Weaving Rewrite-Based Access Control Policies

Anderson Santana de Eric Ke Wang Claude Kirchner
O|iveira* The University of Hong Kong, INRIA & LORIA
INRIA & LORIA INRIA & LORIA Nancy, France
Nancy, France Hong Kong Claude.Kirchner@inria.fr

santana@loria.fr

wangke@hku.hk

Hélene Kirchner
INRIA & LORIA
Nancy, France

Helene.Kirchner@inria.fr

ABSTRACT

Access control is a central issue among the overall security
goals of information systems. Despite the existence of a vast
literature on the subject, it is still very hard to assure the
compliance of a large system to a given dynamic access con-
trol policy. Based on our previous work on formal islands,
we provide in this paper a systematic methodology to weave
dynamic, formally specified policies on existing applications
using aspect-oriented programming.

To that end, access control policies are formalized using
term rewriting systems, allowing us to have an agile, mod-
ular, and precise way to specify and to ensure their formal
properties. These high-level descriptions are then weaved
into the existing code, such that the resulting program im-
plements a safe reference monitor for the specified policy.

For developers, this provides a systematic process to en-
force dynamic policies in a modular and flexible way. The
level of reuse is improved because policies are independently
specified and checked, to be later weaved into various dif-
ferent applications. We implemented the approach on test
cases with quite encouraging results.

Categories and Subject Descriptors

D.1 [PROGRAMMING TECHNIQUES]: Automatic
Programming— Program transformation; D.2 [SOFTWARE
ENGINEERING]: Software/Program Verification—For-
mal methods; D.2 [SOFTWARE ENGINEERING]: Gen-
eral—Protection mechanisms

General Terms

Security, Theory, Languages, Verification

*Supported by CAPES (BEX 2120-03/8)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FMSE’07, November 2, 2007, Fairfax, Virginia, USA.

Copyright 2007 ACM 978-1-59593-887-9/07/0011 ...$5.00.

Keywords

Access Control, Execution Monitoring, Term Rewriting, Strate-

gic Rewriting, Aspect-Oriented Programming.

1. INTRODUCTION

Access control is one of the pillars of secure applications
and environments. Its main objective is to unambiguously
discern which authorized operations principals can perform
on the resources of a system. This can be fairly well achieved
when the security conditions do not change over time (see
for example the first models of the access control matrix [21]
and role-based access control [25]), but it becomes much
more difficult when policies depend on their running envi-
ronment. Some models for access control put forward the
need for dynamic access control policies [17, 16, 9], but sev-
eral problems remain to be solved.

One of them is to model access control policies in such a
way that their properties can be formally stated and proved.
For instance a policy should be non-ambiguous, it should
cover all relevant cases, and when two policies are combined,
they should be non-contradictory. In [11, 26] we proposed a
formal model of policies, based on term rewriting techniques,
which provides several advantages: first, the language allows
us to handle a wide range of security policies, because we
can easily describe the form of the access requests, and the
set of possible authorization decisions, without restricting
them to simply permit or deny. Moreover, policy applica-
tion can be defined in a precise and expressive way, thanks
to strategies that control rule application. This approach
provides a clear semantics to access control policies and a
framework to formulate the properties to be checked, thanks
to properties of confluence, termination or completeness of
rewrite systems. We also gave in this framework a seman-
tics for policy composition relying on rewriting strategies,
and took advantage of the theoretical and practical results
available on modular properties of rewrite systems.

Another important problem is to enforce dynamic policies
efficiently and effectively. Currently, the most widespread
form of access control mechanism is the reference monitor,
that watches the execution of a target program, and inter-
feres with it when it is about to violate the security policy.
Such monitors need to be easily analyzed and tested, they
need to be complete, and they should not be bypassed.

In this paper, we contribute to solving the second problem

of dynamic policy enforcement while taking advantage of our
rewrite-based approach to solving the first one. We design
a generic scheme to weave rewrite-based security policies
into target programs and construct reference monitors to
enforce those polices. In addition, we design a methodology
to relate the policy description to the program code, which
makes explicit the correspondence between the policy envi-
ronment and the data manipulated by a target program. At
the same time, this allows for a complete separation between
policies and the target programs, which provides reusable
policy modules.

Our solution is implemented through the connection of
two specific tools, Tom and Aspect). Tom is an extension
of Java with pattern-matching and rewrite strategies, which
provides to the users the capability to describe rewrite sys-
tems embedded in Java programs. The second tool is a
current implementation of Aspect-Oriented Programming
(AOP) [19] for Java. Their combination allows us to in-
line access control rules as a program monitor, and thus to
provide an efficient implementation of a given policy.

The structure of the paper is as follows. In Section 2,
we address the design of access-control policies based on
a term rewriting approach, leading to a formal description
of a controller on which policy properties can be checked.
Section 3 shows how aspects can be used to enforce rewrite-
based policies on existing code and discuss their impact on
the security of the generated program. Section 4 surveys
related works, before we reach the conclusion in Section 5.

2. REWRITE-BASED POLICIES

2.1 Term rewriting techniques for policies

An access control policy determines which actions the
principals of a system are (or not) allowed to perform over
its resources. Several models (for a survey, see [9]) have
been proposed to encode access control policies since Lamp-
son [21]. He arranged these three elements (subjects, ob-
jects, and privileges) in an access control matrix, where each
cell contains the exact privileges of the user in its row, over
the resource in its column. These models can be more or
less adapted for addressing the need for dynamic policies,
which depend on their executing environments, in order to
produce decisions about access requests.

