
Security and Privacy on the Semantic Web

Daniel Olmedilla

L3S Research Center and University of Hannover
olmedilla@L3S.de

Summary. The Semantic Web aims at enabling sophisticated and autonomic ma-
chine to machine interactions without human intervention, by providing machines
not only with data but also with its meaning (semantics). In this setting, traditional
security mechanisms are not suitable anymore. For example, identity-based access
control assumes that parties are known in advance. Then, a machine first determines
the identity of the requester in order to either grant or deny access, depending on its
associated information (e.g., by looking up its set of permissions). In the Semantic
Web, any two strangers can interact with each other automatically and therefore this
assumption does not hold. Hence, a semantically enriched process is required in order
to regulate an automatic access to sensitive information. Policy-based access con-
trol provide sophisticated means in order to support protecting sensitive resources
and information disclosure. This chapter provides an introduction to policy-based
security and privacy protection, by analyzing several existing policy languages. Fur-
thermore, it shows how these languages can be used in a number of Semantic Web
scenarios.

1 Introduction

Information provided in the current Web is mainly human oriented. For example,
HTML pages are human understandable but a computer is not able to understand
the content and extract the right concepts represented there, that is, the meaning of
the data. The Semantic Web [1] is a distributed environment in which information
is self-describable by means of well-defined semantics, that is, machine understand-
able, thus providing interoperability (e.g., in e-commerce) and automation (e.g., in
search). In such an environment, entities which have not had any previous inter-
action may now be able to automatically interact with each other. For example,
imagine an agent planning a trip for a user. It needs to search for and book a plane
and a hotel taking into account the user’s schedule. When the user’s agent contacts a
hotel’s website, the latter needs to inform the former that it requires a credit card in
order to confirm a reservation. However, the user may probably want to restrict the
conditions under which her agent automatically discloses her personal infomation.
Due to such exchange of conditions and personal information, as well as its automa-
tion, security and privacy become yet more relevant and traditional approaches are

2 Daniel Olmedilla

not suitable anymore. On the one hand, unilateral access control is now replaced by
bilateral protection (e.g., not only the website states the conditions to be satisfied
in order to reserve a room but also the user agent may communicate conditions un-
der which a credit card can be disclosed). On the other hand, identity-based access
control cannot be applied anymore since users are not known in advance. Instead,
entities’ properties (e.g., user’s credit card or whether a user is a student) play a
central role. Both these properties and conditions stating the requirements to be
fulfilled by the other party, must be described in a machine-understandable lan-
guage with well-defined semantics allowing other entities to process them. Systems
semantically annotated with policies enhance their authorisation process allowing,
among others, to regulate information disclosure (privacy policies), to control access
to resources (security policies), and to estimate trust based on parties’ properties
(trust management policies) [2].

Distributed access control has addressed some of these issues though not solved
them yet. Examples like KeyNote [3] or PolicyMaker [4] provide a separation between
enforcement and decision mechanisms by means of policies. However, policies are
bound to public keys (identities) and are not expressive enough to deal with Semantic
Web scenarios. RBAC (Role-Based Access Control) also does not meet Semantic
Web requirements since it is difficult to assign roles to users which are not known in
advance. Regarding to user’s privacy protection, Platform for Privacy Preferences
(P3P) provides a standard vocabulary to describe Web server policies. However, it
is not expressive enough (it is a schema, not a language, and only describes purpose
for the gathered data) and it does not allow for enforcement mechanisms. On the
other hand, there is a wide offer of policy languages that have been developed to
date [5, 6, 7, 8, 9], addressing the general requirements for a Semantic Web policy
language: expressiveness, simplicity, enforceability, scalability, and analyzability [10].
These policies can be exchanged between entities on the Semantic Web and therefore
they are described using languages with well-founded semantics.

The policy languages listed above differ in expressivity, kind of reasoning re-
quired, features and implementations provided, etc. For the sake of simplicity, they
are divided according to their protocol for policy exchange between parties, depend-
ing on the sensitivity of policies. On the one hand, assuming that all policies are
public and accessible (typical situation in many multi-agent systems), the process
of evaluating whether two policies from two different entities are compatible or not
consists in gathering the relevant policies (and possibly relevant credentials) from
the involved entities and checking whether they match (e.g., [11]). On the other
hand, if policies may be private (typical situation for business rules [12]), it implies
that not all policies are known in advance but they may be disclosed at a later
stage. Therefore, a negotiation protocol in which security and trust is iteratively
established is required [13].

However, specifying policies is as difficult as writing imperative code, getting a
policy right is as hard as getting a piece of software correct, and maintaining a large
number of them is even harder. Fortunately, ontologies and policy reasoning may
help users and administrators on specification, conflict detection and resolution of
such policies [5, 14].

This chapter first describes how policies are exchanged and how they interact
among parties on the Semantic Web, with a brief description of the main Seman-
tic Web policy languages and how ontologies may be used in policy specification,
conflict detection and validation. Then, some examples of application scenarios are

Security and Privacy on the Semantic Web 3

presented, where policy based security and privacy are used, followed by some im-
portant open research issues. This chapter focuses only on policy-based security,
privacy and trust on the Semantic Web and does not deal with approaches based on
individual trust ratings and propagation through a web of trust providing means to
rate unknown sources [15, 16, 17].

