
Combining OWL with F-Logic Rules and

Defaults

Heiko Kattenstroth, Wolfgang May, and Franz Schenk

Institut für Informatik, Universität Göttingen,
{hkattens|may|schenk}@informatik.uni-goettingen.de

Abstract. We describe the combination of OWL and F-Logic for the
architecture of Semantic Web application nodes. The approach has been
implemented by combining an existing Jena-based architecture with an
external Florid instance. The approach provides a tight language cou-
pling, i.e., the same notions can be defined both by OWL definitions
and by F-Logic rules. F-Logic rules are used for e.g., role-value-maps,
closed-world-reasoning, (stratified) negation, aggregation, and definition
of answer views; additionally the default inheritance of F-Logic can be
exploited.

1 Introduction

Description Logics [BCM+03] provide the underlying base for the dominat-
ing data model and languages for the Semantic Web, RDF, RDFS, and OWL
[OWL04]. It is based on the notion of classes, auch as Person, Country, City, and
properties, auch as hasName, hasChild, livesIn, hasCapital. This corresponds to
unary and binary relations in First-Order-Logic and relational databases, such
as Person(john), hasName(john,“John”), and livesIn(john,berlin). Description Log-
ics additionally allow for further specifications of classes (and properties) that
have no direct equivalent in relational databases, e.g. that a parent is a person
who has at least one child: Parent ≡ Person u ∃hasChild.> or the assertion that
children are persons, Parent v ∀hasChild.Person. Such things can be expressed
by rules in FOL, but are not inherent concepts of FOL semantics.

Thus, the “built-ins” are more advanced than in FOL, but on the other
hand, DL formulas are much restricted to concept expressions. The application
of conjunction, and even more disjunction and negation, is only allowed in terms
of these built-ins. The Description Logic SHOIQ(D) [HS05] that forms the base
for OWL-DL is decidable, but there are “simple” concepts that are still out of
reach in this fragment, e.g., composite properties such as “uncle” as “brother of
parent” cannot be expressed.

The combination of Description Logics with rules is thus a prominent research
topic, e.g., investigated early in AL-log [DLNS91,DLNS98], CARIN [LR96], or
more recently in numerous approaches, e.g., DLP [GHVD03], SWRL (earlier:
ORL) [HPS04,HPSB+04], DLV/DLVhex [ELST04,EIST06], DL+log [Ros06], OWL-
Flight [dBLPF05], DL-safe rules [MSS05], [Luk07] or [DM07] (see Section 5 for
a more detailed analysis).

The goal of our approach is primarily pragmatic: to provide an architecture
for an application service node in the Semantic Web (e.g., hosting the infor-
mation system of an airline service or a university) and providing appropriate
interfaces to the outside. For that, we combine Description Logic with (full)
F-Logic, which also brings default inheritance into play.

DL+Florid provides a tight coupling in the sense that the symbols of the DL
part and the rule part are not required to be disjoint. Thus, the rules can be
used (and are intended) to derive concept memberships and role instances.

The semantics of DL+Florid is defined in a bottom-up way (that is also
realized by the implementation that combines the Jena [Jen] Framework with
a plugged-in Pellet reasoner [Pel] and Florid 4.0 [FHK+97,FLO06]). The Jena-
based DL system provides the core of the architecture that employs Florid as
a “slave” for rules and default inheritance. After reviewing the basic notions
in Section 2, we describe the architecture and analyze the semantics of our
pragmatic approach in Section 3. Inheritance based on defaults is then discussed
in Section 4. Section 5 gives a comparison with related work, and Section 6
concludes the paper.

2 Basics

2.1 Overview of Description Logics and RDF/RDFS/OWL

Description Logics (DLs) [BCM+03] are a family of logics for concept reasoning.
Their main constructs are classes and properties, expressed by (i) class member-
ship atoms, e.g., C(a) (object a is an instance of class C), property atoms p(a, b)
(b is some value of property p of object a), subclass axioms C v D, and class
equivalence C ≡ D. Different DLs allow or disallow certain constructs for de-
scribing class definitions. The current focus is on decidable DLs where complete
decision procedures exist. DLs are the underlying framework for the Semantic
Web languages RDF, RDFS, and OWL [OWL04] with its variants OWL-Lite,
OWL-DL and OWL-Full. For OWL-DL, currently extensions to OWL-1.1 are un-
der discussion. OWL-DL is based on the decidable Description Logic SHOIQ(D)
[HS05]; the extensions belong to SROIQ which allows additional concepts for
specifying properties [HKS06]. As DLs are a restricted fragment of First-Order
Logic, FOL model theory and semantics applies to them, which means that in
contrast to Logic Programming, open-world semantics applies. Reasoners like
Pellet [Pel] support OWL-1.1.

2.2 Overview of F-Logic

As stated above, the DL+Florid approach extends DL with deductive rules
and default inheritance. Both are features that are natively supported by F-
Logic and its implementation in Florid [FHK+97,FLO06]. F-Logic rules are logic
programming rules over F-Logic atoms. F-Logic atoms are defined as follows
(cf. [KLW95]); we use only properties without parameters (i.e., only the form
o[m→v], not o[m@(a1, . . . , an)→v]).

