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Abstract 21

In this paper we develop a logical framework for specifying and verifying systems of communicating agents and interactiopypro-
tocols. The framework is based on Dynamic Linear Time Temporal Logic (DLTL), which extends LTL by strengthenimgilthe ,,
operator by indexing it with the regular programs of dynamic logic. The framework provides a simple formalization of the ggm-
municative actions in terms of their effects and preconditions and the specification of an interaction protocol by means of te%poral
constraints. We adopt a social approach to agent communication, where communication can be described in terms of chazlgges |
the social relations between participants, and protocols in terms of creation, manipulation and satisfaction of commitments amonc
agents. The description of the interaction protocol and of communicative actions is given in a temporal action theory, andzégent
programs, when known, can be specified as complex actions (regular programs in DLTL). The paper addresses several Kinds c
verification problems (including the problem of verifying compliance of agents with the protocol), which can be formalized efther
as validity or as satisfiability problems in the temporal logic and can be solved by model checking techniques. In particulde, we
show that the verification of the compliance of an agent with the protocol requires to move to the logi® DhElproduct version 31

of DLTL. 32
0 2005 Published by Elsevier B.V. 33
34
35
1. Introduction 36

37

One of the central issues in the field of multi-agent systems concerns the specification of conversation poficies,
which govern the communication between software agents in an agent communication language (ACL). Conver8atior
policies (or interaction protocols) define stereotypical interactions in which ACL messages are used to achievé®com:
municative goals. They define patterns of communication which “can actually simplify the computational complé&xity
of ACL message selectior27], by providing a context in which ACL messages are interpreted. 42

Many ACL designers have included conversation policies as part of the ACL definition. The specification ofin-
teraction protocols has been traditionally done by making use of finite state machines and transition nets, buf‘thes
approaches have been recognized as being too rigid to allow for the flexibility needed in agent commytig&ign *°
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For these reasons, several proposals have been put forward to address the problem of specifying (and vetifyin
agent protocols in a flexible way. One of the most promising approaches to agent communication, first proposed b
Singh[32], is the social approachi,8,18,27,33] In the social approach, communicative actions affect the “social
state” of the system, rather than the internal (mental) states of the agents. The social state records social faets, li
the permissions and the commitments of the agents. The dynamics of the system emerges from the interactiors of t
agents, which must respect these permissions and commitments (if they are compliant with the protocol). Thessoci
approach allows a high level specification of the protocol, and does not require the rigid specification of the allowec
action sequences. It is well suited for dealing with “open” multi-agent systems, where the history of communications
is observable, but the internal states of the single agents may not be observable. 9

In this paper we develop a logical framework for reasoning about communicating agents. More precisely® we
deal with the specification and verification of agent interaction protocols in Dynamic Linear Time Temporal Logic
(DLTL) [21], which extends LTL by strengthening thuatil operator by indexing it with the regular programs oft2
dynamic logic. 13

Temporal logics are widely used in the specification and verification of distributed systems and they have recentl
gained attention in the area of reasoning about actions and plafht@2,16,30] as well as in the specification 15
and verification of systems of communicating agents. The last topic will be dealt with in S&ctidrere various 16
approaches will be presented. 17

Our proposal for the specification and verification of interaction protocols in DLTL is based on the theorydor
reasoning about actions developedi] which allows reasoning about action effects and preconditions, reasoniag
with incomplete initial states, and dealing with postdiction, ramifications as well as with nondeterministic actns.
We make use of temporal logic to provide a simple formalization of communicative actions in terms of their eftects
and preconditions, to specify interaction protocols, to constrain behavior of autonomous agents and formulate th
properties of these agents. As proposedlin], in our approach conversation protocols are modelled as a setzef
constraints on the sequences of semantically coherent ACL messages. 24

The verification of the compliance of an agent with an interaction protocol, the verification of protocol properties,
and the verification that an agent is (is not) respecting its social facts (commitments and permissions) at runtimezare ¢
examples of tasks which can be formalized either as validity or as satisfiability problems in DLTL. Such verification
tasks can be automated by making use of Biichi automata. In particular, we make use of the tableau-based algoritt
presented ifil O] for constructing a Biichi automaton from a DLTL formula. The construction of the automaton canse
done on-the-fly, while checking for the emptiness of the language accepted by the automaton. As for LTL, the nambe
of states of the automaton is, in the worst case, exponential in the size of the input formula. 31

In [13] we have presented a proposal for reasoning about communicating agents with the Product Versin o
DLTL, called DLTL®, which allows to describe the behavior of a network of sequential agents which coordinate their
activities by performing common actions together. In the first part of this paper we focus on the non-product versior
of DLTL, which appears to be a simpler choice and also a more reasonable choice when a social approach is agtopte
since the “social state” of the system is inherently global and shared by all of the agents. In 3eetidescribe the 36
logic DLTL, while in Section3 we show how this logic can be used to specify protocols, in particular by describing the
structure of the action theory which is used to model communicative actions. In Séctiepresent some kinds of 38
verification tasks which can be conveniently represented in DLTL. In the next section we show that some verificatior
problems, such as the verification of the compliance of an agent with the protocol, require the use of the lodi¢ DI L
which is presented there. In Secti®mwe give some hints on how proofs can be carried out in DLTL, and we conclude
with a survey of related work and some conclusions. 42

43
2. Dynamic linear time temporal logic 44
45

In this section we briefly define the syntax and semantics of DLTL as introduc jnin such a linear time 46
temporal logic the next state modality is indexed by actions. Moreover, (and this is the extension to LTL) the4antil
operator is indexed by programs in Propositional Dynamic Logic (PDL). 48

Let X be a finite non-empty alphabet. The membersioéire actions. Lets* and X be the set of finite and 49
infinite words onX, wherew = {0, 1,2,...}. Let ¥*®° = X* U X“. We denote by, ¢’ the words over¥® and by 50
7, 7’ the words overz*. Moreover, we denote by the usual prefix ordering over* and, foru € X*°, we denote 5t
by prf (1) the set of finite prefixes af. 52
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[

We define the set of programs (regular expressieng)>') generated by as follows:

N

Prg(X) i=a|m+mp | my; w2 | ¥ 3

wherea € X andnq, 2,  range ovelPrg(X). A set of finite words is associated with each program by the mappmg
[[11:Prg(X) — 2", which is defined as follows:

6
7
[[a]] = {a}; .
9

o [[m1+m2]] = [[m1]] U [[72]];

o [[my; m2]l = {r1i72| 71 € [[m1]] andz € [[72]]}; 10

o [[x*]] = UIlx]], where L
o [[7°N={e}, b

o [[x"*H] ={nir2| 11 € [[]] andrz € [[']]}, for everyi € w. s

14

LetP ={p1, p2, ...} be a countable set of atomic propositions containingnd L. 5
DLTL(Z) = p | —a|aV B |ald™ B 13
wherep € P anda, 8 range over DLTLE). 18
A model of DLTL(X) is a pairM = (o, V) whereo € £ andV :prf (o) — 2% is a valuation function. Given 19

a modelM = (o, V), a finite wordt € prf (o) and a formulax, the satisfiability of a formula at r in M, written 20

M, t = «, is defined as follows: 21
22

e M,t=piff pe V(1) 23
o M,1E=—aiff M,7 }£a; 24
e M,tEaVvpiff Mt =a0rM,t =g, 25
e M, T |= ald™ B iff there existst’ € [[x]] such thatz’ € prf (o) andM, t7’ = 8. Moreover, for every” such that 26
e<t <72 M, 17" Ea. 27

28

A formula« is satisfiable iff there is a mod&¥ = (o, V) and a finite wordr € prf (o) such thatM, 7 = «. 29
The formulac/™ 8 is true atr if “ o until 8” is true on a finite stretch of behavior which is in the linear timeo°
behavior of the program. 31
The derived modalitiegr) and[z] can be defined as followstr ) = TU" @ and[7 o = — (7 )—«. 32

