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Abstract 

 

Web rule languages with the ability to cover various 

types of rules have been recently emerged to make in-

teractions between web resources and broker agents 

possible. The chance of describing resources and users 

of a domain through the use of vocabularies is another 

feature of Web rule languages. Combination of these 

two properties makes Web rule languages an appro-

priate medium to make a hybrid model of representing 

both contexts and rules of a policy-aware system, such 

as a web service. In this paper, we describe how 

REWERSE Rule Markup Language (R2ML) can be 

employed to bridge between different policy languages 

using its rich set of rules, vocabulary, and built-in con-

structs. We show how the concepts of the KAoS and 

Rei policy languages can be transformed to R2ML and 

then from R2ML to the other policy languages. Follow-

ing these mappings, we have implemented transform-

ers, which enable us not only to share policies between 

KAoS and Rei, but also to transform policies onto 

other rule languages (e.g., F-Logic) for which trans-

formations from/to R2ML are already developed.  
 

1. Introduction  
 

Semantic Web services (SWS), as the augmentation 

of Web service descriptions through Semantic Web 

annotations, facilitate the higher automation of service 

discovery, composition, invocation, and monitoring on 

the Web. Semantic Web ontologies and ontology lan-

guages (OWL and RDF(S)) are recognized as the main 

means of knowledge representation for Semantic Web 

services [18]. Such ontology-enriched web service de-

scriptions are later used during negotiation process 

between service clients and service providers, which is 

defined by a set of abstract protocols of Semantic Web 

Service Architecture (SWSA) [3].  

However, the current proposed standards for de-

scribing Semantic Web services (i.e. OWL-S, WSDL-

S, and Semantic Web Service Language – SWSL) 

demonstrate the importance of using a rule language in 

addition to ontologies. This allows run-time discovery, 

composition, and orchestration of Semantic Web ser-

vices by defining preconditions or post-conditions for 

all Web service messages exchanged. For instance, 

OWL-S recommends using OWL ontologies along with 

different types of rule languages (SWRL, KIF, or 

DRS), while SAWSDL is fully agnostic about the use 

of a vocabulary (e.g., UML, ODM, OWL) or rule lan-

guage (e.g., OCL, SWRL, RuleML). It is worth noting 

that there is no agreement upon which rule language to 

use for Semantic Web services or what type of reason-

ing (open or closed world assumption) to support. 

Besides satisfying clients’ goals when using Seman-

tic Web services, trust is another important aspect that 

should be established between a client and a service. 

Addressing this problem, researchers proposed the use 

of policy languages. A policy is a rule that specifies 

under which conditions a resource (or another policy) 

might be disclosed to a requester [13]. To define po-

lices on the Semantic Web, various policy languages 

have been proposed including KAoS [21], Rei [8], and 

PROTUNE [2]. As [13] reports, trust management poli-

cies are also defined as parts (most commonly precon-

ditions) of Semantic Web service descriptions.  

It is obvious that besides various Semantic Web 

service description languages, we have various policy 

languages and rule languages. All these languages are 

based on different syntactic representations and formal-

isms with no explicitly defined mapping between them. 

This hampers the use of Semantic Web services from 

two different perspectives. One is automatic negotia-

tion between service client agents and service providers 

and automatic matchmaking, where agents and match-

makers should be able to “understand” various 

rule/policy/service web service description languages. 

Another perspective is that of a knowledge manage-

ment worker who prefers to express the rules and poli-

cies in a single form rather than in a broad variety of 

forms. To attempt to represent the same rules and poli-



cies in many forms is cumbersome, time consuming 

and error prone but it is the only choice available if a 

broad base of interoperability is required.  

In our approach, we propose the use of REWERSE 

Rule Markup Language (R2ML) [23], which addresses 

almost all use-cases and needs for a Rule Interchange 

Format (RIF) [4], along with a set of transformations 

between Semantic Web service description (e.g., 

WSDL-S), rules, and policy languages. We illustrate 

the benefits of our approach using a Semantic Web 

Service Architecture example where R2ML is used to 

share policies in the process of matchmaking, trust ne-

gotiation, and failure explanation. In the next section, 

we motivate our research by describing a trust negotia-

tion scenario for using Web services. 
 

2. Motivations  
 

Web services in general and Semantic Web services 

in particular, are of the most important domains for 

applying Web policy rules.  Policies can be regarded as 

constraints to be combined with Web services to iden-

tify explicitly conditions under which the use of a ser-

vice is permitted or prohibited [7]. However, due to the 

diversity of existing policy languages, chances are that 

the policies used to protect the services or resources are 

not defined in the same language, which makes the 

process of communication impossible.  

As an example, let us consider a scenario in which a 

Web service provider and a broker agent, with two 

different policy languages, need to negotiate their poli-

cies. In this scenario, we assume that the service pro-

vider has its policies defined in Rei and the broker 

agent has the policies defined in KAoS (cf. Section 3). 