Definition 1 (Syntax of F-Logic). The alphabet of an F-Logic language con-
sists of a set F of function symbols, playing the role of object constructors.
For convention, function symbols start with lowercase letters whereas variables
start with uppercase ones. Id-terms are composed from object constructors and
variables and are interpreted as elements of the universe.

In the sequel, let o, c, d, d1, . . . , dn, p, v, v1, . . . , vn stand for id-terms or
literals. Note that URLs as a subclass of strings can denote objects; e.g.

“foo:bla#john”:“foo:meta#Person”[“foo:meta#name”→“John”;
“foo:meta#livesIn”→→(“geo://de/Berlin”:“geo:meta#City”)].

is a valid F-Logic fragment; see also later examples.

1. An is-a atom is an expression of the form o : c (object o is a member of
class c), or c :: d (class c is a subclass of class d).

2. The following are object atoms:
2a. c[p⇒(d1, . . . , dn)] and c[p⇒⇒(d1, . . . , dn)]: the values of the scalar or multi-

valued, respectively, property p of objects of class c belong (simultaneously)
to all classes d1, . . . , dn,

2b. o[p→v]: the scalar property p of object o has the value v,
2c. o[p→→{v1, . . . , vn}]: {v1, . . . , vn} are amongst the values of the multivalued

property p of object o,
2d. c[p•→v]: for objects of class c, the default value of the scalar property p is v.
2e. c[p•→→{v1, . . . , vn}]: for objects of class c, the default values of the multivalued

property p are {v1, . . . , vn}.

An F-Logic rule is a logic rule h ← b over F-Logic atoms, i.e. is-a assertions
and object atoms. An F-Logic program is a set of rules.

The semantics of F-Logic rules and defaults is defined via Herbrand-style
structures where the universe consists of ground id-terms. An H-structure is a
set of ground F-Logic atoms describing an object world, thus it has to satisfy
several closure axioms related to general object-oriented properties:

Definition 2 (F-Logic Axioms). A (possibly infinite) set H of ground atoms
is an H-structure if the following conditions hold for arbitrary ground id-terms
u, u0, . . . , un, and um occurring in H:

– u :: u ∈ H (subclass reflexivity),
– if u1 :: u2 ∈ H and u2 :: u3 ∈ H then u1 :: u3 ∈ H (subclass transitivity),

analogously, if u1 : u2 ∈ H and u2 :: u3 ∈ H then u1 : u3 ∈ H,
– if u1 :: u2 ∈ H and u2 :: u1 ∈ H then u1 = u2 ∈ H (subclass acyclicity),
– if for ground id-terms u and u′ (u 6= u′) such that u0[um;u] ∈ H and

u0[um;u′] ∈ H, then u = u′, where ; stands for → or •→ (uniqueness of
scalar properties).

For a set M of ground atoms, C̀ (M) denotes the closure of M wrt. the above
axioms.

Positive F-Logic programs are evaluated bottom-up by a TP -like operator in-
cluding C̀ , providing a minimal model semantics:

Definition 3 (Deductive Fixpoint).
For an F-Logic program P and an H-structure H,

TP (H) := H ∪ {h | (h← b1, . . . , bn) is a ground instance of some rule of P

and bi ∈ H for all i = 1, . . . , n} ,

T 0
P (H) := C̀ (H) ,

T i+1

P (H) := C̀ (TP (T i
P (H))) ,

T ω
P (H) :=

{

limi→∞ T i
P (H) if the sequence T 0

P (H), T 1
P (H), . . . converges,

⊥ otherwise.

User-stratified programs are evaluated analogously wrt. Perfect Model semantics.
The above semantics that covers deductive rules does not deal with inheritance;
this will be described in Section 4.

Correspondence with DL and RDF/RDFS/OWL. In an RDF/OWL setting, ob-
jects are identified by URIs and by ids of blank nodes; thus, for theoretical
considerations, the restriction to function-free F-Logic is reasonable. Note that
in F-Logic, id-terms and objects also stand for properties, in the same way as
URIs in RDF. Variables can also occur at arbitrary positions of an atom.

The isa-atoms (1) correspond to DL’s C(o) and C v D (i.e., rdf:type and
rdfs:subclass). The object atoms (2a) correspond to C v ∀p.D (i.e., rdfs:range),
(2b) and (2c) correspond to the DL property assertions p(o, v) (i.e., the RDF
triple (o, p, v)). The inheritance atoms (2d) and (2e) have no equivalent in DL
or RDF/OWL. Together with the rules, the semantics of (2d) and (2e) provide
the additional expressiveness of DL+Florid.

2.3 Why Rules?

Hybrid approaches that combine DL with deductive rules are of interest for
several reasons:

Higher Expressiveness: Positive Rules. Many things that cannot be ex-
pressed in OWL can be defined easily with rules, even with often only positive
rules. These are e.g., composite roles that do not satisfy the tree property (al-
though restricted support comes with OWL 1.1), or annotated and computed
properties. For instance, connection(city1, city2) is transitive and thus can be ex-
pressed in OWL, but as such connections are represented by role instances, they
cannot have properties like distance (except by reification). Even with reification,
it cannot be expressed in OWL that the distance of composite connections is
obtained by adding the individual distances (see Example 3 later). Furthermore,
aggregations like count, sum, max, avg can be expressed in most rule languages
(but these are then actually not just positive rules).

