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Abstract. In this paper we present the r3 ontology, a foundational ontology for
reactive rules, aiming at coping with language heterogeneity at the rule (com-
ponent) level. This (OWL-DL) ontology is at a low (structural) abstraction level
thus fostering its extension. Although focusing on reactive rules (reactive deriva-
tion rules not excluded), the r3 ontology defines a vocabulary that allows also for
the definition of rule (component) languages to model other types of rules like
production, integrity, or logical derivation rules.

1 Introduction

The goal of the Semantic Web is to bridge the heterogeneity of data formats and lan-
guages and provide unified view(s) of the Web. In this scenario, XML (as a format for
storing and exchanging data), RDF (as an open abstract data model), OWL (as an addi-
tional logic model), and WSDL2 (as a semantically extensible service model) provide
the natural underlying concepts.

The Semantic Web does not have any central structure, neither topologically nor the-
matically, rather it is based on peer-to-peer communication between autonomous, and
autonomously developing, nodes. Furthermore, the Semantic Web should be able not
only to support querying, but also to propagate knowledge and changes in a semantic
way. This evolution and behavior depends on the cooperation of nodes. In the same
way as the main driving force for RDF and the Semantic Web idea was the hetero-
geneity and incompleteness of the underlying data, the heterogeneity of concepts for
expressing behavior requires an appropriate handling on the semantic level. Since the
contributing nodes are prospectively based on different concepts, such as data models
and languages, it is important that frameworks for the Semantic Web are modular, and
that the concepts and the actual languages are independent. Even if we would agree
that for querying the current set of “common” standards for particular data/knowledge
representations/models (e.g. XQuery for XML vs. SPARQL for RDF) could evolve into
a single universal query language, which is doubtful, the concepts for describing and
implementing behavior are much more different, due to different needs, and it is really
unlikely that there will be a unique language for the latter throughout the Web.

Heterogenous Reactivity. In this setting, reactivity and its formalization as Event-
Condition-Action (ECA) rules provide a suitable common model because they provide a
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modularization into clean concepts with a well-defined information flow. An important
advantage of them is that the content of a rule (event, condition, and action specifications)
is separated from the generic semantics of the ECA rules themselves which has a well-
understood meaning: when an event (atomic or composite, the latter possibly using some
event algebra for composition) occurs, evaluate a condition (possibly gathering further
data via queries, again possibly combined via an algebra of queries), and if the condition
is satisfied then execute an action (or a sequence of actions, a program, a transaction, or
even start a process). Another important advantage of ECA rules is their loosely coupled
inherent nature, which allows for declaratively combining the functionality of different
Web Services (providing events and executing actions). ECA rules constitute a generic
uniform framework for specifying and implementing communication, local evolution,
policies and strategies, and –altogether– global evolution in the Semantic Web.

Previously, in [16,17] we have proposed an ontology-based approach for describing
(reactive) behavior and evolution in the Web, following the ECA paradigm. This work
also defines a global architecture and general markup principles for a modular frame-
work capable of composing languages for events, conditions, and actions by separating
the ECA semantics from the underlying semantics of events, conditions and actions.
This modularity allows for high flexibility wrt. the heterogeneity of the potential sub-
languages, while exploiting and supporting their meta-level homogeneity on the way to
the Semantic Web. The interested reader is referred to [2,1] for additional details on the
present state of this work.

Semantic Web Events. The notion of event is core to ECA rules, and in a reactive model
of behaviour for the Web it needs to be freed of limitations introduced by more specific
settings (e.g. active databases). Events in the Web cannot be restricted to the realization
of a specific set of actions (e.g. insert, update and delete). Instead a Web Event is to be
understood as the actual perception by a reactive system of an(y) external (or otherwise
uncontrolled) occurrence, that may or may not be the result of a known action.

Logically, an event may be perceived as a temporary (non-persistent) assertion, re-
sulting in the evolution of the knowledge base, as described in [4], through concrete
(re)actions (or active deductions) that may generate new persistent assertions, invalidate
existing assertions or cause additional externally perceivable occurrences (i.e. events).
The notion of non-persistence of an event is of utmost importance for the Web given
the humongous number of events perceivable in such a global system. This global na-
ture also precludes any solution based on undiscriminated broadcast of events; systems
interested in particular kinds of events have to express their interest to specialized event
brokers. The latter may to some extent persist historical event information, but reactive
rule engines have to be free of such a burden.

In a distributed environment formed of autonomous nodes, like the (Semantic) Web,
ECA rules can not react to actual occurrences, only (more or less reliable) perceptions
of those occurrences are generally available, and even those may sometimes go unno-
ticed. Nevertheless, using an eclectic mix of deductive and reactive rules, and based on
different lower level perceptions, one may achieve a symbolic definition of higher level
events that (fully) abstract and mimic (to the extent of the knowledge they represent)
the actual occurrences, possibly even compensating for unperceived ones through alter-
native or implicit perceptions; thus allowing to shift the focus to Semantic Web Events
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(like a book has been bought online), eventually abstracting away the intricacy of Web
Events (just try to imagine how many different ways exist to perceive that a book has
been bought online).

