
M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 309–318, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Bridging Concrete and Abstract Syntax of
Web Rule Languages

Milan Milanović1, Dragan Gašević2, Adrian Giurca3,
Gerd Wagner3, Sergey Lukichev3, and Vladan Devedžić1

1 FON-School of Business Administration, University of Belgrade, Serbia
milan@milanovic.org, devedzic@etf.bg.ac.yu

2 School of Computing and Information Systems, Athabasca University, Canada
dgasevic@acm.org

3 Institute of Informatics, Brandenburg Technical University at Cottbus, Germany
{Giurca, G.Wagner Lukichev}@tu-cottbus.de

Abstract. This paper proposes a solution for bridging abstract and concrete
syntax of a Web rule language by using model transformations. Current specifi-
cations of Web rule languages such as Semantic Web Rule Language (SWRL)
define its abstract syntax (e.g., EBNF notation) and concrete syntax (e.g., XML
schema) separately. Although the recent research in the area of Model-Driven
Engineering demonstrates that such a separation of two types of syntax is a
good practice (due to the complexity of languages), one should also have tools
that check validity of rules written in a concrete syntax with respect to the ab-
stract syntax of the rule language. In this study, we use analyze the REWERSE
I1 Rule Markup Language (R2ML) whose abstract syntax is defined by using
metamodeling, while its textual concrete syntax is defined by using XML
schema. We bridge this gap by a bi-directional transformation defined in a
model transformation language (i.e., ATL).

1 Introduction

Using and sharing rules on the Web are some of the main challenges that the Web
community tries to solve. The first important stream of research in this area is related
to the Semantic Web technologies where researchers try to provide formally-defined
rule languages (e.g., Semantic Web Rule Language, SWRL [7]) that are used for
reasoning over Semantic Web ontologies. The main issue to be solved is the type
(e.g., open of closed world) of reasoning that will be used, so that formal-semantics of
such languages can be defined. However, as in constructing any other language,
defining abstract syntax (independent of machine encoding) and concrete syntax
(machine-dependent representation) is an unavoidable part of the language definition.
An important characteristic of Semantic Web rule languages is that they are primarily
not dealing with interchange of rules between various types of rules on the Web. This
means that Semantic Web rule languages do not tend to compromise their reasoning
characteristics for the broader syntactic expressivity. This is actually the main focus
on the second stream of research on the Web that is chiefly articulated through the
W3C effort called Rule Interchange Format (RIF) [6], while the most known effort in

310 M. Milanović et al.

that area is the RuleML language [4]. The primary result expected from this research
stream is to define an XML-based concrete syntax for sharing rules on the Web. Al-
though the XML syntax for such a language is certainly the pragmatic expectation of
the Web users, for a good definition of such a language is also important to have a
well-designed abstract syntax.

In this paper, we try to address the problem of bridging the gap between an abstract
and concrete syntax of a Web rule interchange language, i.e., the REWERSE I1 Rule
Markup Language (R2ML) [18], one of the most-known RIF proposals. Since this
language leverages the benefits of a new software engineering discipline Model-
Driven Engineering (MDE) [3], the abstract syntax R2ML is defined by a metamodel.
Furthermore, the R2ML XML schema, i.e., R2ML concrete syntax, has been devel-
oped for encoding rules by domain experts. However, there is no solution that enables
transforming XML documents compliant to the R2ML XML documents into repre-
sentation compliant to the R2ML metamodel (simply R2ML models). This gap
between the R2ML metamodel and the R2ML XML schema causes the following
problems:

1. Rules represented in the R2ML XML format cannot be stored in MOF-based
model repositories, thus cannot be validated w.r.t. the R2ML metamodel.

2. The R2ML metamodel can not be instantiated based on rules encoded in the R2ML
XML schema, and thus the R2ML metamodel can not be validated with real-world
rules.