Furthermore, if we let = {as, ..., a,}, theld, O (next), & andO operators of LTL can be defined as follows:33
Oa =V o5 la)a, aUp = ald* B, Oa = TUa, Oa = ~O—a, where, in{>", X is taken to be a shorthand for 34
the programuy + - - - + a,. Hence both LTLE) and PDL are fragments of DLTLY). As shown in[21], DLTL(X)is 3%
strictly more expressive than LTEJ). In fact, DLTL has the full expressive power of the monadic second order theGfy

of w-sequences. 87

38
3. Protocol specification %9
40

In the social approacl8,18,33,38lan interaction protocol is specified by describing the effects of communlcatlve

actions on the social state, and by specifying the permissions and the commitments that arise as a result of the'€urre

conversation state. In our proposal the meaning of communicative actions is fixedggtibenlwhich describes the ”
effects of each action on the social state of the system. In this sense, our work is part of .tthaead of research *

which takes conversational sequences themselves to be semantically primitive so that the meaning of mdmduaf mes

sages depends on the conversation and may slightly vary in the context of different agent convef@aiionkese
effects, including the creation of new commitments, can be expressed by meatisniaws Moreover, the protocol
establishes a set of preconditions on the executability of actions, which can be expressed by rpestondition
laws The notion ofcommitmentas a prominent role in the social approach and in the following we introduce two

51
2 We definer < 7/ iff 3t” such thatrt”/ = t’. Moreover,r < 7’ iff T <t/ andr £ 7/, 52
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different kinds of commitments. Commitment policies, which rule the dynamic of commitments, can be described by
causal lawswhich establish causal dependencies among fluents. 2

In the specification of the protocol, the social state of the system is viewed as a global one. However, as we wil
see when dealing with the problem of verifying the conformance of each agent to the protocol (given the program the
agent executes), the single agents may only have a partial “local” view of the social state. In particular, each agent ce
only see the effects on the social state of the actions to which it participates (as sender or receiver of the messag
While in the case of a two agents system the history of all communications is known to both agents (as they participat
in all communicative actions) and they have the same local view of the social state, this is not true for more thamn twe
participants to the protocol. As we will see, the task of verifying the conformance of an agent to a protocol, will in
fact require, in the general case, to move to the product version of the logic,*DJZ0], which allows modelling the 10
behavior of a network of sequential agents that coordinate their activities by performing common actions together.

The specification of a protocol can be further constrained through the addition of stitiaiperal formulasand 12
also the agents’ programs can be modelled, by making use of complex actions (regular programs). 13

Below we recall those aspects of the temporal action theory develogé&d]ithat we use in the specification of 14
interaction protocols. In particular, we define what we mean by action laws, precondition laws and causal laws. TFher
we introduce the notion of commitments and conditional commitments together with the laws ruling their intenglay
and, finally, we treat, as a running example, the Contract Net protocol. 17

18

3.1. Action theories 19
20
The social state of the protocol, which describes the stage of execution of the protocol, is described by a%et c
atomic propertiesfluentd which may hold or not in a state and may change value with the execution of commun#éa-
tive actions. 23
Let P be a set of atomic propositions, tHaent namesA fluent literal/ is a fluent namef or its negation—f. 24
Given a fluent literal, such thal = f orl = —f, we defindl| = f. We will denote byLit the set of all fluent literals. 25
A domain descriptiorD is defined as a tupl@1, Frame C), wherelT is a set ofaction lawsandcausal lawsand 26
C is a set ofconstraints Frameprovides a classification of fluents as frame fluents and nonframe fluents as we #ill

define below. 28
Theaction lawsin IT have the form: 29

30

O(a — [a]]), 31

with ¢ € X anda an arbitrary non-temporal formula ahd fluent literal. The meaning is that executing action a %

state where preconditian holds causes the effetto hold. %

. 34
Thecausal lawsn IT have the form: <

Ol A OB) = OD), %

37
with a € X, «, B arbitrary non-temporal formulas ana fluent literal. The meaning is thatdgfholds in a state anf 55

holds in the next state, théralso holds in the next state. Such laws are intended to expresses “causal” dependegcie:
among fluents. 40
The constraintsin C are, in general, arbitrary temporal formulas of DLTL. Constraints put restrictions on the
possible correct behaviors of a protocol. The kind of constraints we will use in the specification of a protocol inglude
the observations on the value of fluents inithidal stateand the precondition laws. The initial stdtét is a (possibly 43

incomplete) set of fluent literals. 44
The precondition lawshave the form: 5
46

O(a = [a]l),

a7

with ¢ € X anda an arbitrary non-temporal formula. The meaning is that the execution of an adsawot possible 48
if « holds (i.e. there is no resulting state following the execution @ff « holds). Observe that, when there is no
precondition law for an action, the action is executable in all states. 50
Frameis a set of pairg f, a), where f € P is a fluent and: € X' is an action, meaning that is a frame fluent 5t
for actiona, that is, f is a fluent to which persistency applies when actiois executed. On the other hand, those2
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fluents which are not frame with respectdao non-persist and may change value in a nondeterministic way, when
executinga. 2

As in [24,26] we call frame fluents those fluents to which the law of inertia applies. However, 481h we 3
consider frame fluents as being dependent on the actions. Action laws and causal laws, which describe the immedia
and indirect effects of actions, have a special role in action theories, as frame fluents only change values according t
the immediate and indirect effects of actions described by the action laws and causal laws. All the frame fluents evhose
values are not changed by such actions are assumed to persist unaltered to the next state. When an action is eéxecut
all the fluents which are non-frame with respect to that action may change value nondeterministically, as they are no
subject to persistency. 9

The action language also contatest actionswhich allow the choice among different behaviors to be controllede
As DLTL does not include test actions, we introduce them in the language as atomic actions in the same way as don
in [12]. More precisely, we introduce an atomic actipn for each propositiopp we want to test. The test actigh? is 12
executable in any state in whighholds and it has no effect on the state. Therefore, we introduce the following laaars

which rule the modality¢?]: 14
15

0(—¢ — [¢7]1) 16
O{@?DT — (I < [¢?]])), forall fluent literals!. 17

The first law is a precondition law, saying that actitfhis only executable in a state in whighholds. The second law 18

describes the effects of the action on the state: the execution of the a€tieaves the state unchanged. We assume
that, for all test actions occurring in a domain description, the corresponding action laws are implicitly added. ,
Test actions are specific actions and belong therefore to a particular action language (and the above laws beiLong t
. . . 22
a particular action theory). They do not belong to the language of regular programs of the logic DLTL. .
The action theory will be used for modelling communicative actions and the social behavior in multi-agent sysﬁgms.

In this framework for modelling protocols, we will define two special actions ”e

begin protocols, all) and end protocols, all) 26

which are supposed to start and to finigluaof the protocol. The first message is sent by the initiatoirthe protocol -8

to all other participating agents, while the second message is sent by any of the agents which may close the protoce
to all the participants. For each protocol, we introduce a special fRie(MvherePn is the “protocol name”) which

is true during the whole execution of the protod@h is made true by the actidmegin protocols, ) and it is made

false by the actiomend_protocols, r). .

Note that protocol “runs” are always finite, while the logic DLTL is characterized by infinite models. Therefore3t§he
formulation of the protocol would have no model in DLTL. To take this into account, we assume that each domain
description of a protocol will be suitably extended with an actionpwhich does nothing and which can be executeé;1
only after termination of the protocol, so as to allow a computation to go on forever after termination of the prot%col.
So every model will consist of a finite sequence of actions corresponding to a “run” of the protocol, followed b¥7 an
infinite sequence afioopactions.

The action theory described above relies on a solution tdrétme problensimilar to the one described [22].
In [12], to deal with the frame problem, a completion construction is defined which, given a domain descripﬁon,
introduces frame axioms for all the frame fluents in the style of the successor state axioms introduced j§1Reiter
in the context of the situation calculus. The completion construction is applied only to the action laws and causal laws
in IT and not to the constraints. By completing the action laws and causal laws we formalize the fact that actiorizlaws
and causal laws are the only laws which may change the value of frame fluents: the value of a frame fluent pﬁrsists
(stays unaltered) unless the change is caused by the execution of an action as an immediate effect (effect of th4e5actic
laws) or an indirect effect (effect of the causal laws). We €alimp(IT) the completion of a set of lawg and, in the
following subsection, we describe the details on the completion construction.

