
ARTICLE IN PRESS
S1570-8683(05)00098-4/FLA AID:102 Vol.•••(•••) [+model] P.1 (1-21)
JAL:m3SC+ v 1.50 Prn:10/01/2006; 8:48 jal102 by:ES p. 1

l

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50

51

52

tion pro-
e
e com-
temporal
changes in
ts among
nd agent
al kinds of

either
ular, we

policies,
versation
ve com-
plexity

of in-
but these

ms”.
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Journal of Applied Logic••• (••••) •••–•••
www.elsevier.com/locate/ja

Specifying and verifying interaction protocols
in a temporal action logic

Laura Giordanoa,1, Alberto Martellib,∗,1, Camilla Schwindc

a Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria, Italy
b Dipartimento di Informatica, Università di Torino, Italy

c MAP, CNRS, Marseille, France

Abstract

In this paper we develop a logical framework for specifying and verifying systems of communicating agents and interac
tocols. The framework is based on Dynamic Linear Time Temporal Logic (DLTL), which extends LTL by strengthening thuntil
operator by indexing it with the regular programs of dynamic logic. The framework provides a simple formalization of th
municative actions in terms of their effects and preconditions and the specification of an interaction protocol by means of
constraints. We adopt a social approach to agent communication, where communication can be described in terms of
the social relations between participants, and protocols in terms of creation, manipulation and satisfaction of commitmen
agents. The description of the interaction protocol and of communicative actions is given in a temporal action theory, a
programs, when known, can be specified as complex actions (regular programs in DLTL). The paper addresses sever
verification problems (including the problem of verifying compliance of agents with the protocol), which can be formalized
as validity or as satisfiability problems in the temporal logic and can be solved by model checking techniques. In partic
show that the verification of the compliance of an agent with the protocol requires to move to the logic DLTL⊗, the product version
of DLTL.
 2005 Published by Elsevier B.V.

1. Introduction

One of the central issues in the field of multi-agent systems concerns the specification of conversation
which govern the communication between software agents in an agent communication language (ACL). Con
policies (or interaction protocols) define stereotypical interactions in which ACL messages are used to achie
municative goals. They define patterns of communication which “can actually simplify the computational com
of ACL message selection”[27], by providing a context in which ACL messages are interpreted.

Many ACL designers have included conversation policies as part of the ACL definition. The specification
teraction protocols has been traditionally done by making use of finite state machines and transition nets,
approaches have been recognized as being too rigid to allow for the flexibility needed in agent communication[17,27].
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For these reasons, several proposals have been put forward to address the problem of specifying (and
agent protocols in a flexible way. One of the most promising approaches to agent communication, first prop
Singh [32], is the social approach[1,8,18,27,33]. In the social approach, communicative actions affect the “so
state” of the system, rather than the internal (mental) states of the agents. The social state records social
the permissions and the commitments of the agents. The dynamics of the system emerges from the interacti
agents, which must respect these permissions and commitments (if they are compliant with the protocol). T
approach allows a high level specification of the protocol, and does not require the rigid specification of the
action sequences. It is well suited for dealing with “open” multi-agent systems, where the history of commun
is observable, but the internal states of the single agents may not be observable.

In this paper we develop a logical framework for reasoning about communicating agents. More precis
deal with the specification and verification of agent interaction protocols in Dynamic Linear Time Tempora
(DLTL) [21], which extends LTL by strengthening theuntil operator by indexing it with the regular programs
dynamic logic.

Temporal logics are widely used in the specification and verification of distributed systems and they have
gained attention in the area of reasoning about actions and planning[2,6,12,16,30], as well as in the specificatio
and verification of systems of communicating agents. The last topic will be dealt with in Section7, where various
approaches will be presented.

Our proposal for the specification and verification of interaction protocols in DLTL is based on the theo
reasoning about actions developed in[12] which allows reasoning about action effects and preconditions, reas
with incomplete initial states, and dealing with postdiction, ramifications as well as with nondeterministic a
We make use of temporal logic to provide a simple formalization of communicative actions in terms of their
and preconditions, to specify interaction protocols, to constrain behavior of autonomous agents and form
properties of these agents. As proposed in[17], in our approach conversation protocols are modelled as a s
constraints on the sequences of semantically coherent ACL messages.

The verification of the compliance of an agent with an interaction protocol, the verification of protocol prop
and the verification that an agent is (is not) respecting its social facts (commitments and permissions) at runtim
examples of tasks which can be formalized either as validity or as satisfiability problems in DLTL. Such verifi
tasks can be automated by making use of Büchi automata. In particular, we make use of the tableau-based
presented in[10] for constructing a Büchi automaton from a DLTL formula. The construction of the automaton c
done on-the-fly, while checking for the emptiness of the language accepted by the automaton. As for LTL, the
of states of the automaton is, in the worst case, exponential in the size of the input formula.

In [13] we have presented a proposal for reasoning about communicating agents with the Product Ve
DLTL, called DLTL⊗, which allows to describe the behavior of a network of sequential agents which coordina
activities by performing common actions together. In the first part of this paper we focus on the non-product
of DLTL, which appears to be a simpler choice and also a more reasonable choice when a social approach is
since the “social state” of the system is inherently global and shared by all of the agents. In Section2 we describe the
logic DLTL, while in Section3 we show how this logic can be used to specify protocols, in particular by describin
structure of the action theory which is used to model communicative actions. In Section4 we present some kinds o
verification tasks which can be conveniently represented in DLTL. In the next section we show that some ver
problems, such as the verification of the compliance of an agent with the protocol, require the use of the logic⊗,
which is presented there. In Section6 we give some hints on how proofs can be carried out in DLTL, and we conc
with a survey of related work and some conclusions.

2. Dynamic linear time temporal logic

In this section we briefly define the syntax and semantics of DLTL as introduced in[21]. In such a linear time
temporal logic the next state modality is indexed by actions. Moreover, (and this is the extension to LTL) th
operator is indexed by programs in Propositional Dynamic Logic (PDL).

Let Σ be a finite non-empty alphabet. The members ofΣ are actions. LetΣ∗ andΣω be the set of finite an
infinite words onΣ , whereω = {0,1,2, . . .}. Let Σ∞ = Σ∗ ∪ Σω. We denote byσ,σ ′ the words overΣω and by
τ, τ ′ the words overΣ∗. Moreover, we denote by� the usual prefix ordering overΣ∗ and, foru ∈ Σ∞, we denote
by prf (u) the set of finite prefixes ofu.
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We define the set of programs (regular expressions)Prg(Σ) generated byΣ as follows:

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗

wherea ∈ Σ andπ1,π2,π range overPrg(Σ). A set of finite words is associated with each program by the map
[[ ]] : Prg(Σ) → 2Σ∗

, which is defined as follows:

• [[a]] = {a};
• [[π1 + π2]] = [[π1]] ∪ [[π2]];
• [[π1;π2]] = {τ1τ2 | τ1 ∈ [[π1]] andτ2 ∈ [[π2]]};
• [[π∗]] = ⋃[[πi]], where

◦ [[π0]] = {ε},
◦ [[πi+1]] = {τ1τ2 | τ1 ∈ [[π]] andτ2 ∈ [[πi]]}, for everyi ∈ ω.

Let P = {p1,p2, . . .} be a countable set of atomic propositions containing	 and⊥.

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

wherep ∈ P andα,β range over DLTL(Σ ).
A model of DLTL(Σ ) is a pairM = (σ,V ) whereσ ∈ Σω andV : prf (σ ) → 2P is a valuation function. Given

a modelM = (σ,V ), a finite wordτ ∈ prf (σ ) and a formulaα, the satisfiability of a formulaα at τ in M , written
M,τ |= α, is defined as follows:

• M,τ |= p iff p ∈ V (τ);
• M,τ |= ¬α iff M,τ �|= α;
• M,τ |= α ∨ β iff M,τ |= α or M,τ |= β;
• M,τ |= αUπβ iff there existsτ ′ ∈ [[π]] such thatττ ′ ∈ prf (σ ) andM,ττ ′ |= β. Moreover, for everyτ ′′ such that

ε � τ ′′ < τ ′,2 M,ττ ′′ |= α.

