
Exchanging Policies between Web Service Entities using Rule Languages

Nima Kaviani

1
, Dragan Gašević

2
, Marek Hatala

1
, Gerd Wagner2, Ty Mey Eap1

1
Simon Fraser University Surrey, Canada

2
Athabasca University, Canada

2
Brandenburg University of Technology at Cottbus, Germany

{nkaviani, mhatala, teap}@sfu.ca, dgasevic@acm.org, wagnerg@tu-cottbus.de

Abstract

Web rule languages with the ability to cover various

types of rules have been recently emerged to make in-

teractions between web resources and broker agents

possible. The chance of describing resources and users

of a domain through the use of vocabularies is another

feature of Web rule languages. Combination of these

two properties makes Web rule languages an appro-

priate medium to make a hybrid model of representing

both contexts and rules of a policy-aware system, such

as a web service. In this paper, we describe how

REWERSE Rule Markup Language (R2ML) can be

employed to bridge between different policy languages

using its rich set of rules, vocabulary, and built-in con-

structs. We show how the concepts of the KAoS and

Rei policy languages can be transformed to R2ML and

then from R2ML to the other policy languages. Follow-

ing these mappings, we have implemented transform-

ers, which enable us not only to share policies between

KAoS and Rei, but also to transform policies onto

other rule languages (e.g., F-Logic) for which trans-

formations from/to R2ML are already developed.

1. Introduction

Semantic Web services (SWS), as the augmentation

of Web service descriptions through Semantic Web

annotations, facilitate the higher automation of service

discovery, composition, invocation, and monitoring on

the Web. Semantic Web ontologies and ontology lan-

guages (OWL and RDF(S)) are recognized as the main

means of knowledge representation for Semantic Web

services [18]. Such ontology-enriched web service de-

scriptions are later used during negotiation process

between service clients and service providers, which is

defined by a set of abstract protocols of Semantic Web

Service Architecture (SWSA) [3].

However, the current proposed standards for de-

scribing Semantic Web services (i.e. OWL-S, WSDL-

S, and Semantic Web Service Language – SWSL)

demonstrate the importance of using a rule language in

addition to ontologies. This allows run-time discovery,

composition, and orchestration of Semantic Web ser-

vices by defining preconditions or post-conditions for

all Web service messages exchanged. For instance,

OWL-S recommends using OWL ontologies along with

different types of rule languages (SWRL, KIF, or

DRS), while SAWSDL is fully agnostic about the use

of a vocabulary (e.g., UML, ODM, OWL) or rule lan-

guage (e.g., OCL, SWRL, RuleML). It is worth noting

that there is no agreement upon which rule language to

use for Semantic Web services or what type of reason-

ing (open or closed world assumption) to support.

Besides satisfying clients’ goals when using Seman-

tic Web services, trust is another important aspect that

should be established between a client and a service.

Addressing this problem, researchers proposed the use

of policy languages. A policy is a rule that specifies

under which conditions a resource (or another policy)

might be disclosed to a requester [13]. To define po-

lices on the Semantic Web, various policy languages

have been proposed including KAoS [21], Rei [8], and

PROTUNE [2]. As [13] reports, trust management poli-

cies are also defined as parts (most commonly precon-

ditions) of Semantic Web service descriptions.

It is obvious that besides various Semantic Web

service description languages, we have various policy

languages and rule languages. All these languages are

based on different syntactic representations and formal-

isms with no explicitly defined mapping between them.

This hampers the use of Semantic Web services from

two different perspectives. One is automatic negotia-

tion between service client agents and service providers

and automatic matchmaking, where agents and match-

makers should be able to “understand” various

rule/policy/service web service description languages.

Another perspective is that of a knowledge manage-

ment worker who prefers to express the rules and poli-

cies in a single form rather than in a broad variety of

forms. To attempt to represent the same rules and poli-

cies in many forms is cumbersome, time consuming

and error prone but it is the only choice available if a

broad base of interoperability is required.

In our approach, we propose the use of REWERSE

Rule Markup Language (R2ML) [23], which addresses

almost all use-cases and needs for a Rule Interchange

Format (RIF) [4], along with a set of transformations

between Semantic Web service description (e.g.,

WSDL-S), rules, and policy languages. We illustrate

the benefits of our approach using a Semantic Web

Service Architecture example where R2ML is used to

share policies in the process of matchmaking, trust ne-

gotiation, and failure explanation. In the next section,

we motivate our research by describing a trust negotia-

tion scenario for using Web services.

2. Motivations

Web services in general and Semantic Web services

in particular, are of the most important domains for

applying Web policy rules. Policies can be regarded as

constraints to be combined with Web services to iden-

tify explicitly conditions under which the use of a ser-

vice is permitted or prohibited [7]. However, due to the

diversity of existing policy languages, chances are that

the policies used to protect the services or resources are

not defined in the same language, which makes the

process of communication impossible.

As an example, let us consider a scenario in which a

Web service provider and a broker agent, with two

different policy languages, need to negotiate their poli-

cies. In this scenario, we assume that the service pro-

vider has its policies defined in Rei and the broker

agent has the policies defined in KAoS (cf. Section 3).

