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Jörg-Christian Heinrich3 and Michael Schroeder1,*
1Bioinformatics Group, Biotechnological Centre, TU Dresden, Dresden, Germany, 2Department of Visceral-, Thoracic-
and Vascular Surgery, University Hospital, Dresden, Germany and 3RESprotect GmbH, Dresden, Germany

ABSTRACT

Motivation: Pancreatic ductal adenocarcinoma (PDAC) eludes early

detection and is characterized by its aggressiveness and resistance

to current therapies. A number of gene expression screens have

been carried out to identify genes differentially expressed in

cancerous tissue. To identify molecular markers and suitable targets,

these genes have been mapped to protein interactions to gain an

understanding at systems level.

Results: Here, we take such a network-centric approach to pancreas

cancer by re-constructing networks from known interactions and by

predicting novel protein interactions from structural templates. The

pathways we find to be largely affected are signal transduction, actin

cytoskeleton regulation, cell growth and cell communication.

Our analysis indicates that the alteration of the calcium pathway

plays an important role in pancreas-specific tumorigenesis.

Furthermore, our structural prediction method identifies 40 novel

interactions including the tissue factor pathway inhibitor 2 (TFPI2)

interacting with the transmembrane protease serine 4 (TMPRSS4).

Since TMPRSS4 is involved in metastasis formation, we hypothezise

that the upregulation of TMPRSS4 and the downregulation of its

predicted inhibitor TFPI2 plays an important role in this process.

Moreover, we examine the potential role of BVDU (RP101) as an

inhibitor of TMPRSS4. BDVU is known to support apoptosis and

prevent the acquisition of chemoresistance. Our results suggest that

BVDU might bind to the active site of TMPRSS4, thus reducing its

assistance in metastasis.

Contact: ms@biotec.tu-dresden.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Biological background. The pancreas is located in the upper

abdomen in close proximity to the duodenum. It serves two

major functions: secretion of digestive enzymes by the

pancreatic exocrine cells and production of hormones such as

insulin, glucagon and somatostatin by the endocrine cells.

Pancreatic cancer is the fourth leading cause of death due to

cancer in virtually all industrialized countries. It accounts for

more than 90 000 deaths per year in the United States and

Europe. Pancreatic ductal adenocarcinoma (PDAC) is the most

common pancreatic neoplasm and is found in about 80% of

pancreatic tumour cases (Hezel et al., 2006). Since pancreatic

cancer is not only difficult to detect, but also difficult to treat, it

has an extremely poor prognosis. To improve this prognosis,

novel molecular markers for earlier diagnosis and targets for

adjuvant or neoadjuvant treatment need to be identified.

Gene expression and pancreas cancer. Many researchers have

carried out gene expression experiments coupled to computa-

tional analyses to identify relevant markers and targets for

pancreas cancer (Aguirre et al., 2004; Cao et al., 2004;

Grutzmann et al., 2004a; Hezel et al., 2006; Hustinx

et al., 2004; Iacobuzio-Donahue et al., 2002).

Using dimension reduction with principal identified seven

genes involved in multiple cellular processes such as signal

transduction (MIC-1), differentiation (DMBT1 and Neugrin),

immune response (CD74), inflammation (CXCL2), cell cycle

(CEB1) and enzymatic activity (Kallikrein 6). Pospisil et al.,

2006 and Cao et al., 2004 developed promising approaches

integrating a host of bioinformatics resources covering

sequence and structural data. Cao’s analysis revealed the

importance of CD29, INHBA, AKAP12, ELK3, FOXQ1,

EIF5A2, and EFNA5, which were experimentally validated,

while Pospisil et al. (2006) focused on alkaline phosphatase

(various cancers), prostatic acid phosphatase, prostate-specific

antigen (prostate cancer) and extracellular sulfatase 1 (pan-

creatic cancer).
A systems approach to pancreas cancer. Pospisil’s approach is

particularly interesting because the authors took a first step

towards a systems biology approach by incorporating into their

analysis functional annotations from the Gene Ontology

(Ashburner et al., 2000) and relevant protein interactions

from Ingenuity’s Pathways Analysis. Recent databases such as

pSTIING (Ng et al., 2006) and Cyclonet (Kolpakov et al.,

2007) focus on integrating and linking cancer gene expression

data to pathways and interaction databases. Rhodes et al.