2 Model Driven Engineering

Model Driven Engineering is a new software engineering discipline in which the
process heavily relies on the use of models [3]. A model defined is a set of statements
about some system under study [16]. Models are usually specified by using modeling
languages (e.g., UML), while modeling languages can be defined by metamodels. A
metamodel is a model of a modeling language. That is, a metamodel makes state-
ments about what can be expressed in the valid models of a certain modeling
language [16]. The OMG’s Model Driven Architecture (MDA) is one possible archi-
tecture for MDE [11]. One important characterestic of MDA is its organization. In
fact, it consists of three layers, namely: M1 layer or model layer where models are
defined by using modeling languages; M2 layer or metamodel layer where models of
modeling languages (i.e. metamodels) are defined (e.g., UML) by using metamodel
languages; and M3 layer or metametamodel layer where only one metamodeling lan-
guage is defined (i.e. MOF) by itself [12].

The relations between different MDA layers can be considered as instance-of or
conformant-to, which means that a model is an instance of a metamodel, and a meta-
model is an instance of a metametamodel. The rationale for having only one language
on the M3 layer is to have a unique grammar space for defining various modeling
languages on the M2 layer. Thus, various modeling language can be processesed in
the same way by using the same API. An example of such an API's are Java Metadata
Interface (JMI)1 that enables the implementation of a dynamic, platform-independent

1 http://java.sun.com/products/jmi/

 Bridging Concrete and Abstract Syntax of Web Rule Languages 311

infrastructure to manage the creation, storage, access, discovery, and exchange of
metadata. The most comprehensive implementation of JMI is NetBeans Metadata
Repository (MDR).

Although MDE principles of defining modeling languages seems quite promising,
the reality is that languages related can be defined and represented by using various
technologies such as XML, databases, and MOF. In fact, the MDE theory introduces a
concept of technical spaces, where a technical space is a working context with a set of
associated concepts, body of knowledge, tools, required skills, and possibilities [9].
Although some technical spaces are difficult to define, they can be easily recognized
(e.g. XML, MDA). In the case of the problem analyzed in this paper, we have to
bridge between two technical spaces, since the R2ML metamodel and R2ML XML
schema are defined in the MOF and XML technical spaces, respectively.

We should also mention the model transformations that represent the central opera-
tion for handling models in the MDA. Model transformations are the process of
producing one model from another model of the same system [11]. In our research,
we have decided to use ATLAS Transformation Language (ATL) [1] as the model
transformations tool, which is based on OMG's QVT specification [13].

3 R2ML Metamodel and R2ML XML Schema

This section is devoted to the description of the R2ML language [15] [18] by explain-
ing the R2ML abstract syntax and R2ML XML-based concrete syntax. Due to the size
of the R2ML language, we only give an excerpt of the language related to integrity
rules in this section. For the complete definition of the R2ML metamodel and R2ML
XML schema, we advise readers to see [15].

3.1 The R2ML Abstract Syntax: R2ML Metamodel

The R2ML metamodel is defined by using the MOF metamodeling language. In Fig. 1,
we give a UML class diagram depicting the MOF definition of integrity rules. An
integrity rule, also known as (integrity) constraint, consists of a constraint assertion,

which is a sentence (or formula without
free variables) in a logical language
such as first-order predicate logic.
R2ML supports two kinds of integrity
rules: the alethic and deontic ones. An
alethic integrity rule can be expressed
by a phrase, such as “it is necessarily
the case that” and a deontic one can be
expressed by phrases, such as “it is
obligatory that” or “it should be the
case that.”

Example 1 (Integrity rule). If rental is not a one way rental then return branch of
rental must be the same as pick-up branch of rental.

R2ML defines the general concept of LogicalFormula (see Fig. 2) that can be Con-
junction, Disjunction, NegationAsFailure, StrongNegation, and Implication. The

Fig. 1. The metamodel of integrity rules

312 M. Milanović et al.

concept of a QuantifiedFormula is essential for R2ML integrity rules, and it subsumes
existentially quantified formulas and universally quantified formulas. Fig. 2 also con-
tains elements such as AtLeastQuantifiedFormula, AtMostQuantifiedFormula, and
AtLeastAndAtMostQuantifiedFormula that allow defining cardinality constrains in the
R2ML rules.

