
Modular Web Queries—From Rules to Stores

Uwe Aßmann2, Sacha Berger1, François Bry1, Tim Furche1,
Jakob Henriksson2, and Jendrik Johannes2

1 Institute for Informatics, Ludwig-Maximilians-Universität, München
{sacha.berger|francois.bry|tim.furche}@ifi.lmu.de

2 Fakultät für Informatik, Technische Universität Dresden
{uwe.assmann|jakob.henriksson|jendrik.johannes}@tu-dresden.de

Abstract. Even with all the progress in Semantic technology, accessing Web
data remains a challenging issue with new Web query languages and approaches
appearing regularly. Yet most of these languages, including W3C approaches
such as XQuery and SPARQL, do little to cope with the explosion of the data
size and schemata diversity and richness on the Web. In this paper we propose
a straightforward step toward the improvement of this situation that is simple to
realize and yet effective: Advanced module systems that make partitioning of (a)
the evaluation and (b) the conceptual design of complex Web queries possible.
They provide the query programmer with a powerful, but easy to use high-level
abstraction for packaging, encapsulating, and reusing conceptually related parts
(in our case, rules) of a Web query. The proposed module system combines ease
of use thanks to a simple core concept, the partitioning of rules and their con-
sequences in flexible “stores”, with ease of deployment thanks to a reduction
semantics. We focus on extending the rule-based Semantic Web query language
Xcerpt with such a module system though the same approach can be applied to
other (rule-based) languages as well.

1 Introduction

As the amount and diversity of data available on the Web is constantly increasing,
querying this great abundance of information is becoming more and more important.
In fact, it is becoming less important to possess certain knowledge, but more important
to know how to acquire it—know how to formulate a precise query to find the desired
information. Query languages for different purposes are emerging in multitude. [2] sur-
veys some existing query and transformation languages for Web and Semantic Web
data, identifying 14 textual XML query languages and 24 for RDF metadata.

Yet, most of these languages provide very little support to the user to cope with
the dramatic increase in information size and diversity. Increasing information diversity
results in increase of query size and complexity, which can weigh down even experi-
enced query programmers. It must be easy for users to partition (both conceptually and
from an evaluation point of view) query programs and to make such partitioning flexi-
ble enough to allow for reuse in different contexts. This is not the case unless the query
language provides some means to separate large and complex queries into smaller, prop-
erly isolated, and reusable fragments—modules. Such modules allow to “localize” the
effect of the introduction of additional data sources or query tasks in query programs.

Thus, modules allow a separation of concern not just on the basis of single rules but
on the basis of larger conceptual units of a query program. For example, one part of a
Web application is often concerned with extracting data from a set of sources, such as a
set of Web pages. At the next step, the data might have to be syndicated into a common
view and format. From this syndicated data, some new implicit data could possibly be
derived. Finally, the resulting data set should be displayed in an appropriate human-
readable form, for example, by being displayed in a well-structured Web page (see
Section 3 for an example). These different steps taken by the application have to do with
different concerns of the overall realization, such as data extraction, data management
and data display. Furthermore, each of the concerns deals with different schemata, but
the knowledge of the schemata can be hidden and encapsulated within each concern –
within each module. In contrast, exposing all these concerns in one monolithic query
program not only becomes very hard to understand, but is also impossible to manage as
a change in some part may affect any other part.

This work is based on ideas from [8, 1] where we propose a flexible approach
(demonstrated along Datalog examples) for augmenting arbitrary languages with new
levels of abstractions, and new constructs for authoring reusable entities. The only re-
quirement we put on the newly introduced constructs is that their realization is already
expressible in the original language, i.e., that they have a reduction semantics. In do-
ing this we take advantage of existing software composition techniques3 to realize the
added reuse abstractions [8]. However, in this paper we do not focus on the details of
composition systems, but show an application of the ideas to a concrete query language,
viz. Xcerpt [11]. The semantics is derived from the formal semantics in [1].

For that language, we propose a module system that (a) demonstrates how Web
query languages can profit from modules by partitioning the query program as well as
its execution; (b) provides an easy, yet powerful module extension for Xcerpt that shows
how well-suited rule-based languages are for component-based reuse; (c) is based on
a single new concept, viz. “stores”; and (d) uses a reduction semantics exploiting the
power of a language with views. This semantics enables the reuse of the existing query
engine making the design of the module system easier and its deployment less time
consuming.