Suppose that the broker agent has a policy which says:

“Client A can only communicate with service providers

that support authentication with X509 certificates and

have already been approved as trusted entities for Cli-

ent A to communicate with.” Figure 1 represents the

policy in KAoS defined by the broker agent. Now sup-

pose that during the process of trust negotiation the

client needs to ask the service provider whether it could

provide any support for the X509 certificate authentica-

tion. If there is no constraint on releasing the policy,

this can possibly happen by sending the policy of Fig-

ure 1 to the service provider. In case that there is no

understanding about Rei by the client or no knowledge

about KAoS by the service provider, the communica-

tion would fail. So, either the broker agent or the ser-

vice provider must be able to exchange the policy to an

equivalent Rei policy. The result of transformation can

be similar to the policy defined in Figure 2.
<entity:Variable rdf:ID="ActorVar"/>

<policy:Policy rdf:ID="policy_N100CE">

 <deontic:actor rdf:resource="#ActorVar" />

 <policy:grants rdf:resource="#Policy_CommunicationCertificate" />

 <policy:context rdf:resource="#CommunicationActionConstraint" />

</policy:Policy>

<deontic:Permission rdf:ID="Policy_CommunicationCertificate">

 <deontic:action rdf:resource="&KAoSAction;CommunicationAction"/>

 <deontic:actor rdf:resource="#ActorVar"/>

 <deontic:constriant rdf:resource="#ActionApprovalConstraint"/>

</deontic:Permission>

<constraint:And rdf:ID="ActionApptovalConstraint">

 <!--Conjunction of Constraints for the preconditionst plus the

CommunicationActor constraint-->

</constraint:And>

<!-- Constraints for the TrustedEntity and CarryMessage

 to control the behavior of the system -->

<constraint:SimpleConstriant rdf:ID="CommunicationActor">

 <constriant:subject rdf:resource="#ActorVar"/>

 <constriant:object rdf:resource="&rdfs;type"/>

 <constraint:predicate rdf:resource="&KAoSActor;ClientA"/>

</constraint:SimpleConstriant>

<constraint:SimpleConstriant rdf:ID=" CommunicationActionConstraint">

 <constriant:subject rdf:resource="#ActionVar"/>

 <constriant:object rdf:resource="&KAoSActor;

 ServiceProviderSupportingX509Certificates"/>

 <constraint:predicate rdf:resource="&KAoSPolicy;hasPartner"/>

</constraint:SimpleConstriant>

Figure 2. An equivalent Rei policy of Figure 1

In a general case either the Web agent or the service

provider must be able to negotiate to the other re-

sources and agents with different languages for sharing

their resources and policies as well. However, consid-

ering the number of available policy languages and

services, it would be a lot of effort to develop one-to-

one transformations between the policy languages. For

n policy languages we would need n*(n -1) transforma-

tions. It gets even worse if we consider the constant

changes that should be applied to the transformations

due to the improvements and extensions of each policy

language. On the contrary, using an intermediary lan-

guage would considerably reduce the number of trans-

formations. For n policy languages, we will need n

transformations to the intermediary policy language,

and then n transformations from this language back to

<owl:Class rdf:ID="Policy_CommunicationCertificate_Action">

 <owl:intersectionOf>

 <owl:Class rdf:about="&KAoSAction;CommunicationAction"/>

 <owl:Class>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&KAoSAction;performedBy"/>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <owl:Thing rdf:about="&InstanceElem;ClientA"/>

 </owl:oneOf>

 </owl:Class>

 </owl:someValuesFrom>

 </owl:Restriction>

 </owl:Class>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&KAoSPolicy;hasPartner"/>

 <owl:allValuesFrom rdf:resource="&KAoSActor;

 #ServiceProviderSupportingX509Certificates"/>

 </owl:Restriction>

 </owl:intersectionOf>

</owl:Class>

<!--Checks on whether the entity that is receiving the request by Client

A is a trusted entity-->

<owl:Class rdf:about=" Policy_TrustedEntity ">

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Class rdf:about="&KAoSAction;ApproveAction"/>

 <owl:Restriction rdf:about="#checkOnCarryingMessages">
 <!—Similar to the above restriction;

 checks if the action is carrying a message -->

 </owl:Restriction>

 <owl:Restriction rdf:about="#TrustedEntity">
 <!—Similar to the above restriction; checks on whether the

 destination is a Trusted Entity -->

 </owl:Restriction>

 <owl:Restriction rdf:about="#actorRestriction">
 <!—Similar restriction; checks on whether the actor ClientA -->

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

<policy:PosAuthorizationPolicy

rdf:ID="Policy_CommunicationCertificate">

 <policy:requiresConditions rdf:resource="#Policy_ TrustedEntity "/>

 <policy:controls

rdf:resource="#Policy_CommunicationCertificate_Action"/>

 <policy:hasPriority>2</policy:hasPriority>

</ policy:PosAuthorizationPolicy>
Figure 1. A sample of a KAoS Policy

all the policy languages. Thus the number of transfor-

mations will boil down to 2*n.

Addressing the problem of negotiation in scenarios

similar to the one explained above would significantly

help to enable inter-enterprise interactions. It can also

help with providing distributed trust-negotiation-failure

explanations, as it has been discussed in [1]. Next we

review the properties of KAoS and Rei and then ex-

plain our approach.

3. Rei and KAoS

Policies in the domain of autonomous computing are

guiding plans that restrict the behavior of autonomous

agents in accessing the resources [19]. The main ad-

vantage in using policies is their capability to dynami-

cally regulate the behavior of the system without apply-

ing any change to the system’s internal code.

Rei [7, 8] and KAoS [21, 22] are two semantically

enriched Web policy languages that use Semantic Web

ontologies to define the resources, the behavior, and

the users of a domain. It enables these two languages to

easily adjust themselves to the target system regardless

of the number of resources and users in act. KAoS de-

scribes the entities and concepts of its world using

OWL while Rei can understand and reason over a do-

main of concepts defined in either RDF or OWL.

In terms of available policy rules both KAoS and

Rei have four main types. Permission, Prohibition,

Obligation, and Dispensation in Rei are respectively

equivalent to PosAuthorizationPolicy, NegAuthoriza-

tionPolicy, PosObligationPolicy, and NegObligation-

Policy in KAoS. The defined policy rules in each of the

languages are then sent to a reasoner that performs the

process of conflict resolution and decision making for

the rules that match the current state of the world. This

task is done by using Stanford’s Java Theorem Prover

(JTP) in KAoS and a Prolog engine in Rei version 1.0.