2 Policy Based Interaction and Evaluation

Policies allow for security and privacy descriptions in a machine understandable
way. More specifically, service or information providers may use security policies to
control access to resources by describing the conditions a requester must fulfil (e.g.,
a requester to resource A must belong to institution B and prove it by means of a
credential). At the same time, service or information consumers may regulate the
information they are willing to disclose by protecting it with privacy policies (e.g., an
entity is willing to disclose its employee card credential only to the web server of its
employer). Given two sets of policies, an engine may check whether they are compat-
ible, that is, whether they match. The complexity of this process varies depending
on the sensitivity of policies (and the expressivity of the policies). If all policies are
public at both sides (typical situation in many multi-agent systems), provider and
requester, the requester may initially already provide the relevant policies together
with the request and the evaluation process can be performed in a one-step evalua-
tion by the provider policy engine (or an external trusted matchmaker) and return
a final decision. Otherwise, if policies may be private, as it is, for example, typi-
cally the case for sensitive business rules, this process may consist of several steps
negotiation in which new policies and credentials are disclosed at each step, there-
fore advancing after each iteration towards a common agreement. In this section we
give an overview of both types of languages. The main features of these languages
are shown in Table 1. Additionally, we use the running policy “only employees of
institution XYZ may retrieve a file” to illustrate an example of each language.

2.1 One-Step Policy Evaluation

Assuming that policies are publicly disclosable, there is no reason why a requester
should not disclose its relevant applicable policies together with its request. This way,
the provider’s policy engine (or a trusted external matchmaker in case the provider
does not have one) has all the information needed to make an authorisation decision.
The KAOS and REI frameworks, specially designed using Semantic Web features
and constructs, fall within this category of policy languages, those which do not
allow policies themselves to be protected.

KAOS Policy and Domain Services

KAOS Services [5, 18] provide a framework for specification, management, conflict
resolution and enforcement of policies allowing for distributed policy interaction
and support for dynamic policy changes. It uses OWL [19] ontologies (defining e.g.
actors, groups and actions) to describe the policies and the application context,
and provides administration tools (KAOS Administration Tool - KPAT) to help

4 Daniel Olmedilla

Table 1. Comparison of KAOS, REI, PeerTrust and Protune1

Policy
Language

Authorization
Protocol

Reasoning
Paradigm

Conflict
Detection

Meta-policies Loop
Detection

KAOS One-step DL Static detection
& resolution

REI One-step DL + vari-
ables

Dinamyc detec-
tion & resolu-
tion

Used for
conflict reso-
lution

PeerTrust Negotiation LP + on-
tologies

Distributed
Tabling

Protune Negotiation LP + on-
tologies

Used for driv-
ing decisions

administrators to write down their policies and hide the complexity of using OWL
directly. A policy in KAOS may be a positive (respectively negative) authorisation,
i.e., constraints that permit (respectively forbid) the execution of an action, or a
positive (respectively negative) obligation, i.e., constraints that require an action to
be executed (respectively waive the actor from having to execute it). A policy is
then represented as an instance of the appropriate policy type, associating values to
its properties, and giving restrictions on such properties (figure 1 sketches part of a
KAOS policy).

KAOS benefits from the OWL representation and description logic based sub-
sumption mechanisms [20]. Thus, it allows to, for example, obtain all known sub-
classes or instances of a class within a given range (used during policy specification
to help users choosing only valid classes or instances) or detect policy conflicts (by
checking disjointness of subclasses of the action class controlled by policies). KAOS
is able to detect three types of conflicts, based on the types of policies that are
allowed in the framework: positive vs. negative authorisation (a policy allows ac-
cess and but another denies it), positive vs. negative obligation (a policy obliges to
execute an action while another dispensates from such obligation) and positive obli-
gation vs. negative authorisation (a policy obliges to execute an action but another
denies authorisation for such execution). KAOS resolves such conflics (also called
harmonisation) based on assigning preferences to policies and resolving in favour of
the policies with higher priority (section 2.3 will later extend on this).

Finally, KAOS assumes a default authorisation mechanism in case no policy
applies to a request. It can be either “permit all actions not explicitly forbidden” or
“forbid all actions not explicitly authorised”.