Dynamic policies consider the values of attributes of prin-
cipals and resources, in addition to other conditions, such as
time, location, etc, as part of the policy environment. The
access control decisions generated by a policy may change
according to the current state of a given application.

To illustrate our approach, whose full formal settings can
be found in [11], we take as running example a conference
management system described in [10]. We changed its orig-
inal access control rules to be the following set:

1. During the submission phase, an author may submit a
paper;

2. During the review phase, a reviewer r may submit a
review for paper p if r is assigned to review p;

3. During the meeting phase, a reviewer r can read the
scores for paper p if » has submitted a review for p;

4. Reviewers cannot submit reviews or read scores if they
are conflicted with a paper;

5. Authors may never read scores.

Typically, the access rule “authors may submit papers dur-
ing the submission phase” allows access only during a certain
period of the execution of the system, while the same access
request would be denied as soon as the paper submission
deadline has expired.

It is quite natural to formalize such security policies using
rule-based formalisms issued either from logic programming
as surveyed in [7], or term rewrite systems like [5, 11, 26,
23]. Such rule-based formalisms are often close to natural
language expressions and the formal background underlying
these rule-based languages allows us to perform reasoning
about the policies themselves.

For instance, the first natural language statement of the
conference policy can be encoded as a rule as follows:

aut(q(author(zx), submit Paper, paper(z, z)),
submission,cnd) — permit

The left-hand side of the rule represents an access request,
which contains information about subject, action, and ob-
ject, plus other conditions, like the current phase of the con-
ference. In this case, this rule will match any requests where
the subject is an author, the action he wants to perform is
to submit his paper (the object concerned by the rule) and
the current phase is submission, the variable cnd will match
any extra condition which is not taken into account by this
rule. Its right-hand side consists of an access decision, which
ranges over the values permit, deny, and not Applicable.

This simple rule is evaluated by transforming the left-
hand side expression into the expression on its right-hand
side, which is the exact semantics provided by term rewrite
systems. This formalism can be easily used for expressing
policies, as shown in some recent works [26, 5].

In the rewrite rule above, x and y are variables, from a set
of variables X, while the other symbols are functions with
some arity, used to build terms. In this paper we consider
that terms are typed in the standard many-sorted discipline.
If, given an incoming request (input term), we can find an
assignment for the variables z and y such that we bind a
paper to its author, and all other terms also match, then
the request is rewritten into a permission. The “vocabulary”
used to build well-sorted terms is called a signature, rep-
resented by the symbol F, and the set of all terms over a
signature F using the variables in X is denoted T (F,X).
When terms do not contain variables, we call them ground,
and the set of all ground terms is denoted by 7 (F).

A rewrite system consists of a set of rules that are applied
successively over the input terms until no rule can be applied
anymore. In this case we say that the term is in normal
form. This derivation process can be influenced by the use
of rewrite strategies, which control rule application in several
ways, in particular by associating priorities to rules.

EXAMPLE 1. The Conference System access control pol-
icy is defined by:

e A signature F based on the sorts Id, Subject, Object,
Action, Phase, Condition, Request, and Decision,
where the sorts of the arguments appear inside paren-

theses:
paper(Id, Title) Object
author(Id), reviewer(I1d) Subject
submit Paper, readScores Action
submission, review, meeting Phase
con flict(Subject, Object) Condition
q(Subject, Action, Object) Request
aut(Request, Phase, Condition) Decision
permit, deny, not Applicable Decision

o A set of requests answered by the policy which are any
terms whose symbol in the top position is aut;

e The constants permit, deny, and notApplicable of sort
Decision, which represent the possible access decisions
for this policy;

e A set of rewrite rules over T(F,X) presented in Fig-
ure 1;

e A normalizing strategy, ¢, which computes the normal
forms of input terms by the successive application of
the rules in R, in this example following the rule order
given in Figure 1 (i.e. we repeatedly try to apply r1
before o ... before ro until none is applicable).

The main advantage of using rewrite systems to specify ac-
cess control policies is that one can prove important proper-
ties about the underlying system which have a direct impact
on the trust one can have in a particular policy. For exam-
ple, the rewrite system presented in Figure 1 is terminating,
which guarantees that every access request is evaluated in fi-
nite time. The system is confluent under the given strategy,
which assures that there is only one decision for each access
request. Other properties are discussed in some previous
works [11, 26, 5] which apply term rewriting techniques to
access control.

It is worth noticing that the rule r9 in Figure 1 assures
that every request not matched by the left-hand side expres-
sions of the previous rules will be associated to the symbol
not Applicable, what is particularly suitable for policy com-
position.

We introduce a general definition of an access control pol-
icy in the following. It abstracts the set of possible requests
and decisions, and thus supports a wide range of policies:

DEFINITION 1
trol security policy, p, is a 5-tuple (F, D, R, Q, () where:

1. F is a signature;
To define the vocabulary of the data-structure.

2. D is a non-empty set of closed terms: D C T (F);
To formalize the set of results allowed by the policy: in our
ezample {permit, deny, not Applicable}.

3. R is a set of rewrite rules over T (F,X);
To provide the semantics of the policy.

4. Q 1is a set of terms from T (F): Q C T (F);

To describe the form of the acceptable requests.

5. € is a rewrite strategy for R;
To guide the rule application.