Rei version 2.0 has extended its reasoning engine to

use F-OWL, an ontology inference engine for OWL,

based on Flora and XSB Prolog [25].

Although these two policy languages have a lot in

common there are many dissimilarities between them

as well. The main difference between KAoS and Rei is

the underlying formalism of the languages. KAoS fol-

lows description logic coded in the form of OWL ex-

pressions to define its elements and rules. On the other

hand, Rei uses its own language that defines rules in

terms of Prolog predicates expressed as RDF triples

(see Figure 2). This way Rei follows Prolog’s seman-

tics which is itself built on top of the concepts of de-

clarative logic.

The process of rule enforcement in KAoS is done by

extending its enforcement engine depending on the

domain it is going to be used in. In Rei, however, there

is no rule enforcement engine. Yet, due to the determi-

nistic properties of declarative logic, reasoning over

dynamically determined values in Rei policies is more

accurate than KAoS in which chances of dealing with

unknown situations are likely to happen.

In order for processes and services to communicate

remotely, Rei relies on a rich set of Speech Acts. In

Rei, Speech Acts are used by a sender to express the

request for performing one of the actions: Delegation,

Revocation, Request, Cancel, Command, and Promise

by the receiver. Conversely, in KAoS the remote com-

munication procedure is done through the message

passing of the underlying platform.

Defining KAoS policies as OWL expressions gives

the language more flexibility to maneuver over the

concepts of the world. Different quantifying expres-

sions, inheritance relationships, cardinality restrictions,

etc. can be explicitly expressed in KAoS thanks to the

constructs of OWL. It also enables KAoS to perform

static conflict resolution and policy disclosure. KAoS

has its classes and properties already defined in OWL

ontologies, referred to as KAoS Policy Ontologies

(KPO) [21], which are accessible from [9].

A KAoS policy is defined as an instantiation of the

policy class with all its properties have been allocated

the values according to the entities (both users and re-

sources) that play a role in firing the policy. Figure 1

shows a typical KAoS permission policy, named Pol-

icy_CommunicationCertificate with all its elements

instantiated. The two elements controls and requires-

Conditions are the most crucial elements in a KAoS

policy. requiresCondition is an OWL property with its

range in the Conditions class of KPO. A condition ele-

ment checks on the current situation of the world and

upon the occurrence of an event that satisfies the de-

fined conditions, the policy is fired. The controls ele-

ment has the Action class as its range and defines the

desired event to be enforced. It contains the user of an

action and also a context to which the action should be

applied. For example, in Figure 1, the requiresCondi-

tions element checks for the approval on passing mes-

sages to a service provider and controls checks on ser-

vice provider’s support for X509. The appropriate ac-

tion, if the policy constraints meet, is to carry the mes-

sage to the service provider by client A. There are also

some other KAoS elements in a policy to define the

priority of a rule, the site of enforcement, etc.

On the contrary, Rei policy rules are similar to the

expressions in Prolog. This makes the rules easier to

understand; but static conflict resolution and policy

disclosure are not possible because the variables for the

policies are instantiated during run-time and there is no

possibility to process their values offline. Analogous to

KAoS, a policy in Rei is instantiated from the policy

class defined in Rei ontologies. The policy instance in

Rei guides the behavior of entities in the policy domain

[16]. It contains a list of one or more deontic rules (ex-

pressed as deontic objects) and a context for applying

policies. Conditions defined for context element iden-

tify the suitable domain for the policy to be applied to.

A deontic object consists of the action to be enforced,

the related actor, and the set of conditions that must be

true for the action to be performed. Figure 2 shows a

sample Rei policy with one deontic rule.

Looking back to all the similarities and differences

discussed, providing meaningful transformations be-

tween these two policy languages is not an easy goal to

achieve. The transformation should care about the con-

cepts that may miss in the procedure of transformation,

the importance of the missed elements, the harms and

threats that may happen to the resource due to the in-

formation loss, and etc. The intermediary language, to

serve as the medium, should have enough elements and

constructs to cover all the concepts of different policy

languages. The loss of the concepts should not happen

during the transformation from the source languages to

the intermediary language, but the loss during trans-

forming from the intermediary language to the target

language might be inevitable.

4. Using Web Rule Languages for Policies

The new generation of policy languages goes be-

yond defining rules that control only the users. They

also put constraints on the resources of a domain. The

resources may evolve and expand during time, so the

policy languages should be expandable as well. Since

ontologies are easy to extend, Semantic Web has

gained a lot of reputation in this area. Consequently,

the intermediary language that is going to be used to

transform the information should not only support the

definition of the rules, but also be able to transfer the

domain properties and features. In this paper, we argue

that Semantic Web rules are appropriate solutions to

this problem, as they can cover the policies through

defining rules and ontologies. Further on this can be

found in [11], where we have discussed and explained

the logic of transforming between policy languages.

Most of the proposals on Web rule languages are

trying to address the use cases and requirements de-

fined by Rule Interchange Format Working Group [4].

Rule Interchange Format (RIF) [4] is an initiative to

address the problem of interoperability between exist-

ing rule-based technologies. RIF is desired to play as

an intermediary language between various rule lan-

guages and not as a semantic foundation for the pur-

pose of reasoning on the Web. RIF Working Group has

defined ten use cases which have to be covered by a

language compliant to the RIF properties, three of

which are dealing with policies and business rules,

namely: Collaborative Policy Development for Dy-

namic Spectrum Access, Access to Business Rules of

Supply Chain Partners, and Managing Inter-

Organizational Business Policies and Practices. SWRL

[6] and RuleML [5] are two of the ongoing efforts in

this area trying to serve as rule languages to publish

and share rule bases on the Web.