Resourceful Reactive Rules. Since the inception of the Semantic Web, rules have al-
ways been proposed as one of its upper layers: an ontology-based one. Although much
research effort is being targeted upon defining rules for and about ontologies, pragmati-
cal and compatibility issues seem to be guiding the work on modelling rules themselves.
In what concerns the latter, most of the current proposals are based on XML markups
(e.g. [7]); eventually relying on specific abstract syntax for defining rule semantics (e.g.
[8,14]). Markup-based approaches, as such, seem to ignore the fact that rules do not
only operate on the Semantic Web, but are themselves part of it. In general (ECA)
rules and their components must be communicated between different nodes, and may
themselves be subject to being queried and updated, especially if one wants to reason
about evolution, leading to a Semantic Web capable of dynamic behaviour according
to behaviour policies. For that, (ECA) rules themselves must be first class citizens of
the Semantic Web. This need calls for a foundational ontology for describing (ECA)
rules. Such an ontology, according to the heterogeneity requirement previously pre-
sented, must provide also the means to describe different languages to be used at the
rule (component) level. As such, we make two important assumptions: first, in the Se-
mantic Web, rules are resources like everything else, and secondly, there won’t be such
a thing as a (concrete) universal rule language (particularly in what concerns ECA rule
components). Given these two hypotheses r3 takes a third hypothesis: ontologies, in
OWL-DL, provide a suitable tool for describing language heterogeneity.

Present State. Although the examples included in [16] use “syntactical” languages
in XML term markup –ECA-ML– to describe ECA rule components, as stated there,
also languages using a semantical, e.g., OWL-based representation (which have to be
developed) can be used; thus leading to fully embrace the approach proposed in [17].
To further experiment with both approaches, namely syntactic and semantic, two REW-
ERSE WGI51 sub-projects, aiming at developing prototypes of the proposed general
ECA framework, were launched: MARS [22] and r3 [23]. Currently, both prototypes
are functional, available online, and eventually integrable through appropriate syntac-
tic/markup transformations. The MARS project is now also evolving into the semantic
level taking a flexible approach, not restricted to OWL-DL; future integration of the two
prototypes is to be pursued at this semantic/ontology level. The interested reader may
find additional details on both prototypes in [2,1].

In this paper, results of the r3 project on defining an (OWL-DL) foundational ontol-
ogy for reactive rules are presented. The current proposal is at a low (structural) abstrac-
tion level; the extension of this proposal towards characterizing higher abstraction level
concepts, like domain/application specific languages (vs. algebraic and general-purpose
languages) is not excluded, and fruitful synergies are expected with the MARS project
which is following an higher level approach. Although focusing on reactive rules, the
r3 ontology defines a vocabulary allowing for the definition of rule and rule component
languages to model also other types of rules.

1 REWERSE WGI5: Evolution and Reactivity - http://rewerse.net/I5/

http://rewerse.net/I5/
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Related Work. To the best of our knowledge, to the present there are only three on-
tology proposals for describing rules: SWRL [13], WRL [5] and SBVR [18]. Loosely
speaking, the rules modelled by SWRL and WRL are Horn rules; none of the two
includes any form of reactive rules. SWRL provides an OWL (Full) ontology; WRL
includes a mapping to OWL-DL (but only at the core level that does not include rules).
Although following different approaches, both proposals “extend” OWL by providing
means to express OWL-DL axioms. On the other hand, SBVR, which is not formalized
in OWL terms, does not exclude reactive rules (some illustrative examples are even
present in the specification); but it explicitly chooses not to address its specificities,
postponing such matters for reevaluation upon OMG’s BPDM results. About SBVR,
it is worth mentioning, that it is targeted to describe business rules in general with an
emphasis on human understanding [21] (which may hinder machine computability) and
it is the only one of the three that actually addresses the issue of language heterogeneity
(introducing the concept of business vocabularies, as a form of controlled natural lan-
guage). Nonetheless, it must be stressed that, SBVR is the only one of these three that
does not include a formalization of its semantics.

Most current standardization efforts related to rule interchange, e.g. [8,7], by fol-
lowing a markup-oriented approach, tend to be charged with syntactical details without
semantic value, which has a negative impact on any attempt to raise them to the on-
tology level. Concrete syntax is usually expressed in terms of abstract syntax, not the
other way around. Nevertheless, one of such efforts has to be mentioned even if it does
not include any Semantic Web transparent proposal: Common Logic (CL) [14], in what
concerns language heterogeneity, is probably the standardization effort closest to the
spirit of r3. CL achieves semantics formalization in face of language heterogeneity by
limiting its family of languages to those that (and we quote) have declarative seman-
tics and are logically comprehensive, i.e. it is possible to understand the meaning of
expressions in these languages without appeal to an interpreter for manipulating those
expressions and, at its most general, they provide for the expression of arbitrary first-
order logical sentences. Given the state of the art, this limitation actually excludes most
forms of reactive rules from CL.

Structure of the Paper. We start (in section 2) by introducing the r3 ontology from
a rule “taxonomy” point of view. In the following sections we detail the r3 ontology
explaining and illustrating2 how to define different languages (in section 3), and how to
use these languages to define heterogenous rules (in section 4). We end the paper with
some conclusion and future directions of the work.