The rest of this paper is organized around these contributions: Following a brief
introduction to Xcerpt we demonstrate the need for modules or similar reuse and par-
titioning mechanisms by a use case on integrating (Semantic and plain old) music data
on the Web. Then we introduce the module extension for Xcerpt by implementing part
of the aforementioned use case. We conclude with a discussion of the semantics and
realization of the module extension.

2 Introducing Xcerpt

We choose to demonstrate our ideas using the rule-based, Web and Semantic Web query
language Xcerpt [11], which has been co-developed by some of the authors and is par-
ticularly well-suited for reuse due to its rule-based nature. This chapter is not intended

3 Developed within the Reuseware Composition Framework (http://reuseware.org).

as a full introduction to Xcerpt but merely recalls some of its most relevant features for
this article. For a proper introduction please see [11].

An Xcerpt program consists of a finite set of Xcerpt rules. The rules of a program
are used to derive new, or transform existing, XML data from existing data (i.e. the data
being queried). Construct rules are used to produce intermediate results while goal
rules form the output of programs.

While Xcerpt works directly on XML or RDF data, it has its own data format for
modeling XML documents or RDF graphs, viz. Xcerpt data terms. For example, the
XML snippet <book><title>White Mughals</title></book> corresponds to the
data term book [title ["White Mughals"]]. The data term syntax makes it
easy to reference XML document structures in queries and extends XML slightly, most
notably by also allowing unordered data.

For instance, in the following query the construct rule defines data about books and
their authors which is then queried by the goal. Intuitively, the rules can be read as
deductive rules (like in, say, Datalog): if the body (after FROM) holds, then the head
(following CONSTRUCT or GOAL) holds. A rule with an empty body is interpreted as a
fact, i.e., the head always holds.

1 GOAL
authors [var X]

3 FROM
book [[author [var X]]]

5 END

7 CONSTRUCT book [title ["White Mughals"], author ["William Dalrymple"]] END

Xcerpt query terms are used for querying data terms and intuitively describe patterns
of data terms. Query terms are used with a pattern matching technique4 to match data
terms. Query terms can be configured to take partiality and/or ordering of the underlying
data terms into account during matching (indicated by different types of brackets).

Query terms may also contain logic variables. If so, successful matching with data
terms results in variable bindings used by Xcerpt rules for deriving new data terms.
Matching, for instance, the query term book [title [var X]] with the XML
snippet above results in the variable binding {X / "White Mughals" }.

Construct terms are essentially data terms with variables. The variable binding pro-
duced via query terms in the body of a rule can be applied to the construct term in the
head of the rule in order to derive new data terms. For the example above we obtain the
data term authors ["William Dalrymple"] as result.

3 Use case: Music aggregation with the Web Music Library

The use case illustrated in Figure 1 presents a library (called MusicLibrary) of function-
ality useful for coping with music and information about music found on the (Semantic)
Web. At an (arguably) lower layer, information is extracted from various established
Web sites like amazon.com or discogs.org. The extraction has to be handled differ-
ently for every web site, but is valuable for many users and applications. For example,

4 Called simulation unification. For details of this technique, please refer to [10].

Jimi Hendrix Experience
Are You Experienced?

Amazon CD Cover
Image Extractor

Track
list

Data display layer

Data inference layer

Data extraction layer

Information
Web Crawler

Discogs
Artist Information

Rock

Grunge

Music Ontology

Album Mashup
Creator

iTunes Purchase
Links Extractor

Audioscrobbler
Recommenations

Modules Data

(X)HTML
Webpages

RDF(S)
Inference Engine

Music Collection
Framework Interface

Query: “Collect info on album
‘Are You Experienced?’”

Album

Result: <?xml ...?> ...

New Albums
RSS Feed

Figure 1. Many query languages only allow writing monolithic queries, while modular query
development greatly increases reuse and ease of programming.

many of the currently established desktop music players exploit the album or CD im-
ages of Amazon to display cover art while playing back music. Encapsulating reusable
queries dealing with a particular information source allow for flexible maintenance and
propagation to a larger user base. The legacy information as found on external Web
sites is then converted to an internal representation loosely based on the Music Ontol-
ogy [7]. Music Ontology is an RDFS-based standard, hence knowledge inference and
reasoning on—possibly incomplete—Music Ontology data can be achieved using an
RDFS reasoner. Since such a reasoner is usable in many different fields of applications,
it is implemented and provided as an Xcerpt module and included in the main library,
hence allowing for its reuse. Perhaps more interesting to the end user, various modules
providing pleasant visualizations of gathered information or predefined query skeletons
can be provided in the library. Such modules can also be provided by third parties or,
last but not least, as part of an application using the Web Music Library. We show only
small extracts of the actual modules for space and presentation reasons.