REI

REI 2.0 [21, 11] expresses policies according to what entities can or cannot do and
what they should or should not do. They define an independent ontology which
includes the concepts for permissions, obligations, actions, etc. Additionally, as in

1 DL refers to Description Logic while LP stands for Logic Programming

Security and Privacy on the Semantic Web 5

<owl:Class rdf:ID="RetrieveFileAction">
 <owl:intersectionOf>
 <owl:Class rdf:about="#AccessAction"/>
 <owl:Class>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#performedBy"/>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#EmployeeInstitutionXYZ"/>
 </owl:oneOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:Class>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

<policy:PosAuthorizationPolicy rdf:ID="PolicyRetrieveFileAction">
 <policy:controls rdf:resource="#RetrieveFileAction"/>
 <policy:hasPriority>1</policy:hasPriority>
</policy:PosAuthorizationPolicy>

<policy:Policy rdf:ID=”RetrieveFilePolicy”>
 <policy:grants rdf:resource=”#Perm_Employee_XYZ”>
</policy:Policy>

<policy:Granting rdf:ID=#Perm_Employee_XYZ”>
 <policy:to rdf:resource=”#PersonVar”>
 <policy:deontic rdf:resource=”Perm_Retrieve_File”>
</policy:Granting>

<deontic:Permission rdf:ID=”Perm_Retrieve_File”>
 <deontic:actor rdf:resource=”#PersonVar”>
 <deontic:action rdf:resource=”&action;RetrieveFile”>
 <deontic:constraint rdf:resource=”#IsEmployeeXYZ”>
</deontic:Permission>

<constraint:SimpleConstraint rdf:ID=”IsEmployeeXYZ”>
 <constraint:subject rdf:resource=”#PersonVar”>
 <constraint:predicate rdf:resource=”&emp;affiliation”>
 <constraint:object rdf:resource=”&emp;XYZ”>
</constraint:SimpleConstraint>

Fig. 1. Example of KAOS (left) and REI (right) policies

KAOS, they allow the import of domain dependent ontologies (including domain
dependent classes and properties). REI 2.0 is represented in OWL-Lite and includes
logic-like variables in order to specify a range of relations.

REI policies (see figure 1 for an example) are described in terms of deontic
concepts: permissions, prohibitions, obligations and dispensations, equivalently to
the positive/negative authorisations and positive/negative obligations of KAOS. In
addition, REI provides a specification of speech acts for the dynamic exchange of
rights and obligations between entities: delegation (of a right), revocation (of a
previously delegated right), request (for action execution or delegation) and cancel
(of a previous request).

As in the KAOS framework, REI policies may conflict with each other (right
vs. prohibition or obligation vs. dispensation). REI provides mechanisms for conflict
detection and constructs to resolve them, namely, overriding policies (similar to
the prioritisation in KAOS) and definition at the meta-level of the global modality
(positive or negative) that holds (see section 2.3 for more details).

2.2 Policy-Driven Negotiations

In the approaches presented previously, policies are assumed to be publicly disclos-
able. This is true for many scenarios but there exist other scenarios where it may not
hold. For example, imagine a hospital revealing to everyone that in order to receive
Alice’s medical report, the requester needs an authorisation from Alice’s psychia-
trist. Another example, imagine Tom wants to share his holiday pictures on-line
only with his friends. If he states publicly that policy and Jessica is denied access,
she may get angry because of Tom not considering her as a friend. Moreover, policy
protection becomes even more important when policies protects sensitive business
rules.

These scenarios require the possibility to protect policies (policies protecting
policies) and the process of finding a match between requester and provider be-
comes more complex, since not all relevant policies may be available at the time.

6 Daniel Olmedilla

Therefore, this process may consist of a several steps negotiation, by disclosing new
policies and credentials at each step, and therefore advancing after each iteration
towards a common agreement [13]. For example, suppose Alice requests access to a
resource at e-shop. Alice is told that she must provide her credit card to be granted
access. However, Alice does not want to disclose her credit card just to anyone and
she communicates to e-shop that before it gets her credit card, it should provide
its Better Business Bureau certification. Once e-shop discloses it, Alice’s policy is
fulfilled and she provides the credit card, thus fulfilling e-shop’s policy and receiving
access to the requested resource (see figure 2).

Fig. 2. Policy-driven negotiation between Alice and e-shop

Below, the two most recent languages for policy-driven negotiation are presented.
They are also specially designed for the Semantic Web. However, we refer the in-
terested reader to other languages for policy based negotiations [22, 23, 24], which
may be applied to the Semantic Web.

PeerTrust

PeerTrust [7] builds upon previous work on policy-based access control and release
for the Web and implements automated trust negotiation for such a dynamic envi-
ronment.

PeerTrust’s language is based on first order Horn rules (definite Horn clauses),
i.e., rules of the form “lit0 ← lit1, . . . , litn” where each liti is a positive literal
Pj(t1, . . . , tn), Pj is a predicate symbol, and the ti are the arguments of this predi-
cate. Each ti is a term, i.e., a function symbol and its arguments, which are them-
selves terms. The head of a rule is lit0, and its body is the set of liti. The body of
a rule can be empty.

Definite Horn clauses can be easily extended to include negation as failure, re-
stricted versions of classical negation, and additional constraint handling capabilities
such as those used in constraint logic programming. Although all of these features

Security and Privacy on the Semantic Web 7

can be useful in trust negotiation, here are only described other more unusual re-
quired language extensions. Additionally, PeerTrust allows the import of RDF based
meta-data therefore allowing the use of ontologies within policy descriptions.