(2005) initiated this line of thinking by building a probabilistic

network model, which is based among others on co-expression,

and by identifying relevant interactions for pancreas cancer

such as a tyrosine kinase subnetwork including ERBB2,

MUC1, SHC1, EPH2A and invasion signalling including

NET1, RhoA, RhoC and RAC.
Over the past years, such a network-based approach has

become possible. Fuelled by high-throughput interaction

experiments (Gavin et al., 2002; Gavin et al., 2006; Giot

et al., 2003; Ho et al., 2002; Ito et al., 2001; Li et al., 2003; Rain

et al., 2001; Uetz et al., 2000) large databases with thousands of*To whom correspondence should be addressed.
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interactions have emerged such as IntAct (Hermjkob et al.,

2004) STRING (von Mering et al., 2007), DIP (Xenarios et al.,

2004), HPRD (Peri et al., 2003), BIND (Bader et al., 2003),

KEGG (Kanehisa et al., 2005), and Reactome (Tope et al.,

2005). They have been complemented by databases for

structural interactions such as PIBASE (Davis and Sali,

2005), PSIBASE (Gong et al., 2005), 3did (Stein et al., 2005),

and SCOPPI (Winter et al., 2006). Finally, there are many

efforts to extract interactions from literature, among them

iHOP (Hoffmann and Valencia, 2004) and ALI BABA (Plake

et al., 2006).
These data repositories provide valuable resources for the

prediction of protein–protein interactions. So far, sequence-

based methods focused on gene context conservation (Galperin

and Koonin, 2000), phylogenetic profiling (Pellegrini et al.,

1999; Sun et al., 2005) and co-evolution of gene expression

(Fraser et al., 2004). Tong et al. (2004) provided a gentetic

interactions study using synthetic lethality. Several studies

made use of homologous interactions in other species to predict

protein interactions (Ben-Hur and Noble, 2005; Espadaler

et al., 2005; Kim et al., 2004; Han et al., 2004). Structural

approaches employed modelling of interactions using structural

templates derived from known protein complexes (Aloy et al.,

2002, 2004).
In this article, we follow Rhodes et al., 2005 and Pospisil

et al., 2006 taking a network-centric approach to the

reconstruction of signalling cascades and the identification of

promising targets. We go beyond this work by including into

our networks predicted interactions based on structural

templates, which help elucidating the mode of interaction of

deregulated proteins. Ultimately, the aim is to identify drug

targets that explain the mechanism of action of existing and

novel drugs.

2 RESULTS

2.1 Approach

In this study, we design a computational approach

to automatically reconstruct pathway maps and interaction

networks of proteins. Applied to genes involved in pancreas

cancer, we obtain a map of pathway alterations and key

interactions. We compare this map to the ‘Hallmarks of cancer’

diagram published by Hanahan and Weinberg (2000). The

overview of the approach is illustrated in Figure 1.

Gene expression data (1). Our data set [Fig. 1, (1)] was

obtained by integrating our various analyses of the gene

expression profiles of PDAC from Affymetrix GeneChip

experiments such as microdissection, systematic isolation of

genes (Grutzmann et al., 2003a, b, 2004b), and the meta-

analysis of PDAC gene expression profiles from publicly

available data (Grutzmann et al., 2005). The data set pooled

from these studies contains 1612 genes differentially expressed

in pancreatic ductal adenocarcinoma (PDAC).

From expression to pathways (2,3). Our first approach is the

construction of a PDAC related pathway network that

resembles the regulatory circuits which are disrupted in the

cell (3). To this end, we check in which KEGG pathways (2) our

dataset genes participate. We query the KEGG Pathways

database, genes are then grouped according to the pathways

they are involved in. We define two pathways to be related if

they share at least four genes. The resulting model is shown

in Figure 2. We obtain an overview of the related pathways

which are mainly modulated in PDAC. It can help in

understanding the processes the pancreas cell undertakes to

become malignant.
Known interactome by localization (6). We obtain all

experimentally known interactions within our data set

Fig. 1. Approach of this study. We start with an experimentally derived set of disease relevant genes (1). Using various sources such as pathway data

(2), interaction data (4,7), Gene Ontology annotation (5), and interaction predictions (8,9), we construct views highlighting different aspects of the

gene data set (3,6,9). These are then integrated into a comprehensive interaction map (10). Finally, promising candidates are identified and validated

by computational methods (11) in order to provide targets for experimental testing (12).
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from the literature (4) by help of the NetPro database

(http://www.molecularconnections.com/protein_interactions.

html). For every protein, we then retrieve localization

information from the Gene Ontology cellular component

annotation (5). From this, we construct an integrative map

of known pancreas cancer relevant protein interactions (6)

(data not shown).
Structure-based interaction predictions (7–9). Protein interac-

tions provide an important context for understanding protein

function. We use structural information to predict novel

interactions among the PDAC proteins which can functionally

annotate uncharacterized cancer related genes. Our interaction

prediction approach is based on SCOPPI, the Structural

Classification of Protein–Protein Interfaces (Winter et al.,

2006). The idea of predicting new interactions from these

known ones is sketched in Figure 1 on the right (see ‘Methods’

for details). The resulting set of initial interaction predictions

[Fig. 1, (8)] yields �1 000 potential interactions among the

PDAC microarray data set. Filtering out predictions with

less than 50% interface identity and medium or low GTD

confidence results in a set of 40 confident, novel interactions.