A formulaα is satisfiable iff there is a modelM = (σ,V ) and a finite wordτ ∈ prf (σ ) such thatM,τ |= α.
The formulaαUπβ is true atτ if “ α until β” is true on a finite stretch of behavior which is in the linear ti

behavior of the programπ .
The derived modalities〈π〉 and[π] can be defined as follows:〈π〉α ≡ 	Uπα and[π]α ≡ ¬〈π〉¬α.
Furthermore, if we letΣ = {a1, . . . , an}, theU , O (next),� and� operators of LTL can be defined as follow

©α ≡ ∨
a∈Σ 〈a〉α, αUβ ≡ αUΣ∗

β, �α ≡ 	Uα, �α ≡ ¬�¬α, where, inUΣ∗
, Σ is taken to be a shorthand fo

the programa1 + · · · + an. Hence both LTL(Σ ) and PDL are fragments of DLTL(Σ ). As shown in[21], DLTL(Σ ) is
strictly more expressive than LTL(Σ ). In fact, DLTL has the full expressive power of the monadic second order th
of ω-sequences.

3. Protocol specification

In the social approach[8,18,33,38]an interaction protocol is specified by describing the effects of communic
actions on the social state, and by specifying the permissions and the commitments that arise as a result of t
conversation state. In our proposal the meaning of communicative actions is fixed by theprotocolwhich describes the
effects of each action on the social state of the system. In this sense, our work is part of that “. . . thread of researc
which takes conversational sequences themselves to be semantically primitive so that the meaning of individ
sages depends on the conversation and may slightly vary in the context of different agent conversations”[27]. These
effects, including the creation of new commitments, can be expressed by means ofaction laws. Moreover, the protoco
establishes a set of preconditions on the executability of actions, which can be expressed by means ofprecondition
laws. The notion ofcommitmenthas a prominent role in the social approach and in the following we introduce

2 We defineτ � τ ′ iff ∃τ ′′ such thatττ ′′ = τ ′. Moreover,τ < τ ′ iff τ � τ ′ andτ �= τ ′.
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different kinds of commitments. Commitment policies, which rule the dynamic of commitments, can be descr
causal lawswhich establish causal dependencies among fluents.

In the specification of the protocol, the social state of the system is viewed as a global one. However, as
see when dealing with the problem of verifying the conformance of each agent to the protocol (given the prog
agent executes), the single agents may only have a partial “local” view of the social state. In particular, each a
only see the effects on the social state of the actions to which it participates (as sender or receiver of the m
While in the case of a two agents system the history of all communications is known to both agents (as they pa
in all communicative actions) and they have the same local view of the social state, this is not true for more t
participants to the protocol. As we will see, the task of verifying the conformance of an agent to a protocol,
fact require, in the general case, to move to the product version of the logic, DLTL⊗ [20], which allows modelling the
behavior of a network of sequential agents that coordinate their activities by performing common actions tog

The specification of a protocol can be further constrained through the addition of suitabletemporal formulas, and
also the agents’ programs can be modelled, by making use of complex actions (regular programs).

Below we recall those aspects of the temporal action theory developed in[12] that we use in the specification
interaction protocols. In particular, we define what we mean by action laws, precondition laws and causal law
we introduce the notion of commitments and conditional commitments together with the laws ruling their in
and, finally, we treat, as a running example, the Contract Net protocol.

3.1. Action theories

The social state of the protocol, which describes the stage of execution of the protocol, is described by
atomic properties (fluents) which may hold or not in a state and may change value with the execution of comm
tive actions.

Let P be a set of atomic propositions, thefluent names. A fluent literal l is a fluent namef or its negation¬f .
Given a fluent literall, such thatl = f or l = ¬f , we define|l| = f . We will denote byLit the set of all fluent literals

A domain descriptionD is defined as a tuple(Π,Frame,C), whereΠ is a set ofaction lawsandcausal laws, and
C is a set ofconstraints. Frameprovides a classification of fluents as frame fluents and nonframe fluents as w
define below.

Theaction lawsin Π have the form:

�(α → [a]l),
with a ∈ Σ andα an arbitrary non-temporal formula andl a fluent literal. The meaning is that executing actiona in a
state where preconditionα holds causes the effectl to hold.

Thecausal lawsin Π have the form:

�((α ∧ ©β) → ©l),

with a ∈ Σ , α,β arbitrary non-temporal formulas andl a fluent literal. The meaning is that ifα holds in a state andβ
holds in the next state, thenl also holds in the next state. Such laws are intended to expresses “causal” depen
among fluents.

The constraintsin C are, in general, arbitrary temporal formulas of DLTL. Constraints put restrictions o
possible correct behaviors of a protocol. The kind of constraints we will use in the specification of a protocol
the observations on the value of fluents in theinitial stateand the precondition laws. The initial stateInit is a (possibly
incomplete) set of fluent literals.

Theprecondition lawshave the form:

�(α → [a]⊥),

with a ∈ Σ andα an arbitrary non-temporal formula. The meaning is that the execution of an actiona is not possible
if α holds (i.e. there is no resulting state following the execution ofa if α holds). Observe that, when there is
precondition law for an action, the action is executable in all states.

Frame is a set of pairs(f, a), wheref ∈ P is a fluent anda ∈ Σ is an action, meaning thatf is a frame fluen
for actiona, that is,f is a fluent to which persistency applies when actiona is executed. On the other hand, tho
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fluents which are not frame with respect toa do non-persist and may change value in a nondeterministic way,
executinga.

As in [24,26] we call frame fluents those fluents to which the law of inertia applies. However, as in[11], we
consider frame fluents as being dependent on the actions. Action laws and causal laws, which describe the i
and indirect effects of actions, have a special role in action theories, as frame fluents only change values acc
the immediate and indirect effects of actions described by the action laws and causal laws. All the frame fluen
values are not changed by such actions are assumed to persist unaltered to the next state. When an action i
all the fluents which are non-frame with respect to that action may change value nondeterministically, as the
subject to persistency.

The action language also containstest actions, which allow the choice among different behaviors to be contro
As DLTL does not include test actions, we introduce them in the language as atomic actions in the same way
in [12]. More precisely, we introduce an atomic actionφ? for each propositionφ we want to test. The test actionφ? is
executable in any state in whichφ holds and it has no effect on the state. Therefore, we introduce the following
which rule the modality[φ?]:

�(¬φ → [φ?]⊥)

�(〈φ?〉	 → (l ↔ [φ?]l)), for all fluent literalsl.

The first law is a precondition law, saying that actionφ? is only executable in a state in whichφ holds. The second law
describes the effects of the action on the state: the execution of the actionφ? leaves the state unchanged. We ass
that, for all test actions occurring in a domain description, the corresponding action laws are implicitly added

Test actions are specific actions and belong therefore to a particular action language (and the above laws
a particular action theory). They do not belong to the language of regular programs of the logic DLTL.

The action theory will be used for modelling communicative actions and the social behavior in multi-agent s
In this framework for modelling protocols, we will define two special actions

begin_protocol(s,all) and end_protocol(s,all)

which are supposed to start and to finish arun of the protocol. The first message is sent by the initiators of the protocol
to all other participating agents, while the second message is sent by any of the agents which may close the
to all the participants. For each protocol, we introduce a special fluentPn (wherePn is the “protocol name”) which
is true during the whole execution of the protocol:Pn is made true by the actionbegin_protocol(s, r) and it is made
false by the actionend_protocol(s, r).

Note that protocol “runs” are always finite, while the logic DLTL is characterized by infinite models. Therefo
formulation of the protocol would have no model in DLTL. To take this into account, we assume that each
description of a protocol will be suitably extended with an actionnoopwhich does nothing and which can be execu
only after termination of the protocol, so as to allow a computation to go on forever after termination of the pr
So every model will consist of a finite sequence of actions corresponding to a “run” of the protocol, followed
infinite sequence ofnoopactions.

The action theory described above relies on a solution to theframe problemsimilar to the one described in[12].
In [12], to deal with the frame problem, a completion construction is defined which, given a domain desc
introduces frame axioms for all the frame fluents in the style of the successor state axioms introduced by Re[31]
in the context of the situation calculus. The completion construction is applied only to the action laws and cau
in Π and not to the constraints. By completing the action laws and causal laws we formalize the fact that act
and causal laws are the only laws which may change the value of frame fluents: the value of a frame fluen
(stays unaltered) unless the change is caused by the execution of an action as an immediate effect (effect of
laws) or an indirect effect (effect of the causal laws). We callComp(Π) the completion of a set of lawsΠ and, in the
following subsection, we describe the details on the completion construction.