In this paper, we use REWERSE Rule Markup lan-

guage (R2ML) as an attempt to address the use cases

and requirements of RIF. In the next subsection, we

briefly describe some concepts of R2ML before going

through the description of the mappings between

R2ML and KAoS and between R2ML and Rei.

4.1 R2ML Interchange Format

R2ML is a general rule interchange language that

tries to address all RIF requirements. The abstract syn-

tax of R2ML language is defined with a metamodel by

using the OMG’s Meta-Object Facility (MOF). This

means that the whole language definition can be repre-

sented by using UML diagrams, as MOF uses UML’s

graphical notation. The full description of R2ML in the

form of UML class diagrams is given in [15, 23]. The

language also has an XML concrete syntax defined by

an XML schema. There are also a number of transfor-

mations implemented between R2ML and rule-based

languages (e.g., OCL, SWRL, and F-Logic).

R2ML considers four kinds of rules: integrity rules,

derivation rules, production rules, and reaction rules.

Our transformations of policy languages to R2ML use

derivation rules which are the most suitable rules to

demonstrate capabilities for inference and reasoning. A

derivation rule has conditions and a conclusion (see

Figure 3) with the ordinary meaning that the conclusion

can be derived whenever the conditions hold. While the

conditions of a derivation rule are instances of the An-

dOrNafNegFormula class, representing quantifier-free

logical formulas with conjunction, disjunction and ne-

gation; conclusions are restricted to quantifier-free dis-

junctive normal forms without NAF (Negation as Fail-

ure, i.e. weak negation).

Conditions and conclusions are both defined by the

use of Atoms which are the basic constituents of a for-

mula in R2ML. For our transformation of policy lan-

guages, we use R2ML ReferencePropertyAtoms in the

condition and R2ML ObjectDescriptionAtom in the

conclusion part. A ReferencePropertyAtom associates

object terms as “subjects” with other object terms as

“objects”. An ObjectDescriptionAtom refers to a class

as a base type and to zero or more classes as categories,

and consists of a number of property/term pairs (attrib-

ute data term pairs and reference property object term

pairs). Any instance of such atom refers to one particu-

lar object that is referenced by an objectID, if it is not

anonymous.

Figure 3. The UML representation of a derivation rule

4.2 Mapping between R2ML and Policy Languages

In this subsection, we discuss the mappings between

different policy languages using R2ML derivation

rules. In R2ML, we have both integrity rules and deri-

vation rules defined; with the integrity rules divided

into deontic rules and alethic rules. An integrity rule,

also known as (integrity) constraint, consists of a con-

straint assertion, which is a sentence in a logical lan-

guage such as first-order predicate logic. A derivation

rule in R2ML is different from an integrity rule in the

sense that there is no concrete proof for the correctness

of a derivation rule. A derivation rule is a better con-

struct to show the inference capabilities over existing

facts to obtain new facts. This is exactly the same with

policies as in most of the cases approval or denial of

performing an action is based on an inference over the

credentials provided by the user.

Transforming policies from KAoS to R2ML

In Section 2, we have mentioned that a KAoS pol-

icy is an object of the Policy class in KPO with its at-

tributes instantiated to a set of users, events, and re-

sources that make the policy fire. Considering the

KAoS policy element (e.g. Figure 1) as a rule, the con-

trols element is executed upon the occurrence of the

events described in the requiresConditions element.

Thus, to model the KAoS policy with a derivation rule,

we place the content of the controls element in the con-

clusion part and the content of the requiresConditions

element in the condition part of the rule. A controls

element consists of the action to be performed, the ac-

tor of the action, and the context of performing the ac-

tion. To model the actor, the action and the restrictions

defined over the context of the to-be-executed action,

we chose R2ML ObjectDescriptionAtom. This atom

can neatly embed all of the mentioned concepts as ar-

guments in its definition.

To model the condition part of a KAoS policy, we

employed R2ML ReferencePropertyAtoms. Similar to

the control part, conditions in KAoS are usually repre-

sented as a class defined over an occurred action or

state with a set of properties that restrict the action.

Although the conditions of a policy rule could also be

modeled with ObjectDescriptionAtom, the main reason

in choosing ReferencePropertyAtom was to be compli-

ant with the definitions of Rei (defined in the form of

triples) and also other R2ML transformations (e.g

transformations between F-Logic and R2ML also have

ReferencePropertyAtom in the condition part). It sim-

plifies the later conversions of the policies to other rule

languages for which we have R2ML transformations

already defined (e.g F-Logic). Moreover, a Reference-

PropertyAtom triple models a binary predicate. A set of

ReferencePropertyAtoms with the same subject ele-

ment can always be combined and converted to any

element of higher arity (e.g. ObjectDescriptionAtom),

and thus using ReferencePropertyAtom does not con-

tradict with the use of ObjectDescriptionAtom. Fur-

thermore, in our case, ReferencePropertyAtoms carry

even a better semantic meaning for the transformations.

Semantically they are equivalent to an OWL object

property, and as KAoS is nothing but pure OWL, they

model object properties of KAoS too.

A KAoS policy might also have a trigger element.

This element is only used with NegObligation- and

PosObligation-Policies showing a set of events that

trigger the occurrence of an action. In our transforma-

tions, we deal with those elements as ReferenceProp-

ertyAtoms in the condition part as well. However, to

discriminate them from the preconditions, we annotate

them as triggering elements.

We show an excerpt of transformation rules between

KAoS and R2ML in Figure 4. The XSLT implementa-

tions of our transformations are available in [24],

where further details can be found.