Table 1 contains the subset of 29 interactions where only

interactions between a pair of up-up or up-down regulated

genes are shown in addition to two literature confirmed

interactions which are down-down regulated. A table with all

40 interaction is provided as supplementary material.
A pancreas cancer map (10). By linking pathway approach,

known interactions and structure-based interaction predictions,

we produce a detailed PDAC cell map (10). The map illustrates

the gene products of the PDAC data that are involved in the

40 novel predicted interactions.
Validation of candidates (11,12). An interesting example is the

role of the downregulated tissue factor pathway inhibitor 2

(TFPI2) as a potential inhibitor of the upregulated

transmembrane protease, serine 4 (TMPRSS4). This example

is elaborated and discussed in the following section.

Molecular Dynamics simulations confirmed that the predicted

TMPRSS4–TFPI2 interaction remains stable. We further

performed docking experiments which indicate that BVDU

(RP101) is able to bind to the active site of TMPRSS4.

3 DISCUSSION

3.1 Cancer genes

Around 1 500 of the genes in our data set are validated by

checking them against previously reported differentially

expressed cancer genes (Higgins et al., 2007), among them the

K-ras oncogene whose mutation has been identified in 90% of

pancreas cancers, the insulin-like growth factor (IGFBP4/5),

STAT1 from the signal transducers and activators of

transcription family.
SMADS are proteins of the TGF� signalling pathway. Sova

et al. (2006) identified TFPI2 as a biomarker that is

hypermethylated and repressed in cervical cancer. TMPRSS4

has been also identified as a biomarker for thyroid cancer.

Furthermore, Mertz et al. (2007), identified recurrent gene

fusions of TMPRSS2, a paralog of TMPRSS4, that mediate the

overexpression of ETS transcription factor family members,

most commonly ERG in prostate cancer. SERPINI2 a protease

inhibitor is located at the chromosomal position 3q26.1-q26.2,

a region that has been linked to a genetic risk for breast cancer.

Ozaki et al. (1998) has also shown that down-regulation of

SERPINI2 may play a significant role in development or

progression of pancreatic cancer.
Downregulation or loss of SMAD4 was shown to be

important for pancreatic carcinogenesis. The increase of

expression of CD44, a transmembrane protein involved in

cell-to-matrix interactions, promotes metastatic potential of

pancreatic carcinoma cells (Coppola, 2000). The FOXM1 gene

is upregulated in pancreatic cancer and basal cell carcinoma

due to the transcriptional regulation by Sonic Hedgehog (SHH)

pathway (Katoh and Katoh, 2004). BRCA1, whose mutation

appears to confer increased susceptibility for PDAC (Hezel

et al., 2006), as well as STK11, which is a tumour suppressor

gene, was found to be involved in regulation of diverse

processes such as cell polarity and metabolism.
Some of the above identified genes were investigated as

therapeutic targets. Fleming et al. (2005) provided support that

silencing mutant K-ras through RNA interference results in

alteration of tumour cell behaviour in vitro and suggests that

targeting mutant K-ras specifically might be effective against

pancreatic cancer in vivo. Lebedeva et al. (2006) as well-targeted

K-ras by using an adenovirus expressing a novel cancer-specific

apoptosis-inducing cytokine gene.

Taniuchi et al. (2005) identified RAB6KIFL as a candidate

for development of drugs to treat PDACs. Knockdown of

endogenous RAB6KIFL expression in PDAC cell lines by

small interfering RNA drastically attenuated growth of those

cells, suggesting an essential role for the gene product in

maintaining viability of PDAC cells. From our data, we can

predict a potential interaction of RAB6KIFL and RAB22A.