38

47

3.1.1. Completion of a set of action laws and causal laws "

Let IT be a set of action laws and causal laws. In this paper, we have assumed that the consequents of alfactio
laws and causal rules ifT are fluent literals rather than general formulas. Hentyill contain formulas of the form:

Oe; = [alf) OB = la]l~f), 52
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as well as causal laws of the form

0@ A OB) — OD,

witha € ¥, «, B, «;, B; arbitrary (non-temporal) formulas ané fluent literal.
Observe that, given the definition of the next operaip(namely,Oa = \/, 5 (a)), the causal law above can be
written as follows:

D((a A\ (a)ﬂ) -\ <a>1).
aeX acX

Observe also that, when a given actionis executed in a state (i.e. in a world of a model), this is the only actidh
executed in it, since models of DLTL are linear (and each models describes a single run on the protocol). Hencézfror

the formula above it follows: 13

14

(%) OaAa)p) — (a)]). 15

16

17

© 00 N o g b~ W N P

10

Moreover, as the axioma)! — [a]l and{a)T A [a]l — {(a)l hold in DLTL (se€[21]), from (x) we can get:

18

() O((a) T — (@ AalB) — [alD).

19

This formula has a structure very similar to action laws. We call these formolasalized causal laws 20
We can now define our completion construction starting from the action lawsand from the normalized causal 2
laws in IT. Both kinds of laws have the general form: 22
23
O(a) T = (o Alalyi — lalf)) O(a)T — (Bj Alalsj — lal—= 1)), 24
25

whereq;, 8;, vi, 8; are arbitrary (non-temporal) formulas and some of the conjuncts in the antecedents may be ggiss
ing. 27
We define the completion dff as the set of formula€omp@/T) containing, for all actiong and fluentsf such g
that(f, a) € Frame the following axioms: 29
30
D((Cl)T — ([a]f < \/(Oli Alaly) v (f A —'[a]ﬁf)>>, 1 =
i 32
33
D<<a>T—> ([a]—'f<—>\/(ﬂj Alaldj) v (—'fA—'[d]f)>)- (2) =
J 35

Notice that, for each action and fluentf which is nonframe with respect i i.e. (f, a) ¢ Framg axioms(1)
and (2)above are not added @omp 7). As in [31], these laws express that a flugh{or its negation— f) holds
either as a consequence of some actioor some causal law, or by persistency, sintéor —f) held in the state
before the occurrence afand—f (or f) is not a result of:.

From the two axioms above we can derive the following axioms, which are similar, in their structure, to Reitér's
successor state axiof&i]: o

39

42

D<<a>T — ([a]f < (\/(ai A [a]yi)) v (f A N\EBi v ﬁ[a]sp))), 44
i J
m<<a>T — <[a]ﬁf - (\/(ﬂj A [a]rSj)) v (ﬁf A N\ ai v ﬁ[a]m))). >
J i

48
The construction above is similar to the one that we have introdudd@jnthough there are some differences for thas
fact that here we have adopted a different formalization of causal laws by using the next operator. Also, here gaus
laws are more general than[ib2], as they refer (in their antecedent) to the values of fluents in the current statetas
well as in the next state. 52
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3.2. Commitments and permissions 1

2

As we have said, from the standpoint of the specification of the protocol, the social state of the system can be
regarded as a “global” set of properties which describe the execution stage of the protocol. In our proposél, the
social state contains domain specific fluents and special fluents representing commitmehisadinespecific fluents 5
describe observable facts concerning the execution of the protocol, that is, facts that could be observed by an éxtern:
observer, who sees the history of the messages exchanged by the communicating agents (without knowing the
internal behavior). 8

The use of social commitments has long been recognized as a “key notion” to allow coordination and com#éuni-
cation in multi-agent systenj25]. Nevertheless the first attempts to use these notions to ground the communicégive
theories are more recent—and essentially motivated by requirements of verifigdlitAmong the most significant 1*
proposals to use commitments in the specification of protocols (or more generally, in agent communication) are'&ingt
[33], Guerin and Pitf18], Colombetti[8]. An alternative notion to commitment, which has been proposé¢t]ifor 2
the specification of agent protocols, is the notiomxpectation 14

In order to handle commitments and their behavior during runs of a proRcaeVe introduce two special fluents. 5
One representsase-level commitmengnd has the forn€ (Pn, i, j, ) meaning that ageritis committed to agent 16
J to bring abouty, wherew is an arbitrary propositional formula not containing commitment fluents. The secdid
commitment fluent modelsonditional commitmentand has the forn€CC(Pn, i, j, 8, «) meaning that in protocol 18
Pnthe ageni is committed to agenf to bring aboutr, if the conditiong is brought about (where is an arbitrary 1°
propositional formula not containing commitment fluents). As already mentioned dbwigea fluent which has to be 2
verified during the whole execution of the protocol. The two kinds of base-level and conditional commitments wé'use
here are essentially those introduced3g]. Our present choice is different from the ond18] and in[13], where 22
agents are committed to execute an action rather than to achieve a condition. Let us point out that this present chbice
more general than the one in our previous wdrg]. If the agent is committed to perform an action (instead of beirtf
committed to produce some result) he can only do one thing: perform the action. When he is committed to bringZbout
a condition (or resulty, he could achieve that in principle by more than one action or he could get some help by séme
other agent who could perform actions to produc®n the other hand, the solution[it3] may be considered being %’
more precise in case the commitment is considered to be fulfilled only in caseidtgeftt has brought about and 28

not if some other agent has brought about it. 2
To give an example, in the specification of the Contract Net protocol (na@idwe introduce the following *°
commitments: 31
32

C(CN, M, P, acc rej), 33

34
meaning that the manager is committed to the participant to accept or to reject a proposal. As an examplg of ¢

conditional commitment we have: 26

37
38
meaning that the manager is committed to the participant to accept or to reject a proposal, whenever the propasal he
been made. 40
The idea is that each commitment has a life time which is included in each “run” of a protocol. A run is a fiite
sequence of actions consistent with the protocol (for the foDedinition 4 see in next SectioB.3). Commitments 42
are created as effects of the execution of communicative actions in the protocol and they are “discharged” whemn the)
have been fulfilled. 44
A commitmentC (Pn, i, j, «), created at a given world of a run, is regarded to be fulfilled in a run if there is a later
world in the run in whichw holds. As soon as commitment is fulfilled in a run, it is considered to be satisfied and®o

CC(CN, M, P, proposal acc rej),

longer active: it can be discharged. 47
We introduce the followingausal lawdor automatically discharging fulfilled commitments: 48

49

(I) D(Oa - OﬁC(an iv ja a))l 50
(i) o(CCPn.i, j, B,a) AOB) — OCPN I, j, ), 51

(i) ocCcCPn,i, j,B,a) AOB) — O—-CCPn, i, j, B, a)). 52
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A commitment to bring about is considered fulfilled and is discharged (i) as soow dm®lds. A conditional com- 1
mitmentCC(Pn, i, j, 8, «) becomes a base-level commitmé&ntPn, i, j, «) when g has been brought about (ii) and2
the conditional commitment is discharged (iii). 3
Observe that, it might not always be reasonable to discharge conditional commitments. A com@i@itiemt, j, 4
B, a) might be interpreted as meaning that ageist committed to agent to bring aboutx, any time the condition 5
B is brought about. In this case the conditional commitment should not be discharged and should persist until the er
of the protocol. For simplicity, in this paper we assume that also conditional commitments are discharged after thei
conditiong is made true and the base-level commitment is created. 8
In our formalization we have not introduced explicieateand dischargeoperations on commitments, nor weo
have introduced operations for manipulating commitmentsdiwece) release delegate etc. (sed35]). This choice 10
has been adopted for its simplicity (a commitment either is active or it is not), though it limits substantially:the
flexibility of the commitment based approach. The definition of these operations on commitments in the formadism
would, however, be possible by introducing explicitqate, discharge, cancel, release, delegate.) actions and by 13
describing the effects of such actions on commitments by means of action laws. In such a case, the communicati
actions in the protocol should have the effect of “calling” these primitive operations rather than directly creatingthe

commitments. 16
We can express the condition that a commitm@(®n, i, j, «) has to be fulfilled before the “run” of the protocol 17
is finished by the followindulfillment constraint 18

19

O(C(Pn,i, j, ) - Pnla). o

[y

We will call Com the set of constraints of this kind for all commitments of ageom states that agentwill fulfill 2
all the commitments of which it is the debtor. 22

At each stage of the protocol only some of the messages can be sent by the participants, depending on thegsoc
state of the conversatioRermissionsllow to determine which messages are allowed at a certain stage of the protcgol.
The permissions to execute communicative actions in each state are determined by social facts. We represent them

precondition laws. Preconditions on the execution of aciican be expressed as: 26
27