Apart from the above expressiveness issues, logical rules with an operational
flavor are often used for ontology integration and data integration.

Higher Expressiveness: Negation under CWA. Another issue is the use
of default negation (often also called “negation as failure” which is actually its
implementation in Prolog): facts that are not explicitly known are assumed not
to hold. This is relevant e.g. when dealing with unmarried or childless people,
countries without big cities etc. While “unmarried” is still a property that is
often explicitly given, concepts like “country without big cities” are usually to
be derived. Default negation also underlies the definition of aggregations, since
these implicitly also assume that no additional facts have to be taken into account
for the aggregation.

Query Answering. Rules allow for a declarative and constructive specifica-
tion how a result can be obtained. For function-free normal and stratified rules,
evaluation of queries (=views) is polynomial.

Example 1 (Rules for Query Answering). Consider the simple geographic ontol-
ogy of the Mondial database [May07], containing (among others) the notions

Classes: Country, Province, City,
Properties: hasProvince, isProvinceOf, hasCity, cityIn, population.

For some countries, no provinces are known and the cities are directly associated
with the countries; for the others, cities are associated with the provinces.

Compute all countries that have at least two cities with more than 1.000.000
inhabitants. In an OWL ontology, a composite relationship between countries
and cities covering the hierarchy has to be defined (using transitivity), and con-
cepts (as restrictions) BigCity and CountryWithTwoBigCities must be defined:

:isProvinceOf rdfs:subpropertyOf :belongsTo.
:cityIn rdfs:subpropertyOf :belongsTo.
:belongsTo a owl:TransitiveProperty;

owl:inverseOf :hasProvOrCity. ## bridge country-prov-city
:Million a owl:DataRange; owl11:onDataRange xsd:int; owl11:minInclusive 1000000.
:HasBigPopulation owl:equivalentClass [a owl:Restriction;

owl:onProperty :population; owl:someValuesFrom :Million].
:BigCity owl:intersectionOf (:City :HasBigPopulation).
:CountryWithTwoBigCities owl:intersectionOf (mon:Country

[a owl:Restriction; owl:onProperty :hasProvOrCity;
owl:minCardinality 2; owl11:onClass :BigCity]).

The actual evaluation by a reasoner takes some minutes. In contrast, with (pos-
itive) rules, the same can be defined:

(note: use c Classname for Classes)
Cty:c BigCity :- Cty:c City, Cty[population→→Pop], Pop > 1000000.
C[hasBigCity→→Cty] :- C[hasCity→→Cty], Cty:c BigCity.
C[hasBigCity→→Cty] :- C[hasProvince→→Prov], Prov[hasCity→→Cty], Cty:c BigCity.
X:c CountryW2BigCities :- X:c Country, X[hasBigCity →→{C1,C2}], not C1 = C2.

where evaluation is significantly faster. With stratified negation, also e.g. all
countries that have no big cities can be listed.

The above example shows that already a “decoupled” combination of an OWL
core with rule-based views for computing answers provides certain advantages.
Similarly, rules can be used to define concepts although they could be defined
as owl:Restrictions, not only as answer views, but also for efficiency.

3 Combining DL+Florid

The goal of the approach is to provide an architecture for an application service
node in the Semantic Web (e.g., hosting the information system of an airline
service or a university) and providing appropriate interfaces to the outside. Thus,
we are primarily interested in a pragmatic approach.

The architecture is shown in Figure 1. The node core is based on the Jena
framework [Jen]. It contains a database (e.g. PostgreSQL) as repository for the
ontology (i.e., concepts and properties), the facts, and also for the rules. It can
be queried with SPARQL [SPQ06] as the current mainstream Semantic Web
language. For OWL reasoning, an instance of the Pellet DL reasoner [Pel] is
connected to the node. This basic functionality has been extended with a sim-
ple update language for RDF data and with support for RDF-level database
triggers reacting upon database update actions, e.g. to support actual updates
when deleting an instance p(x, y) of a property that is symmetric and stored as
p(y, x) [MSvL06]. Additionally, a Florid instance is connected as a “slave” for
application of F-Logic rules and default reasoning.

user

Jena-based core module
with triggers

PostgreSQL
Database:
RDF facts

DL Reasoner
(e.g. Pellet) Florid

SPARQL queries answers

materialized
base facts

facts/
queries

model/
answers

facts +
rules

derived
facts

Fig. 1. Architecture of DL+Florid

3.1 Reasoning with DL+Florid

The general idea is to separate concerns into (i) OWL concept (TBox) reason-
ing, (ii) application of rules, and (iii) inheritance. Reasoning about facts can be

either done in the OWL portion (ABox; e.g., transitivity, inverse, symmetry), or
by rules, which allow for much more complex derivations. The knowledge base
KB = (L, P, D) is thus partitioned into

– an OWL ontology L,
– a finite set P of rules (in F-Logic or a RuleML-style XML markup), and
– a finite set D of inheritance atoms (defaults).