(SECURITY PoLIcy [11]). An access con-

We argue that refinements of the security policy have to
precede any deployment. Users must verify that a given
policy satisfies the suitable properties (completeness, con-
sistency and termination) before proceeding to its enforce-
ment in a system. For termination, for instance, there exist
a number of tools available, such as AProVE [14], which was
actually used to verify our running example.

In the next subsection, we present how rewrite systems
can be described in Tom.

2.2 Tom: implementing rewrite systems in Java

Tom [2]' is a language extension which adds strategic
rewriting capabilities to Java. A Tom program is the com-
bination of a host program in Java with code fragments de-
limited by some special purpose constructs to define rewrite
systems.

The constructs of the Tom language useful for our pur-
poses are the following ones:

e Ymatch corresponds to an extension of switch/case con-
struct in functional programming languages, which al-
lows discriminating among a list of patterns.

e ¢ (backquote construct) is used to build terms from
Java values.

e Ystrategy groups rules to form the basic building blocks
for constructing more complex strategies, e.g. inner-
most, outermost, top down, etc..

In order to transform terms, it is necessary to state a
relation between a Tom signature (F in the corresponding
rewrite system) and Java objects. This relation is a map-
ping, either defined by hand or through an auxiliary tool,
called Gom [24], which comes together with the Tom envi-
ronment. Gom automatically generates the data structure
implementation for a given term signature.

The program excerpt in Figure 2 illustrates some of the
Tom constructs on a simple example. We encode part of the
conference system policy for illustration purposes (the actual
full version of the policy is found in Appendix A). The ex-
ample is divided in two parts. The first part determines the
signature for the terms. It is described in the code enclosed
between the keywords %gom and curly braces (from lines 2 to
14). Since variables are not declared in Tom, we use empty
parentheses after constant symbols to distinguish them from
variables. The reader may see the symbols of a given sort,
for example, the constant review() is of sort Phase. The
function aut returns a value of sort Decision. In order to
build a request, one can use the following expression ¢1 =
‘q(author (1) ,submitPaper () ,paper(1,"title")), which con-
tains only ground terms, and corresponds to the demand of
an author whose id is 1, to perform the action submitPaper ().

Rewrite rules are defined within the %strategy block. For
the policy in Figure 2, we gave the rule set a name, Rules,
which is instantiated in line 24 under an innermost strategy:
subterms in more internal positions are reduced first. Rule
application is illustrated in line 26, over the input term q1,
whose result is of type Decision.

Figure 2 illustrates how Tom programs are embedded in
Java. Following the paradigm of formal islands [3], such pro-
grams consist of a list of Tom constructs interleaved with

"http://tom.loria.fr

(]

o O

10
12
14
16
18
20
22
24
26
28
30

r1: aut(q(author(zx), submit Paper, paper(z, z)), submission, cnd) — permit

ro : aut(q(author(z), submit Paper, paper(z, z)), phase, cnd) — deny

r3: aut(g(author(zx), readScores, paper(x,y)), phase, cnd) — deny

ra @ aut(q(reviewer(z), action, p), phase, con flict(x,p)) — deny

rs . aut(q(reviewer(z), submitReview, paper(y, z)), review, assigned(x, paper(y, z))) — permit

re : aut(q(reviewer(z), submit Review, paper(y, z)), phase, assigned(x, paper(y, z))) — deny

r7 . aut(q(reviewer(z), readScores, paper(y, z)), meeting, assigned(z, paper(y,z))) — permit

rs . aut(q(reviewer(z), action, paper(z, z)), phase, cnd) — aut(q(reviewer(z), action,

paper(z, z)), phase, con flict(x, paper(z, z)))
rg: aut(a,b,c)

l

not Applicable

Figure 1: Access rules for our running example. Rule rg is recursive, rg is the default case.

public class Policy {
%gom{

Request = q(s:Subject,
Phase = submission ()
| meeting ()
| review ()
Action = submitPaper () |
Decision = permit ()
| deny ()
| aut(r:

a:Action, o0:0bj)

Request, p:Phase)
}

%:s‘t';"a,tegy Rules () {

aut (q(author (x), submitPaper (), paper(x,y)),
‘permit (); 3}

submission (), cnd) -> {return

i)ﬁi)lic static boolean apply(...){
Strategy policy =‘Innermost (Rules());
Decision d = policy.visit(ql);

}

Figure 2: Structure of a policy in Tom

Java code. During the compilation process, all Tom con-
structs are translated into Java instructions, in a process
that preserves the semantics of the Tom code, as proved
in [20].

3. ENFORCING REWRITE-BASED ACCESS

CONTROL

We are now ready to address the core problems of rewrite-
based policy enforcement through construction of reference
monitors.

A reference monitor is a mechanism for enforcing a secu-
rity policy. It watches over the execution of an untrusted
program and is able to interrupt its execution in the immi-
nence of a policy violation. Examples of program monitors
include firewalls, operating system kernels, and other com-
ponents that intercept calls made by target applications.
These monitors can be seen as an independent unit in the
system architecture, but very often they are inlined in the
application’s code, at compile or load time. In this case, the

readScores (). ..

untrusted code is transformed in such a way that the pro-
gram’s actions are forced to go through the monitor, which
decides whether to abort its execution or not, thus avoiding
the system from entering an insecure state.