O(a — [a]l) 28
meaning that actioa cannot be executed in a statexiholds in that state. & holds in a state the execution of action2®
a does not lead to a resulting state (there is no state whexan be true). 30
We callPerm (permissions of ageri) the set of all the precondition laws of the protocol pertaining to the actiofs

of which agent is the sender. 32
33

3.3. Protocols and their runs 34

35
A protocol is specified by defining a domain description. Each communicative action is specified by definirtg its
effects on the social state (by means of action laws) and by defining its executability conditions (by precondition Ews)
The domain description also includes the causal laws defining the commitment rules, the initial state of the prc¥oco

as well as the fulfillment constraints for each commitment in the social state. 39
40
Definition 1. A protocol is specified by defining a domain descriptidr= (17, Frame C) as follows: 41
42
e [T is the set of the action and causal laws containing: 43
o the laws describing the effects of each communicative actions on the social state; 44
o the causal laws (i), (ii) and (iii) above defining the commitment rules. 45

e C=Init A A\;(Perm A Com) is the conjunction of the constraints on the initial state of the protocol and tie
permissiongerm and the commitmentSom of all the agents. 47
e Frame={(f,a): ae X, f € P}. 48

49

In the following we assume that all fluents are frame and, in particular, we assume that all the commitment fgent:
are frame with respect to all actions. This condition will be removed in Sebtishen we will address the problem st
of verifying the conformance of an agent to the protocol in DLTL, by analyzing the behavior of ageisblation. 52
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This requires to assume that the behavior of part of the system is unpredictable, which can be modelled by making
use of nondeterministic fluents. 2
It is clear that, while the social state, as a whole, is global to all agents, each single agent can only be aware of
the communicative actions to which it participates and of the changes produced by those actions. For this reason, w
stipulate that each agent participating in the protocol has only a partial visibility of the social state, and in particular
an agent can only see the commitments of which he is the debtor or the creditor as well as those fluents of thes socie
state which are involved in the description of the actions to which he participates as a sender or receiver. 7
8
Definition 2. We define the seP; of thefluents visible to ageritas follows: 9
10
e The commitment€& (Pn, i, j,«), CC(Pn,i, j, 8,a), C(Pn, j,i,a), CC(Pn, j,i, 8, @) belong toP; and all the flu- 11
ents occurring withine and 8 belong top;. 12
e For each communicative actienof whichi is the sender or the receiver, and for each action law 13
14
O(a — [a(@@, HI)  (or O(e — [a(j, D)]D)) 15
7| and the fluents i belong toP;. 16
e For each communicative actianof which is the sender, for each precondition law 17
18
O(a = [a(i, HIL)

the fluents inx belong toP;. 20
21

Observe that the definition above also applies to communicative actions which are broadcast from onez2agen

19

(sender) to a set of agents (receivers). 23
A protocol specification isvell-definedwhen each fluent visible to agenttannot be modified by other agentsz4
withouti being aware of the modification. 25

26
Definition 3. We say that a domain descriptidn specifying a protocol isvell definedf, for all agentsi and for all 27
fluents f € P;, f does not occur as a positive or negative effect of any communicative aattohy of whichi is 28
neither the sender nor the receiver. 29

It is easy to see that, due to the kinds of causal laws we have introduced (namely (i), (i) anDé&fiijjtion 3 31
guarantees that, if the specificatiénof a protocol is well-defined, the value of a fluefit P; can only be changed 32
as an immediate or indirect effect of the communicative actions of which agesender or receiver. 33
In particular, by the fact that a commitme@itPn, i, j,...) € P; N P; the specification of a protocol is not well- 34

defined in the case the value of the commitment fluent is changed by a communicative action which does not inxolves
bothi and;. 36
Observe that the condition of well-definedness above excludes that a commifigieht. . .) may occur within 37
another commitmen€ (i, j, 8, «) involving different agents, if the protocol is well-defined. In fact, a commitment
C(Pni, j, C(Pnk,l,a1),a2) Wherel #£i,1# j, k#1i, k# j is not admitted in a well-defined domain descrip-se
tion. By the first item inDefinition 2, we get thatC(k, [, 1) € Py N P;. But, as the commitment occurs within theso
commitmentC(Pn, i, j, B, a2) in B, thenC(Pn, k, [, a1) € P; N P;. Assume the value of the commitmetitk, [, 1) 4
is changed by executing a communication actigh, /) betweenk and!/, then, asC(Pn, k, [, «1) € P;, the domain 42
description is not well-defined. Similarly, @ (k, /, «1) is changed by executing a communication actién j): the 43
domain description is not well-defined @gPn, k, [, a1) € Py. 44
Given a domain descriptioP, we denote byComp D), the completed domain description, the set of formulas: 4s

46

(Comp(n) A Init A /\(Perm A Com)) A (begin_protocoks, all)) T 47

i 48

where agent is the initiator of the protocol. 49

50

Definition 4. Given the specification of a protocol by a domain descripfinrthe runs of the system according thes:

protocol are exactly the models Gbmp D). 52
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The last conjunct in the definition @omg D) is introduced to force each mod#l = (o, V) satisfyingCompg D) 1
to have actiorbegin protocols, all) as the first action i . 2
Given the definition above, in all protocol runs all permissions and commitments of all agents are fulfilled. This
is needed as we want include among the runs of the protocol, only those models in which all agent respect the
permissions and commitments. However, it is clear th&lpifi; were not included i€omp D) for some agenf, the 5

models satisfyingComp D) might contain commitments which have not been fulfilledjbyrhey are runs in which s
agentj may not be compliant with the protocol. 7
8

3.4. The Contract Net protocol 9
10

As a running example we will use the Contract Net protgctl 11

12

Example 5. The Contract Net protocol begins with an agent (the manager) broadcasting a task announcemens (ca

for proposals) to other agents viewed as potential contractors (the participants). Each participant can reply by sendit

either a proposal or a refusal. The manager must send an accept or reject message to all those who sent a peopo
When a contractor receives an acceptance it is committed to perform the task. 16
17
We assume there aré + 1 agents: the managéf and N participants 1..., N. A communicative actiomctis 18
represented by the notati@att(s, ), wheres is the sender and is the receiver. Withact(M, all) we mean that the 19
communicative actioact is broadcast by the manager to all participant. 20
The communicative actions are the following ones (whetel, ..., N ranges over the participants.1., N): 21
begin protocol M, all) (the manager announces to all participants the beginning of the protofggl)/, all) (the 22
manager issues—broadcasts—a task announcenaestptM, i) andrejectM,i) whose sender is the managerz3
refusdi, M) andproposéi, M) whose sender is the participantinform_donei, M) by which agent informs the 24
manager that the task has been executedeaddprotocol M, all) by which the manager broadcasts the completiots
of the protocol. 26
The social state contains the following domain specific flue@ts:(which is true during the execution of the 27
protocol), task (whose value is true after the task has been announcgml)ed(i) (the participant has replied), 28

proposali) (the participant has sent a proposaBgcc rej(i) (the manager has sent an accept or reject messageto
the participant) acceptedi) (the manager has accepted the proposal of participartddongi) (participant; has 30

performed the task). Such fluents describe observable facts concerning the execution of the protocol. 31

Among the fluents, we introduce the followirggnditional commitmente/hich have to be satisfied during thesz

Contract Net protocol CN: 33

34

CC(CN, i, M, task replied(;)) if a task has been announced, the participdrds to reply 35

CC(CN, M, i, proposali), acc rej(i)) if i has made a proposal the manager has to accept or to reject it 36
CC(CN, i, M, accepted)), dondgi)) if the participant’s proposal has been accepted he is committed to executeis

(to make truedon€(i)) 38

39

and the correspondintipse-level commitments 40

41

C(CN, i, M, replied(i)) participant; must reply to a proposal 42

C(CN, M, i, acc rej(i)) the manager has to bring about a response (accept or reject) 43

C(CN, i, M, dongi)) the participant is committed to the manager to perform the task (to prodioces;)). 44

45

The effects of communicative actions are described by the folloaatipn laws(wherei =1, ..., N ranges over the 46

participants 1..., N): 47

48

(A1) g[begin_protocok M, all)]CN 49

(A2) Ofcfp(M, all)]task 50

(A3) O[cfp(M, all)]CC(CN, M, i, proposali), acc rej(i)) 51

[

(A4) O[acceptM, i)]acc rej(i) 52
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(A5) OlacceptM, i)]acceptedi)

(AB) O[reject(M, i)]acc rej(i)

(A7) Ofrefusdi, M)]replied(i)

(A8) O[ proposéi, M)]replied(i)

(A9) O[ proposé€i, M)]proposali)

(A10) O[ propose&i, M)]CC(CN, i, M, acceptedi), dondi))
(A11) g[inform _donei, M)]dongi)

(A12) g[end_protocok M, all)]-CN.