3.1 Realizing Musical Modules in Xcerpt

How can we today realize this application in Xcerpt? In the absence of modules we have
to carefully craft a single query program with a considerable number of rules (well over
three dozens if we follow the basic design presented below) at each step taking great
care that the rules do not, by chance, interfere with each other. Furthermore, we have to
update the whole query program as soon as any information source changes, since this
information is hard-coded in the program.

In the presence of a module extension, the task becomes a lot less daunting: Let us
start from the top with a user program that gathers information about Jimi Hendrix from
all the sources described in Figure 1. For that, it relies on a module called MusicLibrary
(discussed above). The library is not a mere database, it is an interface to various ways

of reasoning about musical information available on the Web. To the user the complexity
remains hidden. The user just poses his query to the module without caring whether the
data is extensional or intensional and how it is obtained. The module system ensures
that, regardless of the actual rules and their distribution between modules, there is no
chance for interference by rules of different sub-modules used within MusicLibrary.

1 IMPORT "MusicLibrary"

3 GOAL
html [body [

5 h1 ["Records by Jimi Hendrix"],
table [tr [td ["Record"], td ["Year"]],

7 all tr [td [var R], td [var Y]]]
]]

9 FROM
in "MusicLibrary" (

11 desc record { artist ["Jimi Hendrix"],
title [var R], year[var Y] })

13 END

The MusicLibrary module itself is integrating data and knowledge of other modules
the same way as the user program. It has to provide the information, and only the desired
information, to the user of the module. Some rules may be necessary internally in the
module to achieve the task, but should not be directly visible to the user of the module.
The visible parts of the module are hence public, the others (implicitly) private.

Apart from using knowledge of other modules, modules may also receive data pro-
vided by importing modules. MusicLibrary accesses data extracted by a module gather-
ing MusicBrainz metadata, feeds it to a module for converting that data to Music Ontol-
ogy knowledge (Musicbrainz2MOFacts), and finally injects that knowledge to an RDFS
reasoner (using the MO-Ontology-Reasoner module). It also accesses discogs.org di-
rectly and feeds the acquired data into another instance of the MO-Ontology-Reasoner.
To distinguish multiple instances of the reasoner, each instance is given an alias (us-
ing the @ construct), which can be used the same way as the module identifier when
querying, or sending data to, a module. In this way, modules also give rise to scoped
reasoning where consequences only apply in a certain scope (or module), but are not
(automatically) propagated outside of that scope. In particular, knowledge in different
scopes may, if considered globally, be inconsistent, but within each scope be consistent.

1 MODULE "MusicLibrary"
IMPORT "MusicBrainz"

3 IMPORT "Musicbrainz2MOFacts"
IMPORT "MO-Ontology-Reasoner" @ "reasoner-for-musicBrains"

5 IMPORT "MO-Ontology-Reasoner" @ "reasoner-for-discogs"

7 CONSTRUCT public var KNOWLEDGE
FROM in "reasoner-for-musicBrains" (var KNOWLEDGE) END

9

CONSTRUCT public var KNOWLEDGE
11 FROM in "reasoner-for-discogs" (var KNOWLEDGE) END

13 CONSTRUCT to "reasoner-for-musicBrains" (var FACTS)
FROM in "Musicbrainz2MOFacts" (var FACTS) END

15

CONSTRUCT to "Musicbrainz2MOFacts" (var METADATA)
17 FROM in "MusicBrainz"(metadata [[var METADATA]]) END

...
19 CONSTRUCT discogs-document-for-crawler[all HREF]
FROM in document(iri="http://www.discogs.org") (desc a [[href [var HREF]]]) END

Finally, let us glance at the MO-Ontology-Reasoner module which is one of the
modules that not only extracts data but is injected with data to operate on. Hence, one
of the queries is adorned with the public keyword, indicating that chaining is to be
performed against the rules of the importing module that pass input data to the reasoner.
Those facts, together with the ontology definition (and any domain dependent reasoning
we would like to perform on the music ontology data) are sent to an RDFS reasoner
module, whose consequences are then made publicly available. This RDFS reasoner
is an example of a highly reusable module that can be shared among many different
modules. It implements the RDF semantic in the (graph-based) query language Xcerpt
(cf. [5] for details).