Suppose that the broker agent has a policy which says: 

“Client A can only communicate with service providers 

that support authentication with X509 certificates and 

have already been approved as trusted entities for Cli-

ent A to communicate with.” Figure 1 represents the 

policy in KAoS defined by the broker agent. Now sup-

pose that during the process of trust negotiation the 

client needs to ask the service provider whether it could 

provide any support for the X509 certificate authentica-

tion. If there is no constraint on releasing the policy, 

this can possibly happen by sending the policy of Fig-

ure 1 to the service provider. In case that there is no 

understanding about Rei by the client or no knowledge 

about KAoS by the service provider, the communica-

tion would fail. So, either the broker agent or the ser-

vice provider must be able to exchange the policy to an 

equivalent Rei policy. The result of transformation can 

be similar to the policy defined in Figure 2.   
<entity:Variable rdf:ID="ActorVar"/> 
 

<policy:Policy rdf:ID="policy_N100CE"> 

    <deontic:actor rdf:resource="#ActorVar" />  

    <policy:grants rdf:resource="#Policy_CommunicationCertificate" />  

    <policy:context rdf:resource="#CommunicationActionConstraint" />  

</policy:Policy> 
 

<deontic:Permission rdf:ID="Policy_CommunicationCertificate"> 

      <deontic:action rdf:resource="&KAoSAction;CommunicationAction"/> 

      <deontic:actor rdf:resource="#ActorVar"/> 

      <deontic:constriant rdf:resource="#ActionApprovalConstraint"/> 

</deontic:Permission> 
 

<constraint:And rdf:ID="ActionApptovalConstraint"> 

        <!--Conjunction of Constraints for the preconditionst plus the 

CommunicationActor constraint--> 

</constraint:And> 
 

<!-- Constraints for the TrustedEntity and CarryMessage 

 to control the behavior of the system --> 
 

<constraint:SimpleConstriant rdf:ID="CommunicationActor"> 

 <constriant:subject rdf:resource="#ActorVar"/> 

 <constriant:object rdf:resource="&rdfs;type"/> 

 <constraint:predicate rdf:resource="&KAoSActor;ClientA"/> 

</constraint:SimpleConstriant> 
 

<constraint:SimpleConstriant rdf:ID=" CommunicationActionConstraint"> 

 <constriant:subject rdf:resource="#ActionVar"/> 

 <constriant:object rdf:resource="&KAoSActor; 

                                            ServiceProviderSupportingX509Certificates"/> 

 <constraint:predicate rdf:resource="&KAoSPolicy;hasPartner"/> 

</constraint:SimpleConstriant> 

Figure 2.  An equivalent Rei policy of Figure 1 
 

In a general case either the Web agent or the service 

provider must be able to negotiate to the other re-

sources and agents with different languages for sharing 

their resources and policies as well. However, consid-

ering the number of available policy languages and 

services, it would be a lot of effort to develop one-to-

one transformations between the policy languages. For 

n policy languages we would need n*(n -1) transforma-

tions. It gets even worse if we consider the constant 

changes that should be applied to the transformations 

due to the improvements and extensions of each policy 

language. On the contrary, using an intermediary lan-

guage would considerably reduce the number of trans-

formations. For n policy languages, we will need n 

transformations to the intermediary policy language, 

and then n transformations from this language back to 

<owl:Class rdf:ID="Policy_CommunicationCertificate_Action"> 

  <owl:intersectionOf> 

    <owl:Class rdf:about="&KAoSAction;CommunicationAction"/> 

      <owl:Class> 

        <owl:Restriction> 

          <owl:onProperty rdf:resource="&KAoSAction;performedBy"/> 

            <owl:someValuesFrom> 

              <owl:Class> 

                <owl:oneOf rdf:parseType="Collection"> 

                  <owl:Thing rdf:about="&InstanceElem;ClientA"/> 

                </owl:oneOf> 

              </owl:Class> 

            </owl:someValuesFrom> 

        </owl:Restriction> 

      </owl:Class> 

      <owl:Restriction> 

        <owl:onProperty rdf:resource="&KAoSPolicy;hasPartner"/> 

             <owl:allValuesFrom rdf:resource="&KAoSActor; 

                              #ServiceProviderSupportingX509Certificates"/> 

      </owl:Restriction> 

  </owl:intersectionOf> 

</owl:Class> 
 

<!--Checks on whether the entity that is receiving the request by Client 

A is a trusted entity--> 

<owl:Class rdf:about=" Policy_TrustedEntity "> 

    <owl:intersectionOf rdf:parseType="Collection"> 

      <owl:Class rdf:about="&KAoSAction;ApproveAction"/> 

      <owl:Restriction rdf:about="#checkOnCarryingMessages"> 
         <!—Similar to the above restriction;  

                  checks if the action is carrying a message --> 

      </owl:Restriction> 

      <owl:Restriction rdf:about="#TrustedEntity"> 
        <!—Similar to the above restriction; checks on whether the  

                 destination is a Trusted Entity --> 

        </owl:Restriction> 

      <owl:Restriction rdf:about="#actorRestriction"> 
        <!—Similar restriction; checks on whether the actor ClientA --> 

      </owl:Restriction> 

    </owl:intersectionOf> 

  </owl:Class> 
 

<policy:PosAuthorizationPolicy 

rdf:ID="Policy_CommunicationCertificate"> 

   <policy:requiresConditions rdf:resource="#Policy_ TrustedEntity "/> 

   <policy:controls 

rdf:resource="#Policy_CommunicationCertificate_Action"/> 

   <policy:hasPriority>2</policy:hasPriority> 

</ policy:PosAuthorizationPolicy>  
Figure 1.  A sample of a KAoS Policy 

 



all the policy languages. Thus the number of transfor-

mations will boil down to 2*n. 

Addressing the problem of negotiation in scenarios 

similar to the one explained above would significantly 

help to enable inter-enterprise interactions. It can also 

help with providing distributed trust-negotiation-failure 

explanations, as it has been discussed in [1]. Next we 

review the properties of KAoS and Rei and then ex-

plain our approach. 
 