© 00 N o g b W N P

Action begin_ protocolnitiates the protocol by puttingN to true, whileend_ protocokerminates it by puttingEN ~ 1©
to false. Since there is no other action mak®y false,CN remains true, i.eCN persists during the whole run of !
this protocol according to the frame laws in the completion, as described in S8ctisee rulel). Moreover,CN  *2
remains false after the end of the protocol. The laws for aatipadd to the social state the information that a call fot?
proposal has been done for a task, and that, if the manager receives a proposal, it is committed to accept or réject i
The laws (A4) and (A6) say that when the manager accepts (rejects) the proposal by paitjdigaris recorded in  *°
the social state by making the flueatc rej(i) true. Furthermore, if the proposal is accepted, the flaenepted:) 10
becomes true due to law (A5). The laws (A7) and (A8) say that when the particigands a refusal or a proposal17
to the manager, this is recorded in the social state by making the fiydied(i) true. If the reply is a proposal, the 18
fluentproposali) becomes true, and the agent is committed to perform the task if the manager accepts the pr(%9 osal
(laws (A9) and (A10)). By actiomform_dondi, M) agent informs the manageV/ that the task has been performed.z

The permissions to execute communicative actions in each state can be defined by the following preconditior;llaws:
(A13) O(CN — [begin protocolM, all)] L) z
(A14) o(—CN v task— [cfp(M, all)]L)
(A15) O(—CN v —proposali) Vv acc rej(i) — [acceptM,i)].Ll)
(A16) O(acceptedi) — [acceptM, j)]L) foralli # j
(A17) o(—CN v —proposali) Vv acc rej(i) — [reject(M,i)] L)
(A18) O(—CN v —taskv replied(i) — [refusdi, M)].L)
(A19) O(—CN v —taskv replied(i) — [ proposéi, M)]L)
(A20) O(—CN v —acceptedi) v dondgi) — [inform_dongi, M)].1) 2
(A21) 0—CN v —task— [end_protocolM, all)] L. 2

24
25
26
27
28
29
30

All actions, except fobegin protocol M, all), can be executed only after the protocol has started (A13). Actitgggg
begin_protocol M, all) can be executed €N is false, i.e. the protocol has not yet started. The lawcfpisays that 45
the manager cannot issue a call for proposal if a task has already been announced (A14). The precondition lgys fo
actionsacceptM, i) andreject(M, i) ((A1l5) and (A17)) say that actioacceptcan be executed only if a proposalg;,
has been issued and the manager has not already replied. Moreover, we stipulate that the manager cannot accgpt m
that one proposal (A16). The precondition laws for actipreposei, M) andrefusdi, M) ((A19) and (A18)) say 39
that a proposal can only be done if a task has already been announced and the participant has not already replied. Tl
actioninform_donei, M) can be executed by agenbnly after his proposal has been accepted (law (A20)). Action
end_protocok M, all) can be executed by the manager at any moment during the execution of the protocol afteg the
task has been announced. Of course in all runs satisfying the protocol, all commitments have to be fulfilled befate the

actionend_protocolis executed by the manager. 44
To express that we want the manager to accept or reject a proposal only after all participants have replied, we cal

add the following precondition laws f@cceptM, i) andreject(M, i): 46

47

(A22) D(\/jzl)N —replied(j) — [acceptM,i)]Ll) 48

(A23) TO(V j_y y —replied(j) — [rejectM, i)]L). 49

50
Assume now that we want all participants to be committed to reply to the task announcement. We can express
this by putting the following conditional commitment in the initial st&técy of the Contract Net of the protocol: 52
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CC(CN, i, M, task replied(i)), for eachi. All domain specific fluents and all other commitments will be false in the

initial state. 2
The domain descriptiodcn = (ITcn, Frames, Cen) for the Contract Net protocol (withV participants) can 3
therefore be defined as follows: 4

5
e [Icy is the set of the action laws (A1)—(A12) and all instances of the causal laws (i), (ii) and (iii) above (Sec-

tion 3.2); 7

e Ccn = Initen A /\;(Perm A Com); 8
o Framen={(f,a):ac X, f € P}, °
10

where /\; Perm is the set of precondition laws (A13)-(A23) af, Com contains the instances of tfigfillment 11
constraintfor each of the commitments introduced in the domain description. 12
It is easy to see that the specification of the Contract Net protocol given above is well-defined. 13
All the possible runs of the protocol can be obtained as finite substrings of linear mo@asDcy). In these 14
protocol runs all permissions are satisfied and all commitments are fulfilled. 15
16

4. Protocol verification in DLTL 17

18

Given the DLTL specification of a protocol by a domain description as defined above, we can now describé the
different kinds of verification problems which can be addressed. In particular, in this section we consider verifici&tion
problems which do not require the availability of an agent program, namely, the verification of agents compliari¢e a
runtime and the verification of properties of the protocol. 22

23

4.1. Verifying agents compliance at runtime 24
25
Given an execution history describing the interactions of the agents, we want to verify the compliance of%hat
execution to the protocol. This verification is carried out at runtime. 2
This kind of verification does not require to be aware of the internal behavior of the communicating agent$eWe
only know the history of the communications among the agents (that is the sequence of communicative messagés th
have exchanged) and we have to check the conformance of this execution with the protocol, that is, we have tGthe
that history is a prefix of a run of the protocol. 31
We are given a history = a1, ..., a, of the communicative actions executed by the agents, and we want to vefify
that the historyr is the prefix of a run of the protocol, that is, it respects the permissions and commitments ofthe

protocol. This problem can be formalized by requiring that the formula 34
35

<Comp(1‘[) A Init A /\(Perm A Com)) Alar;az; ... an)T 36
[ 37
1
38
(wherei ranges on all the agents involved in the protocol) is satisfiable. In fact, the above formula is satisfiablg,if it
is possible to find a run of the protocol starting with the action sequence. , a,. On the one hand, this means that, |
when the actiong, ..., a, in the sequence are executed their preconditions hold. On the other hand, this doeg not
mean that in the stretch of behavior. .. g, all the created commitments have already been fulfilled, but only that4£t

is possible to continue the conversation so that they will eventually be fulfilled. a3

44

4.2. Verifying protocol properties 45

46
A second problem is that of proving a propegtpf a protocol. This can be formulated as the validity of the formulg,
48
(Comp(H) A nit A /\(Perm A Com)) — 0, (3) 4
i 50
according to which all the runs of the protocol satisfy the (temporal) progeg an example of property we want to 51
check, we consider the property of termination of the protocol. After the manager has announced a task, the peetoc
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[

will eventually arrive to completion. This property can be formalized by the temporal formula:

N

¢ = O[cfp(M, all)]&—-CN 3

meaning that, always, after a call for proposal has been issued by the manager, the protocol will eventually réach é
state in which the propositio@N is false, i.e. the protocol is finished, for all possible runs of the protocol.

As a further example, let us consider a version of the Contract Net protocol with a single partiigarguch a
case, given that the protocol is quite rigid, the correct behaviors of the protocol could be described by the follqwing

regular program: o

10
11

start_protocokM, P); cfp(M, P);
(refuséP, M) + "
(proposé&pP, M); (rejectM, P) + 13

acceptM, P); inform dong P, M)))); 14
15
16
We could wonder whether the specification of the protocol given in Se8tiin terms of commitments is equivalent 17

end_protocolM, P).

