unification”. In J. H.
Siekmann, editoiCADE, volume 230 ol ecture Notes in Computer Scienpages 128-140.
Springer, 1986.

A. S. de Oliveira. Rewriting-based access controlgel. In M. Fernandez and C. Kirchner,
editors,Proceedings of the 1st International Workshop on SecurityRewriting Techniques
- SecRet’'06June 2006.

N. Dershowitz. Termination of rewritinglournal of Symbolic ComputatipB(1 & 2):69-116,
1987.

N. Dershowitz. Hierarchical termination. IRroceedings 4th International Workshop on
Conditional Term Rewriting Systems, Jerusalem (Israg)ume 968 ofLecture Notes in
Computer Sciencgages 89-105. Springer-Verlag, 1994.

S. D. C. di Vimercati, P. Samarati, and S. Jajodia. Redicmodels, and languages for access
control. In S. Bhalla, editoDNIS volume 3433 of ecture Notes in Computer Scienpages
225-237. Springer, 2005.

D. J. Dougherty. Core XACML and term-rewriting systeninpublised, March 2007.

D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Spgog and reasoning about dynamic
access-control policies. In U. Furbach and N. ShankarpegittCAR volume 4130 ot.ec-
ture Notes in Computer Scienqeages 632—646. Springer, 2006.

I. Gnaedig and H. Kirchner. Computing constructor fermith non terminating rewrite pro-
grams. In A. Bossi and M. J. Maher, editoPPDP, pages 121-132. ACM, 2006.

B. Gramlich. Generalized sufficient conditions for nutatt termination of rewriting. In
H. Kirchner and G. Levi, editorsProceedings of the 3rd Algebraic and Logic Program-
ming Conferencevolume 632 ol ecture Notes in Computer Scienpages 53-68. Springer-
Verlag, September 1992.

16

[20] B. Gramlich. On proving termination by innermost temaiion. In H. Ganzinger, editor,
Proceedings 7th Conference on Rewriting Techniques antio&gipns, New Brunswick (New
Jersey, USA)volume 1103 ol ecture Notes in Computer Sciengages 93-107. Springer-
Verlag, July 1996.

[21] J. Y. Halpern and V. Weissman. Using first-order logiaéason about policies. IBSFW
pages 187—201. IEEE Computer Society, 2003.

[22] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subratiama Flexible support for multiple
access control policieACM Trans. Database Sys6(2):214-260, 2001.

[23] A.Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppén Deswarte, A. Miege, C. Saurel,
and G. Trouessin. Organization based access confdicies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE 4th Intgsnal Workshop onpages
120-131, 2003.

[24] D. Kapur, P. Narendran, D. J. Rosenkrantz, and H. Zh&ugficient-completeness, ground-
reducibility and their complexityActa Inf, 28(4):311-350, 1991.

[25] C. Kirchner, H. Kirchner, and M. Vittek. Designing clging computational systems. In P. V.
Hentenryck and S. Saraswat, edito®sinciples and Practice of Constraint Programming
chapter 8, pages 133-160. MIT press, 1995.

[26] D.E.Knuth and P. B. Bendix. Simple word problems in @ngal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebpmages 263—-297. Pergamon Press, Oxford, 1970.

[27] M. Kurihara and A. Ohuchi. Modularity of simple termiian of term rewriting systems.
Journal of IPS Japan31(5):633-642, 1990.

[28] M. Kurihara and A. Ohuchi. Modularity of simple termiian of term rewriting systems with
shared constructor§-heor. Comput. Sgil03(2):273—-282, 1992.

[29] B. Lampson. Protection. ACM Operating Systems Revigal, 8:18-24, 1974.

[30] A.J. Lee, J. P. Boyer, L. Olson, and C. A. Gunter. Defelassecurity policy composition
for web services. In M. Winslett, A. D. Gordon, and D. Sanditas, FMSE pages 45-54.
ACM, 2006.

[31] N. Marti-Oliet and J. Meseguer. Rewriting logic: reaadp and bibliographyTheor. Comput.
Sci, 285(2):121-154, 2002.

[32] N. Marti-Oliet, J. Meseguer, and A. Verdejo. Towardstieategy language for maudElectr.
Notes Theor. Comput. Sc117:417-441, 2005.

[33] A. Middeldorp. A sufficient condition for the terminat of the direct sum of term rewriting
systems. IProceedings 4th IEEE Symposium on Logic in Computer Sci@aoific Grove
pages 396-401, 1989.

[34] A. Middeldorp and Y. Toyama. Completeness of combiadi of constructor systems. In
Proceedings 4th Conference on Rewriting Techniques andcagipns, Como (Italy)1991.
also Report CS-R9058, CWI, 1990.

[35] P.-E. Moreau, C. Ringeissen, and M. Vittek. A patterrtchang compiler for multiple target
languages. In G. Hedin, editof;C, volume 2622 ofLecture Notes in Computer Science
pages 61-76. Springer, 2003.

[36] T. Moses. eXtensible Access Control Markup LanguagAGXIL) version 2.0. Technical
report, OASIS, 2005.

[37] E. OhlebuschAdvanced Topics in Term Rewritin§pringer, 2002.

[38] M. Rusinowitch. On termination of the direct sum of terewriting systems.Information
Processing Letter26(2):65—-70, 1987.

[39] Terese.Term Rewriting System&€ambridge University Press, 2002.

[40] Y. Toyama. Counterexamples to termination for the direum of term rewriting systems.
Technical report, NTT Electrical Communications Laboree Japan, 1987.

[41] Y. Toyama. On the church-rosser property for the diseoh of term rewritig systenslournal
of the ACM 34(1):128-143, January 1987.

17

[42] E. Visser. Stratego: A language for program transfdiamabased on rewriting strategies.
System description of Stratego 0.5. In A. Middeldorp, ediRewriting Techniques and Ap-
plications (RTA'01) volume 2051 ofLecture Notes in Computer Sciengemges 357-361.
Springer-Verlag, May 2001.

[43] D. Wijesekera and S. Jajodia. A propositional policgedira for access controhCM Trans.
Inf. Syst. Secur6(2):286—325, 2003.

18