MODULE "MO-Ontology-Reasoner"
2 IMPORT "RDFS-Reasoner"

4 CONSTRUCT public var KNOWLEDGE
FROM in "RDFS-Reasoner" (var KNOWLEDGE) END

6

CONSTRUCT to "RDFS-Reasoner" (var FACTS)
8 FROM public var FACTS END

10 CONSTRUCT to "RDFS-Reasoner" (var MO)
FROM in document(type="xmlrdf" iri="http://purl.org/ontology/mo/") (var MO) END

4 Modular Xcerpt—Requirements and Constructs

We have seen that modules can greatly ease the development of complex Web queries
(as observed increasingly) and how to apply them in examples. Before we discuss the
principles of the semantics in Section 5, let us first summarize the core concepts and
constructs introduced. We divide the presentation of the concepts in two parts: from the
perspective of the module programmer and of the module user.

Module programmers need constructs for defining sets of rules and ways of declaring
appropriate access to the module—interfaces for proper encapsulation. To allow module
authors to encapsulate modules, visibility constructs are employed. For each rule of the
module, the construct term and the query term (if present) is associated with a visibility
concept: public or private. Only public visibility is specifically specified, otherwise the
default visibility private is used to encourage encapsulation.

Module declaration: We can group sets of rules into modules and give such a set an
identifier. This module can than be imported into other modules or programs.
〈module〉 ::= ‘MODULE’ 〈module-id〉 〈import〉* 〈rules〉*

Module interfaces: We can declare allowed access points to a module to facilitate
encapsulation and proper interfaces. Any construct term can be annotated with
public to indicate that it can be queried by importing modules (see below).
〈interface-out〉 ::= ‘public’ 〈construct-term〉
Conversely, importing modules may provision data to an imported module (see
‘module provision’ below). This data is exclusively queried by query terms marked
with public in the imported module.
〈interface-in〉 ::= ‘public’ 〈query-term〉

In other words, a module programmer defines the name and the in- and output inter-
faces of a module. The input of a module is accessed or queried by public query terms,
the output of a module is formed by public construct terms. A module should also be
complemented by documentation for the user describing its task and interfaces.

Module users need to be able to (a) declare which modules they want to use in a
program, to (b) query the public interfaces of such modules, and to (c) provide data to
such modules.

Module importation: We can import modules into other modules or programs. The
only effect of a module is that the module identifier (or its alias, if an alias is used)
becomes available for use in module querying or provision statements. In practice,
module identifiers are often rather long and complex URIs which makes the use of
(short and easy to read) aliases advisable in most cases.
〈import〉 ::= ‘IMPORT’ 〈module-id〉 (‘@’ 〈alias-id〉)?

Module querying: We can query the consequences of the public construct terms of a
module. The given query term is matched only against the results from public rules
of the given module but neither against those from that module’s private rules nor
against other rules from the current module.
〈module-access〉 ::= ‘in’ 〈module-id〉 ‘(’ 〈query-term〉 ‘)’

Module provision: We can feed or provision data to the public query terms of a mod-
ule. The result of a rule with such a construct term is only considered for public
query terms in the given module, not for query terms in the current module or for
query terms from the given module that are not marked public.
〈module-provision〉 ::= ‘to’ 〈module-id〉 ‘(’ 〈construct-term〉 ‘)’

With only these three operations, a module user can flexibly compose modules (even
multiple instances of the same module) while all the encapsulation is taken care of by
the module system without further user intervention.

So far, all module access is always explicitly scoped with the module identifier. In
a language with views such as Xcerpt, this suffices as we always can add a bridging
rule (such as the first rule in the MusicLibrary module from Section 3) that makes all
data obtained from the public interface of an imported module available to other rules
in the importing module (without need for qualification). We provide two additional
variants of module import for convenience that cover this case. They only differ in
the way they affect module cascading: ‘import public’ 〈module-id〉 makes all data
provided by the public interface of module module-id available to all unqualified rules
in the importing module and also adds it to the public interface of that module whereas
‘import private’ 〈module-id〉 only makes it available to the unqualified rules.