(when restricted to a single participaRj to the rigid specificatiomr above. 18
We can verify that each runs of the Contract Net protocol as defined in S&figsan execution of the program 19

7 by proving the validity of the formula: 20
21

<Comp(1‘[) Anit A /\ (Perm A Com)) — (m)T. (4) 2

. 23

24
Moreover, we can verify that all the behaviors admittedzbgorrespond to runs of the protocol (as defined in Seg;

tion 3.4), that is, they satisfy the permissions and commitments: 2

27
(CompIT) A Init A () T) — </\(Perm A Com)). (5) 28
i 29
30
5. Verifying the compliance of an agent with the protocol at compile-time 31
32
When the program executed by an agent is given (or, at least, its logical specification is given), we are faceebwith
the problem of verifying if the agent is compliant with the protocol, that is, to verify if the agent’s program respects
the protocol. The logical specification of the protocol is given as described in the previous sections. Solvingsthis
problem requires: first to provide abstractspecification of the behavior (program) of the agent; and, second,sto
check that all the executions of the agent program satisfy the specification of the protocol, assuming that themothe
agents are compliant with the protocol. This requires comparison of the executions of the protocol, which caatain
the communicative actions executed by all the agents, and the executions of the single agent we want to check fo
conformance, which contain its communicative actions as well as its internal actions. 40
In [14] we have shown that this verification problems can be represented, in some cases, in DLTL without requiring
the product version. This is true in particular for protocols involving two agents, where all fluents and all actions atthe
social state are shared by both agents. However, in the general case, addressing this problem requires to move to t
Product Version of DLTL, which allows description of the behavior of a network of sequential agents that coordinate
their activities by performing common actions together. Such logic allows the actions of the different agents o be
interleaved and the state of the system described as partitioned into local states, representing the local viewssof th
social state that are visible to each single agent. In the product version, we can focus separately on those actiens of
given run pertaining to a single agent, while abstracting away from all other actions in the run. So, for instance, &hile
the protocol specification puts requirements on the communicative actions in the run, the specification of the agent tc
be verified only imposes requirements on the sequences of his communicative and internal actions. 50
In the following we first introduce the Product Version of DLTL, then we provide an abstract specification ofsthe
agent program and, finally, we describe the problem of verifying the conformance of the agent to the protocol. 52
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5.1. The product version of DLTL

Let us now recall the definition of DLT%. from [20]. Let Loc= {1.. K} be a set ofocations the names of the
agents synchronizing on common actionsditributed alphabef = {2 } -, Is a family of (possibly non-disjoint)
alphabets, with eacl; a non-empty, finite set of action&{ is the set of actions which require the participation og
agent). Let ¥ = U —1 2. Foro € ¥°°, we denote by 1 i the projection ot down to %;.

Atomic propositions are introduced in a local fashion, by introducing a non-empty set of atomic propOBLtlongs
For each propositiop € P and agent € Loc, p; represents the “local” view of the propositiprati, and is evaluated
in the local state of ageit 10

Let us define the set of formulas of DLPIY) and their locations (ifr is a formula, therdoc(«), which is a 1,
subset ol_oc, denotes its location): (&) is a formula andoc(T) = @; (b) if p € P andi € Loc, p; is aformulaand 1,
loc(p;) = {i}; (c) if « andB are formulas, thera anda Vv B are formulas antbc(—a) = loc(a) andloc(a v 8) = 13
loc(er) U loc(B); (d) if o and g are formulas andoc(a), loc(B) < {i} andx € Prg(X;), thenald” B is a formula 14
andloc(ald” B) = {i}. Notice that no nesting of modalitié% andi{(; (for i # j) is allowed, and the formulas in 15

DLTL®(X) are boolean combinations of formulas from thelseDLTL ®(X), where 16
17

A W N P

18

DLTL®(2) = {« | « € DLTL®(Z) andloc(a) < {i}}.

19

~ 20
A model of DLTL®(X) is a pairM = (o, V), wheres € > andV = {Vi}iK=l is a family of functionsV;, where ,;

V; :prf (o 1 i) — 2 is the valuation function for location 22
The satisfiability of formulas in a model is defined as above, except that propositions are evaluated locaby. In

particular, for allt € prf(o): 24

25

e M,t [ p;iff peVi(z11i); 26

e M.t |=ald] B iff there exists ar’ such thatr’ 1 i € [[7]], 77’ € prf(o) and M, z7" |= B. Moreover, for all 27

" eprf(r),ife<t" i<t ti,thenM, 17" Ea. 28

29

Satisfiability in DLTL® is defined as above. Moreover, the derived modalities, [7];, O:, ¢; andO; are defined 30

as above, but only considering the actiongin 31
In the product version of DLTL the global state of the system can be regarded as a set of local states, one fée eac

agenti. The action laws and causal laws of agedescribe how the local state bthanges when an actiene »; 33

is executed. The underlying model of communication is the synchronous one: the communicatioseripan) 34

(messagen is sent by agent to agentj) is shared by agerit(the sender) and agelit(the receiver) and executed 3°
synchronously by them. Their local states are updated separately, according to their action specification. Thouih, f
simplicity, we adopt the synchronous model, an asynchronous model can be easily obtained by explicitly modﬁllmc

the communication channels among the agents as distinct locations.
39

40
5.2. Describing the program of an agent a1

42

For the purpose of verifying if behavior of agehis compliant with the protocol, we need to introduce twd?
locations, one location for the agent to be verified and one locatioR for the protocof Hence, we havéoc= *
{P,i}.

For the location, the agent to be verified, we need to specify both the internal actions of the agent (WhICh are
private) and the communicative actions of the agent (which are shared with the prBjocol

45

48
49

. . . . . . T B0
3 As a difference with{13] here we do not introduce a distinct location for each different agent participating in the protocol. This S|mpll?|es
substantially the specification of the protocol, as we do not need to project the protocol on the different agents, and to repeat the specificatiéﬁ of tf
communicative actions for each of the participating agent. 52
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In our formalism we can specify the (abstract) behavior of an agent by making use of complex actions (regular

programs). Consider for instance the following progranfior a participant: 2
[—end?; ((cfp(M, all); eval task (—ok;?; refusdi, M) + ok; ?;, propose&i, M))) + j
(reject(M, i)) + 5

(acceptM, i); do_task inform _dongi, M)) + 6

7

(end_protocol M, all); exit))]*; end ?
8

The participant cycles and reacts to the messages that he received by the manager: for instance, if the manager h
issued a call for proposal, the participant can either refuse it or make a proposal according to its evaluation of thg task
if the manager has rejected the proposal, the participant does nothing; if the manager has accepted the propgsal, tl

participant performs the task; if the manager concludes the protocol by executing theemctigmotocol the agent ,,
i executes thexit action, which concludes the execution of the cycle. 13

The state of the participantcontains the following local fluentgend, which is initially false and is made true by ,,
actionexit, andok; which says if the agent must make a bid or not. The local actionewaetask which evaluates 5
the task and sets the fluenk; to true or falsedo taskandexit. Furthermoreend ? andok;? are test actions. 16

Agenti has a local view of the social state. It can see the social fluents which are used and modified by the

communicative actions to which it participates. Therefore, the state of particgigantains, in addition to the local 4
fluents mentioned above, also the social flue@ts;, task, replied. (i), proposaj(i), acc rej; (i), accepteg(i) and 4
done (i), together with all the commitments involving ageéntvhich have been introduced in Secti®d. We have ,,
added the indexto each fluent to make it clear that these are the local views of the fluents at location 21
We define the seX; of the actions at locatiohas the set containing the local actions mentioned above, and the fgl-
lowing communicative actions (of whichis sender or receiverhiegin protocok M, all), cfp(M, all), acceptM, i), 5
rejectM, i), refusdi, M), proposei, M), inform _dongi, M) andend protocokM, all). 24
The program of the participamtcan then be specified by a domain descripfvag, = (1;, C;, Frame), where ¢
I1; is a set of action laws describing the effects of the private and communicative actions of the partickant ,,
instance, the actioexit sets the propositioand to true: 27

O[exit];end.

The actioneval taskhas the nondeterministic effect of assigning a value true or false to the @igerih the action 3o
theory, this is modeled by stating that the fluekt is non-frame with respect to acti@aval task that is: 31

Frame = {(f,a): ac€ X, f € P} \ {(eval task ok;)}.

IT; also contains the action laws (A1)—(A12) for the communicative actions (where the parameterring in the 34
action laws is the same as the locatipnFor instance, (A4) becomes 35

OlacceptM, i)];acc rej; (i).