For things that can alternatively specified by OWL or F-Logic (mostly, class
membership characterizations), the alternating fixpoint evaluation described be-
low guarantees the same outcome under certain conditions.

This means that usually rule bodies contain only domain notions, and no
RDF/RDFS/OWL properties (mainly, to reduce the amount of data to be trans-
ferred – using these properties is the native responsibility of the OWL reasoner).
Rule heads are allowed to contain RDF/RDFS/OWL notions, although this
seems to be an unusual case (e.g., used for concept learning).

The evaluation proceeds as follows, taking the OWL ontology in the Jena-based
node as starting point:

First Step: Compute the OWL model of a given fact base. Due to its open-
world nature, OWL/DL reasoning contains only limited negation. Anything
derived later will be taken into account as “possible”. Doing OWL reasoning
first is thus completely safe.

Second Step: Application of deductive rules. All (relevant) facts are exported
together with the rules to Florid, where bottom-up-evaluation is applied;
the (relevant) resulting facts are sent back to the Jena-based core. In case
of positive rules, it is again completely safe wrt. facts derived in later steps
by OWL reasoning (see below for a discussion).

Iteration: the above steps are iterated until no new facts can be derived.
Inheritance Step: only when both OWL reasoning and application of rules

are not able to derive further facts, default inheritance takes place.
Iteration: As long as new facts have been derived by default inheritance, the

above inner iteration is restarted. Note that this corresponds to the F-Logic
semantics of default inheritance – applying default inheritance only after the
application of rules reached a fixpoint does not derive any new facts, and then
restarting the iteration – that has been shown in [MK01] to be “reasonable”
and compatible with the Default Logic [Rei80,Poo94] semantics.

3.2 Data Exchange and Handling of URLs

Whereas the evaluation of the OWL specification is based on theory reasoning,
the evaluation of rules is based on ground facts (and non-ground rules).

Export of facts to Florid: The Jena model containing the (base and derived)
facts is dumped, and triples are exported as atoms as follows: x rdf:type c where
c is an application class (as xt:ct), c rdfs:subClassOf d (as ct::dt), p rdfs:range

c where p is a non-RDF/RDFS/OWL property (as <owl:Thing>t[pt⇒ct] (if p is
known to be functional) or <owl:Thing>t[pt⇒⇒ct] (otherwise)), xt pt yt where p is
a non-RDF/RDFS/OWL property (as xt[pt→yt] (if p is known to be functional)
or xt[pt→→yt] (otherwise)).

Above, the mapping ∗t of the identifiers is as follows: for literals `, i.e., strings
and numbers, `t is the string representation of `, e.g., “bla”, 1, or 3.1415. URIs
(including ids of blank nodes) are exported as elements of the class url::string, e.g.,
“http://www.w3.org/2002/07/owl#Thing”:url (the distinguished class url::string
for URLs has been used for accessing HTML documents in earlier times).

Example 2. For example, the N3 data

<foo:meta#Person> a owl:Class.
<foo:meta#name> a owl:FunctionalProperty; a owl:DatatypeProperty.
<foo:meta#livesIn> a owl:FunctionalProperty; a owl:ObjectProperty.
<foo:bla#john> a <foo:meta#Person>; <foo:meta#name> “John”;

<foo:meta#livesIn> <geo://de/Berlin>.

is translated into F-Logic:

“foo:meta#Person”:url. “foo:meta#name”:url. “foo:meta#livesIn”:url.
“foo:meta#john”:url. “geo://de/Berlin”:url.
(“foo:bla#john”:“foo:meta#Person”)[“foo:meta#name”→“John”;

“foo:meta#livesIn”→→“geo://de/Berlin”].

Export of facts back to Jena: On the way back, the above translation is
inverted. Here, only atoms/triples x:c, c::d, x[p→y], and x[p→→y] are exported
where x, c, d, p are members of the class url; y may be an url or a literal. This
allows to use auxiliary predicates, classes and identifiers in the rule part that are
not exported back to Jena. Note that it is also possible to introduce new classes,
properties, and objects by urls in the rule part.

Back in Jena, the returned data is merged with the before data; if new facts
have been derived, the alternating process is iterated until a fixpoint is reached.

3.3 Positive Rules

If the program P only consists of positive rules, everything is safe. Independent
how many (inner – i.e., between Jena and Rules) iterations are executed until a
fixpoint is reached, the resulting structure is a subset (cf. Section 3.5) of what
would be derived when using e.g. [ELST04,EIST06].