The r3 OWL-DL ontology available at http://rewerse.net/I5/NS/2007/
r3/r3.owl constitutes the only complete and formal definition of the r3 ontol-
ogy. For the sake of readability, we have chosen to present it here using UML2 di-
agrams. These diagrams formally define (to the extent possible) the r3 ontology. The
explanatory text that accompanies them is neither a formal definition of the r3 ontology,
nor a substitute for the UML2 diagrams. As such, careful observation of the diagrams
is required for full understanding of the work presented here.

2 Examples illustrating RDF models use Turtle, omit prefix declarations, and assume the r3

namespace as the empty (‘:’) prefix. The complete set of examples presented here may also be
found in RDF/XML at http://rewerse.net/I5/NS/2007/r3/odbase07.owl.

http://rewerse.net/I5/NS/2007/r3/r3.owl
http://rewerse.net/I5/NS/2007/r3/r3.owl
http://rewerse.net/I5/NS/2007/r3/odbase07.owl
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2 An Ontology for Reactive Rules

An ontology for reactive rules restricted to different forms of active rules would be of
limited expressivity in practice. Conditions used in ECA rules are quite often defined
resorting to logical derivation rules (e.g. deductive rules that define intensional rela-
tions). Also, some form of reactive derivation rules is imperative so that symbolical
events and actions with higher semantic value may be defined/derived; thus allowing
reactive rules to actually express behaviour on a semantic level and not only basic low
level reactions. Furthermore, integrity of a reactive system is frequently hard to express
and maintain on a rule by rule basis (viz. using post-conditions): global integrity rules
provide an additional orthogonal perspective and can be used together or independently
of reactive rules allowing the detection of invalid states or reactions. Given all this, the
r3 ontology, although aiming at describing reactive behaviour, includes all these differ-
ent kinds of rules, as shown in figure 1 where abstract rules (further detailed in section
4) are partitioned according to their components.

Abstract rule components are partitioned into consequent, antecedent and reactive,
i.e. event or (trans)action, components. At this foundational level, such partition is not
based on the contents of those components, but rather on a meta-level declaration (de-
scribed in section 3) of what the constituent elements of a specific rule language are,
and their roles in it. Such structural definition does not exclude further restriction on
the contents of those components, vis-à-vis to specific rule (component) languages,
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Fig. 1. Abstract Rules
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i.e. extension of the r3 ontology is possible so that semantic coherence is maintained
between the contents of the rule components and the declared nature of the associated
language elements (e.g. ensuring that the content of an event component is actually an
event specification).

Besides the rule components, in figure 1, also rule parameters are permitted, cf. fig-
ure 2, accounting for modelling semantic variations (e.g. rule priority and defeasibility)
that should not have an impact on the general semantics of the different kinds of abstract
rules (wrt. classification of figure 1).

Focusing on the structure of rules, and rule languages, themselves, instead of focus-
ing on the structure of each of the rule components (or on the actual semantics induced
by their contents), results in a layered approach that allows the r3 ontology to distin-
guish the different types of rules independently of the specific languages used in their
components3; thus separating the semantics of rules from the semantics of their com-
ponents. For instance, careful analysis of figures 1 and 2 conveys that:

– an active rule is an abstract rule that has at least one action component but no
consequent component, provided all its antecedents are condition components;

– among active rules, ECA rules are distinguished from production rules according
to the presence or absence of an event component;

– a derivation rule is a rule required to have at least one consequent component and
optionally taking other antecedent (viz. necessity) components;

– a deductive rule is a derivation rule with symbolic consequents (i.e. views) based
only on side-effect free4 components (e.g. conditions).

Notice that the r3 ontology generalizes active rules with alternative components (i.e.
“else”-actions). Alternative components are usually considered syntactic sugar express-
ible with the use of negated conditions, but given their usefulness in practice and the
heterogenous nature of r3 we believe it is important to consider them. ECA rules with
an alternative component (ECAA) have a clear operational semantics5 and facilitate the
modelling of workflows [15]. Further examples may be found in [11]. Regarding pro-
duction rules, we are not aware of any formalization for alternative components and as
such (and given that the main focus of our future work will be on ECA rules and their
derivation variants), we have chosen to restrict the r3 ontology, for now, to their most
usual form (viz. if-then, cf. OMG’s PRR).

Among derivation rules, the r3 ontology distinguishes between reactive and logical
derivation rules depending, respectively, on the presence or absence of a reactive com-
ponent. A reactive derivation rule, optionally under given conditions, allows higher
level symbolic events or actions (viz. occurrences, cf. figure 3) to be derived from,

3 Naturally, this component-based approach has limitations if applied to the description of arbi-
trary logical rules (e.g. FOL formulas, in general, do not adhere to this component structure);
nevertheless we believe it to be expressive enough to describe what is commonly understood
as rules; not excluding general formulas as shown in figure 11.

4 Remember that without proper extension, as mentioned before, the r3 ontology does not en-
force that the content of, e.g., a condition component is actually side-effect free. It simply
declares that it must be so.