The languages adopted in previous works to describe the
policy enforced by a given reference monitor have a rather
low level of abstraction, which is comparable to the language
used to describe the target program itself [6, 12]. For ex-
ample, it is possible to express policies that disallow system
calls for opening files in the host computer, or to block ac-
cess to network services after reading data, but it is hard to
encode the dynamic behavior of a high-level policy, which
takes an authorization decision based on the current condi-
tions in its running environment.

Thus, the model of the policy environment becomes a cru-
cial element for enforcing dynamic policies. In this work, it
consists of a collection of values of interest to the policy
(determined by the policy signature). Therefore the appli-
cation’s current state is structured as a term, which is mod-
ified along its execution. Whenever the application executes
an action concerned by the policy, this term is evaluated in
order to compute an access decision by applying the rewrite
rules that define the policy.

The policy itself does not describe how the system state
evolves, but whether the state transitions are allowed or
not. This approach is called execution monitoring, and is
illustrated in Figure 3, which is divided in two parts: the
first presents the behavior of a target program alone, the
second shows how the transitions are intercepted by a refer-
ence monitor enforcing a given policy, which can prevent a
transition by aborting the execution of the target.

Action @ Action @
___Action ___Action @
k/ Reference K_/ Reference _J
Monitor Monitor

Figure 3: Reference monitoring: transitions correspond to
actions

The approach we adopt here is more “collaborative” than
the skeptical view taken in previous works [12, 22, 27], since
we provide a methodology for the co-development of policy
and program, with the choice of suitable mechanisms to en-
force the policy. This contrasts with the viewpoint where

there is no confidence at all in the code being executed.
Here, policy and program are designed in parallel, with the
goal of helping developers to avoid bugs related to access
control. The method used to inline a monitor enforcing the
policy ensures that it cannot be bypassed.

In the rest of this section, we present in detail our ap-
proach for enforcing dynamic policies based on term rewrit-
ing, through the use aspect-oriented programming.

3.1 Aspect-Oriented Programming

The concept of Aspect Oriented Programming (AOP) was
introduced in [19], as an approach to separate crosscutting
concerns, or capabilities which are orthogonal to the sys-
tem’s main functionalities, in single units, called aspects. As-
pects encapsulate behaviors that affect multiple classes (or
units, modules, etc.) in reusable code fragments. Since as-
pects centralize the code for crosscutting issues, which would
be rather spread along the code, in the hierarchical struc-
ture of the program, AOP drastically improves the potential
reuse of these program artifacts, and decreases the mainte-
nance costs.

In order to give a (classical) example of crosscutting con-
cern, let us consider again a conference management system.
In addition to its basic functionalities, such as submission of
papers, assignment of papers to program committee mem-
bers, and submission of reviews, there are other require-
ments such as logging, to register in a file all past activities
performed by users in the system: the code for implementing
the system log is scattered in several parts of the system.

The basic building blocks of an aspect-oriented programs
are pointcuts and and code advices. Pointcuts define where
a given crosscutting concern should be called. Pointcuts
may be associated to a set of function names, for example,
and can be expressed through patterns. We call join points
the locations in the application code that match a given
pointcut. Code advice is the actual code executed in join
points. In a conference system, for example, a pointcut is
any call to the method for submitting papers. The advice
code must print to the system log the identity of the current
user and some information about the submitted paper, with
date and time.

The last essential step in AOP is to weave aspects into
the main application code. Aspect compilation is a program
transformation process that matches the pointcuts defined
inside the aspects and inserts the corresponding code ad-
vice before, after or around a joinpoint. The expressivity of
an aspect-oriented language relies on the pointcut specifica-
tion, for example, on the kinds of patterns allowed by the
aspect language, or on the way code advice can be weaved.
To experiment with these concepts, in this paper, we have
adopted AspectJ [18] which is becoming a very popular AOP
implementation for Java.

3.2 System Architecture

The general view of our approach is given in Figure 4. It
highlights the correspondence between the formal descrip-
tion of the policy, through its signature, and the program
code. The policy declares a certain number of actions (con-
stants of sort Action in the policy signature) which are re-
lated to method calls in the source program. These deter-
mine sensible methods where requests for access must be
made to a reference monitor. The reference monitor is the
inlined representation of the policy rules, contained in a

piece of code advice that is weaved into the target appli-
cation code, generating a program that respects the policy.

Target
Policy program
i apDi Program
Policy mapping
Signature = Code
Policy JRU A
Rules T : Program
. : Joinpoints Code
Cod'e Reference
. Advice weaving Monitor
Aspect Generated

program

Figure 4: System architecture

In addition to requests, it is necessary to map the other
constructors declared in the policy signature. This mapping
tells how to interpret the current state of an application as
a term. We use constructs provided by the aspect-oriented
language to identify where the program objects of interest
to the policy are created and/or modified (in AspectJ, these
are pointcut designators of kind field set) in order to capture
their values and build their equivalent term representations.

Therefore, the reliability of the policy enforcement de-
pends on the ability of the policy developer to build a map-
ping that gives a correct representation from the program
values to the policy objects.

3.3 Aspects for Access Control

Capturing the policy environment.