3.4 Rules with Negation

Florid supports user-defined stratification of programs. Concerning the interfer-
ence of iterating OWL reasoning and rule application, the CWA of LP negation
conflicts with the possibility of later derivation of positive facts by OWL rea-
soning in the above fixpoint process. The evaluation of stratified programs in

the given alternating combination with OWL reasoning is correct wrt. the strat-
ified/perfect model semantics if the extension of predicates that occur negatively
in a rule is not changed after evaluating it for the first time (i.e., also not in subse-
quent OWL rounds). Operationally, this condition can be verified by combining
syntactical analysis of rules with runtime monitoring:

– Let Σ− denote the set of all predicates occurring negatively in a rule body.
– Let I denote the interpretation after the first iteration of computing the

OWL model and applying the rules once (without applying OWL reasoning
again). Let Ineg := I|Σ− (I restricted to Σ−).

– For each iteration, check if for the current interpretation I ′, I ′|Σ− = Ineg.

This allows e.g. to use the negation of all base facts. Since classes in Σ− often
occur in rdsf:range and rdsf:domain axioms, pure ontology analysis will in most
cases derive that it is possible that they could be extended during reasoning.

An evaluation that is correct in the general case in presence of negation in the
rules is only possible in a tightly coupled evaluation in the DL reasoner (which
then requires to restrict to DL-safe rules).

Rules for Views and Query Answering. The above condition is trivially satisfied
when the predicates in the rule head are disjoint from those used in the OWL
part, but occur only in the rule program.

3.5 Pitfalls: Existential Assertions in OWL

In the investigations of hybrid rules, it turned out that the crucial problem
are anonymous, implicit objects (see Section 5) that affect decidability (note:
these are not the blank nodes, but purely existential objects as in Parent ≡
Person v ∃hasChild.Person, or in Person v ∃hasFather.Person). The constraints
on variables developed over time aimed at restricting variables such that they
cannot be bound to these anonymous objects; or, taken the other way round
[Ros06]: every head variable must occur in an LP atoms in the body (such that
only objects from the explicit active domain can be bound to variables that
occur in the head). Actually, this prevents from deriving anything about these
anonymous objects by rules.

Recall that also in SPARQL, even though reasoning allows to derive that
Joe’s father, jf , is a person, and also jf ∈ ∃hasFather.Person, holds, a query {?X
hasFather ?Y} will not yield an answer with ?X/joe (and also not with ?X/jf).

When considering such an axiom like Person v ∃ hasFather.Person as a rule,
using a function symbol for object invention as usual in F-Logic,

father(X):c Person :- X:c Person.

would create an infinite chain of objects father(father(. . . (joe))).

From that, the following strategy is a applied for such objects:

Strategy 1 Don’t derive too much about objects that are not explicitly named.
Don’t use function symbols in rule heads.

If only positive rules are used, missing existential objects can lead to missing
data, but not to wrong derivations. E.g. the rule

X:c Uncle :- X:c Person, X[hasSibling→→Y], Y[hasChild→→Z].

with the facts {Person(joe), hasSibling(joe,mary), Parent(mary)}, the latter equiv-
alent with ∃hasChild.Person(mary), would not be sufficient to derive that Joe is
an uncle.
If negative rules are considered, we have to care for rules like

X:c Childless :- X:c Person, not X[hasChild→→ Y].
X:c Fatherless :- X:c Person, not X[hasFather→→ Y].

The first rule would derive c Childless(X) for all persons, including parents p

for whom no explicit filler for p.hasChild is known, and the second will derive
c Fatherless(X) for all “bordering” persons of the ontology whose father is only
implicitly known.

Strategy 2 Export all relevant implicitly known “border” objects with their de-
rived properties from the existential axiom from Jena to F-Logic. Then, derive
only relevant information about them.

Which such implicitly known “border” objects are relevant? A border object
is relevant, if it is concerned by an atom in some rule. This can be by done
inspecting the graph of each rule body (note that e.g.,

c Grandfatherless(X) :- X:c Person, hasFather(X, Y), not hasFather(Y, Z).

makes even the grandfathers relevant border objects). Such implicit border ob-
jects must/need only be exported if there is no explicit filler for the corresponding
role.

Border objects are marked as such, being members of an internal class bor-
derobject. When they occur in a rule head, only relevant properties are actually
derived (again based on the graphs of the rules).

Note that this idea is similar to the one presented in [Luk07] that is based
on the Herbrand base/model.

3.6 Practical Issues and Additional Functionality for Daily Life

On one hand, the handling of anonymous objects is still “critical”, especially
in the context of negation. On the other hand, a careful design of the ontol-
ogy and the rules allow for a reasonable expressiveness obtained by declarative
formalisms, which otherwise must be implemented procedurally (and then has

no logical semantics as all). As one of the aims of the approach is to provide a
working architecture for individual nodes in the Semantic Web, we went for a
pragmatic realization. Some additional functionality that is useful for daily life
comes with the use of Florid:

– built-in predicates and operations on strings and numbers,
– creation of URIs (as they are basically also strings – only the membership

atom s:url distinguishes them from simple strings).

Example 3 (Train Connections). Consider a train database which contains the
“atomic” connections. Assume that for the urls of cities and connections, a glob-
ally agreed structure is used. Consider the following fragment (in N3):

<travel://db/connections/Hannover-Goettingen> a <travel:meta#Connection>;
<travel:meta#from> <geo://de/Hannover>; <travel:meta#to> <geo://de/Goettingen>;
<travel:meta#distance> 120.