5 Given an event occurrence if the condition has no solutions, perform an alternative action.
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Fig. 2. Rule Parts
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«definition»FunctionalRule «definition»
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Fig. 3. Derivation Rules

or reduced to, other (atomic, composite or symbolic) events or actions. [2] identifies
three kinds of reactive derivation rules, namely those that, under some conditions de-
rive events from events (ECE), actions from actions (ACA) and events from actions
(ACE). ECE rules have a purely deductive nature and, loosely speaking, they define
views over events. ACA rules have a more operational nature and might be seen as re-
duction rules, rewriting higher level symbolic actions into lower level ones (similarly
to instead-triggers in active databases). The intuitive idea underlying ACE rules is to
declaratively express that when an action is executed (and some conditions are verified)
some events occur as a derived consequence, and it may be realized through proper ex-
tension of ACA rules6. Usually, events derived from actions will include values that are

6 See e.g. [3] for a formalization of a declarative reactive rule language with derivation rules,
and where ACE and ACA rules are not distinguishable.
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only reliably known during the action evaluation (e.g. old and new in a database update
action/event). Given all this, we propose, as introduced in figure 1 and further detailed
in figure 3, to partition reactive derivation rules into reactive deductive rules (viz. ECE)
and reactive reduction rules (viz. ACA/ACE).

Reactive derivation rules are the subject of ongoing work and further discussion
about them is not in the scope of this paper. Nevertheless, it must be stressed that re-
active derivation rules are mostly uncharted territory in what concerns the (Semantic)
Web. To the best of our knowledge, the only published proposal relating to this matter
concerns a recent evolution of the language XChange [10], which includes reactive de-
ductive rules7. As such, the proposal contained in figure 3 is introduced here mainly as
a matter of completeness of the presented ontology and is to be understood as a pre-
liminary contribution to this open research area, requiring future validation given the
foundational nature of the r3 ontology.

3 Defining Reactive Rule Languages

Mainly, the r3 ontology at the current foundational (and structural) level aims at pro-
viding a Semantic Web transparent abstract syntax for reactive rule-based systems. Rule
component languages are assumed to follow a term structure, using a set of functors, and
functor items. Such language items are described using a meta-level of the ontology. As
shown in figure 4, functors are partitioned into language constructs and language sym-
bols, and their items are distinguished between parameters and construct components.
Recursively, functor items themselves are also language symbols, i.e. functors.
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Fig. 4. Languages

7 We strongly distinguish a reactive deductive rule that derives events (viz. occurrences); from
an ECA rule performing a action (e.g. sending a message) which may induce the occurrence
of events. Resorting to reactive reduction rules, an implementation of XChangeEQ may
not need to be bound to specific (more or less ubiquitous) protocols (viz. HTTP and SOAP as
suggested in [10]).



r3– A Foundational Ontology for Reactive Rules 941

The actual operational implementation of the items of a language is to be exported
by some engine. More precisely, engines evaluate constructions based on language con-
structs, and derive symbolic terms based on language symbols.

Language components are atomic symbols (and can only be included, as items, in
a language construct). Language parameters are further distinguished between log-
ical (i.e. input/output) and bound (i.e. input) parameters. Among input parameters,
opaque parameters are distinguished from purely functional parameters. Appropriate
sub-properties (viz. takes, digs, uses and binds) are introduced, in figure 5, to facilitate
the declaration of functor items.

Declaratively, a functor actually represents the set of functors formed by all its
ground instances (wrt. its parameters). Operationally, the semantics of a language func-
tor (viz. construct) can not be realized unless all its input parameters are known, i.e.
bound to actual values. Opaque parameters can only be used in so called opaque con-
structs. They account for non-atomic parameters whose values are expressed using tex-
tual or markup (sub-)languages that hide their actual structure away. A textual template
where variable references are to be substituted, a snippet of code written in some script-
ing language that is to be interpreted, or even the literal source of a database trigger, as
further detailed below, are all examples of opaque parameters.

Abstract functors, that include only abstract –functional or logical– parameters (be-
sides components, in case of language constructs), do not require the explicit declara-
tion of the involved variables unless for very specific cases (e.g.: quantifying variables
or scoping variables implicitly quantified, and aggregators or solution modifiers).

Language constructs, cf. figure 6, are partitioned into rule, rule package and for-
mula constructs; distinguishing native and abstract rule constructs. Only one subset of
formula constructs is identified, viz. universal or existential quantifiers, but others are
not excluded: e.g. conjunction, disjunction, conditionals and negation in its different
variants.

Opaque formulas are allowed, and opaque native rules are restricted to purely para-
metric ones, i.e. no rule elements are allowed. Native rules allow the modelling of
rule constructs that use textual languages that may not follow a term structure. A na-
tive rule (e.g. a database trigger) may have some functional parameters (e.g. database
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Fig. 5. Language Functors
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Fig. 6. Language Constructs

name, user name and password), whose atomic values are transparently used. But it is
actually expressed in opaque parameters (e.g. trigger source) which hide away consid-
erable semantic value by using “internal” (sub-)languages.

The full semantics of an opaque construct is not accessible without full knowledge
of the (sub-)languages actually used inside the (consequently, non-atomic) values of
such opaque parameters. In fact, the semantics of an opaque construct is known only
to an engine that, cf. figure 4, exports it or implements its associated language and
opaque (sub-)languages. Usually these engines will only define the semantics of such
an opaque construct in operational terms, meaning that the only form of knowing it is
to submit, at runtime, an actual construction to the evaluation interface provided by the
engine. Nevertheless, static analysis may sometimes be possible as long as a translation
interface is provided by the engine for parsing an opaque construction into an abstract
one.