The set of constraints; containsinit; which provides the initial values for the local fluentsdpone —ok) and for 38
the social fluents of agemt(which must be the same as in the protocol initial statd. Moreover,C; contains the 39
formula (r;) T stating that the program of the participant is executable in the initial state. 40

Concerning the locatio® of the protocol, the local propositions Atare all the social fluent used in the definition4t
of the protocol. MoreoverX'p is the set of actions containing all the communicative actions in the protocol speei-
fication (as defined in Sectid®). We can therefore associate to the locatibthe domain descriptio® which has 43
been introduced in Sectidh4 for specifying the Contract Net protocol. Strictly speaking, we would need to index #il
the modalities occurring in the domain descriptibrwith the labelP of the protocol location and the same for thess
fluents at locatiorP. However, we will omit the indexP with no risk of confusion, as there are just two locations. 46

a7

5.3. Verifying the compliance of an agent with the protocol 48
49

We want now to prove that the participant is compliant with the protocol, i.e. that all executions of pregrare
satisfy the specification of the protocol. This property cannot be proved by considering only the proghafact, it st

is easy to see that the correctness of the property depends on the behavior of the manager. For instance, if the manag
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begins with aracceptaction, the participant will execute the sequence of actimeept do_task exitand stop, which 1
is not a correct execution of the protocol. Thus we have to take into account also the behavior of the managerz Sinc
we do not know its internal behavior, we will assume that the manager respects its public behavior, i.e. that it respec

its permissions and commitments in the protocol specification. 4
The verification that the participant is compliant with the protocol can be formalized as a validity check.5Let

D = (I1,C, Frame be the domain description describing the protocol, as defined in Se&dpand letProg, = ©
(IT;, C;, Frame) be the domain description for the behavior of the participamhe formula 7
8

CompIT) A Init A /\(Permj A Comy) A Com[T;) Alnit; A (m;); T — (Perm A Comy) °

10

J#i

11
is valid if in all the behaviors of the system, in which the participant executes its progrand all other agents (whose 12
internal program is unknown) respect the protocol specification (in particular, their permissions and commitments)
the permissions and commitment of the participant are also satisfied. 14
The left-hand side of the formula puts constraint on the run: the effects of the communicative actions in the run
are defined by the action laws and causal lawGompI7); the initial values of the state of the protocol are givens
in Init; all agents except fromare assumed to satisfy their permissions and commitmg?n};i((Pemy A Comy));, 17
the effects of the communicative and internal actions of agemwe defined by the action laws and causal laws irs
(Comp[T;); the initial values of its local fluents are given it;; and, finally, the formulgr;) T requires the runto 19
contain a finite execution of the prograty of agent:. 20
Observe that the last point means that, given acruthere is a prefix of the run such that its projectiom 1 i on 21
the actions of agentis an execution of the program . Other actions of the protocol can be contained jfout we 22

ignore them when we verifyr;); T. 23
24

25

6. Proofsand model checkingin DLTL e

27
The above verification and satisfiability problems can be solved by extending the standard approach for verifigatiol
and model-checking of Linear Time Temporal Logic, based on the use of Biichi automata. We recaBBiicai a
automatonhas the same structure as a traditional finite state automaton, with the difference that it accepts infinite

words. More precisely a Biichi automaton over an alphabét a tupleB = (Q, —, Qin, F) where: a1
32

e Q is afinite non-empty set of states; 33
e —>C O x X x Qis atransition relation; 34
e QOin C Q is the set of initial states; 35
e F C Qs asetof accepting states. 16
37

Leto € X®. Then a run of3 overo is a mapp : prf (o) — Q such that: 38
39

o p(e) € Qin; 40
e p(1) > p(za) for eachra € prf (o). a

42
The runp is acceptingff inf(p) N F # @, whereinf (p) € Q is given byg € inf (p) iff p(7) = ¢ for infinitely many 43
TE prf (0). 44
As described if21], the satisfiability problem for DLTL can be solved in deterministic exponential time, as for
LTL, by constructing for each formula € DLTL (X') a Bichi automator3, such that the language af-words 46
accepted by, is non-empty if and only ifr is satisfiable. Actually a stronger property holds, since there is a onesto
one correspondence between models of the formula and infinite words acceiedlihe size of the automaton can4s
be exponential in the size of, while emptiness can be detected in a time linear in the size of the automaton. 49
The validity of a formulac can be verified by constructing the Blichi automatdy, for —«: if the language 50
accepted bys_,, is empty, therw is valid, whereas any infinite word accepted®y, provides a counterexample to 51
the validity of . 52
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For instance, let CN be the completed domain description of the Contract Net protocol. Then every infinite word
accepted by5cn corresponds to a possible run of the protocol. To prove a propeatythe protocol, we can build 2
the automatoi8—,, and check that the language accepted by the produggefand 53—, is empty. 3

The construction given if21] is highly inefficient since it requires to build an automaton with an exponential
number of states, most of which will not be reachable from the initial state. A more efficient approach for constructing
a Buchi automaton from a DLTL formula making use of a tableau-based algorithm has been profaé¢diihe ©
construction of the states of the automaton is similar to the standard construction f¢®]L Tiut the possibility of 7
indexing until formulas with regular programs puts stronger constraints on the fulfillment of until formulas thah in
LTL, requiring more complex acceptance conditions. The construction of the automaton can be done on-the-flywhile
checking for the emptiness of the language accepted by the automaton. Given a forrthdaalgorithm builds a 1°
graphG(¢) whose nodes are labelled by sets of formulas. States and transitions of the Biichi automaton correspdnd t
nodes and arcs of the graph. The algorithm makes use of an auxiliary tableau-based function which expands tht set
formulas at each node. As for LTL, the number of states of the automaton is, in the worst case, exponential in tHé Size
if the input formula, but in practice it is much smaller.

LTL is widely used to prove properties of (possibly concurrent) programs by meangdsl checkingechniques.
The property is represented as an LTL formulawhereas the program generates a Kripke structure (the modé),
which directly corresponds to a Biichi automaton where all the states are accepting, and which describes all pbssiblw
computations of the program. The property can be proved as before by taking the product of the model and of the
automaton derived frormg, and by checking for emptiness of the accepted language.

Standard model checking techniques cannot be immediately applied to our approach, because protocols are ?orml
lated as sets of properties rather than as programs. Furthermore, in principle, with DLTL we do not need to use mode
checking, because programs and domain descriptions can be represented in the logic itself, as we have shovvzg in tt
previous section. However representing everything as a logical formula can be rather inefficient from a computatlonal
point of view. In particular all formulas of the domain description are universally quantified, and this means thatsour
algorithm will have to propagate them from each state to the next one, and to expand them with the tableau procedurn
at each step.

Therefore we have adapted model checking to the proof of the formulas given in the previous section, by degvmg
the model from the domain theory in such a way that the model describes all possible runs allowed by the dgmain
theory. In particular, we can obtain from the domain description a functext state, (S), for each actioru, for
transforming a state in the next one, and then build the model (an automaton) by repeatedly applying these fuggtion:
starting from the initial state. We can then proceed as usual to prove a pregeytiaking the product of the model ,
and of the automaton derived frosp, and by checking for emptiness of the accepted language.