 KAoS Element R2ML Element

P
o

li
cy

 E
le

m
en

t

<policy:PosAuthorizationPolicy

 rdf:ID="Policy_CommunicationCertificate">
 <policy:requiresConditions rdf:resource="#Policy_ TrustedEntity "/>

 <policy:controls

 rdf:resource="#Policy_CommunicationCertificate_Action"/>

</policy:PosAuthorizationPolicy>

<r2ml:DerivationRule>

 <r2ml:conditions>

 <!-- The mappings for the condition part goes here -->

 </r2ml:conditions>

 <r2ml:conclusion>
 <r2ml:ObjectDescriptionAtom r2ml:classID="Permission">

 <!-- The mappings for the conlcusion part goes here -->

 </r2ml:ObjectDescriptionAtom>

 </r2ml:conclusion>

</r2ml:DerivationRule>

<owl:Class rdf:ID="Policy_CommunicationCertificate_Action">

 <owl:intersectionOf>

<!-- the set of constraints on the action in KAoS are defined as

intersection of a series of restrictions in OWL -->
</owl:intersectionOf>

</owl:Class>

<r2ml:ObjectDescriptionAtom r2ml:classID="Permission">

 <!-- The mappings for the conlcusion part goes here -->

 </r2ml:ObjectDescriptionAtom>

 <owl:Class>
 <owl:Restriction>

 <owl:onProperty rdf:resource="http://ontology.ihmc.us/

 Action.owl#performedBy"/>

 <owl:allValuesFrom>

 <!-- Defines the set of actors that are responsible for the action-->

 </owl:allValuesFrom>

 </owl:Restriction>
 </owl:Class>

<r2ml:ObjectSlot r2ml:referencePropertyID="

 http://ontology.ihmc.us/Action.owl#performedBy">

 <!--We can use either r2ml:ObjectName or

 r2ml:ObjectVariable define the actors -->

</r2ml:ObjectSlot>

C
o

n
tr

o
l

E
le

m
en

t

 <owl:Restriction>

 <owl:onProperty
 rdf:resource="http://ontology.ihmc.us/Policy.owl#hasPartner"/>

 <owl:allValuesFrom

 rdf:resource="#TrustedServiceProvider"/>

 </owl:Restriction>

<r2ml:ObjectSlot r2ml:referencePropertyID="context-N10058">

 <r2ml:object>
 <r2ml:ReferencePropertyFunctionTerm

 r2ml:referencePropertyID="

 http://ontology.ihmc.us/Policy.owl#hasPartne">

 <r2ml:contextArgument>

 <r2ml:ObjectName r2ml:name="#TrustedServiceProvider"/>

 </r2ml:contextArgument>

 </r2ml:ReferencePropertyFunctionTerm>
 </r2ml:object>

</r2ml:ObjectSlot>
Figure 4. Mappings between KAoS and R2ML elements

KAoS uses role-value-map technique to deal with

dynamic allocation of values to variables. However, in

our implementation, we use a simpler model of defin-

ing variables (similar to what Rei does) and convert

role-value-mapped elements of KAoS to a variable-like

definition using R2ML’s ObjectVariable. This makes

the process of converting R2ML variables to the vari-

ables of other languages easier. Figure 5 shows an ex-

cerpt of the policy that we described in Figure 1, con-

verted to its R2ML equivalent based on the transforma-

tion rules explained in Figure 4. The conversion shows

how a controls element of KAoS is represented in the

conclusion part of an R2ML derivation rule. Due to the

space limits, we do not give the explanations for trans-

forming the other parts of the rule.

Transforming policies from Rei to R2ML

A Rei policy, similar to KAoS, is an instantiation of

the Policy class, defined in the Rei ontology [16].

However, a policy element in Rei represents a list of

policy rules (each defined as a deontic child element),

while a policy construct in KAoS represents only one

rule. Each R2ML derivation rule is also equivalent to

one policy rule. Therefore, converting a policy from

Rei to KAoS or R2ML may result in having more than

one KAoS policy or R2ML rule. Furthermore, as Rei

deals with variables similar to Prolog, and because

variables can have different values during run-time, a

single policy in Rei might be converted to multiple

KAoS policies based on different combinations of val-

ues that the variables can take. Fortunately R2ML can

accept a set of derivation rules by defining them as

derivation rule set, in case more than one policy rule

can be derived from a Rei policy.

Our R2ML rule structure is more similar to the

structure of Rei than to KAoS and hence it is easier to

convert a Rei policy rule to R2ML. Rei uses Simple-

Constraints and BinaryConstraints to define the condi-

tions of a deontic rule. All constraints for a deontic

element are considered as preconditions of that deontic

rule and treated the same way as requiresConditions

element in KAoS. A deontic element in

Rei has an action and an actor as its child

elements as well. The actor is mapped as

an object argument with a performedBy

connector under the R2ML ObjectDe-

scriptionAtom in the conclusion part of a

rule, similar to what we did for KAoS.

The actions in Rei are defined either by

using Rei elements or OWL classes. For

mapping the actions to R2ML, we can just

refer to the already defined action or use

R2ML vocabulary to redefine it. The ac-

tion can then be placed in the subject ele-

ment of our R2ML ObjectDescriptionA-

tom which is again similar to what we did

for KAoS.