Fig. 2. The MOF model of LogicalFormula

3.2 R2ML XML Schema

The concrete syntax of the R2ML language is defined in a form of an XML schema.
This XML schema is defined based on the R2ML MOF-based metamodel by using
the following mapping rules presented in Table 1, while the full definition of the
R2ML XML schema can be found [15]. In Fig. 3, we give the integrity rules defined

in Example 1 in a form of an XML
document compliant to the R2ML
XML schema.

One may raise a natural question:
What do we need an XML schema for
R2ML and the above design rules
when there is XMI and rules how to
produce an XMI schema from MOF-
based models, metamodels, and
metametamodels [14]. We decided to
build this XML schema, as XMI is too
complex for our needs and the XMI
schema model goes into an extremely
verbose XML syntax, hard to be used
by humans, which is not in our design
goals. However, the benefit of the use
of XMI is that they can be processed
by model repositories, thus we can test
out the validity of XMI documents
w.r.t. MOF-based metamodels.

<r2ml:AlethicIntegrityRule r2ml:id="IR001">
 <r2ml:constraint>
 <r2ml:UniversallyQuantifiedFormula>
 <r2ml:ObjectVariable r2ml:name="r1" r2ml:classID="Rental"/>
 <r2ml:Implication>
 <r2ml:antecedent>
 <r2ml:NegationAsFailure>
 <r2ml:ObjectClassificationAtom r2ml:classID="OneWayRental">
 <r2ml:ObjectVariable r2ml:name="r1"/>
 </r2ml:ObjectClassificationAtom>
 </r2ml:NegationAsFailure>
 </r2ml:antecedent>
 <r2ml:consequent>
 <r2ml:EqualityAtom>
 <r2ml:ReferencePropertyFunctionTerm
 r2ml:referencePropertyID="returnBranch">
 <r2ml:contextArgument>
 <r2ml:ObjectVariable r2ml:name="r1"/>
 </r2ml:contextArgument>
 </r2ml:ReferencePropertyFunctionTerm>
 <r2ml:ReferencePropertyFunctionTerm
 r2ml:referencePropertyID="pickupBranch">
 <r2ml:contextArgument>
 <r2ml:ObjectVariable r2ml:name="r1"/>
 </r2ml:contextArgument>
 </r2ml:ReferencePropertyFunctionTerm>
 </r2ml:EqualityAtom>
 </r2ml:consequent>
 </r2ml:Implication>
 </r2ml:UniversallyQuantifiedFormula>
 </r2ml:constraint>
</r2ml:AlethicIntegrityRule>

Fig. 3. R2ML XML representation of the integ-
rity rule from Example 1

 Bridging Concrete and Abstract Syntax of Web Rule Languages 313

4 Transformations Between the R2ML XML Schema and the
R2ML Metamodel

In this section, we explain the transformation steps undertaken to transform R2ML
XML documents into the models compliant to the R2ML metamodel. The R2ML
concrete syntax is located in the XML technical space. However, the R2ML meta-
model is defined by MOF, so the metamodel is located in the MOF technical space.
To develop transformations between these two rule representations, we should put
them into the same technical space. One alternative is to develop transformations in
the XML technical space by using XSLT. This means that documents in the R2ML
XML formant have to be transformed into the documents represented in the XMI
format, compliant to the R2ML metamodel. However, the present practice has dem-
onstrated that the use of XSLT as a solution is hard to maintain [8], since small modi-
fications of the input and output XML formats can completely invalidate the XSLT
transformation. This is especially amplified when transforming highly verbose XML
formats such as XMI. On the other hand, we can perform this transformation in the
MOF technical space by using model transformation languages such as ATL that are
easier to maintain and have better tools for managing MOF-based models. We base
our solution on the second alternative, i.e., in the MOF technical space by using ATL.
The overall organization of the transformation process is shown in Fig. 4. It is obvi-
ous that transformation between the R2ML XML schema and the R2ML metamodel
consists of two transformations, namely: 1. From the R2ML metamodel to the R2ML
XML schema (i.e., from the XML technical space to the MOF technical space); and 2.
From the R2ML XML schema to the R2ML metamodel.