� � � � � � � � � � � � � � � � � 	
 � � �� � � � � � � � � �
� ��� � � � � � � � � � � � � � � � � ��� � � � � � � � � � � 	
 ���

� � � � � � � � � � � 	
 � ! � �
� � � � � � � � � � � � ��� � � � � � " # � "
� � � � � $ � ��� � � � � � % � � "
# � � � � � � � � � � � � $ 	
 � ! �

� � � � � � � % � � � � � � $ � � � � � � � � �
� � � � � � � % � � � � � � � � � � � � � $ � � & � � � �

Fig. 3. Example of PeerTrust (left) and Protune (right) policies

References to Other Peers PeerTrust’s ability to reason about statements made
by other peers is central to trust negotiation. To express delegation of evaluation to
another peer, each literal liti is extended with an additional Authority argument,
that is

liti @ Authority

where Authority specifies the peer who is responsible for evaluating liti or has the
authority to evaluate liti. The Authority argument can be a nested term containing
a sequence of authorities, which are then evaluated starting at the outermost layer.

A specific peer may need a way of referring to the peer who asked a particular
query. This is accomplished by including a Requester argument in literals, so that
now literals are of the form

liti @ Issuer $ Requester

The Requester argument can also be nested, in which case it expresses a chain of
requesters, with the most recent requester in the outermost layer of the nested term.

Using the Issuer and Requester arguments, it is possible to delegate evalua-
tion of literals to other parties and also express interactions and the corresponding
negotiation process between parties (see figure 3 for an example).

Signed Rules Each peer defines a policy for each of its resources, in the form of a
set of definite Horn clause rules. These and any other rules that the peer defines
on its own are its local rules. A peer may also have copies of rules defined by other
peers, and it may use these rules to generate proofs, which can be sent to other
entities in order to give evidence of the result of a negotiation.

A signed rule has an additional argument that says who signed the rule. The
cryptographic signature itself is not included in the policy, because signatures are
very large and are not needed by this part of the negotiation software. The signature
is used to verify that the issuer really did issue the rule. It is assumed that when
a peer receives a signed rule from another peer, the signature is verified before the
rule is passed to the DLP evaluation engine. Similarly, when one peer sends a signed
rule to another peer, the actual signed rule must be sent, and not just the logic
programmatic representation of the signed rule. More complex signed rules often
represent delegations of authority.

8 Daniel Olmedilla

Loop detection mechanisms In declarative policy specification, loops may easily
occur and should not be considered as errors. For example, declarative policies may
state at the same time that “anyone with write permissions can read a file” and
“anyone with read permissions can write a file”. If not handled accordingly, such
loops may end up in non-terminating evaluation [25]. In practice, policies, including
for instance business rules, are complex and large in number (and typically not un-
der control of a single person) which increases the risk of loops and non-termination
during dynamic policy evaluation. A distributed tabling algorithm can handle safely
mutual recursive dependencies (loops) in distributed environments. Due to the se-
curity context, other aspects like private and public policies and proof generation
must be taken into account [25].

Protune

The PRovisional TrUst NEgotiation framework Protune [9] aims at combining dis-
tributed trust management policies with provisional-style business rules and access-
control related actions. Protune’s rule language extends two previous languages:
PAPL [22], which until 2002 was one of the most complete policy languages for
trust negotiation, and PeerTrust [7], which supports distributed credentials and a
more flexible policy protection mechanism. In addition, the framework features a
powerful declarative meta-language for driving some critical negotiation decisions,
and integrity constraints for monitoring negotiations and credential disclosure.

Protune provides a framework with:

• A trust management language supporting general provisional-style2 actions (pos-
sibly user-defined).

• An extendible declarative meta-language for driving decisions about request for-
mulation, information disclosure, and distributed credential collection.

• A parameterised negotiation procedure, that gives a semantics to the meta-
language and provably satisfies some desirable properties for all possible meta-
policies.

• Integrity constraints for negotiation monitoring and disclosure control.
• General, ontology-based techniques for importing and exporting meta-policies

and for smoothly integrating language extensions.

The Protune rule language is based on normal logic program rules “A ←
L1, . . . , Ln” where A is a standard logical atom (called the head of the rule) and
L1, . . . , Ln (the body of the rule) are literals, that is, Li equals either Bi or ¬Bi, for
some logical atom Bi.

A policy is a set of rules (see figure 3 for an example), such that negation is ap-
plied neither to provisional predicates (defined below), nor to any predicate occurring
in a rule head. This restriction ensures that policies are monotonic on credentials
and actions, that is, as more credentials are released and more actions executed, the
set of permissions does not decrease.

The vocabulary of predicates occurring in the rules is partitioned into the follow-
ing categories: Decision Predicates (currently supporting “allow()” which is queried
by the negotiation for access control decisions and “sign()” which is used to issue
statements signed by the principal owning the policy, Abbreviation Predicates (as

2 Authorizations involving actions and side effects are sometimes called provisional.

Security and Privacy on the Semantic Web 9

described in [22]), Constraint Predicates (which comprise the usual equality and
disequality predicates) and State Predicates (which perform decisions according to
the state). State Predicates are further subdivided in State Query Predicates (which
read the state without modifying it) and Provisional Predicates (which may be
made true by means of associated actions that may modify the current state like
e.g. credential(), declaration(), logged(X, logfile name)).