3. Rei and KAoS  
 

Policies in the domain of autonomous computing are 

guiding plans that restrict the behavior of autonomous 

agents in accessing the resources [19]. The main ad-

vantage in using policies is their capability to dynami-

cally regulate the behavior of the system without apply-

ing any change to the system’s internal code.  

Rei [7, 8] and KAoS [21, 22] are two semantically 

enriched Web policy languages that use Semantic Web 

ontologies to define the resources, the behavior, and 

the users of a domain. It enables these two languages to 

easily adjust themselves to the target system regardless 

of the number of resources and users in act. KAoS de-

scribes the entities and concepts of its world using 

OWL while Rei can understand and reason over a do-

main of concepts defined in either RDF or OWL.  

In terms of available policy rules both KAoS and 

Rei have four main types. Permission, Prohibition, 

Obligation, and Dispensation in Rei are respectively 

equivalent to PosAuthorizationPolicy, NegAuthoriza-

tionPolicy, PosObligationPolicy, and NegObligation-

Policy in KAoS. The defined policy rules in each of the 

languages are then sent to a reasoner that performs the 

process of conflict resolution and decision making for 

the rules that match the current state of the world. This 

task is done by using Stanford’s Java Theorem Prover 

(JTP) in KAoS and a Prolog engine in Rei version 1.0. 

Rei version 2.0 has extended its reasoning engine to 

use F-OWL, an ontology inference engine for OWL, 

based on Flora and XSB Prolog [25].  

Although these two policy languages have a lot in 

common there are many dissimilarities between them 

as well. The main difference between KAoS and Rei is 

the underlying formalism of the languages. KAoS fol-

lows description logic coded in the form of OWL ex-

pressions to define its elements and rules. On the other 

hand, Rei uses its own language that defines rules in 

terms of Prolog predicates expressed as RDF triples 

(see Figure 2). This way Rei follows Prolog’s seman-

tics which is itself built on top of the concepts of de-

clarative logic.  

The process of rule enforcement in KAoS is done by 

extending its enforcement engine depending on the 

domain it is going to be used in. In Rei, however, there 

is no rule enforcement engine. Yet, due to the determi-

nistic properties of declarative logic, reasoning over 

dynamically determined values in Rei policies is more 

accurate than KAoS in which chances of dealing with 

unknown situations are likely to happen. 

In order for processes and services to communicate 

remotely, Rei relies on a rich set of Speech Acts. In 

Rei, Speech Acts are used by a sender to express the 

request for performing one of the actions: Delegation, 

Revocation, Request, Cancel, Command, and Promise 

by the receiver. Conversely, in KAoS the remote com-

munication procedure is done through the message 

passing of the underlying platform. 

Defining KAoS policies as OWL expressions gives 

the language more flexibility to maneuver over the 

concepts of the world. Different quantifying expres-

sions, inheritance relationships, cardinality restrictions, 

etc. can be explicitly expressed in KAoS thanks to the 

constructs of OWL. It also enables KAoS to perform 

static conflict resolution and policy disclosure. KAoS 

has its classes and properties already defined in OWL 

ontologies, referred to as KAoS Policy Ontologies 

(KPO) [21], which are accessible from [9].  

A KAoS policy is defined as an instantiation of the 

policy class with all its properties have been allocated 

the values according to the entities (both users and re-

sources) that play a role in firing the policy. Figure 1 

shows a typical KAoS permission policy, named Pol-

icy_CommunicationCertificate with all its elements 

instantiated. The two elements controls and requires-

Conditions are the most crucial elements in a KAoS 

policy. requiresCondition is an OWL property with its 

range in the Conditions class of KPO. A condition ele-

ment checks on the current situation of the world and 

upon the occurrence of an event that satisfies the de-

fined conditions, the policy is fired. The controls ele-

ment has the Action class as its range and defines the 

desired event to be enforced. It contains the user of an 

action and also a context to which the action should be 

applied. For example, in Figure 1, the requiresCondi-

tions element checks for the approval on passing mes-

sages to a service provider and controls checks on ser-

vice provider’s support for X509. The appropriate ac-

tion, if the policy constraints meet, is to carry the mes-

sage to the service provider by client A. There are also 

some other KAoS elements in a policy to define the 

priority of a rule, the site of enforcement, etc.  

On the contrary, Rei policy rules are similar to the 

expressions in Prolog. This makes the rules easier to 

understand; but static conflict resolution and policy 

disclosure are not possible because the variables for the 

policies are instantiated during run-time and there is no 



possibility to process their values offline. Analogous to 

KAoS, a policy in Rei is instantiated from the policy 

class defined in Rei ontologies. The policy instance in 

Rei guides the behavior of entities in the policy domain 

[16]. It contains a list of one or more deontic rules (ex-

pressed as deontic objects) and a context for applying 

policies. Conditions defined for context element iden-

tify the suitable domain for the policy to be applied to. 

A deontic object consists of the action to be enforced, 

the related actor, and the set of conditions that must be 

true for the action to be performed. Figure 2 shows a 

sample Rei policy with one deontic rule. 

Looking back to all the similarities and differences 

discussed, providing meaningful transformations be-

tween these two policy languages is not an easy goal to 

achieve. The transformation should care about the con-

cepts that may miss in the procedure of transformation, 

the importance of the missed elements, the harms and 

threats that may happen to the resource due to the in-

formation loss, and etc. The intermediary language, to 

serve as the medium, should have enough elements and 

constructs to cover all the concepts of different policy 

languages. The loss of the concepts should not happen 

during the transformation from the source languages to 

the intermediary language, but the loss during trans-

forming from the intermediary language to the target 

language might be inevitable. 
 