Guided by the construction of the mapping between the
policy signature and the objects manipulated by the target
application, the application developer must define a set of
pointcut designators over these objects to capture changes
in their values. The most practical way of controlling this
is to declare some auxiliary variables within the aspect to
keep the latest values of such objects. For example, let us
consider the current user logged in the system. In our run-
ning example, we declared a global variable that holds this
information from the moment the user is authenticated via
his id and password. This is illustrated in the code fragment
listed below, which is a piece of the access control aspect for
the conference system.

aspect PolicyAspect {
private int phase;

after(int cp):
set(int Conference.currentPhase)
&& args(cp){
phase=cp;
}

This code advice is executed every time after the value
of the public variable Conference.currentPhase is set. The
new value is then stored in the aspect variable phase, which
will later be used to actually build the term representing
the policy environment. This process has to be repeated for
every piece of data that is part of the policy environment.

This simple example raises some important subtleties. The
first is the difficulty in automating the task of capturing the
values of variables in dynamic contexts. The task is facili-
tated by the capabilities provided by AspectJ, but they are
not sufficient. For example, it would not be possible to ac-
cess the value of currentPhase from the conference class if
it was declared as private. A second difficulty is polymor-
phism. Sensible calls may present several signatures in Java.
Therefore any program transformation approach would need
very powerful static analysis to be able to detect automat-
ically all the forms these sensible calls assume. Other se-
curity holes are associated to reflective capabilities recently
introduced in Java. Provided that the code can transform
itself at run-time, the enforcement process has to be able to
identify whether it is harmful, according to the policy.

Identifying access requests.

In classical access control models, the notion of operation,
or action carried out by the active entities of the system
has always been placed as the origin of access requests. In
practice, every function call (or method call in the object-
oriented paradigm) would imply an access request. The role
of the policy is to indicate which of these actions are relevant
for access control. In our definition, an access request takes
the form q(s:Subject,a:Action,0:0bj). Therefore, for each
constant symbol of sort Action in the policy signature, we
must provide a set of pointcuts which associate the method
calls to access requests that concern the policy. For instance,
let us consider the program method that allows submitting
a review for a paper in the program code, whose interface is
shown in the code fragment below:

public void submitReview (
int paperld, int reviewerId, int score)

It can be captured by the following pointcut designator in
AspectJ:
pointcut submitReviewCut(int objId, int revId):

call(void Conference.submitReview(int, int, int))
&& args(objIld,revId,*);

where we have declared some arguments to keep the data
from the paper and reviewer identifiers, information which is
used by the code advice. The full code for the access control
aspect for the conference system is available in Appendix B.

" Aspect]
compiler
O Foemm]

Figure 5: Weaving of access control rules using Aspect] and
Tom

Policy.class

Weaving policy rules.

In Figure 5 we illustrate the interactions of the compo-
nents and tools used in our weaving process. Since the Tom
compiler generates Java code, there is no restriction to do
the program transformations necessary for access control en-
forcement by using the facilities available in AspectJ. The
conversion from Java objects into Tom terms is performed
inside the policy class, implementing the complete mapping
between the two representations described in Section 3.2.

In the code advice, the enforcement mechanism must ap-
ply the policy rules over the current request term. In order
to evaluate the policy environment using a given rule set, we
make a call to specific methods in the Java class generated
by the Tom compilation process. This design decision avoids
the application developers to be aware of the formal repre-
sentation of the access control policy, which can be taken
care of by the security engineer. Finally, the code advice for
the submitReview action is presented below:

before(Paper p):submitPaperCut (p){
paperId=p.getId();
1f(!Policy.apply(usr.getId(),paperld,
usr.getRole (), phase,"submitPaper")){
System.out.println("Access_ Denied.");
System.exit (1);

}

}

This advice code states that before any joinpoint deter-
mined by the submit paper pointcut designator, a call to
the policy is executed whose arguments are the variables
declared in the aspect, containing information from the cur-
rent application context. When this call returns false, the
reference monitor aborts the execution of the target appli-
cation. The following code fragment shows how the values
collected in the aspect are translated in the policy into their
term representation (notice the use of Tom’s backquote con-
struct).

public static boolean apply(int sId,
int oId, String role, int phase,
boolean assign, String action)
throws Exception{

switch(phase){
case 0: {ph = ‘submission();break;}
case 1: {ph ‘review(); break;}
case 2: {ph ‘meeting (); break;}

}

Decision d = rules(‘auth(q(s, a, o),
ph, asg));
if(d == ‘permit ())

return true;
else

if(d == ‘deny ())

return false;

else throw mnew Exception();

3.4 Security and Proofs: towards better trust

Let us analyze the impact of the design decisions we made
on the overall security and performance of the generated
programs.

Negligence of a policy author with regard to the policy
properties can lead to denial-of-service attacks. Let us con-
sider the scenario where a malicious agent discovers that a
policy evaluation loops for some kinds of requests. This will
be the case if its underlying rewrite system is weakly termi-
nating. Then, it is possible to block the application server
by flooding it with such requests.

Another important property is completeness. It comes
into play in two situations: first, it is necessary to know
whether the rewrite system implementing a security policy is
able to reduce all request terms into an access decision. This
is a particular case of the sufficient completeness check in
rewrite systems, since we require that normal forms contain

only constructors of a certain kind. However, this additional
constraint does not increase the complexity of the problem.

The second situation, where completeness has to be taken
into account, is related to the coverage of the application
code where access control has to be enforced. Indeed, if for
a specific kind of request, the corresponding pointcut des-
ignator is left unspecified, the target program will disclose
protected data, whenever this missing call is executed. This
kind of verification involves the use of polymorphic type sys-
tems (for Java, and other languages with this capability).

Other properties can be automated through the use of
model-checking. Let us mention for instance the verification
of information flow in rewrite-based policies [23]. Covert
channels are very hard to detect, but a similar approach can
be employed.