Fig. 2. Overview of the related pathways that are mainly affected and

modulated in pancreatic ductal adenocarcinoma (PDAC). Pathways are

grouped according to their similar functions, and each group is

coloured differently (pink for signal transduction, yellow for immune

system, orange for cell growth and death, light green for signalling

molecules and interaction, blue for cell motility, and grey for cell

communication). Solid arrows indicate that two pathway have at least

four genes in common. Dashed arrows indicate that one pathway is

downstream of another according to KEGG.
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Table 1. 29 predicted interactions where both partners are deregulated in the PDAC microarray experiment. Protein 1 is the interaction partner of

Protein 2. The complex column shows the PDB ID of the known complex template assigned by SCOPPI. The interface conservation percentages of

protein and their complex template are shown. Some of the predictions could be verified by checking the literature and are marked with X. The �

sign represents a negative literature confirmation (Lolli et al., 2004)

Protein 1 Description up/

down

Interface

conserved

Complex

PDB ID

Protein 2 Description up/

down

Interface

conserved

Confirmed

by literature

1 MLRM Myosin regulatory light

chain 2, nonsarcomeric

up 63% 1b7t MYH9 Cellular myosin heavy

chain, type A

up 57%

2 TFPI2 Tissue factor pathway

inhibitor 2

down 62% 1taw KLK10 Kallikrein 10 up 59%

3 TFPI2 Tissue factor pathway

inhibitor 2

down 61% 1brc TMPRSS4 Transmembrane

protease, serine 4

up 63%

4 TMPRSS4 Transmembrane

protease, serine 4

up 64% 1ezx SERPINI2 Protease inhibitor 14 down 50%

5 TMPRSS4 Transmembrane

protease, serine 4

up 58% 1sgf NTF5 Neurotrophin-5 down 80%

6 RHOA Transforming protein

RhoA

up 89% 1am4 DLC1 Deleted in liver cancer 1,

isoform 1

down 58%

7 RHOA Transforming protein

RhoA

up 80% 1kzg PLEK2 Pleckstrin-2 up 50%

8 FYN FYN Tyrosine Kinase

protooncogene

up 77% 2src EPS8L1 Epidermal growth factor

receptor kinase sub-

strate 8-like protein 1

down 50%

9 FYN FYN Tyrosine Kinase

protooncogene

up 77% 2src BIN1 Myc box-dependent-

interacting protein 1

up 50%

10 C2 Complement component 2 up 64% 1ezx SERPINI2 Protease inhibitor 14 down 50%

11 C2 Complement component 2 up 50% 1sgf NTF5 Neurotrophin-5 down 80%

12 KLK10 Kallikrein 10 up 57% 1ezx SERPINI2 Protease inhibitor 14 down 50%

13 RAB25 Ras-related protein

Rab-25

up 56% 1cjt ADCY9 Adenylate cyclase type 9 down 50%

14 RAB25 Ras-related protein

Rab-25

up 56% 1cjt ADCY3 Adenylate cyclase type 3 up 50%

15 RRAS Ras-related protein R-Ras up 100% 1wq1 RASAL2 RAS protein activator-

like 2

up 59%

16 MYL9 Myosin, light polypeptide

9, regulatory

up 61% 1b7t MYH9 Cellular myosin heavy

chain, type A

up 57%

17 KRAS2 GTPase KRas up 100% 1wq1 RASAL2 RAS protein activator-

like 2

up 59%

18 RGS2 Regulator of G-protein

signalling 2, 24kDa

down 53% 1fqj RAB22A Ras-related protein

Rab-22A

up 50%

19 RGS5 Regulator of G-protein

signalling 5

up 53% 1fqj RAB22A Ras-related protein

Rab-22A

up 50%

20 RGS16 Regulator of G-protein

signalling 16

up 53% 1fqj RAB22A Ras-related protein

Rab-22A

up 50%

21 CDC2L1 Cell division cycle

2-like 2

up 67% 1fq1 CDKN3 Cyclin-dependent kinase

inhibitor 3

up 100%

22 RAB22A Ras-related protein

Rab-22A

up 56% 1jx2 KIF20A Kinesin family member

20A

up 60%

23 CDC2 Cell division control

protein 2 homolog

up 83% 1fq1 CDKN3 Cyclin-dependent kinase

inhibitor 3

up 100% X

24 CDK7 Cyclin-dependent kinase 7 up 58% 1fq1 CDKN3 Cyclin-dependent kinase

inhibitor 3

up 100% �

25 ARHGDIA Rho GDP dissociation

inhibitor(GDI)alpha

up 100% 1cc0 RHOA Transforming protein

RhoA

up 100% X

26 EPS15L1 Epidermal growth factor

receptor pathway

substrate 15-like 1

down 50% 1dfk MYH9 Cellular myosin heavy

chain, type A

up 59%

27 TAPBP TAP binding protein down 67% 2ig2 CD58 Lymphocyte function-

associated antigen 3

up 100%

28 TFPI2 Tissue factor pathway

inhibitor 2

down 62% 1taw F11 Coagulation factor XI down 66% X

29 TFPI2 Tissue factor pathway

inhibitor 2

down 62% 1taw KLKB1 Kallikrein B, plasma

(Fletcher factor) 1

down 66% X
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3.2 Pathways in pancreatic cancer

Comparison of predicted with known cancer pathways. A number

of pathways are known to be affected by PDAC. The Wnt and

Hedgehog signalling pathways are essential during embryonic
pancreatic development. The misregulation of these pathways

has been implicated in several forms of cancer and may also be

an important mediator in human pancreatic carcinoma.