Furthermore, meta-policies consist of rules similar to object-level rules. They
allow to inspect terms, check groundness, call an object-level goal G against the
current state (using a predicate holds(G)), etc. In addition, a set of reserved at-
tributes associated to predicates, literals and rules (e.g., whether a policy is public
or sensitive) is used to drive the negotiator’s decisions. For example, if p is a pred-
icate, then p.sensitivity : private means that the extension of the predicate is
private and should not be disclosed. An assertion p.type : provisional declares p
to be a provisional predicate; then p can be attached to the corresponding action
α by asserting p.action :α. If the action is to be executed locally, then we assert
p.actor : self, otherwise assert p.actor : peer.

2.3 Policy specification, conflict detection and resolution

Previous sections described how the Semantic Web may benefit from the protection
of resources with policies specifying security and privacy constraints. However, spec-
ifying policies may be as difficult as writing imperative code, getting a policy right
is as hard as getting a piece of software correct, and maintaining a large number of
them is only harder. Fortunately, the Semantic Web can help administrators with
policy specification, and detection and resolution of conflicts.

Policy specification tools like the KAOS Policy Administration Tool (K-PAT) [5]
and the PeerTrust Policy Editor provide an easy to use application to help pol-
icy writers. This is important because the policies will be enforced automatically
and therefore errors in their specification or implementation will allow outsiders
to gain inappropriate access to resources, possibly inflicting huge and costly dam-
ages. In general, the use of ontologies on policy specification reduces the burden
on administrators, helps them with their maintenance and decreases the number
of errors. For example, ontology-based structuring and abstraction help maintain
complex software, and so do they with complex sets of policies. In the context of
the Semantic Web, ontologies provide a formal specification of concepts and their
interrelationships, and play an essential role in complex web service environments,
semantics-based search engines and digital libraries. Nejdl et al. [14] suggest us-
ing two strategies to compose and override policies, building upon the notions of
mandatory and default policies, and formalising the constraints corresponding to
these kinds of policies using F-Logic. A prototype implementation as a Protégé
plug-in shows that the proposed policy specification mechanism is implementable
and effective.

Conflict detection and resolution. Semantic Web policy languages also allow for
advanced algorithms for conflict detection and its resolution. For example, in sec-
tion 2.1 it was briefly described how conflicts may arise between policies, either at
specification time or runtime. A typical example of a conflict is when several policies
apply to a request and one allows access while another denies it (positive vs. negative
authorisation). Description Logic based languages may use subsumption reasoning

10 Daniel Olmedilla

to detect conflicts by checking if two policies are instances of conflicting types and
whether the action classes, that the policies control, are not disjoint. Both KAOS
and REI handle such conflicts (like right vs. prohibition or obligation vs. dispensa-
tion) within their frameworks and both provide constructs for specifying priorities
between policies, hence the most important ones override the less important ones.
In addition, REI provides a construct for specifying a general modality priority:
positive (rights override prohibitions and obligations override dispensations) or neg-
ative (prohibitions override rights and dispensations override obligations). KAOS
also provides a conflict resolution technique called “policy harmonisation’. If a con-
flict is detected the policy with lower priority is modified by refining it with the
minimum degree necessary to remove the conflict. This process may generate zero,
one or several policies as a refinement of the previous one (see [5] for more informa-
tion). This process is performed statically at policy specification time ensuring that
no conflicts arise at runtime.

3 Applying Policies on the Semantic Web

The benefits of using semantic policy languages in distributed environments with
automated machine-machine interaction have been described extensible in previous
sections. This section aims at providing some examples of its use in the context of
the Web, (Semantic) Web Services and the (Semantic) Grid. In all cases, different
solutions have been described addressing different scenarios from the point of view
of one-step authorization or policy-driven negotiations.

3.1 Policies on the Web

The current Web infrastructure does not allow the enforcement of user policies while
accessing web resources. Web server authentication is typically based on authenti-
cation mechanisms in which users must authenticate themselves (either by means of
certificates or typing a user name and password). Semantic Web policies overcome
such limitations of the Web.

Kagal et al. [6] describe how the REI language can be applied in order to control
access to web resources. Web pages are marked up with policies specifying which
credentials are required to access such pages. A policy engine (bound to the web
server) decides whether the request matches the credentials requested. In case it does
not, the web server could show which credentials are missing. Furthermore, Kolari
et al. [26] presents an extension to the Platform for Privacy Preferences (P3P) using
the REI language. The authors propose enhancements using REI policies to increase
the expressiveness and to allow for existing privacy enforcement mechanisms.

PeerTrust can be used to provide advanced policy-driven negotiations on the
Web in order to control access to resources [7, 27]. A user receives a signed (by
a trusted authority) applet after requesting access to a resource. Such an applet
includes reasoning capabilities and is loaded in the Web browser. The applet au-
tomatically imports the policies specified by the user and starts a negotiation. If
the negotiation succeeds, the applet simply retrieve the resource requested or, if
necessary, redirects the user to the appropriate repository.