<travel://db/connections/Goettingen-Kassel> a <travel:meta#Connection>;
<travel:meta#from> <geo://de/Goettingen>; <travel:meta#to> <geo://de/Kassel>;
<travel:meta#distance> 60.

and a (simplified) rule that computes composite connections (in F-Logic syntax,
where URLs are treated by strings s:url):

(U:“travel://meta#Connection”)[“travel:meta#from”→X; “travel:meta#to”→Z;
“ travel:meta#distance”→D], U:url

:- (C1:“travel://meta#Connection”)[“travel:meta#from”→X; “travel:meta#to”→Y;
“ travel:meta#distance”→D1],

(C2:“travel://meta#Connection”)[“travel:meta#from”→Y; “travel:meta#to”→Z;
“travel:meta#distance”→D2],

U = “travel://db/connections/” + X.name + “-” + Y.name, D = D1 + D2.

which will generate (already mapped back to N3)

<travel://db/connections/Hannover-Kassel> a <travel:meta#connection>;
<travel:meta#from> <geo://de/Hannover>; <travel:meta#to> <geo://de/Kassel>;
<travel:meta#distance> 180.

Additionally, Florid allows for parsing of HTML and XML data, which can then
be transformed by F-Logic rules into RDF to be added to the ontology.

4 Defaults

4.1 Inheritance in F-Logic

Inheritance atoms in F-logic have the form c[p•→v]: the class c provides the in-
heritable scalar property p with default value v. For a member o : c without any
intermediate class, inheritance results in o[p→v]; for a subclass d :: c, inheritance

results in d[m•→v]; analogously for multivalued c[p•→→v]. Inheritance of defaults
is intended to take place, if “nothing else is known”.

In [KLW95], inheritance-canonic models are defined, based on inheritance
triggers which extend the above fixpoint semantics: default inheritance is ap-
plied after the minimal/stratified model is computed and the rules do not derive
any more facts. Objects where for an inheritable property, no value has been
derived so far inherit the default, and the minimal/perfect model computation
is applied again. Although this definition is formulated in a rather procedural
way, we have shown in [MK01] that this semantics is “reasonable” and in most
cases compatible with the Default Logic [Rei80,Poo94] semantics. Only when
application of rules after applying a default results in an inconsistency, or “at-
tacks” the applicability of the default, a non-supported (wrt. the Default Logic
semantics) model results. Below, we show that even this effect is avoided by the
DL+Florid architecture where F-Logic reasoning is applied as a “slave” whose
results can further be controlled.

4.2 Nonmonotonic Inheritance by Default Logic

In Default Logic [Rei80,Poo94], defeasible reasoning is expressed by defaults :

a default d =
α : β

w
consists of a precondition α, a justification β and a

consequence w. Given α, if β can be assumed consistently, one can conclude w.
A default theory is a pair ∆ = (D, F) where D is a set of defaults and F is a set
of formulas.

In an inheritance framework, the superclass condition belongs to α; whereas
the checks that inheritance is not preempted by an intermediate class and that
the inherited value must be consistent with the knowledge (wrt. the logical rules
of the program) fall under β. For characterizing inheritance, only a specialized
form of defaults is needed, called semi-normal defaults where the precondition
α(x̄) is a conjunction of atoms, the consequence w(x̄) is also an atomic formula,
and ∀x̄ : β(x̄)→ w(x̄) holds. Translating the path-based concept of inheritance
networks, including avoidance of decoupling inheritance in F-Logic syntax can
be specified by defaults of the form (cf. [MK01])

Dinh =
O : C , C[M•→V] :
∀C′((O : C′ ∧ C′ :: C)→ C′[M•→V]) , O[M→V]

O[M→V]
.

The semantics of a default theory is defined in terms of extensions. A theory T is
an extension of ∆ = (D, F) if it satisfies certain requirements [Rei80,Poo94,Mak94];
the definitions are non-constructive (where a quasi-inductive definition at least
gives a guess-and-check characterization).

In our case, the consequent of a default is always a single ground fact. Thus,
it is again sufficient to define and analyze the semantics only with the underlying
Herbrand Structures, not with theory reasoning.

4.3 Handling Nonmonotonic Inheritance

In the same way as negation, the default reasoning conflicts with the OWA. Here,
the conflict is intended: the main reason behind default inheritance is to be able
to find a reasonable set of beliefs in a situation of incomplete knowledge when any
“safe” reasoning –both OWL OWA reasoning and rule-based CWA reasoning–
does not lead to additional knowledge. Thus, default inheritance atoms are eval-
uated in an outer iteration. When an alternating fixpoint of OWL and rules is
reached, apply one applicable default, and restart the alternating fixpoint.

In our setting, this is accomplished by saving the current model, applying
the default, applying OWL and rules reasoning up to the next fixpoint, and if
this structure is consistent, continue with it. If a theory has extensions, then this
process leads to an extension; otherwise it at least results in a non-extensible
structure that is consistent, but contains “non-fired” default instances. Note
that the possibility to put the intermediate model aside during the computation
controlled by the Jena module allows to accomplish this guarantee in contrast
to the F-Logic/Florid-only semantics discussed in [MK01].