Example 1. For an illustrative example of an r3 language definition8 we resort to the
current RIF Core proposal [8], more precisely to its subset dedicated to Horn rules (viz.
rif:horn):

rif:ruleset a :RulePackageConstruct; :in rif:horn;
:takes rif:rule, rif:rest.

rif:horn :defines rif:rule, rif:rest.
rif:fact a :RuleConstruct; :in rif:horn;
:takes rif:atomic.

rif:atomic a :ConsequentElement; :in rif:horn.
rif:implies a :RuleConstruct; :in rif:horn;
:takes rif:if, rif:then.

rif:if a :ConditionElement; :in rif:horn.
rif:then a :ConsequentElement; :in rif:horn.

8 The presented definition is a partial one, namely the universal quantifier is omitted as currently
it expresses only implicit quantification at the rule level, and cardinality restrictions (on the
item property) should be present, in order to close the definition of the included individuals.
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Fig. 7. Language Types

Figure 4 includes two kinds of language items, namely functors and types. Language
types, as shown in figure 7, may be literal types (e.g. lexical XML Schema types iden-
tified by an URI) or symbolic types.

Every language functor implicitly defines a symbolic type; if not a functor a symbolic
type is said to be a domain and is implicitly defined by a language.

A language type is considered here only as some resource that implicitly defines a set
of (literal or symbolic) values. The type/sub-type relation is a containment relation: a
language type contains all its sub-types and is contained in the intersection of its types.

The actual treatment of types, in the context of a general framework like [16], has
not yet been considered, but it may provide, for instance, the means for a safer equality
relation (e.g. xml:space preserving or not in case of lexical types). As such, the concept
of language types is already included here providing the means to define (and refer
to), among others, the domain of functor parameters and components, or the range of
functors themselves9.

Algebras, required in reactive rules e.g. for complex events or for process algebras in
actions, may be seen as domains, as much as functors are seen as symbolic types. This
leads to the definition of algebras as shown in figure 8. Algebra constructs are called as
usual operators (and their elements: arguments) and they all share the same domain.
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Fig. 8. Algebras

9 Language types are also used to constrain the domain of logical variables and the range of
expressions, as explained later in section 4.
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Example 2. Given that any functor doubles as a symbolic type and introducing the al-
gebraic domain of the RIF Condition language [8] (viz. rif:condition), we could,
for instance, type-annotate the definitions of example 1 as follows:

rif:rule :sub-type rif:fact, rif:implies.
rif:rest :type-is rif:ruleset.
rif:if :type-is rif:condition.
rif:then :type-is rif:atomic.
rif:atomic :type rif:condition.

rif:condition a :Algebra; :in rif:core.
rif:and a :FormulaConstruct; :of rif:condition;
:takes rif:some, rif:other.

rif:or a :FormulaConstruct; :of rif:condition;
:takes rif:some, rif:other.

rif:exists a :ExistentialQuantifier; :of rif:condition;
:takes rif:some.

rif:condition :contains rif:some, rif:other.
rif:equal a :FormulaConstruct; :of rif:condition;
:binds rif:left, rif:right.

rif:condition :defines rif:left, rif:right.

Example 3. To further illustrate the definition of r3 languages, consider the follow-
ing partial language definitions (viz. ECA-ML rule language, a minimal event algebra,
some specific domain and application languages, and some “built-in” libraries).

eca:rule a :RuleConstruct; :in eca:ml;
:takes eca:event, eca:condition, eca:action.

eca:event a :EventElement; :in eca:ml.
eca:condition a :ConditionElement; :in eca:ml.
eca:action a :ActionElement; :in eca:ml.
eca:native a :RuleConstruct; :in eca:ml;
:uses eca:lang; :digs eca:source.

eca:opaque a :FormulaConstruct; :in eca:ml;
:uses eca:lang; :digs eca:literal.

eca:ml :defines eca:lang, eca:source, eca:literal.

event:sequence a :Operator; :of event:algebra;
:takes event:first,event:next.

event:algebra :contains event:first,event:next.

travel:booking-place a :SymbolicFunctor; :of travel:domain;
:binds travel:client,travel:flightnr,travel:seat.

travel:flight-info a :SymbolicFunctor; :of travel:domain;
:uses travel:flight; :binds travel:date,travel:origin,travel:destination.

travel:flightnr :of travel:domain; :type travel:flight.
travel:domain :contains
travel:client,travel:flight,travel:seat,
travel:date,travel:origin,travel:destination.

rental:request-quotation-for-flight a :SymbolicFunctor; :in rental:application;
:uses rental:client,rental:flight.

rental:get-client a :SymbolicFunctor; :in rental:application;
:uses rental:client;
:binds rental:client-name,rental:favorite-class,rental:max-price.

rental:get-available-cars a :SymbolicFunctor; :in rental:application;
:uses rental:office,rental:date;
:binds rental:car,rental:car-class,rental:price.

rental:client :in rental:application; :type travel:client.
rental:flight :in rental:application; :type-is travel:flight.
rental:application :defines
rental:client-name,rental:favorite-class,rental:max-price,
rental:car,rental:car-class,rental:price.

mail:send a :FormulaConstruct; :in mail:library;
:uses mail:from,mail:to,mail:subject,mail:body.

mail:address :in mail:library;
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:sub-type mail:from,mail:to,rental:client,travel:client.

mail:library :defines mail:from,mail:to,mail:subject,mail:body.
text:join a :FormulaConstruct; :in text:library;
:digs text:template; :uses text:separator.

text:replace a :FormulaConstruct; :in text:library;
:digs text:template.

text:library :defines text:template,text:separator.