4. Using Web Rule Languages for Policies  
 

The new generation of policy languages goes be-

yond defining rules that control only the users. They 

also put constraints on the resources of a domain. The 

resources may evolve and expand during time, so the 

policy languages should be expandable as well. Since 

ontologies are easy to extend, Semantic Web has 

gained a lot of reputation in this area. Consequently, 

the intermediary language that is going to be used to 

transform the information should not only support the 

definition of the rules, but also be able to transfer the 

domain properties and features. In this paper, we argue 

that Semantic Web rules are appropriate solutions to 

this problem, as they can cover the policies through 

defining rules and ontologies. Further on this can be 

found in [11], where we have discussed and explained 

the logic of transforming between policy languages. 

Most of the proposals on Web rule languages are 

trying to address the use cases and requirements de-

fined by Rule Interchange Format Working Group [4]. 

Rule Interchange Format (RIF) [4] is an initiative to 

address the problem of interoperability between exist-

ing rule-based technologies. RIF is desired to play as 

an intermediary language between various rule lan-

guages and not as a semantic foundation for the pur-

pose of reasoning on the Web. RIF Working Group has 

defined ten use cases which have to be covered by a 

language compliant to the RIF properties, three of 

which are dealing with policies and business rules, 

namely: Collaborative Policy Development for Dy-

namic Spectrum Access, Access to Business Rules of 

Supply Chain Partners, and Managing Inter-

Organizational Business Policies and Practices. SWRL 

[6] and RuleML [5] are two of the ongoing efforts in 

this area trying to serve as rule languages to publish 

and share rule bases on the Web. 

In this paper, we use REWERSE Rule Markup lan-

guage (R2ML) as an attempt to address the use cases 

and requirements of RIF. In the next subsection, we 

briefly describe some concepts of R2ML before going 

through the description of the mappings between 

R2ML and KAoS and between R2ML and Rei. 
 

4.1 R2ML Interchange Format 
 

R2ML is a general rule interchange language that 

tries to address all RIF requirements. The abstract syn-

tax of R2ML language is defined with a metamodel by 

using the OMG’s Meta-Object Facility (MOF). This 

means that the whole language definition can be repre-

sented by using UML diagrams, as MOF uses UML’s 

graphical notation. The full description of R2ML in the 

form of UML class diagrams is given in [15, 23]. The 

language also has an XML concrete syntax defined by 

an XML schema. There are also a number of transfor-

mations implemented between R2ML and rule-based 

languages (e.g., OCL, SWRL, and F-Logic). 

R2ML considers four kinds of rules: integrity rules, 

derivation rules, production rules, and reaction rules. 

Our transformations of policy languages to R2ML use 

derivation rules which are the most suitable rules to 

demonstrate capabilities for inference and reasoning. A 

derivation rule has conditions and a conclusion (see 

Figure 3) with the ordinary meaning that the conclusion 

can be derived whenever the conditions hold. While the 

conditions of a derivation rule are instances of the An-

dOrNafNegFormula class, representing quantifier-free 

logical formulas with conjunction, disjunction and ne-

gation; conclusions are restricted to quantifier-free dis-

junctive normal forms without NAF (Negation as Fail-

ure, i.e. weak negation).  

Conditions and conclusions are both defined by the 

use of Atoms which are the basic constituents of a for-

mula in R2ML. For our transformation of policy lan-

guages, we use R2ML ReferencePropertyAtoms in the 

condition and R2ML ObjectDescriptionAtom in the 

conclusion part. A ReferencePropertyAtom associates 

object terms as “subjects” with other object terms as 

“objects”. An ObjectDescriptionAtom refers to a class 



as a base type and to zero or more classes as categories, 

and consists of a number of property/term pairs (attrib-

ute data term pairs and reference property object term 

pairs). Any instance of such atom refers to one particu-

lar object that is referenced by an objectID, if it is not 

anonymous. 

 

Figure 3.  The UML representation of a derivation rule  
 

4.2 Mapping between R2ML and Policy Languages  
 

In this subsection, we discuss the mappings between 

different policy languages using R2ML derivation 

rules. In R2ML, we have both integrity rules and deri-

vation rules defined; with the integrity rules divided 

into deontic rules and alethic rules. An integrity rule, 

also known as (integrity) constraint, consists of a con-

straint assertion, which is a sentence in a logical lan-

guage such as first-order predicate logic. A derivation 

rule in R2ML is different from an integrity rule in the 

sense that there is no concrete proof for the correctness 

of a derivation rule. A derivation rule is a better con-

struct to show the inference capabilities over existing 

facts to obtain new facts. This is exactly the same with 

policies as in most of the cases approval or denial of 

performing an action is based on an inference over the 

credentials provided by the user. 
 

Transforming policies from KAoS to R2ML 

In Section 2, we have mentioned that a KAoS pol-

icy is an object of the Policy class in KPO with its at-

tributes instantiated to a set of users, events, and re-

sources that make the policy fire. Considering the 

KAoS policy element (e.g. Figure 1) as a rule, the con-

trols element is executed upon the occurrence of the 

events described in the requiresConditions element. 