In [BH95], it is shown that even for the simple DL ALCF , Reiter’s semantics
for open defaults leads to undecidability. When considering only individuals
that are mentioned explicitly in the ABox, the task becomes decidable. In our
approach, the ontology is restricted to explicit facts before submitting it to Florid
– thus, the above obviously applies. Note that implicit border objects have to
be ignored when checking for applicable defaults.

5 Comparison

While both OWL-DL and function-free Horn rules are decidable fragments of
first-order logic, however, the combination leads to undecidability in general.
DLP [GHVD03] is the, not very expressive, but decidable, intersection of DL
and LP. The other end of the spectrum is SWRL (earlier: ORL) [HPS04] which
is the union of DL and LP, which is in general undecidable.
AL-log [DLNS91] proposes hybrid rules in a constraint LP style, where the

LP Datalog clauses in the body are extended with DL class membership con-
straints; the heads of the rules may only contain the LP predicates. CARIN
[LR96] extends this to allow also DL roles in the Datalog bodies. Role-safeness,
i.e., in every DL role atom, at least one variable also occurs in a base predicate
(i.e., an LP predicate which does not occur in any rule head), guarantees decid-
ability (wrt. ALCNR). A similar strategy is followed in DL-safe rules [MSS05],
where it is shown that it is sufficient to require each variable in the rule to occur
in a non-DL-atom in the rule body (wrt. the more expressive SHOIN (D)/OWL-
DL); but here DL atoms are also allowed to occur in rule heads. DL-safety also
makes sure that each variable is bound only to individuals that are explicitly
known in the ABox.

The DL+log [Ros06] approach provides a tighter integration and shows that
a “weak safeness” condition, i.e., every head variable must occur in an LP atom

in the body, guarantees decidability. Thus, in contrast to previous approaches,
it is allowed to have variables in the body that only appear in DL atoms (thus,
the language now covers conjunctive queries over DL). Again, the focus is that
the individuals for which something is derived are explicitly known (while im-
plicit objects can be significant in the body). Decidability is obtained for all
DLs where CQ/UCQ containment is decidable; this includes the logic DLR
[CGL+98], which is weaker than e.g. OWL-DL.

In [MR07], the MKNF (Minimal Knowledge and Negation as Failure) [Lif91]
idea is applied to DL & LP to obtain a unifying framework which covers e.g.
DL+log, SWRL, LP under stable models semantics, and Default Logic with
fixed universe. The resulting logic is based on the modal logic S5 and prefer-
ential models. Again, DL-safety guarantees decidability. The special interaction
of open- and closed-world reasoning (DL predicates can also occur under CWA
negation) allows to express things that cannot be expressed in other approaches.

There are also some “loose integration” approaches, in the sense that the rules
part contains queries to the ontology, again in the style of constraint LP. These do
not derive ontology predicates in the head: In DLV/DLVhex (DLV with higher-
order and external atoms) [ELST04,EIST06], the DL atoms are “external” to
the DLV framework (disjunctive LP) that is based on Answer Set Programming.
In a similar way, [DM07] integrates DL atoms into an LP framework (normal
logic programs under well-founded semantics).

In contrast, OWL Flight [dBLPF05], reduces the OWL part to what can be
expressed with (F-Logic) rules, under CWA, and adds constraints.

In [Luk07], the perspective is changed: the above approaches consider the
DL, theory reasoning, perspective. When changing to the perspective of rule-
based systems, considering Herbrand structures as a base yields decidability
without any syntactic restrictions. The paper proposes a guess-and-check algo-
rithm which is in general in NExpNP, and has polynomial data complexity for
normal or stratified programs in combination with DL-Lite. The approach is the
most similar to ours amongst the above ones.

Considering implementations, there is the DLVhex system [ELST04,EIST06],
the prototype of [DM07], the upcoming SWRL [HPS04,HPSB+04] support in
Pellet [Pel], and KAON2 [KA] which encodes OWL into disjunctive Datalog and
allows for DL-safe rules.

6 Conclusion

We have described the combination of (i) OWL-DL, (ii) F-Logic rules, and (iii)
default inheritance, consisting of a Jena-based OWL node that employs Florid
as a “slave” for evaluating rules. In case that one of the components is empty,
the semantics coincides with the usual semantics of the respective formalism:

– If the OWL-DL part of the ontology is empty (or a simple schema+data style
database which does not contribute to the reasoning), the resulting system
just applies the F-Logic rules and default inheritance in a controlled way,
resulting in a safe semantics wrt. the investigations in [MK01].

– If the F-Logic rule part is empty, the system just implements OWL-DL
with default inheritance. Again, inheritance is controlled in such a way that
it inherits only when the application is consistent, exactly mirroring the
semantics from Default Logic given in [Rei80].

– If the predicates that occur in rule heads are disjoint from those of the OWL
ontology (i.e., the rule part only queries the ontology, as in [ELST04,EIST06]
and [DM07]), the semantics is correct and complete for stratified negation.