Thayer et al. (2003) and Kayed et al. (2006) suggest that
these pathways may have an early and critical role in the

genesis of this cancer, and that maintenance of the Hedgehog

signalling is important for aberrant proliferation and

tumorigenesis.
The Notch signalling pathway has been shown to contribute

to human cancers when abnormally regulated (Hezel et al.,
2006). Xu and Attisano (2000) presented a study that revealed

a mechanism for tumorigenesis whereby genetic defects in

SMADs induce their degradation through the ubiquitin-

mediated pathway.
The pathways that are affected by the deregulation of genes

in pancreatic cancer are shown in Figure 2. The analysis of such
a network can help to explain how the deregulated pathways

affect each other and how this might result in tumorigenesis.

Cancerous cells typically affect a variety of cellular pathways

that are related to cell growth, cell division, evasion of
apoptosis, and signalling (Hanahan and Weinberg, 2000).

Comparing our pathway analysis to these general cancer

mechanisms, our results indicate that in pancreatic cancer the

calcium signalling pathway is affected. The key function of the
exocrine pancreas is to synthezise, package and secrete a variety

of digestive enzymes. This process is regulated by neurotrans-

mitters and hormones, both of which utilize calcium as a
principal signalling molecule (Yano et al., 2003). Calcium can

mediate signalling transduction by activation of a number of

calcium-activated protein kinases and protein phosphatases

such as calcineurin (Williams, 2001). It also plays an important
role in primary signalling mechanism that control secretion. In

addition, we observe that the MAPKinase pathway has the

highest connectivity which supports the hypothesis that it

plays a crucial role in tumorigenesis. Hedgehog, Wnt and
Jak-STAT signalling pathways transduce the signals from the

extracellular environment. All together they perturb cell

adhesion, cell cycle and the apoptosis pathway which ultima-

tively leads to the abnormal phenotype of PDAC. Finally, they
pave way for invasion and metastasis, enabling cancer cells

to escape the primary tumour mass and colonize new terrain

in the body.

3.3 Hallmark interactions of pancreatic cancer

Combining pathways, known interactions and predicted inter-

actions, we obtain the hallmarks of pancreatic cancer map

(Fig. 3). Our data confirm several of the classical cancer
alterations. In addition, we complement these by known and

predicted interactions. Most notably, we find many extracellular

proteins to be deregulated. Table 1 lists 29 structure-based
interactions predictions after filtering. These interactions have a

high confidence with respect to the threading structure predic-

tion method. Furthermore, they have a sufficient conservation

of the putative interacting residues when compared to the known

structural template that was used to model this interaction. One
interesting example of two extracellular proteins that might play
a major role in tissue infiltration and metastasis of pancreas

cancer is discussed as follows.
TFPI2 is a potential inhibitor of TMPRSS4. The interaction

between the upregulated transmembrane protease, serine 4

(TMPRSS4) and the downregulated tissue factor pathway
inhibitor 2 (TFPI2) marks an interesting example. In pancreas
cancer cells, TMPRSS4 is involved in the process of

metastasis formation and tumour invasion, and its expression
is correlated with the metastatic potential (Wallrapp et al.,
2000). TFPI2 is an extracellular protein that belongs to the

small Kunitz inhibitor family. It is known to be downregulated
in PDAC.
Figure 4 shows how our structure-based method predicts and

models an interaction between TMPRSS4 and TFPI2. The
structures are predicted according to the domains found by
Threader. Searching the SCOPPI database for interactions of

related domains, we find the complex of trypsin (light blue) and
amyloid beta-protein precursor inhibitor (dark blue). The
modelled structures (red and yellow in Fig. 4a) are super-

imposed with the template of known interaction (blue) to model
the putative interaction between them. This interaction is
shown again from a different angle in Figure 4d. TMPRSS4

residues that are part of the interface are coloured orange, and
the catalytic triad of serine, aspartate and histidine is coloured
blue. After energy minimization of the complex, the pocket