3.1.1. Completion of a set of action laws and causal laws
Let Π be a set of action laws and causal laws. In this paper, we have assumed that the consequents of

laws and causal rules inΠ are fluent literals rather than general formulas. Hence,Π will contain formulas of the form

�(αi → [a]f ) �(βj → [a]¬f ),
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as well as causal laws of the form

�((α ∧ ©β) → ©l),

with a ∈ Σ , α,β,αi, βj arbitrary (non-temporal) formulas andl a fluent literal.
Observe that, given the definition of the next operator© (namely,©α ≡ ∨

a∈Σ 〈a〉α), the causal law above can
written as follows:

�
((

α ∧
∨
a∈Σ

〈a〉β
)

→
∨
a∈Σ

〈a〉l
)

.

Observe also that, when a given actiona is executed in a state (i.e. in a world of a model), this is the only ac
executed in it, since models of DLTL are linear (and each models describes a single run on the protocol). Hen
the formula above it follows:

(∗) �((α ∧ 〈a〉β) → 〈a〉l).
Moreover, as the axioms〈a〉l → [a]l and〈a〉	 ∧ [a]l → 〈a〉l hold in DLTL (see[21]), from (∗) we can get:

(∗∗) �(〈a〉	 → ((α ∧ [a]β) → [a]l)).
This formula has a structure very similar to action laws. We call these formulasnormalized causal laws.

We can now define our completion construction starting from the action laws inΠ and from the normalized caus
laws inΠ . Both kinds of laws have the general form:

�(〈a〉	 → (αi ∧ [a]γi → [a]f )) �(〈a〉	 → (βj ∧ [a]δj → [a]¬f )),

whereαi,βj , γi, δj are arbitrary (non-temporal) formulas and some of the conjuncts in the antecedents may b
ing.

We define the completion ofΠ as the set of formulasComp(Π) containing, for all actionsa and fluentsf such
that(f, a) ∈ Frame, the following axioms:

(1)�
(

〈a〉	 →
(

[a]f ↔
∨
i

(αi ∧ [a]γi) ∨ (f ∧ ¬[a]¬f )

))
,

(2)�
(

〈a〉	 →
(

[a]¬f ↔
∨
j

(βj ∧ [a]δj ) ∨ (¬f ∧ ¬[a]f )

))
.

Notice that, for each actiona and fluentf which is nonframe with respect toa, i.e. (f, a) /∈ Frame, axioms(1)
and (2)above are not added inComp(Π). As in [31], these laws express that a fluentf (or its negation¬f ) holds
either as a consequence of some actiona or some causal law, or by persistency, sincef (or ¬f ) held in the state
before the occurrence ofa and¬f (or f ) is not a result ofa.

From the two axioms above we can derive the following axioms, which are similar, in their structure, to R
successor state axioms[31]:

�
(

〈a〉	 →
(

[a]f ↔
(∨

i

(αi ∧ [a]γi)

)
∨

(
f ∧

∧
j

(¬βj ∨ ¬[a]δj )

)))
,

�
(

〈a〉	 →
(

[a]¬f ↔
(∨

j

(βj ∧ [a]δj )

)
∨

(
¬f ∧

∧
i

(¬αi ∨ ¬[a]γi)

)))
.

The construction above is similar to the one that we have introduced in[12], though there are some differences for
fact that here we have adopted a different formalization of causal laws by using the next operator. Also, her
laws are more general than in[12], as they refer (in their antecedent) to the values of fluents in the current st
well as in the next state.
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3.2. Commitments and permissions

As we have said, from the standpoint of the specification of the protocol, the social state of the system
regarded as a “global” set of properties which describe the execution stage of the protocol. In our propo
social state contains domain specific fluents and special fluents representing commitments. Thedomain specific fluent
describe observable facts concerning the execution of the protocol, that is, facts that could be observed by a
observer, who sees the history of the messages exchanged by the communicating agents (without know
internal behavior).

The use of social commitments has long been recognized as a “key notion” to allow coordination and co
cation in multi-agent systems[25]. Nevertheless the first attempts to use these notions to ground the commun
theories are more recent—and essentially motivated by requirements of verifiability[27]. Among the most significan
proposals to use commitments in the specification of protocols (or more generally, in agent communication) a
[33], Guerin and Pitt[18], Colombetti[8]. An alternative notion to commitment, which has been proposed in[1] for
the specification of agent protocols, is the notion ofexpectation.

In order to handle commitments and their behavior during runs of a protocolPn, we introduce two special fluent
One representsbase-level commitmentsand has the formC(Pn, i, j, α) meaning that agenti is committed to agen
j to bring aboutα, whereα is an arbitrary propositional formula not containing commitment fluents. The se
commitment fluent modelsconditional commitmentsand has the formCC(Pn, i, j, β,α) meaning that in protoco
Pn the agenti is committed to agentj to bring aboutα, if the conditionβ is brought about (whereα is an arbitrary
propositional formula not containing commitment fluents). As already mentioned above,Pn is a fluent which has to b
verified during the whole execution of the protocol. The two kinds of base-level and conditional commitments
here are essentially those introduced in[38]. Our present choice is different from the one in[18] and in[13], where
agents are committed to execute an action rather than to achieve a condition. Let us point out that this presen
more general than the one in our previous work[13]. If the agent is committed to perform an action (instead of be
committed to produce some result) he can only do one thing: perform the action. When he is committed to brin
a condition (or result)α, he could achieve that in principle by more than one action or he could get some help b
other agent who could perform actions to produceα. On the other hand, the solution in[13] may be considered bein
more precise in case the commitment is considered to be fulfilled only in case agenti itself has brought aboutα and
not if some other agent has brought about it.

To give an example, in the specification of the Contract Net protocol (namedCN) we introduce the following
commitments:

C(CN,M,P,acc_rej),

meaning that the manager is committed to the participant to accept or to reject a proposal. As an exam
conditional commitment we have:

CC(CN,M,P,proposal,acc_rej),

meaning that the manager is committed to the participant to accept or to reject a proposal, whenever the pro
been made.

The idea is that each commitment has a life time which is included in each “run” of a protocol. A run is a
sequence of actions consistent with the protocol (for the formalDefinition 4see in next Section3.3). Commitments
are created as effects of the execution of communicative actions in the protocol and they are “discharged” w
have been fulfilled.

A commitmentC(Pn, i, j, α), created at a given world of a run, is regarded to be fulfilled in a run if there is a
world in the run in whichα holds. As soon as commitment is fulfilled in a run, it is considered to be satisfied a
longer active: it can be discharged.

We introduce the followingcausal lawsfor automatically discharging fulfilled commitments:

(i) �(©α → ©¬C(Pn, i, j, α)),
(ii) �((CC(Pn, i, j, β,α) ∧ ©β) → ©C(Pn, i, j, α)),

(iii) �((CC(Pn, i, j, β,α) ∧ ©β) → ©¬CC(Pn, i, j, β,α)).
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A commitment to bring aboutα is considered fulfilled and is discharged (i) as soon asα holds. A conditional com
mitmentCC(Pn, i, j, β,α) becomes a base-level commitmentC(Pn, i, j, α) whenβ has been brought about (ii) an
the conditional commitment is discharged (iii).

Observe that, it might not always be reasonable to discharge conditional commitments. A commitmentCC(Pn, i, j,
β,α) might be interpreted as meaning that agenti is committed to agentj to bring aboutα, any time the condition
β is brought about. In this case the conditional commitment should not be discharged and should persist unt
of the protocol. For simplicity, in this paper we assume that also conditional commitments are discharged a
conditionβ is made true and the base-level commitment is created.

In our formalization we have not introduced explicitcreateanddischargeoperations on commitments, nor w
have introduced operations for manipulating commitments likecancel, release, delegate, etc. (see[35]). This choice
has been adopted for its simplicity (a commitment either is active or it is not), though it limits substantia
flexibility of the commitment based approach. The definition of these operations on commitments in the for
would, however, be possible by introducing explicit (create, discharge, cancel, release, delegate, etc.) actions and b
describing the effects of such actions on commitments by means of action laws. In such a case, the comm
actions in the protocol should have the effect of “calling” these primitive operations rather than directly crea
commitments.