A policy element in Rei has also a child element,

named context. The deontic set of rules operate on this

context. So, in our R2ML transformation, we copy this

same context for all derivation rules and store it as a

ReferencePropertyFunctionTerm in the conclusion part

of our derivation rule under the ObjectDescriptionA-

tom for the policy element. Thanks to the use of Refer-

encePropertyAtom in R2ML, we can easily convert

each triple constraint of Rei to R2ML through a one to

one mapping of the subject, object, and predicate ele-

ments. Figure 6 shows some of the mapping rules used

to convert a Rei rule to an equivalent R2ML construct.
Rei Element R2ML Element

D
e

o
n

ti
c

 E
le

m
en

t

<deontic:Permission rdf:ID="PolicyName">

 <deontic:action rdf:resource="#actionToPerform"/>

 <deontic:actor rdf:resource="#ActorSet"/>

 <deontic:constriant rdf:resource="#ConstraintsSet"/>

</deontic:Permission>

<r2ml:DerivationRule>

 <r2ml:conditions>

 <!-- The constraints are placed here -->

 </r2ml:conditions>

 <r2ml:conclusion>

 <r2ml:ObjectDescriptionAtom r2ml:classID="Permission">

 <!-- The mappings for the conclusion part goes here -->

 <!-- action and actor elements go here -->

 </r2ml:ObjectDescriptionAtom>

 </r2ml:conclusion>

</r2ml:DerivationRule>

C
o

n
st

r
a

in
t <constraint:SimpleConstriant rdf:ID="ActorElem">

 <constriant:subject rdf:resource="#Actor"/>

 <constriant:object rdf:resource="#Student "/>

 <constraint:predicate rdf:resource="&rdfs;type "/>

</constraint:SimpleConstriant>

<r2ml:ReferencePropertyAtom r2ml:propertyID="&rdfs;type">

 <r2ml:subject>

 <r2ml:ObjectVariable r2ml:name="#Actor"/>

 </r2ml:subject>

 <r2ml:object>

 <r2ml:ObjectName r2ml:objectID="#Student"/>

 </r2ml:object>

</r2ml:PropertyAtom>

Figure 6. Mappings between Rei and R2ML elements

Now that we have the transformations defined, let us

apply them to the Rei policy of Figure 1. Figure 7

shows the result of applying the transformation rules.

Comparing the R2ML snippet generated from the de-

fined Rei policy in Figure 7 with the R2ML snippet of

Figure 5 one would immediately realize that these two

rules are identical although they have been generated

from two completely different policy rules. It should be

mentioned that the transformations are not always as

straightforward as in this example. This might be a

result of difference in the level of abstraction in the

policy languages, the way they address variables, con-

cepts, and entities, etc. The arrows in Figures 5 and 7

<owl:Class rdf:ID="Policy_CommunicationCertificate_Action">

 <owl:intersectionOf>

 <owl:Class rdf:about="&KAoSAction;CommunicationAction"/>

 <owl:Class>

 <owl:Restriction>

 <owl:onProperty rdf:resource="&KAoSAction;performedBy"/>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <owl:Thing rdf:about="&InstanceElem;ClientA"/>

 </owl:oneOf>

 </owl:Class>

 </owl:someValuesFrom>

 </owl:Restriction>

 </owl:Class>

 <owl:Restriction>

 <owl:onProperty

 rdf:resource="http://ontology.ihmc.us/Policy.owl#hasPartner"/>

 <owl:allValuesFrom

 rdf:resource="http://ontology.ihmc.us/SemanticServices/S-/Example/
 ActorClasses.owl#ServiceProviderSupportingX509Certificates"/>

 </owl:Restriction>

 </owl:intersectionOf>

</owl:Class>

<r2ml:conclusion>

<r2ml:ObjectDescriptionAtom r2ml:classID="Permission">

 <r2ml:subject>

 <r2ml:ObjectName

 r2ml:objectID="&KAoSAction;CommunicationAction "/>

 </r2ml:subject>

 <r2ml:ObjectSlot

 r2ml:referencePropertyID="&KaoSAction;performedBy">

 <r2ml:ObjectName r2ml:objectID="&InstanceElem;ClientA "/>

 </r2ml:ObjectSlot>

 <r2ml:ObjectSlot r2ml:referencePropertyID="context-N10058">

 <r2ml:object>

 <r2ml:ReferencePropertyFunctionTerm

 r2ml:referencePropertyID="KaoSPolicy;hasPartner ">

 <r2ml:contextArgument>

 <r2ml:ObjectName r2ml:objectID=

 "&ActorClas; ServiceProviderSupportingX509Certificates "/>

 </r2ml:contextArgument>

 </r2ml:ReferencePropertyFunctionTerm>

 </r2ml:object>
 </r2ml:ObjectSlot>

 </r2ml:ObjectDescriptionAtom>

</r2ml:conclusion>

1

2

Figure 5. Mapping of a KAoS controls element (left) to R2ML (right)

show the equivalent information pieces in the source

and target languages.

Transforming from R2ML to Rei or KAoS

Transforming back to either of these policy lan-

guages is a much simpler task now that we have the

transformation rules defined. Of course, the mappings

are bidirectional. That is, the same way that, for exam-

ple, a SimpleConstraint element of the Rei language

would be converted to a ReferencePropertyAtom in

R2ML, a ReferencePropertyAtom in the condition part

of a rule can be converted to a SimpleConstraint in Rei.

However, there are some concepts that are not simple

to map. For example one may think how an OWL class

will be created out of a set of ReferencePropertyAtoms.

As we have already mentioned, the set of Reference-

PropertyAtoms with the similar subject will create an

OWL class with the properties modeled as restrictions

on values in the object part of the ReferencePropertyA-

tom. In situations where the ReferencePropertyAtom

carries a trigger tag, the obtained OWL class will be

considered as a triggering class and otherwise it will be

a precondition.

Another similar issue in our transformations hap-

pens when dealing with priorities. Priorities in KAoS

are defined with numbered values, but in Rei we have

meta-rules to give priority to one rule over the other.

We have tried to solve this problem by converting the

meta-rules of Rei to a numbered model in our R2ML

transformation. During conversion from R2ML to Rei

we convert the numbers to a form of meta-rules com-

pliant with Rei syntax.