4 Defining Reactive Rule Constructions

The term languages modelled on the meta-level of the r3 ontology, described in sec-
tion 3, are used on a coding level to build coding resources that ultimately will define
rule sets describing reactive rule-based systems. Coding resources, cf. figures 9 and 10,
provide the foundations for a generic term structure (that is later used to define rules),
and are partitioned between coding values (structured or not) and structure parts / con-
straints. Also distinguishable are coding variables, viz. references or declarations, and
coding structures.

A coding structure is a language functor (or a hi-functor) gathering several structure
parts (parameters or components), possibly further restricted with a set of constraints
or variable declarations. A structure parameter is bound to a coding value; whereas a
structure component, as further constrained in figure 10, equals a structured value (or a
hi-value) whose returned value (if there is one) may still be bound to a coding value.

A hi-functor or a hi-value is a variable reference used in-place of a functor or of a
component content, resp., which is to be understood in HiLog [12]. From the declar-
ative point of view, r3 will go no further then CL [14], i.e. its logical expressiveness
is restricted to FOL. The semantics of a non-declarative, operational, “hi-construction”
will be impossible to determine unless it is instantiated with a valid construction.
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Fig. 9. Coding Resources
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Fig. 10. Coding Terms

A coding value is either a term or a hi-term, where a term may be simple or complex.
A simple term (i.e. a simple value cf. figure 10) is a literal value or a variable reference.
A complex term is a coding structure, one that is a language functor and one that,
as implied by the definitions in figure 10, is free of any hi-functors or hi-values. It is
either a symbolic term (i.e. a language symbol without any components, constraints or
variable declarations) or a construction (i.e. a language construct which, unless atomic,
composes its components).

A coding structure that contains a hi-functor or a hi-value is called a hi-structure (not
excluding structure parts10); otherwise a coding structure is either a complex term, a
parameter or a component. As such, a term may be seen as a coding value –and a term
part as a structure part– free of any hi-functors or hi-values. The variable referenced
in a hi-functor (or hi-value) can only be bound to complex terms; possibly incomplete
ones as they are to be merged with the, disjoint, set of structure parts explicitly included
in the hi-structure. That said, we must stress that hi-terms are included here only as a
matter of completeness of this most general level of the r3 ontology; the current main
focus of the r3 ontology, and of this paper, is on terms.

Using the generic definition of a construction, and based on the language items iden-
tified in section 3, it becomes possible to identify, according to figure 11, more specific
kinds of constructions: rules, rule packages, formulas and expressions (i.e. formulas
without rules).

A rule is either a native rule or an abstract rule. The former has no components and
is defined by its opaque source(s), whereas the latter is further partitioned based on its
non-empty set of components, according to figures 1 to 3 as explained in section 2.

Any construction, given one or more input substitutions (possibly empty), when sub-
mitted to an appropriate engine, synchronously (or asynchronously in case of event

10 Notice in figure 9 that a structure part, recursively, must be a coding structure (one without any
structure constraints or components).



r3– A Foundational Ontology for Reactive Rules 947

«iff» +is[1] : RulePackageConstruct

+part[*] : RulePackagePart

«definition»RulePackage

RuleSet
{complete}

+is[1] : RulePackageItem

RulePackagePart

+member {subsets taking}

«definition»

Component

«definition»

Construction

+equals[1] : Expression

«definition»

ComponentExpression

RuleConstruction

{complete}

«definition»

Expression

«exists» +part[1..*] : ComponentRuleConstruction

«definition»RuleConstructionWithin

{
o

v
e

r
la

p
p

in
g

,
 
c
o

m
p

le
t
e

}

+equals[1] : RuleConstruction

«definition»

ComponentRuleConstruction{
o

v
e

r
la

p
p

in
g

}

«iff» +is[1] : RuleConstruct

+part[*] : RulePart

«definition»Rule «definition»

RuleComponent

+is[1] : FormulaConstruct

«definition»Formula

{complete} TermPart

+is[1] : RuleItem

RulePart

«definition»

RulePackageMember

{
o

v
e

r
la

p
p

in
g

}

+is[1] : OpaqueParameter

RuleSource

«iff» +is[1] : NativeRuleConstruct

+part[*] : Parameter

«exists» +part[1..*] : RuleSource

«definition»NativeRule

«iff» +is[1] : AbstractRuleConstruct

+part[*] : AbstractRulePart

«exists» +part[1..*] : RuleComponent

«definition»AbstractRule

{
c
o
m

p
le

t
e
}

+equals[1] : Formula

«definition»

ComponentFormula

+equals[1] : RuleSet

«definition»

ComponentRuleSet

RuleParameter

AbstractRulePart

{
c
o

m
p

le
t
e
}

{complete}

{
c
o

m
p

le
t
e

}

«definition»

Parameter

{complete}

+is[1] : FunctionalParameter

RuleSetParameter

Fig. 11. Coding Constructions

constructions) returns several results. Each returned result contains an optional literal
value and one or more output substitutions, that must be joined to one or more of the
input substitutions. A construction fails if it returns no results. The returned literal val-
ues can only be used in the evaluation of the construction immediately containing the
submitted construction, unless they are bound to some variable, thus extending the out-
put substitutions. Submission of a rule set to an appropriate engine results in the rule
set being loaded/activated.