We can express the condition that a commitmentC(Pn, i, j, α) has to be fulfilled before the “run” of the protoc
is finished by the followingfulfillment constraint:

�(C(Pn, i, j, α) → PnUα).

We will call Comi the set of constraints of this kind for all commitments of agenti. Comi states that agenti will fulfill
all the commitments of which it is the debtor.

At each stage of the protocol only some of the messages can be sent by the participants, depending on
state of the conversation.Permissionsallow to determine which messages are allowed at a certain stage of the pr
The permissions to execute communicative actions in each state are determined by social facts. We represe
precondition laws. Preconditions on the execution of actiona can be expressed as:

�(α → [a]⊥)

meaning that actiona cannot be executed in a state ifα holds in that state. Ifα holds in a state the execution of acti
a does not lead to a resulting state (there is no state where⊥ can be true).

We callPermi (permissions of agenti) the set of all the precondition laws of the protocol pertaining to the ac
of which agenti is the sender.

3.3. Protocols and their runs

A protocol is specified by defining a domain description. Each communicative action is specified by defi
effects on the social state (by means of action laws) and by defining its executability conditions (by preconditio
The domain description also includes the causal laws defining the commitment rules, the initial state of the p
as well as the fulfillment constraints for each commitment in the social state.

Definition 1. A protocol is specified by defining a domain descriptionD = (Π,Frame,C) as follows:

• Π is the set of the action and causal laws containing:
◦ the laws describing the effects of each communicative actions on the social state;
◦ the causal laws (i), (ii) and (iii) above defining the commitment rules.

• C = Init ∧ ∧
i (Permi ∧ Comi ) is the conjunction of the constraints on the initial state of the protocol an

permissionsPermi and the commitmentsComi of all the agentsi.
• Frame= {(f, a): a ∈ Σ, f ∈ P}.

In the following we assume that all fluents are frame and, in particular, we assume that all the commitmen
are frame with respect to all actions. This condition will be removed in Section5 when we will address the proble
of verifying the conformance of an agent to the protocol in DLTL, by analyzing the behavior of agenti in isolation.
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This requires to assume that the behavior of part of the system is unpredictable, which can be modelled by
use of nondeterministic fluents.

It is clear that, while the social state, as a whole, is global to all agents, each single agent can only be
the communicative actions to which it participates and of the changes produced by those actions. For this re
stipulate that each agent participating in the protocol has only a partial visibility of the social state, and in pa
an agent can only see the commitments of which he is the debtor or the creditor as well as those fluents of t
state which are involved in the description of the actions to which he participates as a sender or receiver.

Definition 2. We define the setPi of thefluents visible to agenti as follows:

• The commitmentsC(Pn, i, j, α),CC(Pn, i, j, β,α),C(Pn, j, i, α),CC(Pn, j, i, β,α) belong toPi and all the flu-
ents occurring withinα andβ belong toPi .

• For each communicative actiona of which i is the sender or the receiver, and for each action law

�(α → [a(i, j)]l) (or �(α → [a(j, i)]l))
|l| and the fluents inα belong toPi .

• For each communicative actiona of which i is the sender, for each precondition law

�(α → [a(i, j)]⊥)

the fluents inα belong toPi .

Observe that the definition above also applies to communicative actions which are broadcast from on
(sender) to a set of agents (receivers).

A protocol specification iswell-definedwhen each fluent visible to agenti cannot be modified by other agen
without i being aware of the modification.

Definition 3. We say that a domain descriptionD specifying a protocol iswell definedif, for all agentsi and for all
fluentsf ∈ Pi , f does not occur as a positive or negative effect of any communicative actiona(k, l) of which i is
neither the sender nor the receiver.

It is easy to see that, due to the kinds of causal laws we have introduced (namely (i), (ii) and (iii)),Definition 3
guarantees that, if the specificationD of a protocol is well-defined, the value of a fluentf ∈ Pi can only be change
as an immediate or indirect effect of the communicative actions of which agenti is sender or receiver.

In particular, by the fact that a commitmentC(Pn, i, j, . . .) ∈ Pi ∩ Pj the specification of a protocol is not we
defined in the case the value of the commitment fluent is changed by a communicative action which does not
bothi andj .

Observe that the condition of well-definedness above excludes that a commitmentC(l, k, . . .) may occur within
another commitmentC(i, j,β,α) involving different agents, if the protocol is well-defined. In fact, a commitm
C(Pn, i, j,C(Pn, k, l, α1), α2) where l �= i, l �= j , k �= i, k �= j is not admitted in a well-defined domain descr
tion. By the first item inDefinition 2, we get thatC(k, l, α1) ∈ Pk ∩ Pl . But, as the commitment occurs within t
commitmentC(Pn, i, j, β,α2) in β, thenC(Pn, k, l, α1) ∈ Pi ∩ Pj . Assume the value of the commitmentC(k, l, α1)

is changed by executing a communication actiona(k, l) betweenk and l, then, asC(Pn, k, l, α1) ∈ Pi , the domain
description is not well-defined. Similarly, ifC(k, l, α1) is changed by executing a communication actiona(i, j): the
domain description is not well-defined asC(Pn, k, l, α1) ∈ Pk .

Given a domain descriptionD, we denote byComp(D), the completed domain description, the set of formulas(
Comp(Π) ∧ Init ∧

∧
i

(Permi ∧ Comi )

)
∧ 〈begin_protocol(s,all)〉	

where agents is the initiator of the protocol.

Definition 4. Given the specification of a protocol by a domain descriptionD, the runs of the system according t
protocol are exactly the models ofComp(D).
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The last conjunct in the definition ofComp(D) is introduced to force each modelM = (σ,V ) satisfyingComp(D)

to have actionbegin_protocol(s,all) as the first action inσ .
Given the definition above, in all protocol runs all permissions and commitments of all agents are fulfille

is needed as we want include among the runs of the protocol, only those models in which all agent resp
permissions and commitments. However, it is clear that, ifComj were not included inComp(D) for some agentj , the
models satisfyingComp(D) might contain commitments which have not been fulfilled byj . They are runs in which
agentj may not be compliant with the protocol.

3.4. The Contract Net protocol

As a running example we will use the Contract Net protocol[7].

Example 5. The Contract Net protocol begins with an agent (the manager) broadcasting a task announcem
for proposals) to other agents viewed as potential contractors (the participants). Each participant can reply b
either a proposal or a refusal. The manager must send an accept or reject message to all those who sent
When a contractor receives an acceptance it is committed to perform the task.

We assume there areN + 1 agents: the managerM andN participants 1, . . . ,N . A communicative actionact is
represented by the notationact(s, r), wheres is the sender andr is the receiver. Withact(M,all) we mean that the
communicative actionact is broadcast by the manager to all participant.

The communicative actions are the following ones (wherei = 1, . . . ,N ranges over the participants 1, . . . ,N ):
begin_protocol(M,all) (the manager announces to all participants the beginning of the protocol),cfp(M,all) (the
manager issues—broadcasts—a task announcement),accept(M, i) and reject(M, i) whose sender is the manag
refuse(i,M) andpropose(i,M) whose sender is the participanti, inform_done(i,M) by which agenti informs the
manager that the task has been executed, andend_protocol(M,all) by which the manager broadcasts the comple
of the protocol.

The social state contains the following domain specific fluents:CN (which is true during the execution of th
protocol), task (whose value is true after the task has been announced),replied(i) (the participanti has replied),
proposal(i) (the participanti has sent a proposal),acc_rej(i) (the manager has sent an accept or reject messa
the participanti) accepted(i) (the manager has accepted the proposal of participanti) anddone(i) (participanti has
performed the task). Such fluents describe observable facts concerning the execution of the protocol.

Among the fluents, we introduce the followingconditional commitmentswhich have to be satisfied during th
Contract Net protocol CN:

CC(CN, i,M, task, replied(i)) if a task has been announced, the participanti has to reply
CC(CN,M, i,proposal(i),acc_rej(i)) if i has made a proposal the manager has to accept or to reject it
CC(CN, i,M,accepted(i),done(i)) if the participant’si proposal has been accepted he is committed to exec
(to make truedone(i))

and the correspondingbase-level commitments

C(CN, i,M, replied(i)) participanti must reply to a proposal
C(CN,M, i,acc_rej(i)) the manager has to bring about a response (accept or reject)
C(CN, i,M,done(i)) the participanti is committed to the manager to perform the task (to producedone(i)).