5 Reducing Xcerpt Modules—Stores

The dual objectives of our approach are to (a) keep the module system simple and easy
to use and to (b) allow the reuse of existing language tools and engines without mod-
ification. These two objectives actually go hand in hand, as a reduction semantics for
modules (i.e., a semantics that is based on the semantics of the module-free language)
proves to be elegant and easy to understand and naturally fulfills the second objective.

To allow users to truly think in terms of modules and make use of this abstraction, it
is important to ensure proper and valid module interactivity statically before applying
the module-unaware query engine to the involved rules. Thus, only the intended rule
dependencies must be present in the merged rules—we have no way of enforcing rule
separations during rule execution.

For the Xcerpt module system we ensure proper rule dependencies using the notion
of stores. Intuitively, a store is a designated data area where data and queries are ap-
propriately redirected to adhere to the proper access of rules as specified by the module
programmer. A store is associated with an identifier and consists of a private, in and out
part. Intuitively, the private part is intended for data access internal to the module only
and the in and out parts for input and output data of that module. That is, data to be pro-
cessed by the module will be injected into the in part of the store and data constructed
by the module—upon request from another module—will reside in the out part of the
store and can be queried by an importing module.

Stores can already be simulated using the existing Xcerpt mechanisms. Let us first
assume that for each module we have one associated store that is identified by the same
(unique) identifier. The construct terms and query terms of each rule in an imported
module as well as rules using in or to for module access or provision in an importing
module are modified such that the appropriate store is referenced:
in <module-id> (<query>) → store [id [<module-id>], access ["out"], <query>]

to <module-id> (<construct>) → store [id [<module-id>], access ["in"], <construct>]

CONSTRUCT <c> FROM <q> END → CONSTRUCT store [id [<module-id>], access["private"], <c>]
FROM store [id [<module-id>], access["private"], <q>] END

Some rules in the imported module are exempted from this transformation, viz.
construct terms in goals (producing results for the end user), query terms specifically
referencing an external resource (such as an XML document or other module) rather
than the internal module store. Also, if the query term is a complex query it might be
necessary to propagate the store specification inside the query (e.g., over disjunctions,
negation, etc.). However, these details are omitted here for space reasons.5

5.1 Refining Stores: Instance Stores

The store concept described above ensures basic encapsulation capabilities for Xcerpt
modules and is attractive for its simplicity. However, there are certain situations where
associating one store per module is not sufficient. Consider the situation where two
modules (A,B) imports a third one (C) and both A and B injects data into the store as-
sociated with C. In such a case, after module C has processed the data, module A may
receive data initially injected by module B. As such, modules A and B are not kept sep-
arate violating one of the core premises of our desire for modules. This is not a limit of
the store approach, but due to the assumption of the existence of one store per module.

To address this problem, we associate stores not with a module but with a module
import. This can be seen as instantiating a store for each module import with the identi-
fier of the importing module. We thus end up with two stores C<A> and C, due to two
import operators. A similar case where this is needed is when we use the same module

5 But available with examples at http://www.reuseware.org/modularxcerptexample.

but with different “feeds” using aliases. This is the case in the Music Library module
presented in Section 3 where aliases (using @) were used to force such separations.

Implementation. Not only is it an advantage to reuse the query engine in executing the
transformed and merged rules, it is also beneficial if existing technology can be used
to realize the above-described transformations. To achieve this, we realize the mod-
ule system via composition in the Reuseware Composition Framework [8]. The com-
position framework allows for the development of a light-weight composition system
responsible for handling the augmented constructs related to modules. The composi-
tion framework allows both to extend the Xcerpt language with the additional syntac-
tic constructs and to handle the transformation and merging of the involved rules in
the manner described above to enforce encapsulation. The details of this implementa-
tion are left out for space reasons, but are available at http://www.reuseware.org/
modularxcerptexample.

6 Related work

Practical Web query languages need to provide support for some form of reuse and
modules as evidenced by (though somewhat limited) module support in languages such
as XSLT and XQuery. Rule languages for the Web, on the other hand, show an apparent
lack of module support, despite considerable research on module extensions for classi-
cal logic programming. One of the reasons that modules are still not in the “standard
repertoire” of rule languages may be the complexity of many previous approaches.