A construction may further restrict its results with a set of structure constraints
(viz. constraints or variable declarations, cf. figure 9). According to figure 12, some
of the constraints are to be enforced during the evaluation; while others, namely post-
conditions, are ensured to hold for every result of the construction. Among the former,
pre-requisites are to be enforced, upon invocation, before the actual evaluation starts.

Each structure constraint defines a constraint domain as the intersection of its con-
stituent domains: all possible instantiations of a particular term (it is bound to); all val-
ues returned by a value expression (it equals); or values of a particular language type.
If a structure constraint has no constituent domains it trivially succeeds. Otherwise, its
constraint domain must not be empty, and in case of a variable declaration it further
constrains the domain of the declared variable11. Constraints are a generalization of the
test component proposed in [16] for ECA rules (which is seen here as a constraint that
equals the test expression).

11 Additionally, a variable declaration may rename its variable, in order to support different
naming conventions used by different opaque (sub-)languages.
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Fig. 12. Variables and Constraints

Any construction defines a scope where local variables may be declared. The
communication between a sub-construction and its ancestor/sibling constructions is
achieved through shared variables. Some of those shared variables may be required to
be bound and a construction cannot be evaluated unless all of them are actually bound
to specific values. Notice that, for efficiency, the constituents of a constraint domain,
namely those based on value expressions, are expected to be incrementally evaluated
thus anticipating empty constraint domain detection and variable restriction.

All variables referenced in a construction, if not explicitly declared, are implicitly
declared as shared (or bound if referenced only by parameters of such nature). Further-
more, a construction implicitly inherits all the shared variables (implicit or explicit) of
its descendant sub-constructions. Finally, all variables shared by bound constructions
are required to be bound variables: explicit declarations are restricted accordingly in
figure 12.

Although scoping of variables is allowed for any construction, their actual quantifi-
cation is only achieved through explicit use of quantifiers, that quantify and scope their
local variables, or through implicit quantification as induced by closed constructions,
that quantify all the variables referenced within and scope them if needed (with the
possible exception of bound variables they explicitly declare).

Example 4. Concluding this section, below we illustrate the usage of the r3 ontology
to define a simplified ECA rule that, as a result of some client booking a flight and
requesting a car rental quotation, sends him the quotation for the cars available at the
date of the flight. For this we resort to the r3 languages included in the examples of
section 3.

_:quotation-request-rule :is eca:rule;
:on [:is eca:event; :equals _:request-for-quotation];
:if [:is eca:condition; :equals _:available-quotation];
:then [:is eca:action; :equals _:send-quotation].

_:request-quotation :is event:sequence;
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:taking [:is event:first; :equals [
:is travel:booking-place;
:having [:is travel:client; :bound-to [:name "Mail"]];
:having [:is travel:flightnr; :bound-to [:name "Flight"]]]];

:taking [:is event:next; :equals [
:is rental:request-quotation-for-flight;
:having [:is rental:client; :bound-to [:name "Mail"]];
:having [:is rental:flight; :bound-to [:name "Flight"]]]].

_:available-quotation :for _:price-ok; :is rif:and;
:taking [:is rif:some; :equals _:flight-info];
:taking [:is rif:other; :equals [:is rif:and;
:taking [:is rif:some; :equals _:get-client];
:taking [:is rif:other; :equals _:get-available-cars]]].

_:get-client :is rental:get-client;
:having [:is rental:client; :bound-to [:name "Mail"]];
:having [:is rental:client-name; :bound-to [:name "Client"]];
:having [:is rental:favorite-class; :bound-to [:name "Class"]];
:having [:is rental:max-price; :bound-to [:name "Max-Price"]].

_:get-available-cars :is rental:get-available-cars;
:having [:is rental:office; :bound-to [:name "To"]];
:having [:is rental:date; :bound-to [:name "Date"]];
:having [:is rental:car; :bound-to [:name "Car"]];
:having [:is rental:car-class; :bound-to [:name "Class"]];
:having [:is rental:price; :bound-to [:name "Price"]].

_:flight-info :is travel:flight-info;
:having [:is travel:flight; :bound-to [:name "Flight"]];
:having [:is travel:date; :bound-to [:name "Date"]];
:having [:is travel:origin; :bound-to [:name "From"]];
:having [:is travel:destination; :bound-to [:name "To"]].

_:price-ok :equals _:check-price; :bound-to [:value "true"].
_:check-price :is eca:opaque;
:using [:name "Price"], [:name "Max-Price"; :rename "MaxPrice"];
:having [:is eca:lang; :bound-to [:value "http://www.w3.org/XPath"]];
:having [:is eca:literal; :bound-to [:value "$Price <= $MaxPrice"]].