The effects of communicative actions are described by the followingaction laws(wherei = 1, . . . ,N ranges over the
participants 1, . . . ,N ):

(A1) �[begin_protocol(M,all)]CN
(A2) �[cfp(M,all)]task
(A3) �[cfp(M,all)]CC(CN,M, i,proposal(i),acc_rej(i))
(A4) �[accept(M, i)]acc_rej(i)
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(A5) �[accept(M, i)]accepted(i)
(A6) �[reject(M, i)]acc_rej(i)
(A7) �[refuse(i,M)]replied(i)
(A8) �[propose(i,M)]replied(i)
(A9) �[propose(i,M)]proposal(i)

(A10) �[propose(i,M)]CC(CN, i,M,accepted(i),done(i))
(A11) �[inform_done(i,M)]done(i)
(A12) �[end_protocol(M,all)]¬CN.

Action begin_ protocolinitiates the protocol by puttingCN to true, whileend_ protocolterminates it by puttingCN
to false. Since there is no other action makingCN false,CN remains true, i.e.CN persists during the whole run o
this protocol according to the frame laws in the completion, as described in Section3.1 (see rule1). Moreover,CN
remains false after the end of the protocol. The laws for actioncfpadd to the social state the information that a call
proposal has been done for a task, and that, if the manager receives a proposal, it is committed to accept o
The laws (A4) and (A6) say that when the manager accepts (rejects) the proposal by participanti, this is recorded in
the social state by making the fluentacc_rej(i) true. Furthermore, if the proposal is accepted, the fluentaccepted(i)
becomes true due to law (A5). The laws (A7) and (A8) say that when the participanti sends a refusal or a propos
to the manager, this is recorded in the social state by making the fluentreplied(i) true. If the reply is a proposal, th
fluentproposal(i) becomes true, and the agent is committed to perform the task if the manager accepts the
(laws (A9) and (A10)). By actioninform_done(i,M) agenti informs the managerM that the task has been performe

The permissions to execute communicative actions in each state can be defined by the following precondit

(A13) �(CN → [begin_protocol(M,all)]⊥)

(A14) �(¬CN∨ task→ [cfp(M,all)]⊥)

(A15) �(¬CN∨ ¬proposal(i) ∨ acc_rej(i) → [accept(M, i)]⊥)

(A16) �(accepted(i) → [accept(M, j)]⊥) for all i �= j

(A17) �(¬CN∨ ¬proposal(i) ∨ acc_rej(i) → [reject(M, i)]⊥)

(A18) �(¬CN∨ ¬task∨ replied(i) → [refuse(i,M)]⊥)

(A19) �(¬CN∨ ¬task∨ replied(i) → [propose(i,M)]⊥)

(A20) �(¬CN∨ ¬accepted(i) ∨ done(i) → [inform_done(i,M)]⊥)

(A21) �¬CN∨ ¬task→ [end_protocol(M,all)]⊥.

All actions, except forbegin_protocol(M,all), can be executed only after the protocol has started (A13). Ac
begin_protocol(M,all) can be executed ifCN is false, i.e. the protocol has not yet started. The law forcfp says that
the manager cannot issue a call for proposal if a task has already been announced (A14). The precondition
actionsaccept(M, i) and reject(M, i) ((A15) and (A17)) say that actionacceptcan be executed only if a propos
has been issued and the manager has not already replied. Moreover, we stipulate that the manager cannot a
that one proposal (A16). The precondition laws for actionspropose(i,M) and refuse(i,M) ((A19) and (A18)) say
that a proposal can only be done if a task has already been announced and the participant has not already re
action inform_done(i,M) can be executed by agenti only after his proposal has been accepted (law (A20)). Ac
end_protocol(M,all) can be executed by the manager at any moment during the execution of the protocol a
task has been announced. Of course in all runs satisfying the protocol, all commitments have to be fulfilled b
actionend_protocol is executed by the manager.

To express that we want the manager to accept or reject a proposal only after all participants have replied
add the following precondition laws foraccept(M, i) andreject(M, i):

(A22) �(
∨

j=1,N ¬replied(j) → [accept(M, i)]⊥)

(A23) �(
∨

j=1,N ¬replied(j) → [reject(M, i)]⊥).

Assume now that we want all participants to be committed to reply to the task announcement. We can
this by putting the following conditional commitment in the initial stateInitCN of the Contract Net of the protoco
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CC(CN, i,M, task, replied(i)), for eachi. All domain specific fluents and all other commitments will be false in
initial state.

The domain descriptionDCN = (ΠCN,FrameCN,CCN) for the Contract Net protocol (withN participants) can
therefore be defined as follows:

• ΠCN is the set of the action laws (A1)–(A12) and all instances of the causal laws (i), (ii) and (iii) above
tion 3.2);

• CCN = InitCN ∧ ∧
i (Permi ∧ Comi );

• FrameCN = {(f, a): a ∈ Σ,f ∈ P},

where
∧

i Permi is the set of precondition laws (A13)–(A23) and
∧

i Comi contains the instances of thefulfillment
constraintfor each of the commitments introduced in the domain description.

It is easy to see that the specification of the Contract Net protocol given above is well-defined.
All the possible runs of the protocol can be obtained as finite substrings of linear models ofComp(DCN). In these

protocol runs all permissions are satisfied and all commitments are fulfilled.

4. Protocol verification in DLTL

Given the DLTL specification of a protocol by a domain description as defined above, we can now desc
different kinds of verification problems which can be addressed. In particular, in this section we consider ver
problems which do not require the availability of an agent program, namely, the verification of agents compl
runtime and the verification of properties of the protocol.

4.1. Verifying agents compliance at runtime

Given an execution history describing the interactions of the agents, we want to verify the compliance
execution to the protocol. This verification is carried out at runtime.

This kind of verification does not require to be aware of the internal behavior of the communicating age
only know the history of the communications among the agents (that is the sequence of communicative mess
have exchanged) and we have to check the conformance of this execution with the protocol, that is, we have
that history is a prefix of a run of the protocol.

We are given a historyτ = a1, . . . , an of the communicative actions executed by the agents, and we want to
that the historyτ is the prefix of a run of the protocol, that is, it respects the permissions and commitments
protocol. This problem can be formalized by requiring that the formula(

Comp(Π) ∧ Init ∧
∧
i

(Permi ∧ Comi )

)
∧ 〈a1;a2; . . . ;an〉	

(wherei ranges on all the agents involved in the protocol) is satisfiable. In fact, the above formula is satisfia
is possible to find a run of the protocol starting with the action sequencea1, . . . , an. On the one hand, this means th
when the actionsa1, . . . , an in the sequence are executed their preconditions hold. On the other hand, this d
mean that in the stretch of behaviora1 . . . an all the created commitments have already been fulfilled, but only th
is possible to continue the conversation so that they will eventually be fulfilled.

4.2. Verifying protocol properties

A second problem is that of proving a propertyϕ of a protocol. This can be formulated as the validity of the form

(3)

(
Comp(Π) ∧ Init ∧

∧
i

(Permi ∧ Comi )

)
→ ϕ,

according to which all the runs of the protocol satisfy the (temporal) propertyφ. As an example of property we want
check, we consider the property of termination of the protocol. After the manager has announced a task, the
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will eventually arrive to completion. This property can be formalized by the temporal formula:

ϕ = �[cfp(M,all)]�¬CN

meaning that, always, after a call for proposal has been issued by the manager, the protocol will eventually
state in which the propositionCN is false, i.e. the protocol is finished, for all possible runs of the protocol.

As a further example, let us consider a version of the Contract Net protocol with a single participantP . In such a
case, given that the protocol is quite rigid, the correct behaviors of the protocol could be described by the fo
regular programπ :

start_protocol(M,P );cfp(M,P );
(refuse(P,M) +
(propose(P,M); (reject(M,P ) +

accept(M,P ); inform_done(P,M))));
end_protocol(M,P ).