Thus, to model the KAoS policy with a derivation rule, 

we place the content of the controls element in the con-

clusion part and the content of the requiresConditions 

element in the condition part of the rule. A controls 

element consists of the action to be performed, the ac-

tor of the action, and the context of performing the ac-

tion. To model the actor, the action and the restrictions 

defined over the context of the to-be-executed action, 

we chose R2ML ObjectDescriptionAtom. This atom 

can neatly embed all of the mentioned concepts as ar-

guments in its definition.  

To model the condition part of a KAoS policy, we 

employed R2ML ReferencePropertyAtoms. Similar to 

the control part, conditions in KAoS are usually repre-

sented as a class defined over an occurred action or 

state with a set of properties that restrict the action. 

Although the conditions of a policy rule could also be 

modeled with ObjectDescriptionAtom, the main reason 

in choosing ReferencePropertyAtom was to be compli-

ant with the definitions of Rei (defined in the form of 

triples) and also other R2ML transformations (e.g 

transformations between F-Logic and R2ML also have 

ReferencePropertyAtom in the condition part). It sim-

plifies the later conversions of the policies to other rule 

languages for which we have R2ML transformations 

already defined (e.g F-Logic). Moreover, a Reference-

PropertyAtom triple models a binary predicate. A set of 

ReferencePropertyAtoms with the same subject ele-

ment can always be combined and converted to any 

element of higher arity (e.g. ObjectDescriptionAtom), 

and thus using ReferencePropertyAtom does not con-

tradict with the use of ObjectDescriptionAtom. Fur-

thermore, in our case, ReferencePropertyAtoms carry 

even a better semantic meaning for the transformations. 

Semantically they are equivalent to an OWL object 

property, and as KAoS is nothing but pure OWL, they 

model object properties of KAoS too.  

A KAoS policy might also have a trigger element. 

This element is only used with NegObligation- and 

PosObligation-Policies showing a set of events that 

trigger the occurrence of an action. In our transforma-

tions, we deal with those elements as ReferenceProp-

ertyAtoms in the condition part as well. However, to 

discriminate them from the preconditions, we annotate 

them as triggering elements.  

We show an excerpt of transformation rules between 

KAoS and R2ML in Figure 4. The XSLT implementa-

tions of our transformations are available in [24], 

where further details can be found. 

 KAoS Element R2ML Element 

P
o

li
cy

 E
le

m
en

t 

<policy:PosAuthorizationPolicy 

                                     rdf:ID="Policy_CommunicationCertificate"> 
       <policy:requiresConditions rdf:resource="#Policy_ TrustedEntity "/> 

       <policy:controls  

                rdf:resource="#Policy_CommunicationCertificate_Action"/> 

</policy:PosAuthorizationPolicy> 

<r2ml:DerivationRule> 

     <r2ml:conditions> 

      <!-- The mappings for the condition part goes here --> 

    </r2ml:conditions> 

    <r2ml:conclusion> 
    <r2ml:ObjectDescriptionAtom r2ml:classID="Permission"> 

       <!-- The mappings for the conlcusion part goes here --> 

    </r2ml:ObjectDescriptionAtom> 

  </r2ml:conclusion> 

</r2ml:DerivationRule> 

<owl:Class rdf:ID="Policy_CommunicationCertificate_Action"> 

    <owl:intersectionOf> 

<!-- the set of constraints on the action in KAoS are defined as  

intersection of a series of restrictions in OWL  --> 
</owl:intersectionOf> 

</owl:Class> 

<r2ml:ObjectDescriptionAtom r2ml:classID="Permission"> 

                <!-- The mappings for the conlcusion part goes here --> 

 </r2ml:ObjectDescriptionAtom> 

 

      <owl:Class> 
        <owl:Restriction> 

          <owl:onProperty rdf:resource="http://ontology.ihmc.us/ 

                                        Action.owl#performedBy"/> 

            <owl:allValuesFrom> 

              <!-- Defines the set of actors that are responsible for the action--> 

            </owl:allValuesFrom> 

        </owl:Restriction> 
      </owl:Class> 

<r2ml:ObjectSlot r2ml:referencePropertyID=" 

        http://ontology.ihmc.us/Action.owl#performedBy"> 

      <!--We can use either r2ml:ObjectName or  

              r2ml:ObjectVariable define the actors --> 

</r2ml:ObjectSlot> 

C
o

n
tr

o
l 

E
le

m
en

t 

      <owl:Restriction> 

        <owl:onProperty 
                rdf:resource="http://ontology.ihmc.us/Policy.owl#hasPartner"/> 

             <owl:allValuesFrom  

                     rdf:resource="#TrustedServiceProvider"/> 

      </owl:Restriction> 

<r2ml:ObjectSlot r2ml:referencePropertyID="context-N10058"> 

   <r2ml:object> 
      <r2ml:ReferencePropertyFunctionTerm  

         r2ml:referencePropertyID=" 

         http://ontology.ihmc.us/Policy.owl#hasPartne"> 

         <r2ml:contextArgument> 

           <r2ml:ObjectName r2ml:name="#TrustedServiceProvider"/> 

         </r2ml:contextArgument> 

       </r2ml:ReferencePropertyFunctionTerm> 
     </r2ml:object> 

</r2ml:ObjectSlot>  
Figure 4. Mappings between KAoS and R2ML elements 
 

KAoS uses role-value-map technique to deal with 

dynamic allocation of values to variables. However, in 

our implementation, we use a simpler model of defin-



ing variables (similar to what Rei does) and convert 

role-value-mapped elements of KAoS to a variable-like 

definition using R2ML’s ObjectVariable. This makes 

the process of converting R2ML variables to the vari-

ables of other languages easier. Figure 5 shows an ex-

cerpt of the policy that we described in Figure 1, con-

verted to its R2ML equivalent based on the transforma-

tion rules explained in Figure 4. The conversion shows 

how a controls element of KAoS is represented in the 

conclusion part of an R2ML derivation rule. Due to the 

space limits, we do not give the explanations for trans-

forming the other parts of the rule. 
 