5. Discussion and Conclusion

We have so far described the transformations be-

tween policy languages and R2ML, thus proved that

the transformations are possible. But it does not mean

that we can fully transform between the two languages

without any information loss. The characteristics of

policy languages, especially KAoS and Rei (due to the

differences in their underlying logic), makes an exact

mapping between different elements difficult. KAoS

follows description logic in which we have constructs

for different quantifiers (both existential and universal),

but Rei is similar to Prolog in which all the variables

are universally quantified. This means while converting

a KAoS rule to an equivalent Rei policy, we can not

explicitly express that the defined variable in Rei

should be existentially quantified.

In KAoS, we can define maxCardinality and min-

Cardinality as restrictions on the number of events, but

to the best of our knowledge there is no way to define

such concepts in Rei. So, either these restrictions

should be ignored or Rei should be expanded to cover

them. It is worth mentioning that generality of R2ML

helps in defining all the concepts above, because it has

the required elements to cover the concepts in both

domains (i.e. descriptive logic and declarative logic).

We are now conducting research on the amount of

harms and threats that may happen to the system due to

the information loss during transformations.

As we have already mentioned, Rei has SpeechAct

elements to describe the inter-process communications

for remote policy control. In KAoS, there is no way to

model these concepts and handling the communication

between remote systems is supposed to be done by the

underlying system. Therefore, although we can transfer

SpeechActs from Rei to R2ML, they will be left out

during the transformation to KAoS. Unfortunately,

most of the time the constructs used in SpeechActs are

inter-woven to the other policy elements of the lan-

guage, such as Permission or Prohibition. In this case, a

transformation to KAoS would not be helpful at all as

the intended meaning of the policy will be lost.

We have also explained why derivation rules work

better to define the policies.

Now that we have the policies

defined with derivation rules,

we can use some other trans-

formations that map a R2ML

derivation rule with a similar

structure to another rule lan-

guage. One possible transfor-

mation is R2ML to F-Logic

[17]. The existence of the

transformation to F-Logic en-

ables us to convert our policies

into F-Logic and use them in

systems compatible with F-

Logic rules. According to the

transformation rules provided

<policy:Policy rdf:ID="policy_N100CE">

 <deontic:actor rdf:resource="#ActorVar" />

 <policy:grants rdf:resource="#Policy_CommunicationCertificate" />

 <policy:context rdf:resource="#CommunicationActionConstraint" />

</policy:Policy>

<deontic:Permission rdf:ID="Policy_CommunicationCertificate">

 <deontic:action rdf:resource="&KAoSAction;CommunicationAction"/>

 <deontic:actor rdf:resource="#ActorVar"/>

 <deontic:constriant rdf:resource="#ActionApprovalConstraint"/>

</deontic:Permission>

<constraint:SimpleConstriant rdf:ID=" CommunicationActionConstraint">

 <constriant:subject rdf:resource="#ActionVar"/>

 <constriant:object

 rdf:resource="&ActorClasses;ServiceProviderSupportingX509Certificates"/>

 <constraint:predicate rdf:resource="&KAoSPolicy;hasPartner"/>

</constraint:SimpleConstriant>

<constraint:SimpleConstriant rdf:ID="CommunicationActor">

 <constriant:subject rdf:resource="#ActorVar"/>

 <constriant:object rdf:resource="rdfs;type"/>

 <constraint:predicate

 rdf:resource=" http://ontology.ihmc.us/SemanticServices/

 S-F/Example/ActorInstances.owl#ClientA"/>

</constraint:SimpleConstriant>

<r2ml:conclusion>

<r2ml:ObjectDescriptionAtom r2ml:classID="Permission">

 <r2ml:subject>

 <r2ml:ObjectName

 r2ml:objectID="http://ontology.ihmc.us/Action.owl# ommunicationAction "/>

 </r2ml:subject>

 <r2ml:ObjectSlot r2ml:referencePropertyID="context-N10058">

 <r2ml:object>

 <r2ml:ReferencePropertyFunctionTerm

 r2ml:referencePropertyID="&KaoSPolicy;hasPartner ">

 <r2ml:contextArgument>

 <r2ml:ObjectName r2ml:objectID=”http://ontology.ihmc.us/

 SemanticServices/S-F/Example/

 ActorClasses.owl#ServiceProviderSupportingX509Certificates "/>

 </r2ml:contextArgument>

 </r2ml:ReferencePropertyFunctionTerm>

 </r2ml:object>

 </r2ml:ObjectSlot>

 <r2ml:ObjectSlot

 r2ml:referencePropertyID="&KaoSAction;performedBy">

 <r2ml:ObjectName r2ml:objectID=" ClientA "/>

 </r2ml:ObjectSlot>

 </r2ml:ObjectDescriptionAtom>

</r2ml:conclusion>

1 4

4

2

2

3

3

Figure 7. Generating the conclusion part of a R2ML rule (right) from a Rei policy (left)

in [17], the ObjectDescriptionAtom in our R2ML ex-

cerpt (Figure 5-right and Figure 7-right) for the policy

language of Section 2 can be expressed as Figure 8.

The given excerpt for the F-Logic transformation

shows only the atom in the conclusion part of a rule,

which illustrates the appropriate permission to be

given. The ongoing efforts to provide transformations

from R2ML to the other rule languages would add to

the generality of R2ML and make it a suitable asset for

the purpose of information exchange. For example, our

transformations from Rei and KAoS to R2ML showed

the need for having both existential and universal quan-

tifiers defined for derivation rules, which currently only

entail the universal quantifiers. The modifications to

the language will appear in the next version of R2ML.
“Policy_CommunicationCertificatePermission” [

hasAction → “CommunicationAction”;

hasContext_N10058 → hasPartner(

“ServiceProviderSupportingX509Certificates”);

performedBy → “ClientA”]
Figure 8. An R2ML element represented in F-Logic.