Security and Privacy on the Semantic Web 11

3.2 Semantic Web Services

Semantic Web Services aim at the automation of discovery, selection and compo-
sition of Web Services. Denker et al. [28] and Kagal et al. [11] suggest extending
OWL-S with security policies, written in REI, like e.g. whether a service requires or
is capable of providing secure communication channels. An agent may then submit a
request to the registry together with its privacy policies. The matchmaker at the reg-
istry will filter out non-compatible service descriptions and select only those whose
security requirements of the service match the privacy policies of the requester.

Differently, Olmedilla et al. [29] propose the use of the PeerTrust language to
decide if trust can be established between a requester and a service provider dur-
ing runtime selection of web services. Modelling elements are added to the Web
Service Modeling Ontology (WSMO) in order to include security information in
the description of Semantic Web Services. In addition, the authors discuss different
registry architectures and their implications for the matchmaking process.

3.3 Semantic Grid

Grid environments provide the middleware needed for access distributed computing
and data resources. Distinctly administrated domains form virtual organisations and
share resources for data retrieval, job execution, monitoring, and data storage. Such
an environment provides users with seamless access to all resources they are autho-
rised to access. In current Grid infrastructures, in order to be granted access at each
domain, user’s jobs have to secure and provide appropriate digital credentials for
authentication and authorisation. However, while authentication along with single
sign-on can be provided based on client delegation of X.509 proxy certificates to the
job being submitted, the authorisation mechanisms are still mainly identity-based.
Due to the large number of potential users and different certification authorities,
this leads to scalability problems calling for a complementary solution to the access
control mechanisms specified in the current Grid Security Infrastructure (GSI) [30].

Uszok et al. [31] presents an integration of the KAOS framework into Globus
Tookit 3. Its authors suggest offering a KAOS grid service and providing an interface
so grid clients and services may register and check whether a specific action is
authorised or not. The KAOS grid service uses the KAOS policy services described
in section 2.1 and relies on the Globus local enforcement mechanisms.

Alternatively, Constandache et al. [32] describe an integration of policy driven
negotiations for the GSI, using semantic policies and enhancing it providing auto-
matic credential fetching and disclosure. Policy-based dynamic negotiations allow
more flexible authorisation in complex Grid environments, and relieve both users
and administrators from up front negotiations and registrations. Constandache et
al. [32] introduces an extension to the GSI and Globus Toolkit 4.0 in which policy-
based negotiation mechanisms offer the basis for overcoming these limitations. This
extension includes property-based authorisation mechanisms, automatic gathering
of required certificates, bidirectional and iterative trust negotiation and policy based
authorisation, ingredients that provide advanced self-explanatory access control to
grid resources.

12 Daniel Olmedilla

4 Open Research Issues

Although there has been extensive research in the last years, there exist still open
issues that must be solved [33]. The following provides a non-exhaustive list of issues
which have not yet been given enough attention, or that still remain unsolved and
crucial challenges in order to have a semantic policy framework adopted in real world
applications.

• Adoption of a broad notion of policy, encompassing not only access control poli-
cies, but also privacy policies, business rules, quality of service, agent conversa-
tion, mobility policies, etc. All these different kinds of policies should eventually
be integrated into a single framework.

• Strong and lightweight evidence: Policies make decisions based on properties of
the peers interacting with the system. These properties may be strongly certified
by cryptographic techniques, or may be reliable to some intermediate degree
with lightweight evidence gathering and validation. A flexible policy framework
should try to merge these two forms of evidence to meet the efficiency and
usability requirements of web applications.

• These desiderata imply that trust negotiation, reputation models, business rules,
and action specification languages have to be integrated into a single framework
at least to some extent. It is crucial to find the right tradeoff between generality
and efficiency.

• Automated policy driven negotiation is one of the main ingredients that can be
used to make heterogeneous peers effectively interoperate.

• Lightweight knowledge representation and reasoning does not only refer to com-
putational complexity; it should also reduce the effort to specialise general frame-
works to specific application domains; and the corresponding tools should be easy
to learn and use for common users, with no particular training in computers or
logic.

• The last issue cannot be tackled simply by adopting a rule language. Solutions
like controlled natural language syntax for policy rules, to be translated by a
parser into the internal logical format, will definitively ease the adoption of any
policy language.

• Cooperative policy enforcement : A secure cooperative system should (almost)
never say no. Web applications need to help new users in obtaining the services
that the application provides, so potential customers should not be discouraged.
Whenever prerequisites for accessing a service are not met, web applications
should explain what is missing and help the user in obtaining the required per-
missions. As part of cooperative enforcement, advanced explanation mechanisms
are necessary to help users in understanding policy decisions and obtaining the
permission to access a desired service.