_:send-quotation :is mail:send;
:var [:name "Text"; :equals _:quotation-message];
:having [:is mail:from; :bound-to [:name "Rental-Mail"]];
:having [:is mail:to; :bound-to [:name "Mail"]];
:having [:is mail:subject; :bound-to [:value "Car Rental Quotation"]];
:having [:is mail:body; :bound-to [:name "Text"]].

_:quotation-message :is text:replace;
:var [:name "Priced-Cars";
:equals [:is text:join;

:using [:name "Car"], [:name "Price"];
:having [:is text:template; :bound-to [:value "|Car|=|Price|"]];
:having [:is text:separator; :bound-to [:value ", "]];]];

:using [:name "Client"], [:name "Flight"], [:name "Date"], [:name "To"];
:having [:is text:template; :bound-to [:name "QuotationTemplate"]].

5 Conclusion and Future Work

The r3 ontology provides a foundation to describe both reactive rules and reactive rule
languages. The latter is accomplished on a meta-level where not only rule languages
themselves but also other supporting languages used in rule components can be de-
scribed. The former is provided following a term-based compositional approach that
allows not only the use of different languages for different rule components (e.g. event,
condition, action), but also the composition of different languages in a single compo-
nent possibly using algebraic languages, thus accounting for language heterogeneity.

The r3 ontology recognizes that full expressivity of reactive behavior can not be
achieved without the help of derivation rules. As such it includes a proposal for reactive
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derivation rules (complementing the more traditional active rules, viz. ECA and produc-
tion rules) and also logical derivation rules. Additionally, it recognizes the importance
of reliability for reactive systems and contemplates global integrity rules.

Furthermore, the r3 ontology contributes for the clarification of concepts through
formal definition of an RDF vocabulary for describing rule-based reactive behaviour;
notably establishing a clear distinction between reactive, active and deductive rules,
consistently with the terminology traditionally used in the Active Databases field. As
obvious as it may seem, it should be stressed that the formal definition of such a (Se-
mantic Web transparent) vocabulary is not to be confused with the formalization of a
semantics for reactive rule languages; the former is the subject of this paper and pro-
vides the basis (as an abstract syntax) for the definition of the latter (which is out of
scope here).

Last, it is worth mentioning that the work here presented builds upon previous con-
crete proposals of the r3 ontology that provided the basis for the current implementation
of the r3 prototype [1] available online [23]. In this prototype a previous version of the
r3 ontology has already been used to model several component languages. Namely,
the languages Xcerpt for queries, XChange for events and actions of updates of XML
data, Prova, XQuery/XPath and HTTP. This work actually lead to the inclusion of these
Languages (as fully functional Engines) in the current version of the r3 prototype.
Details about the previous definition and implementation of these Languages may
be found in [1]. This experimental work on defining Languages has brought relevant
contributions for the r3 ontology and must continue to be pursued and extended to
other languages like, e.g.: XSLT, the algebraic language for actions described in [6], the
XChangeEQ [10] or ruleCore [20] event languages, or even the SPARQL algebra.

At the current foundational level, the r3 ontology mainly defines a Semantic Web
transparent abstract syntax for reactive rules. As usual for most abstract syntax, it al-
lows invalid constructions without a defined semantics (e.g. infinite terms). This abstract
syntax must be validated against and complemented with a formal semantics definition.
Achieving such a formal definition, together with the re-implementation of the r3 pro-
totype according to it, constitutes our major goal for the immediate future.

The future work on the r3 semantics and prototype is to be focused mainly on ECA
and reactive derivation rules, although not discarding consistent integration with the
other types of rules (particularly the evolution of RIF [8] is to be followed as closely as
possible). A very important matter needs to be carefully considered: a solution grouping
mechanism is mandatory for actions (as careful analysis of example 4 shows). Whether
such grouping is achieved through the use of grouped aggregations, or resorting to
solution modifiers like project and distinct, or left out for action languages is still an
open matter under discussion at the time of this writing. As such we have chosen not
to include any proposal on this issue here. On the other hand, types and hi-terms are
a matter to be taken conservatively and may be postponed until a stable version of the
prototype is available.

Considering the extension of the r3 ontology to higher abstraction levels (e.g. rule
languages, domain/application languages, event languages, event algebras, process al-
gebras) is also to be pursued in close cooperation with the MARS project [22]. Fur-
thermore, the r3 ontology implicitly extends and generalizes the previously proposed
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general ECA framework [2,16,17] (e.g. derivation rules, solution constraints and rule
constructions) and calls for a revision of the ECA-ML markup [16] and of the gen-
eral framework. Any revision of the ECA-ML markup should: consider an homogenous
markup for logical variables, and be based upon the formal specification of the (revised)
framework. Given the r3 ontology (as an adequate abstract syntax for the framework),
such a (fully) formal specification should now be possible to achieve without resorting
to general markup guidelines and principles.

Although not directly related, given its ontology based approach, to current textual or
markup based proposals for concrete Web ECA languages (e.g. [9,19,10]), r3 undoubt-
edly aims at modelling most (if not all) of them. As such, given a formal semantics of
r3, actual demonstration of its adequacy to this purpose is also to be pursued.
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