We could wonder whether the specification of the protocol given in Section3.4in terms of commitments is equivale
(when restricted to a single participantP ) to the rigid specificationπ above.

We can verify that each runs of the Contract Net protocol as defined in Section3.4 is an execution of the progra
π by proving the validity of the formula:

(4)

(
Comp(Π) ∧ Init ∧

∧
i

(Permi ∧ Comi )

)
→ 〈π〉	.

Moreover, we can verify that all the behaviors admitted byπ correspond to runs of the protocol (as defined in S
tion 3.4), that is, they satisfy the permissions and commitments:

(5)(Comp(Π) ∧ Init ∧ 〈π〉	) →
(∧

i

(Permi ∧ Comi )

)
.

5. Verifying the compliance of an agent with the protocol at compile-time

When the program executed by an agent is given (or, at least, its logical specification is given), we are fa
the problem of verifying if the agent is compliant with the protocol, that is, to verify if the agent’s program re
the protocol. The logical specification of the protocol is given as described in the previous sections. Solv
problem requires: first to provide anabstractspecification of the behavior (program) of the agent; and, secon
check that all the executions of the agent program satisfy the specification of the protocol, assuming that
agents are compliant with the protocol. This requires comparison of the executions of the protocol, which
the communicative actions executed by all the agents, and the executions of the single agent we want to
conformance, which contain its communicative actions as well as its internal actions.

In [14] we have shown that this verification problems can be represented, in some cases, in DLTL without re
the product version. This is true in particular for protocols involving two agents, where all fluents and all action
social state are shared by both agents. However, in the general case, addressing this problem requires to m
Product Version of DLTL, which allows description of the behavior of a network of sequential agents that coo
their activities by performing common actions together. Such logic allows the actions of the different agen
interleaved and the state of the system described as partitioned into local states, representing the local vie
social state that are visible to each single agent. In the product version, we can focus separately on those a
given run pertaining to a single agent, while abstracting away from all other actions in the run. So, for instanc
the protocol specification puts requirements on the communicative actions in the run, the specification of the
be verified only imposes requirements on the sequences of his communicative and internal actions.

In the following we first introduce the Product Version of DLTL, then we provide an abstract specification
agent program and, finally, we describe the problem of verifying the conformance of the agent to the protoco
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5.1. The product version of DLTL

Let us now recall the definition of DLTL⊗ from [20]. Let Loc= {1, . . . ,K} be a set oflocations, the names of th
agents synchronizing on common actions. Adistributed alphabetΣ̃ = {Σi}Ki=1 is a family of (possibly non-disjoint
alphabets, with eachΣi a non-empty, finite set of actions (Σi is the set of actions which require the participation
agenti). Let Σ = ⋃K

i=1 Σi . Forσ ∈ Σ∞, we denote byσ ↑ i the projection ofσ down toΣi .
Atomic propositions are introduced in a local fashion, by introducing a non-empty set of atomic propositiP .

For each propositionp ∈P and agenti ∈ Loc, pi represents the “local” view of the propositionp at i, and is evaluate
in the local state of agenti.

Let us define the set of formulas of DLTL⊗(Σ̃) and their locations (ifα is a formula, thenloc(α), which is a
subset ofLoc, denotes its location): (a)	 is a formula andloc(	) = ∅; (b) if p ∈ P andi ∈ Loc, pi is a formula and
loc(pi) = {i}; (c) if α andβ are formulas, then¬α andα ∨ β are formulas andloc(¬α) = loc(α) andloc(α ∨ β) =
loc(α) ∪ loc(β); (d) if α andβ are formulas andloc(α), loc(β) ⊆ {i} andπ ∈ Prg(Σi), thenαUπ

i β is a formula
and loc(αUπ

i β) = {i}. Notice that no nesting of modalitiesUi andUj (for i �= j ) is allowed, and the formulas i
DLTL⊗(Σ̃) are boolean combinations of formulas from the set

⋃
i DLTL⊗

i (Σ̃), where

DLTL⊗
i (Σ̃) = {α | α ∈ DLTL⊗(Σ̃) andloc(α) ⊆ {i}}.

A model of DLTL⊗(Σ̃) is a pairM = (σ,V ), whereσ ∈ Σ∞ andV = {Vi}Ki=1 is a family of functionsVi , where
Vi : prf (σ ↑ i) → 2P is the valuation function for locationi.

The satisfiability of formulas in a model is defined as above, except that propositions are evaluated lo
particular, for allτ ∈ prf (σ ):

• M,τ |= pi iff p ∈ Vi(τ ↑ i);
• M,τ |= αUπ

i β iff there exists aτ ′ such thatτ ′ ↑ i ∈ [[π]], ττ ′ ∈ prf (σ ) and M,ττ ′ |= β. Moreover, for all
τ ′′ ∈ prf (τ ′), if ε � τ ′′ ↑ i < τ ′ ↑ i, thenM,ττ ′′ |= α.

Satisfiability in DLTL⊗ is defined as above. Moreover, the derived modalities〈π〉i , [π]i , ©i , �i and�i are defined
as above, but only considering the actions inΣi .

In the product version of DLTL the global state of the system can be regarded as a set of local states, one
agenti. The action laws and causal laws of agenti describe how the local state ofi changes when an actiona ∈ Σi

is executed. The underlying model of communication is the synchronous one: the communication actionsendi,j (m)

(messagem is sent by agenti to agentj ) is shared by agenti (the sender) and agentj (the receiver) and execute
synchronously by them. Their local states are updated separately, according to their action specification. Th
simplicity, we adopt the synchronous model, an asynchronous model can be easily obtained by explicitly m
the communication channels among the agents as distinct locations.

5.2. Describing the program of an agent

For the purpose of verifying if behavior of agenti is compliant with the protocol, we need to introduce t
locations, one locationi for the agenti to be verified and one locationP for the protocol.3 Hence, we haveLoc=
{P, i}.

For the locationi, the agent to be verified, we need to specify both the internal actions of the agent (wh
private) and the communicative actions of the agent (which are shared with the protocolP ).

3 As a difference with[13] here we do not introduce a distinct location for each different agent participating in the protocol. This sim
substantially the specification of the protocol, as we do not need to project the protocol on the different agents, and to repeat the specific
communicative actions for each of the participating agent.
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In our formalism we can specify the (abstract) behavior of an agent by making use of complex actions
programs). Consider for instance the following programπi for a participanti:

[¬endi?; ((cfp(M,all);eval_task; (¬oki?; refuse(i,M) + oki?;propose(i,M))) +
(reject(M, i)) +
(accept(M, i);do_task; inform_done(i,M)) +
(end_protocol(M,all);exit))]∗;endi?

The participant cycles and reacts to the messages that he received by the manager: for instance, if the ma
issued a call for proposal, the participant can either refuse it or make a proposal according to its evaluation of
if the manager has rejected the proposal, the participant does nothing; if the manager has accepted the pro
participant performs the task; if the manager concludes the protocol by executing the actionend_protocol, the agent
i executes theexit action, which concludes the execution of the cycle.

The state of the participanti contains the following local fluents:endi , which is initially false and is made true b
actionexit, andoki which says if the agent must make a bid or not. The local actions areeval_task, which evaluates
the task and sets the fluentoki to true or false,do_taskandexit. Furthermore,endi? andoki? are test actions.

Agent i has a local view of the social state. It can see the social fluents which are used and modified
communicative actions to which it participates. Therefore, the state of participanti contains, in addition to the loca
fluents mentioned above, also the social fluents:CNi , taski , repliedi (i), proposali (i), acc_reji (i), acceptedi (i) and
donei (i), together with all the commitments involving agenti, which have been introduced in Section3.4. We have
added the indexi to each fluent to make it clear that these are the local views of the fluents at locationi.

We define the setΣi of the actions at locationi as the set containing the local actions mentioned above, and th
lowing communicative actions (of whichi is sender or receiver):begin_protocol(M,all), cfp(M,all), accept(M, i),
reject(M, i), refuse(i,M), propose(i,M), inform_done(i,M) andend_protocol(M,all).

The program of the participanti can then be specified by a domain descriptionProgi = (Πi,Ci ,Framei ), where
Πi is a set of action laws describing the effects of the private and communicative actions of the participani. For
instance, the actionexit sets the propositionendi to true:

�[exit]iendi .