5 Conclusions

This chapter provides an introduction to policy-based security and privacy manage-
ment on the Semantic Web. It describes the benefits of using policies and presents
four of the most relevant policy languages in the Semantic Web contexts. These four
languages are classified according to whether policies are assumed to be public or

Security and Privacy on the Semantic Web 13

else may be protected. The former consists of a single evaluation step where a policy
engine or a matchmaker decides whether two policies are compatible or not. Exam-
ples of this kind of evaluation are the KAOS and REI frameworks. If policies may be
protected (by e.g. other policies), the process is not anymore a one-step evaluation.
In this case, policies guide a negotiation in which policies are disclosed iteratively
increasing the level of security at each step towards a final agreement. Examples of
these kind of frameworks are PeerTrust and Protune. Furthermore, Semantic Web
techniques can be used to ease and enhance the process of policy specification and
validation. Conflicts between policies can be found and even resolved automatically
(either by meta-policies or by harmonisation algorithms).

In order to demonstrate the benefits and feasibility of Semantic Web policies,
several application scenarios are described, namely the Web, (Semantic) Web Ser-
vices and the (Semantic) Grid. Finally the chapter concludes with a list of open
research issues that prevent existing policy languages from being widely adopted.
This list is intended to help new researchers in the area to focus on those crucial
problems which are still unsolved.

References

1. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scien-
tific American, may 2001.

2. Grigoris Antoniou, Matteo Baldoni, Piero A. Bonatti, Wolfgang Nejdl, and
Daniel Olmedilla. Rule-based policy specification. In Ting Yu and Sushil Jajo-
dia, editors, Decentralized Data Management Security. Springer, 2006.

3. Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. Keynote: Trust man-
agement for public-key infrastructures (position paper). In Security Protocols,
6th International Workshop, volume 1550 of Lecture Notes in Computer Science,
pages 59–63, Cambridge, April, 1998. Springer.

4. Matt Blaze, Joan Feigenbaum, and Martin Strauss. Compliance checking in
the policymaker trust management system. In Financial Cryptography, Second
International Conference, volume 1465 of Lecture Notes in Computer Science,
pages 254–274, Anguilla, British West Indies, February 1998. Springer.

5. Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers, Niranjan Suri, Patrick J.
Hayes, Maggie R. Breedy, Larry Bunch, Matt Johnson, Shriniwas Kulkarni,
and James Lott. KAoS policy and domain services: Toward a description-logic
approach to policy representation, deconfliction, and enforcement. In POLICY,
page 93, 2003.

6. Lalana Kagal, Timothy W. Finin, and Anupam Joshi. A policy based approach
to security for the semantic web. In The Semantic Web - ISWC 2003, Sec-
ond International Semantic Web Conference, Sanibel Island, FL, USA, October
20-23, 2003, Proceedings, Lecture Notes in Computer Science, pages 402–418.
Springer, 2003.

7. Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent E. Seamons, and Mar-
ianne Winslett. No registration needed: How to use declarative policies and
negotiation to access sensitive resources on the semantic web. In 1st European
Semantic Web Symposium (ESWS 2004), volume 3053 of Lecture Notes in Com-
puter Science, pages 342–356, Heraklion, Crete, Greece, may 2004. Springer.

14 Daniel Olmedilla

8. Moritz Y. Becker and Peter Sewell. Cassandra: Distributed access control poli-
cies with tunable expressiveness. In 5th IEEE International Workshop on Poli-
cies for Distributed Systems and Networks (POLICY 2004), 7-9 June 2004,
Yorktown Heights, NY, USA, pages 159–168. IEEE Computer Society, 2004.

9. Piero A. Bonatti and Daniel Olmedilla. Driving and monitoring provisional
trust negotiation with metapolicies. In 6th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY 2005), pages 14–23,
Stockholm, Sweden, June 2005. IEEE Computer Society.

10. Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers, Rebecca Montanari, Niran-
jan Suri, and Andrzej Uszok. Semantic web languages for policy representation
and reasoning: A comparison of KAoS, Rei, and Ponder. In International Se-
mantic Web Conference, pages 419–437, 2003.

11. Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit Denker, Timothy W.
Finin, and Katia P. Sycara. Authorization and privacy for semantic web services.
IEEE Intelligent Systems, 19(4):50–56, 2004.

12. K. Taveter and G. Wagner. Agent-oriented enterprise modeling based on busi-
ness rules. In ER ’01: Proceedings of the 20th International Conference on
Conceptual Modeling, pages 527–540. Springer-Verlag, 2001.

13. William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated
trust negotiation. DARPA Information Survivability Conference and Exposi-
tion, IEEE Press, Jan 2000.

14. Wolfgang Nejdl, Daniel Olmedilla, Marianne Winslett, and Charles C. Zhang.
Ontology-based policy specification and management. In 2nd European Se-
mantic Web Conference (ESWC), volume 3532 of Lecture Notes in Computer
Science, pages 290–302, Heraklion, Crete, Greece, may 2005. Springer.

15. Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. Trust manage-
ment for the semantic web. In The Semantic Web - ISWC 2003, Second In-
ternational Semantic Web Conference, Sanibel Island, FL, USA, October 20-23,
2003, Proceedings, Lecture Notes in Computer Science, pages 351–368. Springer,
2003.