Fig. 4. The transformation scenario: R2ML XML into the R2ML metamodel and vice versa

4.1 Transforming the R2ML XML Schema into the R2ML Metamodel

The transformation process consists of two primary steps as follows.

Step 1. XML injection from the XML technical space to the MOF technical space.
This means that we have to represent R2ML XML documents (RuleBase.xml from Fig.
4) into the form compliant to MOF. We use the XML injector that transforms R2ML
XML documents (written w.r.t. the R2ML XML Schema, i.e., R2ML.xsd from Fig. 4)
into the models conforming to the MOF-based XML metamodel (step 1 in Fig. 4). This

314 M. Milanović et al.

has an extremely low cost, since the XML injector is distributed as a general-purpose
tool together with ATL, which performs the XML injection automatically. An XML
model (RuleBase_XML in Fig. 4), created by the XML injector, is located on the M1
layer of the MDA. This means that the XML injector instantiates the MOF-based
XML metamodel (i.e., abstract syntax of XML). We can manipulate with these mod-
els like with any other type of MOF-based metamodels. Thus, such XML models can
be represented in the XMI format (step 2 in Fig. 4). This XMI format can be regarded
as an implicitly defined XML schema (XML_XMI.xsd) compliant to the XML meta-
model.

Step 2. A transformation of XML models into R2ML models. We transform an XML
model (RuleBase_XML) created in Step 1 into an R2ML model (RuleBase_R2ML) by
using an ATL transformation named XML2R2ML.atl (step 3 in Fig. 4). The output R2ML
model (RuleBase_R2ML) conforms to the R2ML metamodel. In the XML2R2ML.atl
transformation, source elements from the XML metamodel are transformed into target
elements of the R2ML metamodel. The XML2R2ML.atl transformation is done on the
M1 level (i.e., the model level) of the MDA. This transformation uses the information
about elements from the M2 (metamodel) level, i.e., metamodels defined on the M2 level
(i.e., the XML and R2ML metamodels) in order to provide transformations of models on
the level M1. It is important to point out that M1 models (both source and target ones)
must be conformant to the M2 metamodels. This principle is well-know as metamodel-
driven model transformations [2]. In Table 1, we give an excerpt of mappings between the
R2ML XML Schema, XML metamodel, and R2ML metamodel. For XML Schema
complex types, an instance of the XML metamodel element is created through the XML
injection described in Step 1 above. Such an XML element is then transformed into an
instance of the R2ML metamodel element by using the XML2R2ML.atl transformation
(Step 2).

Table 1. An excerpt of mappings between the R2ML XML schema and the R2ML metamodel

R2ML schema XML metamodel R2ML metamodel Description
IntegrityRule-
Set

Element
name =
'r2ml:IntegrityRuleSet'

IntegrityRuleSet Captures a set of
integrity rules.

AlethicInteg-
rityRule

Element
name =
'r2ml:AlethicIntegrityRule'

AlethicIntegri-
tyRule

Represents an
alethic integrity
rule.

ObjectVariable Element
name =
'r2ml:ObjectVariable'

basCont-
Voc.ObjectVariabl
e

Represents an
object variable.

Mappings between elements of the XML metamodel and elements of the R2ML
metamodel are defined as a sequence of rules in the ATL language. These rules use
additional helpers functions in defining mappings. Each rule in the ATL has one input
element (i.e., an instance of a metaclass from a MOF-based metamodel) and one or
more output elements. In fact, the ATL transformation takes an input XML model
from a model repository and creates a new model compliant to the R2ML metamodel.

After applying the above ATL rules to the input XML models, R2ML models
(RuleBase_R2ML) are stored in the model repository. Such R2ML models can be
exported in the form of R2ML XMI documents (e.g., RuleBase_R2ML.xmi in Fig. 4).