Policy-RuleML [14] is a similar attempt in the area

of policy transformation. It aims at making RuleML a

semantic interoperation vehicle for heterogeneous poli-

cies and protocols on the Web. However, to the best of

our knowledge there is no proposed work done by this

group, and thus our solution seems to be the first prac-

tical attempt in the area. The future goal of the research

will be combining the semantic web service description

languages with policy languages and trying to get dif-

ferent web services with different descriptions and pol-

icy languages to work together. The current proposals

on combining semantic web services with policy lan-

guages have been proposed in [13] that combines

WSMO and PeertTrust, [21] that uses KAoS to protect

web services, and [7] that combines Rei and OWL-S.

Our goal will be to let all of these services to commu-

nicate regardless of the languages they use for defining

and describing their services and policies. Furthermore,

we are working on developing transformations from

OCL to R2ML [23]. Another goal will be to make all

the transformations between policy languages and OCL

consistent, so that we can eventually integrate Semantic

Web policies for services with Model-Driven software

development approaches. Developing a general policy

language based on R2ML to cover the concepts of all

abovementioned policy languages is also another future

References

1. Bonatti, P. et. al. (2006). “Semantic Web policies - a

discussion of requirements & research issues,” In 3rd

European Semantic Web Conference, Montenegro

2. Bonatti, P & Olmedilla, D (2005). “Driving & monitor-

ing provisional trust negotiation with metapolicies”. In

IEEE 6th Intl. WSh on Policies for Dist. Sys. & Nets.

3. Burstein, M., et. al. (2005) “A Semantic Web Services

Architecture,” IEEE Internet Computing, 9(5), 72-81

4. Ginsberg, A. (2006). “RIF Use Cases and Requirements,”

W3C Wor. Draft, http://www.w3.org/TR/rif-ucr/.

5. Hirtle, D., et al. (2006). “Schema Specification of

RuleML,” http://www.ruleml.org/spec/

6. Horrocks, I., et al. (2004). “SWRL: A Semantic Web

Rule Language Combining OWL and RuleML,” W3C

Mem. Sub., http://www.w3.org/Submission/SWRL/.

7. Kagal, L., et al. (2004). “Authorization & Privacy for

Semantic Web Services” IEEE Intel. Sys. 50-56,

8. Kagal, L., et al. (2003). “A policy language for a perva-

sive computing environment,” In IEEE 4th In’l WSh of

Policies for Dist. Sys & Nets, pp. 6-74.

9. KAoS Policy Ontologies (KPO), online source :

http://ontology.ihmc.us/ontology.html

10. Kaviani, N., et al. (2006). “Towards Unifying Rules and

Policies for Semantic Web Services,” In Proc. of the 3rd

Annual LORNET Conf. on Intelligent, Interactive, Learn-

ing Object Repositories, Montreal, QC, Canada.

11. Kaviani, N., et al. (2007). “Web Rule languages to Carry

Policies”, 8th IEEE Int WSh on Policies for Dist. Sys. &

Nets, Italy.

12. Nejdl, W. et al. (2004). “PeerTrust: automated trust ne-

gotiation for peers on the semantic web”. In Proc. of the

VLDB WSh on Secure Data Mang., Canada, 118-132.

13. Olmedilla, D. et al. (2004). “Trust negotiation for seman-

tic web services,” In Proc. of the 1st Int’l WSh on Seman-

tic Web Services & Web Process Composition, CA, USA.

14. (2004 Policy RuleML Tech. Grp, http://policy.ruleml.org

15. (2006). R2ML specification, http://oxygen.informatik.tu-

cottbus.de/R2ML/,

16. (2006). Rei Ontology Specification, Version 2.0,

http://www.cs.umbc.edu/~lkagal1/rei/

17. Giurca, A., Wagner, G., (2006). “Translating R2ML into

F-Logic,” White Paper, http://oxygen.informatik.tu-

cottbus.de/R2ML/0.3/R2ML-to-FLogic.pdf

18. Sheth, A. et al., “Semantics to energize the full services

spectrum,” Comm. of the ACM, 49(7), 2006, pp. 55-61.

19. Toninelli A., et al. (2005). “Rule-based and Ontology-

based Policies: Toward a Hybrid Approach to Control

Agents in Pervasive Environments” In Proc. of the Se-

mantic Web & Policy WSh, Galway, Ireland.

20. Tonti, G., et al. (2003). “Semantic Web Languages for

Policy Representation and Reasoning: A Comparison of

KAoS, Rei, and Ponder”. In Proc. of the 2nd Int’l Se-

mantic Web Conf., 419-437

21. Uszok, A., et al. (2003). “KAoS policy and domain ser-

vices: toward a description-logic approach to policy rep-

resentation, deconfliction, and enforcement,” In Proc. of

the 4th IEEE Int’l WSh on Policies for Dist. Sys & Nets.

22. Uszok, A., et al. (2004). “KAoS: A Policy & Domain

Services Framework for Grid Computing & Semantic

Web Services”. Proc. of 2nd Int’l Conf. on Trust Mgmt.

23. Wagner, G. et al. (2006). “A Usable Interchange Format

for Rich Syntax Rules Integrating OCL, RuleML and

SWRL,” In Proc. of WSh. Reas. on the Web, UK.

24. XSLT transformations: http://cgi.sfu.ca/~nkaviani/cgi-

bin/prjs.html

25. Youyong, Z., et al. (2004), "F-OWL: an Inference En-

gine for the Semantic Web ", Book Formal Approaches

to Agent-Based Sys.