Note that, although this automaton has an exponential number of states, we can build it step-by-step by follgwmg
the construction of the algorithm on-the-fly. The state of the product automaton will consist of twqfiads), 5
whereS$s is a set of fluents representing a state of the modelSaigla set of formulas. The initial state will Bé, —¢), 4
where! is the initial set of fluents. A successor state through a transitiniil be obtained agnext state, (S1), S5) 3
where S} is derived fromS> by the on-the-fly algorithm. If the two parts of a state are inconsistent, the stategis
discarded. 39

The incremental nature of the algorithm is especially helpful in the verification of agent compliance at runtigne.
In fact, an external observer will obtain step by step the sequence of communicative actions executed by the agent:
and use it to constrain the incremental construction of the automaton so that at each step the automaton contaigs on
partial runs corresponding to the observed sequence. 43

This construction developed for DLTL can be easily extended to deal with BLTL 44

An alternative way for applying this approach in practice, is to make use of existing model checking toolss In
particular, by translating DLTL formulas into LTL formulas, it would be possible to use LTL-based model checkers
such as for instance SPI[42]. Although in general DLTL is more expressive than LTL, many protocol properties,
such as for instance fulfillment of commitments, can be easily expressed in LTL. 48

We have done some experiments with the model checker SPIN on proving properties of protocols expressed ac
cording to the approach presented in this paper. The model is obtained as suggested above by formulating the @oma
description as a PROMELA program, which describes all possible runs allowed by the domain theory. Properties
and constraints are expressed as LTL formulas. In the case of verification of compliance of an agent implerseenta:

15
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tion with the protocol, we have used different PROMELA processes for representing the agent and the protocal. Th

representation of the agent is derived from its regular program. 2
3

7. Related work 4
5

The issue of developing semantics for agent communication languages has been exaf@Bletyrconsidering 6

the problem of giving &erifiablesemantics, i.e. a semantig®undedon the computational models. The author gives

an abstract formal framework, in which he defines what it means for an agent program, in sending a message whi
in some particular state, to be respecting the semantics of the communicative action. The author also points out t
difficulties of carrying out the verification of this property when the semantics are given in terms of mental states,
since we do not understand how such states can be systematically attributed to programs. The paper deals omly w
single communicative actions, and does not consider communication protocols. 12

Guerin and Pitf18,19]define an agent communication framework which gives agent communication a grourided

declarative semantics. The framework allows to accommodate communication languages based on agents’imen
states as well as those based on social states. Several different types of verification are possible dependingson
information available and whether the verification is done at design time or at run time. In particular they pointeout

the following types of verification which are useful in an open system: 17
18

o verify that an agent always satisfies its social facts; 19
e prove a property of a protocol; 20

e determine if an agent is not respecting its social facts at run time. 21

22

The framework introduces different languages: a language for agent programming, a language for specifyingagel
communication and social facts, and a language for expressing temporal properties. Our approach instead provid
a unified framework for describing multi-agent systems using DLTL. Programs are expressed as regular expregsion
(communicative) actions can be specified by means of action and precondition laws, properties of social facts &an |
specified by means of causal laws and constraints, and temporal properties can be expressed by means of t&mp
operators. 28

In [32] Singh advocates the need to define the semantics of ACLs in terms of social noti{88]. e proposed 20
a social semantics for ACLs, which uses a branching time logic. An approach for testing whether the behawor o
an agent complies with a commitment protocol is presentdd@5h where the protocol is specified in the temporab:
logic CTL as a set of metacommitments (where the condition committed to is a temporal formula possibly invobzing
base-level commitments and commitment operations) as well as a mapping between messages and commatmer
Based on this specification together with the notion of “potential causality” among the messages occurring # the
multi-agent system, a concrete model is built describing all the possible behaviors of the system which are conpliar
with the protocol. A model checking procedure can then be used at runtime for verifying if a given execution respect:
the protocol. The paper also shows how the verification can be done based on local information (concerning assing
agent or a subset of agents). The paper does not address the problem of statically verifying the compliance of a# age
implementation with the protocol. 39

Fornara and Colombetti ii8] propose a method for the definition of interaction protocols starting from a semantics
of communicative actions based on social commitments. Commitments are represented as objects, and their 4ont
and conditions may consist of temporal expressions. Protocols are defined by means of interaction diagrams+who
nodes represent states, and whose edges correspond to the execution of communicative actions. The authors:efil
number of soundness conditions which must be satisfied by the protocol. In particular they require that all commemica
tive actions must have their preconditions satisfied and that all commitments must be cancelled, fulfilled or viekatec
in the last state of the protocol. The soundness conditions can be used to verify whether a protocol is “reasonable
although no formal framework for carrying out the verification is provided in the paper. 47

Yolum and SingH38] developed a social approach to protocol specification and execution, where the contefst of
the communicative actions is captured through agents’ commitments to one another. Commitments are formalized in
variant of event calculus, and the evolution of commitments is described through the agents’ actions. Using thes® ruls
enables agents to reason about their actions. By using an event calculus planner it is possible to determine execut
paths that respect the protocol specification, i.e. where there are no pending base-level commitments. In this paper
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adopt a similar approach to the specification of protocols, although we formalize it in the logic DLTL. In our appreach
a planning problem can be formulated as satisfiability of the completed domain description of the protocol. Inefact,
by Definition 4, a model of the completed domain description corresponds to a correct run of the protocol. However
our approach based on DLTL is more general, since, as we have shown, we can deal with other kinds of protocol
verification, including the verification of the compliance of an agent to the protocol. 5

Alberti et al.[1] address the problem of verifying agents’ compliance with a protocol at runtime. Protocolseare
specified in a logic-based formalism based on Social Integrity Constraints, which constrain the agents’ observable be
havior. Their approach is based on the concepts of event (to represent an agent’s actual behavior), and expectagions |
express the desired behavior). Social Integrity Constraints express which expectations are generated as consequer
of events. The paper present a system that, during the evolution of a society of agents, verifies the compliancef th
agents’ behavior to the protocol, by checking fulfillment or violation of expectations. 1

As we have pointed out in the previous section, the verification of protocols expressed in DLTL can be carried out
by means of model checking techniques. Various authors have proposed the use of model checking for the verifieatiol
of multi-agent systems, but, while in this paper we follow a social approach to the specification and verificatien of
systems of communicating agents, most of them have adopted a mentalistic approach. Thg3jdaltofextend 15
model checking to make it applicable to multi-agent systems, where agents have BDI attitudes. This is achéeved
by using a new logic which is the composition of two logics, one formalizing temporal evolution and the other
formalizing BDI attitudes. The model checking algorithm keeps the two aspects separated: when considering the
temporal evolution of an agent, BDI atoms are considered as atomic proposition; if arvadest a BDI attitude 19
about another agenp, this is modeled as the fact that has access to a representatiomphs a process, in which it 20
will verify the truth value of BDI atoms about. 21

In [23,37]agents are written in MABLE, an imperative programming language, and have a mental state. MABLE
systems may be augmented by the addition of formal claims about the system, expressed using a quantifieclinez
time temporal BDI logic. Insteaff,5] deals with programs written in AgentSpeak(F), a variation of the BDI logi
programming language AgentSpeak(L). Properties of MABLE or AgentSpeak programs can be verified by meahs of
the SPIN model checker, by translating BDI formulas into the LTL form used by SPIN. In the case of AgentSpeak,
BDI properties are extracted from the data structures used to implement AgentSpeak in SPIN. 27

A different framework for verifying temporal and epistemic properties of multi-agent systems by means of madel
checking techniques is presented by Penczek and Lom28jidHere multi-agent systems are formulated in the logies
language CTLK, which adds to the temporal logic CTL an epistemic operator to model knowledgantesipgeted 30
systemss underlying semantics. 31

32

8. Conclusions 33
34
In this paper we have proposed an approach for the specification and verification of interaction protocols in astem-
poral logic. We have shown that DLTL and its product version DETdre a suitable formalisms for the specificatiorss
of a system of communicating agents. Our approach provides a unified framework for describing different aspects
of multi-agent systems. Programs are expressed as regular expressions, (communicative) actions can be spe#ified
means of action and precondition laws, social facts can be specified by means of commitments whose dynaeaics i
ruled by causal laws, and temporal properties can be expressed by meansiuatiltbperator. We have addressecko
several kinds of verification problems, including the verification of agents compliance at runtime, the verificatian of
protocol properties and the verification that and agent (whose specification is given) is compliant with a protocak
Such verification problems can be formalized as satisfiability and validity problems in DLTL or ®ERd they 43
can be solved by developing automata-based model checking techniques. 44
A preliminary implementation of a model checker based on the algoritairs being tested in the verification 45
of the properties of various protocols. This implementation has been useful to prove properties of small protocots, but
larger protocols might require the adoption of optimized techniques, similar to the ones adopted by the state of the ar
model checkers for LTL. 48
Our proposal is based on a social approach to agent communication, which allows a high level specification of
the protocol and does not require a rigid specification of the correct action sequences. For this reason the approac
appears to be well suited for protocol composition. The problem of protocol composition is strongly related swith
that of service composition, where the objective is “to describe, simulate, compose and verify compositions ofANeb
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services”. Recently, technologies have been proposed which use some form of semantic markup of Web services
order to automatically compose Web services to perform a desiref2&384] As a first step in this direction, ifi15] 2

we have addressed the problem of combining two protocols to define a new more specialized protocol and present
notion of protocol specialization which is based on the well-known notion of stuttering equivalence between rurs.
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