 Bridging Concrete and Abstract Syntax of Web Rule Languages 315

4.2 Transforming the R2ML Metamodel into the R2ML XML Schema

Along with the transformation of the R2ML XML schema to the R2ML metamodel,
we have also defined a transformation in the opposite direction, i.e., from the R2ML
metamodel to the R2ML XML schema (R2ML2XML). This transformation process
consists also of two primary steps as follows.

Step 1. The transformation of R2ML models to XML models. We transform an
R2ML model (RuleBase_R2ML from Fig. 4) into an XML model (RuleBase_XML)
by using an ATL transformation named R2ML2XML.atl (step 5 in Fig. 4). After
applying this transformation to the input R2ML models, XML models (Rule-
Base_XML) are stored in the model repository (RuleBase_XML.xmi in Fig. 4). The
output XML model conforms to XML metamodel. Mappings from Table 1 apply
here with no changes. So, for the R2ML rules given the R2ML XMI format, we get
an XML model which can be serialized back into the XML XMI format (step 6 in
Fig. 4).

Step 2. The XML extraction from the MOF technical space to the XML technical
space. In this step, we transforms XML model (RuleBase_XML in Fig. 4) which
conforms to MOF-based XML metamodel and is generated in step 1 above, to Rule-
Base.xml document (Step 7 in Fig. 4). The XML extractor is a part of the ATL
toolkit.

Creating a transformation from the R2ML metamodel to the R2ML XML schema
(R2ML2XML), appeared to be easier to implement than the XML2R2ML transforma-
tion. For the R2ML2XML transformation, we needed only one helper for checking
the negation of Atoms. All the ATL matched transformation rules are defined
straightforward similar to the XML2R2ML transformation, except for unique
elements (like ObjectVariable).

5 Experiences

The transformation is tested on a set of real world rules collected by the REWERSE
Working Group I1 at the Brandenburg University of Technology at Cottbus. In this
section, we report on some lessons we learned in developing and applying the trans-
formation. These lessons also helped us to validate the R2ML MOF-based metamodel
as well as to propose some changes of the R2ML metamodel.

Missing associations. Our goal was to transform rules from the R2ML XML format
into the R2ML metamodel. This helped us identify some associations missing in the
R2ML metamodel without which we could not represent all relations existing in the
R2ML XML format. For example, the IntegrityRuleSet and DerivationRuleSet com-
plex types are sequences of IntegrityRule and DerivationRule, respectively, in the
R2ML XML schema. This implicated that in the R2ML metamodel we had to add an
association between IntegrityRuleSet and IntegrityRule as well as another association
between DerivationRuleSet and DerivationRule.

316 M. Milanović et al.

Abstract classes. Originally, some classes of the R2ML metamodel were defined as
abstract classes (e.g., Disjunction, Conjunction, and Implication) [18]. When we
attempted to transform rules form the R2ML XML format into the R2ML metamodel,
we faced the problem that ATL engine refused executing the ATL transformation.
The problem was that some classes should not actually be abstract, as the MDR model
repository prevented their instantiation by strictly following the R2ML metamodel
definition. This was an obvious indicator to change such classes not to be abstract.

Conflicting compositions. Since the meaning of MOF compositions is fully related to
instances of classes connected by compositions, it is very hard to validate the use of
compositions in MOF-based metamodels without instantiating metamodels. This
means that for a class A that composes a class B, an instance of the class B can be
only composed by one and only one instance of the class A. It is also correct to say
that a class C also composes the class B. However, the same instance of the class B
can not be composed by two other instances, regardless of the fact that one of them is
a instance of the class A and another one of the class C. Since ATL uses the MDR as
model repository, MDR does not allow us to execute ATL transformations that break
the MOF semantics including the part related to compositions. This actually helped us
identify some classes (e.g., term association from the ObjectClassificationAtom class
to the ObjectTerm class, objectArguments association from the AssociationAtom
class to the ObjectTerm class, etc.) in the R2ML metamodel breaking this rule. To
overcome this problem, we have changed (“relaxed”) the composition with a regular
association relation. This makes sense, since a variable should be declared once, while
all other elements should refer to that variable (not compose it).