The actioneval_taskhas the nondeterministic effect of assigning a value true or false to the fluentoki . In the action
theory, this is modeled by stating that the fluentoki is non-frame with respect to actioneval_task, that is:

Framei = {(f, a): a ∈ Σ,f ∈P} \ {(eval_task,oki )}.
Πi also contains the action laws (A1)–(A12) for the communicative actions (where the parameteri occurring in the
action laws is the same as the locationi). For instance, (A4) becomes

�[accept(M, i)]iacc_reji (i).

The set of constraintsCi containsInit i which provides the initial values for the local fluents (¬done,¬ok) and for
the social fluents of agenti (which must be the same as in the protocol initial stateInit). Moreover,Ci contains the
formula〈πi〉	 stating that the program of the participant is executable in the initial state.

Concerning the locationP of the protocol, the local propositions atP are all the social fluent used in the definiti
of the protocol. Moreover,ΣP is the set of actions containing all the communicative actions in the protocol s
fication (as defined in Section3). We can therefore associate to the locationP the domain descriptionD which has
been introduced in Section3.4for specifying the Contract Net protocol. Strictly speaking, we would need to inde
the modalities occurring in the domain descriptionD with the labelP of the protocol location and the same for t
fluents at locationP . However, we will omit the indexP with no risk of confusion, as there are just two locations

5.3. Verifying the compliance of an agent with the protocol

We want now to prove that the participant is compliant with the protocol, i.e. that all executions of progrπi

satisfy the specification of the protocol. This property cannot be proved by considering only the programπi . In fact, it
is easy to see that the correctness of the property depends on the behavior of the manager. For instance, if th
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begins with anacceptaction, the participant will execute the sequence of actionsaccept;do_task;exitand stop, which
is not a correct execution of the protocol. Thus we have to take into account also the behavior of the manag
we do not know its internal behavior, we will assume that the manager respects its public behavior, i.e. that it
its permissions and commitments in the protocol specification.

The verification that the participant is compliant with the protocol can be formalized as a validity chec
D = (Π,C,Frame) be the domain description describing the protocol, as defined in Section3.4, and letProgi =
(Πi,Ci ,Framei ) be the domain description for the behavior of the participanti. The formula

Comp(Π) ∧ Init ∧
∧
j �=i

(Permj ∧ Comj ) ∧ Comp(Πi) ∧ Init i ∧ 〈πi〉i	 → (Permi ∧ Comi )

is valid if in all the behaviors of the system, in which the participant executes its programπi and all other agents (whos
internal program is unknown) respect the protocol specification (in particular, their permissions and commi
the permissions and commitment of the participant are also satisfied.

The left-hand side of the formula puts constraint on the run: the effects of the communicative actions in
are defined by the action laws and causal law in(Comp(Π); the initial values of the state of the protocol are giv
in Init; all agents except fromi are assumed to satisfy their permissions and commitments (

∧
j �=i (Permj ∧ Comj ));

the effects of the communicative and internal actions of agenti are defined by the action laws and causal law
(Comp(Πi); the initial values of its local fluents are given byInit i ; and, finally, the formula〈πi〉	 requires the run to
contain a finite execution of the programπi of agenti.

Observe that the last point means that, given a runσ , there is a prefix of the runτ such that its projectionτ ↑ i on
the actions of agenti is an execution of the programπi . Other actions of the protocol can be contained inτ , but we
ignore them when we verify〈πi〉i	.

6. Proofs and model checking in DLTL

The above verification and satisfiability problems can be solved by extending the standard approach for ve
and model-checking of Linear Time Temporal Logic, based on the use of Büchi automata. We recall thatBüchi
automatonhas the same structure as a traditional finite state automaton, with the difference that it accepts
words. More precisely a Büchi automaton over an alphabetΣ is a tupleB = (Q,→,Qin,F ) where:

• Q is a finite non-empty set of states;
• →⊆ Q × Σ × Q is a transition relation;
• Qin ⊆ Q is the set of initial states;
• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run ofB overσ is a mapρ : prf (σ ) → Q such that:

• ρ(ε) ∈ Qin;
• ρ(τ)

a→ ρ(τa) for eachτa ∈ prf (σ ).

The runρ is acceptingiff inf (ρ) ∩ F �= ∅, whereinf (ρ) ⊆ Q is given byq ∈ inf (ρ) iff ρ(τ) = q for infinitely many
τ ∈ prf (σ ).

As described in[21], the satisfiability problem for DLTL can be solved in deterministic exponential time, a
LTL, by constructing for each formulaα ∈ DLTL(Σ) a Büchi automatonBα such that the language ofω-words
accepted byBα is non-empty if and only ifα is satisfiable. Actually a stronger property holds, since there is a o
one correspondence between models of the formula and infinite words accepted byBα . The size of the automaton ca
be exponential in the size ofα, while emptiness can be detected in a time linear in the size of the automaton.

The validity of a formulaα can be verified by constructing the Büchi automatonB¬α for ¬α: if the language
accepted byB¬α is empty, thenα is valid, whereas any infinite word accepted byB¬α provides a counterexample
the validity ofα.
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For instance, let CN be the completed domain description of the Contract Net protocol. Then every infini
accepted byBCN corresponds to a possible run of the protocol. To prove a propertyϕ of the protocol, we can build
the automatonB¬ϕ and check that the language accepted by the product ofBCN andB¬ϕ is empty.

The construction given in[21] is highly inefficient since it requires to build an automaton with an expone
number of states, most of which will not be reachable from the initial state. A more efficient approach for cons
a Büchi automaton from a DLTL formula making use of a tableau-based algorithm has been proposed in[10]. The
construction of the states of the automaton is similar to the standard construction for LTL[9], but the possibility of
indexing until formulas with regular programs puts stronger constraints on the fulfillment of until formulas t
LTL, requiring more complex acceptance conditions. The construction of the automaton can be done on-the-
checking for the emptiness of the language accepted by the automaton. Given a formulaϕ, the algorithm builds a
graphG(ϕ) whose nodes are labelled by sets of formulas. States and transitions of the Büchi automaton corre
nodes and arcs of the graph. The algorithm makes use of an auxiliary tableau-based function which expands
formulas at each node. As for LTL, the number of states of the automaton is, in the worst case, exponential in
if the input formula, but in practice it is much smaller.

LTL is widely used to prove properties of (possibly concurrent) programs by means ofmodel checkingtechniques
The property is represented as an LTL formulaϕ, whereas the program generates a Kripke structure (the mo
which directly corresponds to a Büchi automaton where all the states are accepting, and which describes al
computations of the program. The property can be proved as before by taking the product of the model an
automaton derived from¬ϕ, and by checking for emptiness of the accepted language.

Standard model checking techniques cannot be immediately applied to our approach, because protocols a
lated as sets of properties rather than as programs. Furthermore, in principle, with DLTL we do not need to us
checking, because programs and domain descriptions can be represented in the logic itself, as we have sh
previous section. However representing everything as a logical formula can be rather inefficient from a comp
point of view. In particular all formulas of the domain description are universally quantified, and this means t
algorithm will have to propagate them from each state to the next one, and to expand them with the tableau p
at each step.

Therefore we have adapted model checking to the proof of the formulas given in the previous section, by
the model from the domain theory in such a way that the model describes all possible runs allowed by the
theory. In particular, we can obtain from the domain description a functionnext_statea(S), for each actiona, for
transforming a state in the next one, and then build the model (an automaton) by repeatedly applying these
starting from the initial state. We can then proceed as usual to prove a propertyϕ by taking the product of the mod
and of the automaton derived from¬ϕ, and by checking for emptiness of the accepted language.

Note that, although this automaton has an exponential number of states, we can build it step-by-step by f
the construction of the algorithm on-the-fly. The state of the product automaton will consist of two parts〈S1, S2〉,
whereS1 is a set of fluents representing a state of the model, andS2 is a set of formulas. The initial state will be〈I,¬ϕ〉,
whereI is the initial set of fluents. A successor state through a transitiona will be obtained as〈next_statea(S1), S

′
2〉

whereS′
2 is derived fromS2 by the on-the-fly algorithm. If the two parts of a state are inconsistent, the st

discarded.
The incremental nature of the algorithm is especially helpful in the verification of agent compliance at ru

In fact, an external observer will obtain step by step the sequence of communicative actions executed by th
and use it to constrain the incremental construction of the automaton so that at each step the automaton con
partial runs corresponding to the observed sequence.