around the active site slightly opens (Fig. 4e) and minor clashes
that were present before disappear. The sequence alignments
of TMPRSS4 and TFPI2 with the sequences of their GTD-

assigned structures as well as the SCOPPI structural template
are shown in Figure 4b and c. Sequence similarity is reflected
by shades of colour. We find the interface regions (orange/red)

to be well conserved.
This interaction could explain the mechanism of metastasis

that makes PDAC a very aggressive type of cancer. TFPI2 is an

extracellular-matrix-associated serine protease inhibitor
(Rao et al., 1996) that plays a major role in extracellular
matrix degradation during tumour cell invasion and metastasis,

wound healing and angiogenesis. It has been shown that TFPI2
inhibits plasmin, trypsin, chymotrypsin, cathepsin G and
plasma kallikrein but not urokinase-type plasminogen activa-

tor, tissue plasmin and thrombin (Konduri et al., 2001). It plays
a major role in negative regulation of the coagulation cascades
(upper right in Fig. 2) and its downregulation is associated with

malignant pancreas tumours. On the other hand, TMPRSS4
is known to be upregulated in pancreas cancer, which may be
of importance for processes involved in metastasis formation

and tumour invasion (Wallrapp et al., 2000).
We can thus hypothesise that TFPI2 acts as a natural

inhibitor of TMPRSS4. Since TFPI2 is downregulated, the

upregulated TMPRSS4 is no longer inhibited and might
facilitate tissue invasion.
A proposed mechanism of action for BDVU. For pancreas

cancer, one of the standard drug treatments is gemcitabine-

based chemotherapy. Recently, these standard chemotherapies
were found to give better results when combined with specific
substances sensitizing the tumour towards chemotherapy.

The effect of BVDU ((E)-5-(2-bromovinyl)-2’-deoxyuridine

Structural templates predict novel interactions and targets
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or RP101), which supports apoptosis and prevents the

acquisition of chemoresistance, was demonstrated in vitro and

in patients with pancreas cancer (Fahrig et al., 2006). BVDU

co-treatment significantly enhanced survival and time to

progression. The relationship between metastasis and chemore-

sistance might indicate that acquired resistance to apoptosis as

a result of chemotherapy could favour the metastatic process

(Mehlen and Puisieux, 2006). Since TMPRSS4 is known to play

a role in tissue invasion and metastasis, we speculate that

BVDU might act as an inhibitor of TMPRSS4, replacing the

function of downregulated TFPI2. To confirm this hypothesis,

we used PatchDock (Schneidman-Duhovny et al., 2003) to

dock BDVU to TMPRSS4. The result is shown in Figure 4f.

BVDU clearly blocks the pocket with the active site. We can

only speculate about the affinity of BDVU towards TMPRSS4,

but we believe that it at least acts as competitive inhibitor for

the natural substrate of TMPRSS4. This suggests a potential

novel role of BDVU as a TMPRSS4 inhibitor.

Validation of predictions. We used homology modelling

and docking to further test our results. For the homology

modelling we use the MODELLER software for homology or

comparative modelling of protein three-dimensional structures

(Mart-Renom et al., 2000). The Modeller results for the

TMPRSS4–TFPI2 interaction strongly supports our predic-

tion. As input we provide an alignment of the TMPRSS4

sequence to be modelled with known related structures and the

output is the modelled structure of the input sequence.

The reliability of structural-based interaction predictions

using domains information depends on the pair of domain

families involved. According to a similar study by (Aloy and

Russell, 2002) that is based on the accuracy of predicted

protein interactions networks using structural information,

an average of 70% of interface residues are conserved in

homologues complexes (cytokine/receptor 92%, signalling

89%, peptidase/inhibitor 59%, other 66%). In general estimat-

ing sensitivity and specificity for the validation of protein

interaction is very difficult because there is still no comprehen-

sive gold standard of positive (known interactions) and

negative (proteins known not to interact) interaction datasets.

A study by (Deane et al., 2002) using paralogs verification

method (PVM) identified 40% true interactions at a 1%

error rate.