Other potential threats to the enforcement mechanism
happen in the case policies or aspects are tampered with
illegally. Therefore, it is necessary to protect the code with
adopting a code signing scheme to verify the integrity and
authenticity before running it.

3.5 Performance and Optimization

The main origins of the overhead caused by our enforce-
ment scheme for access control policies are the code gen-
erated by Tom for the policy itself, and the overhead intro-
duced by the weaving process made by the AspectJ compiler.
Since our rewrite-based security policy language (ie full term
rewriting) is Turing complete, the policy designer can “eas-
ily” add an arbitrary complexity to the existing code. How-
ever, our practice shows that policies are quite simple rewrite
programs with a low computational complexity. Further-
more, the code generated by Tom is optimized [4]. Aspect]
also disposes of some optimization tools [1]. We consider
that the practical overhead is small, and that it is worth
paying the price for better security mechanisms.

4. RELATED WORKS

Three categories of approaches to enforce security policies
are classically identified [15]:

1. Static analyzers predict a program’s potential harms
prior to its execution, discarding those who have un-
acceptable behavior. An example, is the static type-
checking performed by the Java virtual machine that
rejects ill-formed bytecode.

2. Ezecution monitors (EM) continuously monitor a pro-
gram’s behavior as it runs, intervening when a coming
policy violation is detected.

3. Program-rewriters transform untrusted code into self-
monitoring code that performs security checks as it ex-
ecutes, thus the target programs are transformed into
policy-satisfying ones.

The separations among these three classes are not sharp.
Our approach best fits the last category, since we use the
AOP technology and Tom as program and policy trans-
formation tools. Actually, program-rewriters are able to
combine the power of static analyzes and EM, by accept-
ing untrusted code and well-formed polices as input, and
automatically transforming them into policy-adherent and
self-monitor code.

Using AOP for policy enforcement is not an original idea
in itself. In [28] the authors use a design by contract ap-
proach, to separate access control from the other application
features at the design level. They explain how to build mod-
els based on AOP to design mechanisms to enforce RBAC
policies. Another application of AOP is enforcement of avail-
ability properties as aspects [8]. Availability requirements
are specified in a formal model, combining deontic and tem-
poral logics, and then transformed into aspects. In both ap-
proaches policies are written inside the aspect component,
thus, in the case policies change, the aspects have to be
changed accordingly.

In the second category, we may cite [27], which introduces
a formal definition based on finite-state automata to ex-
press safety properties (nothing bad ever happens), proved
enforceable by execution monitoring. This work was later
extended [22] to consider other kinds of security properties.

In the class of program rewriters, let us mention [12, 13,
15, 6]. In all these works, security code is inserted into
the executable target. They can assure different levels of
trust on the transformation they perform, or on the policy
specification.

The main difference between all these works and ours is
the power of policies description and representation. In pre-
vious works, they are limited to an “event language” that the
program monitor can intercept between state transitions, it
is powerful but rather low level. In our work, we are able
to describe more intelligible policies and relate them to the
program code, although this process needs human interven-
tion.

5. CONCLUSION

The need for dynamic policies is predominant in today’s
information systems. The understanding of how to man-
age dynamic requirements for policies has augmented signifi-
cantly with the introduction of several rule-based formalisms
for access control [10, 7, 16, 9]. This is due to the fact that
rule-based languages can express such kind of policies rea-
sonably well, and they furnish good theoretical background
to perform static analysis of possible policy vulnerabilities.
In the present work we adopted a recent approach that uses
rewrite systems to model dynamic policies [11, 26]. In our
model, the correspondences between the properties of the
rewrite system and the policy it implements are straight-
forward, thus we are able to directly apply a rich corpus of
existing proof techniques and tools.

On the other hand, there are several problems linked to
the enforcement of dynamic policies. The classical appro-
aches of building access control mechanisms by inlining ref-
erence monitors into the target application’s code does not
give much insight on how to capture the policy environment,
for instance.

The main contribution of this paper is to introduce a
methodology for constructing inlined reference monitors for
dynamic access control policies. We showed that aspect-
oriented programming is a suitable tool to capture the pol-
icy environment and to transform the untrusted code such
that it satisfies a given policy. Our methodology is general
enough to be applied to various pairs of policy specification
and programming languages. Here we presented rewrite-
based policies weaved in Java programs, by using Tom and
Aspect]. We illustrated the usefulness of the approach on a
realistic example where policy and program are completely

separated.

Future works arise from the two sides of our approach.
First to provide more fine-tuned analysis tools for policies,
such as policy coverage with respect to the target program
and administrator queries. Second to perform a system-
atic analysis of the application to which the security policy
should be weaved to, in order to mechanize the weaving pro-
cess and in particular the construction of the cut and join
points.

6. ACKNOWLEDGMENTS

Many thanks the Tom team and in particular to Pierre-
Etienne Moreau, for their outstanding work in developing
the system, as well as for always fruitful discussions and
interactions. We also thank the anonymous reviewers for
they valuable comments.

7. REFERENCES

[1] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhoték, O. Lhotak, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Optimising
aspectj. In PLDI °05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language
design and implementation, pages 117-128, New York,
NY, USA, 2005. ACM Press.

[2] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and
A. Reilles. Tom: Piggybacking rewriting on java. In
Proceedings of the 18th Conference on Rewriting
Techniques and Applications, volume 4533 of Lecture
Notes in Computer Science, pages 36—47.
Springer-Verlag, 2007.