This construction developed for DLTL can be easily extended to deal with DLTL⊗.
An alternative way for applying this approach in practice, is to make use of existing model checking to

particular, by translating DLTL formulas into LTL formulas, it would be possible to use LTL-based model che
such as for instance SPIN[22]. Although in general DLTL is more expressive than LTL, many protocol proper
such as for instance fulfillment of commitments, can be easily expressed in LTL.

We have done some experiments with the model checker SPIN on proving properties of protocols expre
cording to the approach presented in this paper. The model is obtained as suggested above by formulating th
description as a PROMELA program, which describes all possible runs allowed by the domain theory. Pr
and constraints are expressed as LTL formulas. In the case of verification of compliance of an agent imp
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tion with the protocol, we have used different PROMELA processes for representing the agent and the proto
representation of the agent is derived from its regular program.

7. Related work

The issue of developing semantics for agent communication languages has been examined in[36], by considering
the problem of giving averifiablesemantics, i.e. a semanticsgroundedon the computational models. The author gi
an abstract formal framework, in which he defines what it means for an agent program, in sending a messa
in some particular state, to be respecting the semantics of the communicative action. The author also poin
difficulties of carrying out the verification of this property when the semantics are given in terms of mental
since we do not understand how such states can be systematically attributed to programs. The paper deals
single communicative actions, and does not consider communication protocols.

Guerin and Pitt[18,19]define an agent communication framework which gives agent communication a gro
declarative semantics. The framework allows to accommodate communication languages based on agen
states as well as those based on social states. Several different types of verification are possible depend
information available and whether the verification is done at design time or at run time. In particular they po
the following types of verification which are useful in an open system:

• verify that an agent always satisfies its social facts;
• prove a property of a protocol;
• determine if an agent is not respecting its social facts at run time.

The framework introduces different languages: a language for agent programming, a language for specify
communication and social facts, and a language for expressing temporal properties. Our approach instead
a unified framework for describing multi-agent systems using DLTL. Programs are expressed as regular exp
(communicative) actions can be specified by means of action and precondition laws, properties of social fac
specified by means of causal laws and constraints, and temporal properties can be expressed by means o
operators.

In [32] Singh advocates the need to define the semantics of ACLs in terms of social notions. In[33] he proposed
a social semantics for ACLs, which uses a branching time logic. An approach for testing whether the beh
an agent complies with a commitment protocol is presented in[35], where the protocol is specified in the tempo
logic CTL as a set of metacommitments (where the condition committed to is a temporal formula possibly in
base-level commitments and commitment operations) as well as a mapping between messages and com
Based on this specification together with the notion of “potential causality” among the messages occurrin
multi-agent system, a concrete model is built describing all the possible behaviors of the system which are c
with the protocol. A model checking procedure can then be used at runtime for verifying if a given execution r
the protocol. The paper also shows how the verification can be done based on local information (concerning
agent or a subset of agents). The paper does not address the problem of statically verifying the compliance o
implementation with the protocol.

Fornara and Colombetti in[8] propose a method for the definition of interaction protocols starting from a sem
of communicative actions based on social commitments. Commitments are represented as objects, and the
and conditions may consist of temporal expressions. Protocols are defined by means of interaction diagram
nodes represent states, and whose edges correspond to the execution of communicative actions. The autho
number of soundness conditions which must be satisfied by the protocol. In particular they require that all com
tive actions must have their preconditions satisfied and that all commitments must be cancelled, fulfilled or
in the last state of the protocol. The soundness conditions can be used to verify whether a protocol is “reas
although no formal framework for carrying out the verification is provided in the paper.

Yolum and Singh[38] developed a social approach to protocol specification and execution, where the con
the communicative actions is captured through agents’ commitments to one another. Commitments are forma
variant of event calculus, and the evolution of commitments is described through the agents’ actions. Using th
enables agents to reason about their actions. By using an event calculus planner it is possible to determine
paths that respect the protocol specification, i.e. where there are no pending base-level commitments. In this
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adopt a similar approach to the specification of protocols, although we formalize it in the logic DLTL. In our ap
a planning problem can be formulated as satisfiability of the completed domain description of the protocol.
by Definition 4, a model of the completed domain description corresponds to a correct run of the protocol. H
our approach based on DLTL is more general, since, as we have shown, we can deal with other kinds of
verification, including the verification of the compliance of an agent to the protocol.

Alberti et al. [1] address the problem of verifying agents’ compliance with a protocol at runtime. Protoco
specified in a logic-based formalism based on Social Integrity Constraints, which constrain the agents’ obser
havior. Their approach is based on the concepts of event (to represent an agent’s actual behavior), and expec
express the desired behavior). Social Integrity Constraints express which expectations are generated as co
of events. The paper present a system that, during the evolution of a society of agents, verifies the complian
agents’ behavior to the protocol, by checking fulfillment or violation of expectations.

As we have pointed out in the previous section, the verification of protocols expressed in DLTL can be car
by means of model checking techniques. Various authors have proposed the use of model checking for the ve
of multi-agent systems, but, while in this paper we follow a social approach to the specification and verifica
systems of communicating agents, most of them have adopted a mentalistic approach. The goal of[3] is to extend
model checking to make it applicable to multi-agent systems, where agents have BDI attitudes. This is a
by using a new logic which is the composition of two logics, one formalizing temporal evolution and the
formalizing BDI attitudes. The model checking algorithm keeps the two aspects separated: when conside
temporal evolution of an agent, BDI atoms are considered as atomic proposition; if an agenta1 has a BDI attitude
about another agenta2, this is modeled as the fact thata1 has access to a representation ofa2 as a process, in which
will verify the truth value of BDI atoms abouta2.

In [23,37]agents are written in MABLE, an imperative programming language, and have a mental state. M
systems may be augmented by the addition of formal claims about the system, expressed using a quantifi
time temporal BDI logic. Instead[4,5] deals with programs written in AgentSpeak(F), a variation of the BDI lo
programming language AgentSpeak(L). Properties of MABLE or AgentSpeak programs can be verified by m
the SPIN model checker, by translating BDI formulas into the LTL form used by SPIN. In the case of Agent
BDI properties are extracted from the data structures used to implement AgentSpeak in SPIN.

A different framework for verifying temporal and epistemic properties of multi-agent systems by means of
checking techniques is presented by Penczek and Lomuscio[29]. Here multi-agent systems are formulated in the lo
language CTLK, which adds to the temporal logic CTL an epistemic operator to model knowledge, usinginterpreted
systemsas underlying semantics.

8. Conclusions

In this paper we have proposed an approach for the specification and verification of interaction protocols i
poral logic. We have shown that DLTL and its product version DLTL⊗ are a suitable formalisms for the specificat
of a system of communicating agents. Our approach provides a unified framework for describing different
of multi-agent systems. Programs are expressed as regular expressions, (communicative) actions can be s
means of action and precondition laws, social facts can be specified by means of commitments whose dy
ruled by causal laws, and temporal properties can be expressed by means of theuntil operator. We have address
several kinds of verification problems, including the verification of agents compliance at runtime, the verifica
protocol properties and the verification that and agent (whose specification is given) is compliant with a proto

Such verification problems can be formalized as satisfiability and validity problems in DLTL or DLTL⊗ and they
can be solved by developing automata-based model checking techniques.

A preliminary implementation of a model checker based on the algorithm in[10] is being tested in the verificatio
of the properties of various protocols. This implementation has been useful to prove properties of small proto
larger protocols might require the adoption of optimized techniques, similar to the ones adopted by the state
model checkers for LTL.

Our proposal is based on a social approach to agent communication, which allows a high level specific
the protocol and does not require a rigid specification of the correct action sequences. For this reason the
appears to be well suited for protocol composition. The problem of protocol composition is strongly relate
that of service composition, where the objective is “to describe, simulate, compose and verify compositions
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services”. Recently, technologies have been proposed which use some form of semantic markup of Web s
order to automatically compose Web services to perform a desired task[28,34]. As a first step in this direction, in[15]
we have addressed the problem of combining two protocols to define a new more specialized protocol and
notion of protocol specialization which is based on the well-known notion of stuttering equivalence between r
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