Fig. 3. A comprehensive map of pancreas cancer relevant interactions and pathways. The underlying picture was taken from (Hanahan and Weinber,

2000) and updated with our findings. It depicts integrated circuit of the cell progress annotated with the PDAC genes that are involved in the 40 novel

predicted interactions. Proteins are shown according to their cellular localization and their associated pathways. Genes coloured green are

downregulated while genes coloured red are upregulated. The boxes around some of the genes indicates that those genes were present on the original

map and the colours of the boxes indicate their expression level. Lines linking genes represent interactions among the genes. Interactions confirmed

by literature shown in red, and predicted interactions shown in blue.
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Limitations. For the interactions predicted from known

complex structures (Table 1), the accuracy of structure

predictions by means of Threading is crucial. Despite the fact

that we filter out medium and low confidence predictions

(according to confidence scores provided by the Threading

method), the actual structure might still differ from the

predicted one. For this reason, we compare the putative

interface residues of both predicted interaction partners with

the interface residues of the known complex structure used as

template. We argue that a high sequence identity in the

interface region favours a similar interface structure. We do not

claim that these interactions are necessarily true, but we are

rather confident that they provide reasonable candidates for

experimental testing.

4 METHODS

Data set. The gene expression data used in our work originates from

the four microarray studies mentioned in the results section

(Section 2.1). These studies compare expression profiles of pancreatic

ductal adenocarcinoma cells to healthy exocrine pancreas cells and only

genes which have a fold change of >2 compared to healthy pancreas

tissue are considered. Our data set consists of 1612 genes, out of

which 944 were found to be up-regulated and 668 downregulated

in PDAC.

Public resources. We want to briefly summarise the data resources

used in our study.

The KEGG Pathways database (Kanehisa et al., 2005) is a collection

of manually drawn pathway maps for metabolism, genetic

information processing, environmental information processing such as

Fig. 4. Example for a predicted interaction between transmembrane protease, serine 4 (TMPRSS4) and tissue factor pathway inhibitor 2 (TFPI2) as

well as the putative inhibition of this interaction by the small molecule BVDU. (a) The known complex of trypsin (light blue) and amyloid beta-

protein precursor inhibitor (dark blue) serves as a template to predict and model the interaction between TMPRSS4 (yellow) and TFPI2 (red).

(b) Alignment of the sequence to model the TMPRSS4 structure and the sequence of the template. Interface residues are shown in orange, the

catalytic triad is shown in blue. Sequence similarity is shown in shades of colour. (c) Alignment of the sequence to model the TFPI2 structure and the

sequence of the template. Interface residues in red. (d) Close-up view of the predicted interaction of TMPRSS4 and TFPI2. The interface region of

TMPRSS is shown in orange, with catalytic triad of the active site shown in blue. (e) After energy minimization, the pocket slightly opens and initial

minor clashes can be resolved. (f) Docking of BDVU instead of TFPI2 as inhibitor suggests a potential interaction and role of BDVU as a TMPRSS4

inhibitor. (g) Amino acid conservation coloring of the predicted TMPRSS4 structure shows a well-conserved pocket.
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signal transduction, various other cellular processes and human

diseases. NetPro is the proprietary protein interaction database

covering more than 100 000 expert curated and annotated protein–

protein interactions. All the interactions were obtained from peer

reviewed published scientific articles and have gone through expert

cross-checking quality checks. The Protein Data Bank, PDB (Berman

et al., 2000) is a repository for three-dimensional structures. As of

January 2007, it contains some 39 000 protein structures, most of which

have been obtained by X-ray crystallography. Around half of the PDB

entries are multi-domain protein structures. The structural classification

of proteins, SCOP (Murzin et al., 1995) provides a hierarchical

classification of protein structures at domain level. The hierarchy

contains four levels: class, fold, superfamily and family. At the family

level, domains share a high sequence similarity and hence are

structurally very similar. At superfamily level, there is still good

structural agreement concerning the overall topology despite possibly

low sequence similarity. Domains grouped at family and superfamily

level can be considered homologous. The Genomic Threading

Database, GTD (McGuffin et al., 2004) assigns structural folds to

proteins of unknown structure. Structural annotations are carried out

using a modified version of GenTHREADER (Jones, 1999). GTD is

more sensitive than sequence alignment, and can assign folds correctly

even with low sequence similarity. The Structural Classification

of Protein–Protein Interfaces SCOPPI (Winter et al., 2006) is a

database containing all domain-domain interactions and their

interfaces of multi-domain proteins from the PDB which follows the

rule: two domains are considered as interacting if there are at least 5

residue pairs within 5 Å.

Structure-based prediction of protein interactions. We implemented a

methodology that utilises structural data from SCOPPI to predict

potential interaction among the PDAC data set deregulated genes.

The resulting potential interactions are further investigated by

considering amino acid sequence conservation of �50% at the

interaction interface when compared to the structural template. In

the following we describe the working steps of the method as shown in

Figure 1: (i) Structure assignment and Family classification. Most of

the data set genes are of unknown structure. First, we use the Genomic

Threading Database (GTD) as fold recognition method to assign SCOP

domain structures to all proteins in our data set. Only assignments with

certain and high confidence by GTD are considered. This results in

656 remaining genes. (ii) Interaction prediction. For the assigned

SCOP domains, we use SCOPPI to identify interacting domain pairs.