[3] E. Balland, C. Kirchner, and P.-E. Moreau. Formal
Islands. In M. Johnson and V. Vene, editors, AMAST,
Kuressaare (Estonia), volume 4019 of Lecture Notes in
Computer Science, pages 51-65. Springer-Verlag, July
2006.

[4] E. Balland and P.-E. Moreau. Optimizing pattern
matching compilation by program transformation. In
J.-M. Favre, R. Heckel, and T. Mens, editors, 3rd
Workshop on Software Evolution through
Transformations (SeTra’06). Electronic
Communications of EASST, 2006. To appear.

[5] S. Barker and M. Ferndndez. Term rewriting for access
control. In E. Damiani and P. Liu, editors, DBSec,
volume 4127 of Lecture Notes in Computer Science,
pages 179-193. Springer, 2006.

[6] L. Bauer, J. Ligatti, and D. Walker. Composing
security policies with polymer. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation,
pages 305-314, New York, NY, USA, 2005. ACM
Press.

[7] P. A. Bonatti, N. Shahmehri, C. Duma, D. Olmedilla,
W. Nejdl, M. Baldoni, C. Baroglio, A. Martelli,

V. Patti, P. Coraggio, G. Antoniou, J. Peer, and N. E.
Fuchs. Rule-based policy specification: State of the art
and future work. Deliverable 12/D1, REWERSE, 2004.

[8] F. Cuppens, N. Cuppens-Boulahia, and T. Ramard.
Availability enforcement by obligations and aspects
identification. In ARES, pages 229-239. IEEE
Computer Society, 2006.

[9] S. D. C. di Vimercati, P. Samarati, and S. Jajodia.
Policies, models, and languages for access control. In
S. Bhalla, editor, DNIS, volume 3433 of Lecture Notes
in Computer Science, pages 225—237. Springer, 2005.

[10] D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
Specifying and reasoning about dynamic
access-control policies. In U. Furbach and N. Shankar,
editors, IJCAR, volume 4130 of Lecture Notes in
Computer Science, pages 632—646. Springer, 2006.

[11] D. J. Dougherty, C. Kirchner, H. Kirchner, and
A. Santana de Oliveira. Modular access control via
strategic rewriting. ESORICS, volume 4734 of Lecture
Notes in Computer Science, pages 578-593. Springer,
2007.

[12] U. Erlingsson and F. B. Schneider. Sasi enforcement of
security policies: a retrospective. In NSPW ’99:
Proceedings of the 1999 workshop on New security
paradigms, pages 87-95, New York, NY, USA, 2000.
ACM Press.

[13] D. Evans and A. Twyman, editors. Flezible
Policy-Directed Code Safety, IEEE Symposium on
Security and Privacy, 1999. IEEE Computer Society,
1999.

[14] J. Giesl, R. Thiemann, P. Schneider-Kamp, and
S. Falke. Automated termination proofs with
AProVE. In V. van Oostrom, editor, RTA, volume
3091 of Lecture Notes in Computer Science, pages
210-220. Springer, 2004.

[15] K. Hamlen. Security Policy Enforcement By
automated Program-Rewriting. Phd thesis, Cornell
University, 2006.

[16] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access
control policies. ACM Trans. Database Syst.,
26(2):214-260, 2001.

[17] A. Kalam, R. Baida, P. Balbiani, S. Benferhat,

F. Cuppens, Y. Deswarte, A. Miege, C. Saurel, and
G. Trouessin. Organization based access control.
Policies for Distributed Systems and Networks, 20083.
Proceedings. POLICY 2003. IEEE jth International
Workshop on, pages 120-131, 2003.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of aspect;j.
In J. L. Knudsen, editor, ECOOP, volume 2072 of
Lecture Notes in Computer Science, pages 327-353.
Springer, 2001.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP, pages
220-242, 1997.

[20] C. Kirchner, P.-E. Moreau, and A. Reilles. Formal
validation of pattern matching code. In P. Barahona
and A. P. Felty, editors, PPDP, pages 187-197. ACM,
2005.

[21] B. Lampson. Protection. ACM Operating Systems
Review. Vol, 8:18-24, 1974.

[22] J. Ligatti, L. Bauer, and D. Walker. Enforcing
non-safety security policies with program monitors. In
S. D. C. di Vimercati, P. F. Syverson, and
D. Gollmann, editors, ESORICS, volume 3679 of
Lecture Notes in Computer Science, pages 355—373.
Springer, 2005.

[23]

C. Morisset and A. Santana de Oliveira. Automated
detection of information leakage in access control. In
M. Nesi and R. Treinen, editors, Preliminary
Proceedings of the 2nd International Workshop on
Security and Rewriting Techniques (SecReT’07),
Paris, France, July 2007.

A. Reilles. Canonical abstract syntax trees. Electr.
Notes Theor. Comput. Sci., 176:165-179, 2007.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. Computer,
29(2):38-47, 1996.

A. Santana de Oliveira. Rewriting-based access control
policies. Electr. Notes Theor. Comput. Sci., 171:59-72,
2007.

F. B. Schneider. Enforceable security policies. ACM
Trans. Inf. Syst. Secur., 3(1):30-50, 2000.

E. Song, R. Reddy, R. B. France, I. Ray, G. Georg,
and R. Alexander. Verifiable composition of access
control and application features. In E. Ferrari and
G.-J. Ahn, editors, SACMAT, pages 120-129. ACM,
2005.