Multiple inheritance conflict. During the implementation of the injection and trans-
formation from the R2ML XML to the R2ML metamodel, we noticed the well-known
"diamond" problem [17], i.e. a multiple inheritance conflict, in the object-oriented
paradigm. Such a conflict arises when a class, say N, obtains the same attribute attr
from two or more parent class; let us say classes A and B. These both parent classes A
and B have the same parent class C from which both of them inherit the attr, thus
there is a conflict to determine from which of them the attribute is inherited and how
to access it at the class N. In the previous version of the R2ML metamodel, we de-
fined three types of Variables: ObjectVariable, DataVariable and Variable which is
parent from first two Variables. The problem occurred because ObjectVariable inher-
ited ObjectTerm (which inherited Term), but it also inherited Variable, which also
inherited Term, as shown in Fig. 5a. In this way, ObjectVariable inherited the class
Term's attributes (i.e., isMultivalued) from two parents, namely, ObjectTerm and
Variable. The same situation was with DataVariable and DataTerm. We solved this
situation (Fig. 5b), as follows. First, we introduced the GenericTerm class which
inherits the Term class, and the GenericVariable class which inherits GenericTerm.
Next, we changed the Variable class, which is now an abstract class and it is a parent
class for the GenericVariable and ObjectVariable classes. In this way, ObjectVariable
only inherits Term's attributes from one parent only (ObjectTerm). Finally, we should
note that we have a similar solution for DataVariable.

 Bridging Concrete and Abstract Syntax of Web Rule Languages 317

Fig. 5. The multiple inheritance conflict with (a) and its solution (b)

6 Conclusions

To the best of our knowledge, there is no solution to transforming rule languages
based on model transformation languages. Most of previous solutions to transforming
rule languages such as RuleML and SWRL are implemented by using XSLT or pro-
gramming languages (Java) [5]. By the nature, our solution is the most similar to
those based on the use of XSLT, as a general purpose transformation language for the
XML technical space. Examples of transformations for the R2ML which are devel-
oped by using XSLT [15] such as translators from R2ML to F-Logic, between the
F-Logic XML format and R2ML, from R2ML to Jess (rule engine), R2ML to
RuleML, etc.

In this paper, we have demonstrated potentials of model transformations for trans-
forming rule languages. First, the use of model transformation languages forces us to
use valid source and target models. This means that the transformation can not be
executed properly if either of rule models is not fully conformant to its metamodel. In
our case, the source R2ML XML rules have to be conformant to the XML meta-
model, while R2ML models have to be conformant to the R2ML metamodel. Second,
every time we execute the model transformation, the elements of the target model are
instantiated in the model repository. This means that the model transformation pro-
vided us with the mechanism for instantiation of the R2ML metamodel. This helped
us detect some issues in the R2ML metamodel such as conflicting compositions and
inappropriate abstract classes. Third, instances of rule metamodels are stored into
MOF-based repositories. Since model repositories have generic tools for export-
ing/importing (meta)models in the XMI format, we employ them to export instances
of the R2ML metamodel in the XMI format, and thus share R2ML models with other
MOF-compliant applications. Finally, the use of ATL is more appropriate than XSLT
when transforming rules between the XML and MOF technical spaces, since ATL
supports advanced features for transforming languages based on metamodels.

In the future work, we will use real-world rules that we have transformed into the
R2ML metamodel to evaluation transformations between the R2ML metamodel and
other rule languages. Currently, we are implementing a bi-directional model trans-
formation between the R2ML metamodel and the MOF-based OCL metamodel and
between the R2ML metamodel and the SWRL language whose abstract syntax is
defined by a metamodel. Of course, in this research we have to address even more

318 M. Milanović et al.

challenges, since we need to bridge between three technical spaces, namely, XML
(SWRL concrete syntax), EBNF (OCL concrete syntax), and MOF (metamodels of
R2ML, OCL, and SWRL) [10].