Transforming policies from Rei to R2ML 

A Rei policy, similar to KAoS, is an instantiation of 

the Policy class, defined in the Rei ontology [16]. 

However, a policy element in Rei represents a list of 

policy rules (each defined as a deontic child element), 

while a policy construct in KAoS represents only one 

rule. Each R2ML derivation rule is also equivalent to 

one policy rule. Therefore, converting a policy from 

Rei to KAoS or R2ML may result in having more than 

one KAoS policy or R2ML rule. Furthermore, as Rei 

deals with variables similar to Prolog, and because 

variables can have different values during run-time, a 

single policy in Rei might be converted to multiple 

KAoS policies based on different combinations of val-

ues that the variables can take. Fortunately R2ML can 

accept a set of derivation rules by defining them as 

derivation rule set, in case more than one policy rule 

can be derived from a Rei policy.  

Our R2ML rule structure is more similar to the 

structure of Rei than to KAoS and hence it is easier to 

convert a Rei policy rule to R2ML. Rei uses Simple-

Constraints and BinaryConstraints to define the condi-

tions of a deontic rule. All constraints for a deontic 

element are considered as preconditions of that deontic 

rule and treated the same way as requiresConditions 

element in KAoS. A deontic element in 

Rei has an action and an actor as its child 

elements as well. The actor is mapped as 

an object argument with a performedBy 

connector under the R2ML ObjectDe-

scriptionAtom in the conclusion part of a 

rule, similar to what we did for KAoS. 

The actions in Rei are defined either by 

using Rei elements or OWL classes. For 

mapping the actions to R2ML, we can just 

refer to the already defined action or use 

R2ML vocabulary to redefine it. The ac-

tion can then be placed in the subject ele-

ment of our R2ML ObjectDescriptionA-

tom which is again similar to what we did 

for KAoS. 

A policy element in Rei has also a child element, 

named context. The deontic set of rules operate on this 

context. So, in our R2ML transformation, we copy this 

same context for all derivation rules and store it as a 

ReferencePropertyFunctionTerm in the conclusion part 

of our derivation rule under the ObjectDescriptionA-

tom for the policy element. Thanks to the use of Refer-

encePropertyAtom in R2ML, we can easily convert 

each triple constraint of Rei to R2ML through a one to 

one mapping of the subject, object, and predicate ele-

ments. Figure 6 shows some of the mapping rules used 

to convert a Rei rule to an equivalent R2ML construct. 
Rei Element R2ML Element 

D
e

o
n

ti
c

 E
le

m
en

t 

<deontic:Permission rdf:ID="PolicyName"> 

   <deontic:action rdf:resource="#actionToPerform"/> 

   <deontic:actor rdf:resource="#ActorSet"/> 

   <deontic:constriant rdf:resource="#ConstraintsSet"/> 

</deontic:Permission> 

<r2ml:DerivationRule> 

  <r2ml:conditions> 

      <!-- The constraints are placed here --> 

  </r2ml:conditions> 

  <r2ml:conclusion> 

      <r2ml:ObjectDescriptionAtom r2ml:classID="Permission"> 

            <!-- The mappings for the conclusion part goes here --> 

            <!-- action and actor elements go here --> 

      </r2ml:ObjectDescriptionAtom> 

  </r2ml:conclusion> 

</r2ml:DerivationRule> 

C
o

n
st

r
a

in
t <constraint:SimpleConstriant rdf:ID="ActorElem"> 

 <constriant:subject rdf:resource="#Actor"/> 

 <constriant:object rdf:resource="#Student "/> 

 <constraint:predicate rdf:resource="&rdfs;type "/> 

</constraint:SimpleConstriant> 

<r2ml:ReferencePropertyAtom r2ml:propertyID="&rdfs;type"> 

   <r2ml:subject> 

       <r2ml:ObjectVariable r2ml:name="#Actor"/> 

   </r2ml:subject> 

   <r2ml:object> 

            <r2ml:ObjectName r2ml:objectID="#Student"/> 

   </r2ml:object> 

</r2ml:PropertyAtom> 
 

Figure 6. Mappings between Rei and R2ML elements 
 

Now that we have the transformations defined, let us 

apply them to the Rei policy of Figure 1. Figure 7 

shows the result of applying the transformation rules. 