APPENDIX

A.

THE CONFERENCE POLICY IN TOM

We list here the conference policy as programmed in Tom.
The first part of the code, contained in the Gom definition,
describes the signature of the rewrite system. The reader
may identify some additional sorts w.r.t Definition 1, which

are

used to describe the policy environment. The second

part of the code contains the rewrite rules defining the aut
function, which relies on the pattern matching provided by
Tom.

package conference;

import conference.policy.conference.types.sx;
import tom.library .sl.x;

import jjtraveler.reflective. VisitableVisitor;
import jjtraveler. Visitable;

import jjtraveler. VisitFailure;

public class Policy{

%include{sl.tom}

Jogom{

module Conference
imports String int

abstract syntax
Decision = permit ()
| deny ()
| notApplicable ()
| aut(r: Request, p:Phase, cnd:Condition)

Request = q(s:Subject, a:Action, o: Obj)
Phase = submission () | meeting () | review ()

Action = submitPaper ()
| readScores ()

| submitReview ()

| assignPaper ()

| addReviewer ()

Subject = author(id:int)
| reviewer (id:int)
| chair(id:int)

Obj = paper(id:int, title:String)

}

Condition = assigned (id:int, o:Obj)
| conflict (id:int, o:Obj)

%strategy Rules () extends Fail(){

}

visit Decision{

aut (q(author(x), submitPaper (), paper(x, z)),
submission (), cnd) —> {return ‘permit ();}

)

)

aut (q(author (x

(, submitPaper (), paper(x, z)),
phase, cnd

—> {return ‘deny();}

aut (q(author(x), readScores (), paper(x,z)),
phase, cnd) —> {return ‘deny();}

aut (q(reviewer (x),action, p), phase,
conflict (x,p)) —> { return ‘deny(); }

aut (q(reviewer (x), submitReview (), paper(y,z)),
review (), assigned(x, paper(y,z)))
—> {return ‘permit();}

aut (q(reviewer (x), submitReview (), paper(y,z)),
phase, assigned(x, paper(y,z)))
—> {return ‘deny ();}

aut (q(reviewer (x), readScores (), paper(y,z)),
meeting (), assigned(x, paper(y,z)))
—> {return ‘permit();}

aut (q(reviewer (x), action, paper(x,z)),
phase , c¢cnd) —> { return
‘aut (q(reviewer(x), action, paper(x,z)),
phase, conflict(x, paper(x,z))); }

aut(-,-,-) —> {return ‘notApplicable();}

public static boolean apply(int sld, int old,

String role, int phase, boolean assign,
String action){

Subject s;
Action a = ‘readScores ();
Obj o = ‘paper(old,””);
Phase p = ‘submission ();
Condition cnd = ‘conflict(sId,o);
if (role.equals(”Author”)){
s = ‘author(sld);
}elsef

if (role.equals(”Reviewer”)){
s=‘reviewer (slId);

else{
s=‘chair (sId);
}
}
if (assign) cnd = ‘assigned(sId, o);

switch (phase){

case 0: {p = ‘submission ();break; }

case 1: {p = ‘review (); break;}

case 2: {p = ‘meeting (); break;}

}

if (action.equals(”submitPaper”)){
a = ‘submitPaper ();

else{
if(action.equals(”readScores”)){

a = ‘readScores ();

Yelse{

if (action.equals(”submitReview”)){
a=‘submitReview ();
}

}

Strategy policy = ‘Innermost(Rules ());

try{
Decision d =
(Decision) policy. visit (
‘aut(q(s, a, o), p, cnd));
if (d == ‘permit ())
return true;
else
return false;
}catch(Exception e){
System.err.println (e.getMessage ());

return false;

B. ASPECTJ CODE FOR THE CONFERENCE

SYSTEM

The following code brings the AspectJ implementation for
weaving the conference policy of Example 1 into the confer-
ence management system.

package conference;
import java.k;
import org.aspectj.lang.x;

aspect PolicyAspect {

private int phase;
private User usr;
private int paperld;

pointcut readScoresCut ():
call(int Paper.readScores(int));

pointcut submitPaperCut (Paper pa):
call(void Conference.submitPaper (Paper))

&& args(pa);

pointcut submitReviewCut (int objld,int revld):
call(void Conference.submitReview (int,int,int))
&& args(objld,revId, x);

pointcut loginCut ():
call(void Conference.login(String, int,
String));

pointcut readScoreCut (): call(
int Paper.readScore(int));

after(User user):set(
User Conference.currentUser) && args(user){
usr=user ;

}

after(int cp):set(int Conference.currentPhase)
&& args(cp){
phase=cp;

before(Paper p):submitPaperCut (p){
paperld=p. getld ();
if (! Policy .apply (usr.getld (), paperld,
usr.getRole (), phase, true,”submitPaper”)){
System.out.println (”Access_Denied.”);
System . exit (1);
}
}

before(int oi,int ri):submitReviewCut(oi,ri){
paperld=oi;
if (! Policy .apply (usr.getld (), paperld,
usr.getRole (), phase, true,”submitReview”)){
System.out.println (”Access_Denied.”);
System . exit (1);

}

before ():readScoresCut (){
if (! Policy .apply (usr.getld (), paperld,

usr.getRole (), phase, true,”readScores”)){
System.out.println (” Access_Denied.”);
System . exit (1);