16. Jennifer Golbeck and James A. Hendler. Accuracy of metrics for inferring trust
and reputation in semantic web-based social networks. In Engineering Knowl-
edge in the Age of the Semantic Web, 14th International Conference, EKAW
2004, Whittlebury Hall, UK, October 5-8, 2004, Proceedings, Lecture Notes in
Computer Science, pages 116–131. Springer, 2004.

17. Jennifer Golbeck, Bijan Parsia, and James A. Hendler. Trust networks on the
semantic web. In Cooperative Information Agents VII, 7th International Work-
shop, CIA 2003, Helsinki, Finland, August 27-29, 2003, Proceedings, Lecture
Notes in Computer Science, pages 238–249. Springer, 2003.

18. Jeffrey M. Bradshaw, Andrzej Uszok, Renia Jeffers, Niranjan Suri, Patrick J.
Hayes, Mark H. Burstein, Alessandro Acquisti, Brett Benyo, Maggie R. Breedy,
Marco M. Carvalho, David J. Diller, Matt Johnson, Shriniwas Kulkarni, James
Lott, Maarten Sierhuis, and Ron van Hoof. Representation and reasoning for
DAML-based policy and domain services in KAoS and nomads. In The Second
International Joint Conference on Autonomous Agents & Multiagent Systems
(AAMAS), Melbourne, Victoria, Australia, jul 2003.

19. Mike Dean and Guus Schreiber. OWL web ontology language reference, 2004.
20. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

Security and Privacy on the Semantic Web 15

21. Lalana Kagal. A Policy-Based Approach to Governing Autonomous Behaviour
in Distributed Environments. PhD thesis, University of Maryland Baltimore
County, 2004.

22. P. Bonatti and P. Samarati. Regulating Service Access and Information Re-
lease on the Web. In Conference on Computer and Communications Security
(CCS’00), Athens, November 2000.

23. N. Li and J.C. Mitchell. RT: A Role-based Trust-management Framework. In
DARPA Information Survivability Conference and Exposition (DISCEX), Wash-
ington, D.C., April 2003.

24. Jim Trevor and Dan Suciu. Dynamically distributed query evaluation. In
Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, Santa Barbara, CA, USA, May 2001.

25. Miguel Alves, Carlos Viegas Damásio, Daniel Olmedilla, and Wolfgang Nejdl. A
distributed tabling algorithm for rule based policy systems. In 7th IEEE Inter-
national Workshop on Policies for Distributed Systems and Networks (POLICY
2006), London, Ontario, Canada, June 2006. IEEE Computer Society.

26. Pranam Kolari, Li Ding, Shashidhara Ganjugunte, Anupam Joshi, Timothy W.
Finin, and Lalana Kagal. Enhancing web privacy protection through declara-
tive policies. In 6th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2005), pages 57–66, Stockholm, Sweden, jun
2005. IEEE Computer Society.

27. Steffen Staab, Bharat K. Bhargava, Leszek Lilien, Arnon Rosenthal, Marianne
Winslett, Morris Sloman, Tharam S. Dillon, Elizabeth Chang, Farookh Khadeer
Hussain, Wolfgang Nejdl, Daniel Olmedilla, and Vipul Kashyap. The pudding
of trust. IEEE Intelligent Systems, 19(5):74–88, 2004.

28. Grit Denker, Lalana Kagal, Timothy W. Finin, Massimo Paolucci, and Katia P.
Sycara. Security for daml web services: Annotation and matchmaking. In The
Semantic Web - ISWC 2003, Second International Semantic Web Conference,
Sanibel Island, FL, USA, October 20-23, 2003, Proceedings, Lecture Notes in
Computer Science, pages 335–350. Springer, 2003.

29. Daniel Olmedilla, Rubén Lara, Axel Polleres, and Holger Lausen. Trust nego-
tiation for semantic web services. In 1st International Workshop on Semantic
Web Services and Web Process Composition (SWSWPC), volume 3387 of Lec-
ture Notes in Computer Science, pages 81–95, San Diego, CA, USA, jul 2004.
Springer.

30. Grid Security Infrastructure. http://www.globus.org/security/overview.html.
31. Andrzej Uszok, Jeffrey M. Bradshaw, and Renia Jeffers. Kaos: A policy and

domain services framework for grid computing and semantic web services. In
Trust Management, Second International Conference, iTrust 2004, Oxford, UK,
March 29 - April 1, 2004, Proceedings, Lecture Notes in Computer Science,
pages 16–26. Springer, 2004.

32. Ionut Constandache, Daniel Olmedilla, and Wolfgang Nejdl. Policy based dy-
namic negotiation for grid services authorization. In Semantic Web Policy Work-
shop in conjunction with 4th International Semantic Web Conference, Galway,
Ireland, November 2005.

33. P.A. Bonatti, C. Duma, N. Fuchs, W. Nejdl, D. Olmedilla, J. Peer, and N. Shah-
mehri. Semantic Web policies - A discussion of requirements and research is-
sues. In 3rd European Semantic Web Conference (ESWC), Lecture Notes in
Computer Science, Budva, Montenegro, jun 2006.