References

1. ATLAS Transformation Language (ATL), http://www.sciences.univ-nantes.fr/lina/atl
2. Bézivin, J.: From Object Composition to Model Transformation with the MDA. In: Pro-

ceedings of the 39th International Conference and Exhibition on Technology of Object-
Oriented Languages and Systems, Santa Barbara, USA, pp. 350–355 (2001)

3. Bézivin, J.: On the unification power of models. Software and System Modeling 4(2),
171–188 (2005)

4. Boley, H.: The Rule Markup Language: RDF-XML Data Model, XML Schema Hierarchy,
and XSL Transformations. In: INAP 2001. LNCS (LNAI), vol. 2543, pp. 5–22. Springer,
Heidelberg (2003)

5. Gandhe, M., Finin, T., Grosof, B.: SweetJess: Translating DamlRuleML to Jess. In: Pro-
ceedings of the International Workshop on Rule Markup Languages for Business Rules on
the Semantic Web at 1st International Semantic Web Conference, the Sardinia, Italy
(2002)

6. Ginsberg, A.: RIF Use Cases and Requirements, W3C Working Draft, http://
www.w3.org/TR/rif-ucr (2006)

7. Horrocks I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, W3C Member Submission,
http://www.w3.org/Submission/SWRL (2004)

8. Jovanović, J., Gašević, D.: XML/XSLT-Based Knowledge Sharing. Expert Systems with
Applications 29(3), 535–553 (2005)

9. Kurtev, I., Bézivin, J., Aksit, M.: Technological Spaces: an Initial Appraisal, CoopIS,
DOA’2002, Industrial track (2002)

10. Milanović, M., Gašević, D., Guirca, A., Wagner, G., Devedžić, V.: On Interchanging be-
tween OWL/SWRL and UML/OCL. In: Proceedings of 6th Workshop on OCL for (Meta-)
Models in Multiple Application Domains (OCLApps) at the 9th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems (MoDELS), Genoa,
Italy, pp. 81–95 (2006)

11. Miller, J., Mukerji, J. (eds.): MDA Guide Version 1.0.1, OMG (2003)
12. Meta Object Facility (MOF) Core, v2.0, OMG Document formal/06-01-01, http://

www.omg.org/cgi-bin/doc?formal/2006-01-01 (2005)
13. MOF QVT Final Adopted Specification, OMG document 05-11-01, (2005)
14. Meta Object Facility (MOF) 2.0 XMI Mapping Specification, v2.1, OMG Document for-

mal/2005-09-01, http://www.omg.org/cgi-bin/doc?formal/2005-09-01 (2005)
15. The REWERSE I1 Rule Markup Language (R2ML), http://oxygen.informatik.

tu-cottbus.de/rewerse-i1/?q=node/6 (2006)
16. Seidewitz, E.: What Models Mean, IEEE Software, pp. 26–32 (2003)
17. Simons, A.J.H.: The Theory of Classification, Part 17: Multiple Inheritance and the Reso-

lution of Inheritance Conflicts. Journal of Object Technology 4(2), 15–26 (2005)
18. Wagner, G., Giurca, A., Lukichev, S., R2ML: A General Approach for Marking-up

Rules”, In Proceedings of Dagstuhl Seminar 05371. In Bry, F., Fages, F., Marchiori, M.,
Ohlbach, H. (Eds.) Principles and Practices of Semantic Web Reasoning, http://
drops.dagstuhl.de/opus/volltexte/2006/479 (2005)

	Introduction
	Model Driven Engineering
	R2ML Metamodel and R2ML XML Schema
	The R2ML Abstract Syntax: R2ML Metamodel
	R2ML XML Schema

	Transformations Between the R2ML XML Schema and the R2ML Metamodel
	Transforming the R2ML XML Schema into the R2ML Metamodel
	Transforming the R2ML Metamodel into the R2ML XML Schema

	Experiences
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