Representative and, arguably, the most comprehensive treatment of modules in logic
programming is presented in [4]. It is far more expressive than our approach but at the
price of a complex semantics and several operations with, in our opinion, little practical
use (such as module intersection or renaming). We believe that a single well-designed
union operation with clear interfaces together with a strong reliance on views as a core
feature of rule languages is not only easier to grasp but also easier to realize.

Though many rule languages for the Web fail to provide modules, this is not true
for the two preeminent Web query languages, XSLT and XQuery. XSLT [6] can be
considered a rule language, however using precedence rather than union semantics for
multiple applicable rules. Rule precedence is also the dominating issue for XSLT’s
module system which provides intricate mechanisms for determining the precedence of
rules from different modules. Nevertheless, the resulting module system is considerably
less powerful (no scoped import, limited parameterization: apply-imports) yet needs a
more complex semantics than module-free XSLT, quite in contrast to our approach.

It is worth mentioning that XQuery [3] also provides a module system, however
without parameterization, but as a function programming language requires explicit
flow control in all cases. Thus, issues such as private or public import (or the difference
between import and include in XSLT) do not apply for XQuery. SPARQL [9], finally,
the recently proposed RDF query language, has no concept of user defined program
units (such as rules, functions, procedures, etc.) and thus no use for a module concept
in the sense of our approach. However, rule-based extensions for SPARQL (in the spirit
of Datalog) could certainly profit from the module system illustrated here using Xcerpt.

7 Conclusions and Outlook

We argue that one ingredient to cope with size and diversity of information on the (Se-
mantic) Web is modular query authoring and execution. We show advantages along
a concrete use case dealing with music information aggregation on the Web. Further-
more, we demonstrate how it is possible to augment existing query languages—here
focused on the language Xcerpt—with new constructs while reusing already developed
semantics and query engines thanks to a reduction semantics approach. The proposed
module system is simple to use (in contrast to many approaches from logic program-
ming) yet provides better encapsulation and more advanced features (such as scoping
and paramterization) than module systems for XSLT or XQuery.

The proposed module system has been formalized [1] and implemented using the
Reuseware Composition Framework. Integration with upcoming revisions of Xcerpt is
planned. Furthermore, we would like to exploit existing techniques and tools such as
Xcerpt’s type system [12] for improving module composition. We are also investigating
how similar techniques can be applied to add or improve module systems for other (non-
rule based) query languages (for example, the module system of XSLT).

Acknowledgement. This research has been co-funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net).

References

1. U. Aßmann, S. Berger, F. Bry, T. Furche, J. Henriksson, and P.-L. Patranjan. A generic
module system for web rule languages: Divide and rule. In Proc. Int’l. RuleML Symp. on
Rule Interchange and Applications, 2007.

2. J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and Semantic Web Query Languages: A
Survey. In Tutorial Lect. Int’l. Summer School ‘Reasoning Web’, LNCS 3564. 2005.

3. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon. XQuery
1.0: An XML Query Language. Working draft, W3C, 2005.

4. A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular logic programming. ACM
Trans. Program. Lang. Syst., 16(4):1361–1398, 1994.

5. F. Bry-Haußer, T. Furche, and B. Linse. Data Model and Query Constructs for Versatile Web
Query Languages: State-of-the-Art and Challenges for Xcerpt. In Proc. Int’l. Workshop on
Principles and Practice of Semantic Web Reasoning (PPSWR), pages 90–104, 2006.

6. J. Clark. XSL Transformations, Version 1.0. Recommendation, W3C, 1999.
7. F. Giasson and Y. Raimond. Music ontology specification. Specification, Zitgist LLC, 2007.
8. J. Henriksson, J. Johannes, S. Zschaler, and U. Aßmann. Reuseware – adding modularity to

your language of choice. Proc. of TOOLS EUROPE 2007: J. of Object Technology, 2007.
9. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Candidate rec-

ommendation, W3C, 2007.
10. S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the Web. Dis-

sertation/Ph.D. thesis, University of Munich, 2004.
11. S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction to Xcerpt.

In Proc. Extreme Markup Languages (Int’l. Conf. on Markup Theory & Practice), 2004.
12. A. Wilk and W. Drabent. A Prototype of a Descriptive Type System for Xcerpt. In Proc. of

Workshop on Principles & Practice of Sem. Web Reasoning (PPSWR), LNCS 4187. 2006.