Comparing the R2ML snippet generated from the de-

fined Rei policy in Figure 7 with the R2ML snippet of 

Figure 5 one would immediately realize that these two 

rules are identical although they have been generated 

from two completely different policy rules. It should be 

mentioned that the transformations are not always as 

straightforward as in this example. This might be a 

result of difference in the level of abstraction in the 

policy languages, the way they address variables, con-

cepts, and entities, etc. The arrows in Figures 5 and 7 

<owl:Class rdf:ID="Policy_CommunicationCertificate_Action"> 

  <owl:intersectionOf> 

    <owl:Class          rdf:about="&KAoSAction;CommunicationAction"/> 

      <owl:Class> 

        <owl:Restriction> 

          <owl:onProperty rdf:resource="&KAoSAction;performedBy"/> 

            <owl:someValuesFrom> 

              <owl:Class> 

                <owl:oneOf rdf:parseType="Collection"> 

                  <owl:Thing rdf:about="&InstanceElem;ClientA"/> 

                </owl:oneOf> 

              </owl:Class> 

            </owl:someValuesFrom> 

        </owl:Restriction> 

      </owl:Class> 

 

      <owl:Restriction> 

        <owl:onProperty  

                      rdf:resource="http://ontology.ihmc.us/Policy.owl#hasPartner"/> 

             <owl:allValuesFrom  

              rdf:resource="http://ontology.ihmc.us/SemanticServices/S-/Example/                     
               ActorClasses.owl#ServiceProviderSupportingX509Certificates"/> 

      </owl:Restriction> 

  </owl:intersectionOf> 

</owl:Class> 

<r2ml:conclusion> 

<r2ml:ObjectDescriptionAtom r2ml:classID="Permission"> 

          <r2ml:subject> 

            <r2ml:ObjectName 

           r2ml:objectID="&KAoSAction;CommunicationAction "/> 

          </r2ml:subject> 

          <r2ml:ObjectSlot 

          r2ml:referencePropertyID="&KaoSAction;performedBy"> 

            <r2ml:ObjectName r2ml:objectID="&InstanceElem;ClientA "/> 

          </r2ml:ObjectSlot> 

 

          <r2ml:ObjectSlot r2ml:referencePropertyID="context-N10058"> 

            <r2ml:object> 

              <r2ml:ReferencePropertyFunctionTerm  

                                r2ml:referencePropertyID="KaoSPolicy;hasPartner "> 

                <r2ml:contextArgument> 

                  <r2ml:ObjectName r2ml:objectID= 

                        "&ActorClas; ServiceProviderSupportingX509Certificates "/> 

                </r2ml:contextArgument> 

              </r2ml:ReferencePropertyFunctionTerm> 

            </r2ml:object> 
          </r2ml:ObjectSlot> 

    </r2ml:ObjectDescriptionAtom> 

</r2ml:conclusion> 

1 

2 

 
Figure 5. Mapping of a KAoS controls element (left) to R2ML (right) 



show the equivalent information pieces in the source 

and target languages. 

Transforming from R2ML to Rei or KAoS 

Transforming back to either of these policy lan-

guages is a much simpler task now that we have the 

transformation rules defined. Of course, the mappings 

are bidirectional. That is, the same way that, for exam-

ple, a SimpleConstraint element of the Rei language 

would be converted to a ReferencePropertyAtom in 

R2ML, a ReferencePropertyAtom in the condition part 

of a rule can be converted to a SimpleConstraint in Rei. 

However, there are some concepts that are not simple 

to map. For example one may think how an OWL class 

will be created out of a set of ReferencePropertyAtoms. 

As we have already mentioned, the set of Reference-

PropertyAtoms with the similar subject will create an 

OWL class with the properties modeled as restrictions 

on values in the object part of the ReferencePropertyA-

tom. In situations where the ReferencePropertyAtom 

carries a trigger tag, the obtained OWL class will be 

considered as a triggering class and otherwise it will be 

a precondition.  

Another similar issue in our transformations hap-

pens when dealing with priorities. Priorities in KAoS 

are defined with numbered values, but in Rei we have 

meta-rules to give priority to one rule over the other. 

We have tried to solve this problem by converting the 

meta-rules of Rei to a numbered model in our R2ML 

transformation. During conversion from R2ML to Rei 

we convert the numbers to a form of meta-rules com-

pliant with Rei syntax. 
 

5. Discussion and Conclusion 
 

We have so far described the transformations be-

tween policy languages and R2ML, thus proved that 

the transformations are possible. But it does not mean 

that we can fully transform between the two languages 

without any information loss. The characteristics of 

policy languages, especially KAoS and Rei (due to the 

differences in their underlying logic), makes an exact 

mapping between different elements difficult. KAoS 

follows description logic in which we have constructs 

for different quantifiers (both existential and universal), 

but Rei is similar to Prolog in which all the variables 

are universally quantified. This means while converting 

a KAoS rule to an equivalent Rei policy, we can not 

explicitly express that the defined variable in Rei 

should be existentially quantified. 

In KAoS, we can define maxCardinality and min-

Cardinality as restrictions on the number of events, but 

to the best of our knowledge there is no way to define 

such concepts in Rei. So, either these restrictions 

should be ignored or Rei should be expanded to cover 

them. It is worth mentioning that generality of R2ML 

helps in defining all the concepts above, because it has 

the required elements to cover the concepts in both 

domains (i.e. descriptive logic and declarative logic). 

We are now conducting research on the amount of 

harms and threats that may happen to the system due to 

the information loss during transformations. 

As we have already mentioned, Rei has SpeechAct 

elements to describe the inter-process communications 

for remote policy control. In KAoS, there is no way to 

model these concepts and handling the communication 

between remote systems is supposed to be done by the 

underlying system. Therefore, although we can transfer 

SpeechActs from Rei to R2ML, they will be left out 

during the transformation to KAoS. Unfortunately, 

most of the time the constructs used in SpeechActs are 

inter-woven to the other policy elements of the lan-

guage, such as Permission or Prohibition. In this case, a 

transformation to KAoS would not be helpful at all as 

the intended meaning of the policy will be lost. 

We have also explained why derivation rules work 

better to define the policies. 