In this step, we consider two proteins as interacting if each contains

a domain where there is structural evidence for such a domain–domain

interaction according to SCOPPI. The evidence interaction then

serves as a structural template to model the predicted interaction.

Figure 1 sketches the structure assignment and interaction prediction

step of the method. This initial interaction prediction is further refined.

(iii) Interface conservation evaluation. It has been shown that protein

interface residues are usually more conserved than the rest of the

exposed surface (Elcock and McCammon, 2001; Valdar and Thornton,

2001). In order to compute the interface conservation, the information

about residues in the interface is taken from the SCOPPI database,

an interface consists of all atoms and residues of a domain that are

within 5 Å of another domain. We align the original protein sequence

against the SCOPPI template sequence and calculate the sequence

identity percentage of the interface residues. The evaluation criterion

is explained as follows: If one protein has a conservation of more than

or equal to 50% of residues at interface against counterpart of the

known template structure, we assume that they share the same

interaction partner. Applying this criterion to the whole PDAC data,

many interactions are filtered out, and 40 remain. (iv) Interaction

confirmation. In order to evaluate our method, we compared our finally

predicted interactions against those confirmed by experimental

interaction databases. For this purpose, NetPro, BIND, and HPRD

(Peri et al., 2003) are used.

Modelling and Docking procedures. For the homology modelling we

used MODELLER version 8v0 (Mart-Renom et al., 2000). BDOCK

(Huang and Schroeder, 2005) was used for docking. We applied

conjugate gradient energy minimization using NAMD (Philips et al.,

2005) with the CHARMM22 force field. For the simulation on the

TMPRSS4–TFPI2 complex, we observed a stabilizaion of the complex

after 10 000 steps. The structure of TMPRSS4–TFPI2 complex is

provided as Supplementary Material.

Protein structures. The following structures were used from

the Protein Data Bank: Complex of trypsin interacting with

amyloid beta-protein precursor inhibitor domain (PDB ID 1brc)

as template for modelling the TMPRSS4–TFPI2 interaction.

Crystal Structure of the Catalytic Domain of Human Complement C1S

Protease (PDB ID 1elv) to model the structure of TMPRSS4. Bovine

Pancreatic Trypsin Inhibitor (PDB ID 1bpi) was used to model the

structure of TFPI2. The BDVU structure was taken from Crystal

Structure of Thymidine Kinase from Herpes Simplex Virus Type I (PDB

ID 1ki8).

5 SUMMARY AND CONCLUSION

In this study, we propose an integrative approach to identify

key interactions and pathways from a set of genes. We apply

this approach to a data set of genes deregulated in pancreatic

cancer. As a first step, we construct a pathway network from

the deregulated cancer genes. The analysis of such a network

gives an overview to explain how the pathways affect each

other, resulting in tumorigenesis. In the case of PDAC, we find

most pathways previously reported to be involved in cancer.

These include signal transduction, immune system, cell growth

and death, signalling molecules and interaction, cell motility

and cell communication. In addition, we observe the alteration

of the calcium pathway. We conclude that it plays an important

role in pancreas specific tumorigenesis.

Second, we propose a method that predicts interactions

among a given set of genes. The method builds on a number of

structural data sources such as PDB, SCOP, GTD and

SCOPPI. We apply the method to our data set of deregulated

pancreas cancer genes. As a result, we predict 40 novel

interactions that are specific for the underlying disease. We

map these interactions onto a well-known picture of cancer

hallmarks and draw a network of all predicted interactions as

well as literature confirmed interactions. We observe that most

of the literature confirmed interactions are located inside the

cell, whereas the predicted interactions are mainly taking place

between transmembrane and extracellular proteins. One reason

for this bias could be that transmembrane proteins are more

diffucult to study experimentally than cytosolic proteins.

The interactions found may prove valuable to improve our

understanding of the regulatory mechanisms underlying the

development of pancreas cancer.

Finally, we examine one example in detail: the predicted

interaction between TMPRSS4 and TFPI2. We believe that

TFPI2 naturally inhibits the TMPRSS4 protease. Since we find

TFPI2 to be downregulated in pancreatic cancer, TMPRSS4

might be able to facilitate tissue invasion and metastasis.

BVDU is known to enhance survival time in patients with

G.Dawelbait et al.
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pancreatic cancer. We hypothesise that BVDU can bind to the

active site of TMPRSS4 and thus acts as its inhibitor.
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