Now that we have the policies 

defined with derivation rules, 

we can use some other trans-

formations that map a R2ML 

derivation rule with a similar 

structure to another rule lan-

guage. One possible transfor-

mation is R2ML to F-Logic 

[17]. The existence of the 

transformation to F-Logic en-

ables us to convert our policies 

into F-Logic and use them in 

systems compatible with F-

Logic rules. According to the 

transformation rules provided 

<policy:Policy rdf:ID="policy_N100CE"> 

    <deontic:actor rdf:resource="#ActorVar" />  

    <policy:grants rdf:resource="#Policy_CommunicationCertificate" />  

    <policy:context rdf:resource="#CommunicationActionConstraint" />  

</policy:Policy> 
 

<deontic:Permission rdf:ID="Policy_CommunicationCertificate"> 

   <deontic:action rdf:resource="&KAoSAction;CommunicationAction"/> 
 

   <deontic:actor rdf:resource="#ActorVar"/> 
 

   <deontic:constriant rdf:resource="#ActionApprovalConstraint"/> 

</deontic:Permission> 

<constraint:SimpleConstriant rdf:ID=" CommunicationActionConstraint"> 

      <constriant:subject rdf:resource="#ActionVar"/> 

      <constriant:object                    

                 rdf:resource="&ActorClasses;ServiceProviderSupportingX509Certificates"/> 

      <constraint:predicate rdf:resource="&KAoSPolicy;hasPartner"/> 

</constraint:SimpleConstriant> 

 

<constraint:SimpleConstriant rdf:ID="CommunicationActor"> 

     <constriant:subject rdf:resource="#ActorVar"/> 

     <constriant:object rdf:resource="rdfs;type"/> 

     <constraint:predicate 

           rdf:resource=" http://ontology.ihmc.us/SemanticServices/ 

                                    S-F/Example/ActorInstances.owl#ClientA"/> 

</constraint:SimpleConstriant> 

<r2ml:conclusion> 

<r2ml:ObjectDescriptionAtom r2ml:classID="Permission"> 

          <r2ml:subject> 

            <r2ml:ObjectName 

           r2ml:objectID="http://ontology.ihmc.us/Action.owl# ommunicationAction "/> 

          </r2ml:subject> 

           

          <r2ml:ObjectSlot r2ml:referencePropertyID="context-N10058"> 

            <r2ml:object> 

              <r2ml:ReferencePropertyFunctionTerm  

                                r2ml:referencePropertyID="&KaoSPolicy;hasPartner "> 

                <r2ml:contextArgument> 

                  <r2ml:ObjectName r2ml:objectID=”http://ontology.ihmc.us/ 

                                SemanticServices/S-F/Example/ 

                                ActorClasses.owl#ServiceProviderSupportingX509Certificates "/> 

                </r2ml:contextArgument> 

              </r2ml:ReferencePropertyFunctionTerm> 

            </r2ml:object> 

          </r2ml:ObjectSlot> 

        <r2ml:ObjectSlot 

          r2ml:referencePropertyID="&KaoSAction;performedBy"> 

            <r2ml:ObjectName r2ml:objectID=" ClientA "/> 

         </r2ml:ObjectSlot> 

 </r2ml:ObjectDescriptionAtom> 

</r2ml:conclusion> 
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Figure 7. Generating the conclusion part of a R2ML rule (right) from a Rei policy (left) 



in [17], the ObjectDescriptionAtom in our R2ML ex-

cerpt (Figure 5-right and Figure 7-right) for the policy 

language of Section 2 can be expressed as Figure 8. 

The given excerpt for the F-Logic transformation 

shows only the atom in the conclusion part of a rule, 

which illustrates the appropriate permission to be 

given. The ongoing efforts to provide transformations 

from R2ML to the other rule languages would add to 

the generality of R2ML and make it a suitable asset for 

the purpose of information exchange. For example, our 

transformations from Rei and KAoS to R2ML showed 

the need for having both existential and universal quan-

tifiers defined for derivation rules, which currently only 

entail the universal quantifiers. The modifications to 

the language will appear in the next version of R2ML. 
“Policy_CommunicationCertificatePermission” [ 

hasAction → “CommunicationAction”; 

hasContext\_N10058 → hasPartner( 

“ServiceProviderSupportingX509Certificates”); 

performedBy → “ClientA”]  
Figure 8. An R2ML element represented in F-Logic. 

Policy-RuleML [14] is a similar attempt in the area 

of policy transformation. It aims at making RuleML a 

semantic interoperation vehicle for heterogeneous poli-

cies and protocols on the Web. However, to the best of 

our knowledge there is no proposed work done by this 

group, and thus our solution seems to be the first prac-

tical attempt in the area. The future goal of the research 

will be combining the semantic web service description 

languages with policy languages and trying to get dif-

ferent web services with different descriptions and pol-

icy languages to work together. The current proposals 

on combining semantic web services with policy lan-

guages have been proposed in [13] that combines 

WSMO and PeertTrust, [21] that uses KAoS to protect 

web services, and [7] that combines Rei and OWL-S. 

Our goal will be to let all of these services to commu-

nicate regardless of the languages they use for defining 

and describing their services and policies. Furthermore, 

we are working on developing transformations from 

OCL to R2ML [23]. Another goal will be to make all 

the transformations between policy languages and OCL 

consistent, so that we can eventually integrate Semantic 

Web policies for services with Model-Driven software 

development approaches. Developing a general policy 

language based on R2ML to cover the concepts of all 

abovementioned policy languages is also another future  
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