– If the predicates that occur in rule bodies are disjoint from those of the
OWL ontology (i.e., the rule part serves for populating the ontology, e.g., by
information extraction from Web pages), the semantics is also correct and
complete for stratified negation.

The approach is under implementation in the DL+Florid prototype1. It pro-
vides a feasible integration of OWL ontologies and rules that is to be seen as a
declarative alternative to approaches that implement the same by pure (Java)
programming. Its advantages are the declarative specification of the rules that
allow for rapid prototyping and flexible adaptation of the rules.

Ongoing and future work is concerned with implementing the inheritance
semantics completely and investigating the possibilities to enhance the handling
of existential anonymous objects. We expect that syntactical analysis of the
rules and the dependency graph in many cases allows for identifying a finite
set of anonymous objects and their properties that is sufficient for guaranteeing
correctness and completeness for all derived facts about explicitly known objects.

Acknowledgements. This research has been funded by the European Commission
within the 6th Framework Programme project REWERSE, no. 506779.

References

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[BH95] F. Baader and B. Hollunder. Embedding Defaults into Terminological Knowl-
edge Representation Formalisms. J. of Automated Reasoning, 14:149–180, 1995.

[CGL+98] D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. De-
scription Logic Framework for Information Integration. In Principles of Knowledge
Representation and Reasoning (KR), pp. 2–13, 1998.

[dBLPF05] J. de Bruijn, R. Lara, A. Polleres, D. Fensel. OWL DL vs. OWL Flight:
conceptual modeling and reasoning for the semantic Web. In WWW Conf., 2005.

[DLNS91] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. A Hybrid System
with Datalog and Concept Languages. In Trends in Artificial Intelligence; AI*IA’91,
Springer LNCS 549, pp. 88–97, 1991.

[DLNS98] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating
Datalog and Description Logics. J. Intell. Inf. Syst., 10(3):227–252, 1998.

[DM07] W. Drabent and J. Ma luszyński. Well-Founded Semantics for Hybrid Rules.
In Web Reasoning and Rule Systems (RR), Springer LNCS 4524, pp. 1–15, 2007.

1 http://www.semwebtech.org/DLFlorid

[EIST06] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective Integration
of Declarative Rules with External Evaluations for Semantic-Web Reasoning. In
Europ. Semantic Web Conf. (ESWC), pp. 273–287, 2006.

[ELST04] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining An-
swer Set Programming with Description Logics for the Semantic Web. In Principles
of Knowledge Representation and Reasoning (KR), pp. 141–151, 2004.

[FHK+97] J. Frohn, R. Himmeröder, P.-T. Kandzia, G. Lausen, and C. Schlepphorst.
FLORID: A Prototype for F–Logic. Intl. Conf. on Data Engineering (ICDE), 1997.

[FLO06] Florid Homepage. http://www.informatik.uni-freiburg.de/~dbis/florid/, 2006.
[GHR94] D. M. Gabbay, C. J. Hogger, and J. A. Robinson. Handbook of Logic in

Artificial Intelligence and Logic Programming. Oxford Science Publications, 1994.
[GHVD03] B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:

combining logic programs with description logic. In WWW Conf., pp. 48–57, 2003.
[HKS06] I. Horrocks, O. Kutz, and U. Sattler. The Even More Irresistible SROIQ. In

Principles of Knowledge Representation and Reasoning (KR), pp. 57–67, 2006.
[HPS04] I. Horrocks and P. Patel-Schneider. A Proposal for an OWL Rules Language.

In WWW Conf., pp. 723–732, 2004.
[HPSB+04] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and

M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/, 2004.

[HS05] I. Horrocks and U. Sattler. A Tableau Decision Procedure for SHOIQ(D). In
Intl. Joint Conf. on Artificial Intelligence (IJCAI), 2005.

[Jen] Jena: A Java Framework for Semantic Web Appl’s. http://jena.sourceforge.net.
[KA] KAON2 – Ontology Management for the Semantic Web. http://kaon2.

semanticweb.org/.
[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented

and Frame-Based Languages. Journal of the ACM, 42(4):741–843, 1995.
[Lif91] V. Lifschitz. Nonmonotonic Databases and Epistemic Queries. In IJCAI, 1991.
[LR96] A. Y. Levy and M.-C. Rousset. CARIN: A Representation Language Combin-

ing Horn Rules and Description Logics. In ECAI, pp. 328–334, 1996.
[Luk07] T. Lukasiewicz. A Novel Combination of Answer Set Programming with De-

scription Logics for the Semantic Web. In ESWC, 2007.
[Mak94] D. Makinson. General Patterns in Nonmonotonic Reasoning. In [GHR94].
[May07] W. May. The Mondial Database, 1999–2007. http://dbis.informatik.uni-

goettingen.de/Mondial/.
[MK01] W. May and P.-T. Kandzia. Nonmonotonic Inheritance in Object-Oriented

Deductive Database Languages. J. of Logic and Computation, 11(4), 2001.
[MR07] B. Motik and R. Rosati. A Faithful Integration of Description Logics with

Logic Programming. In Intl. Joint Conf. on Artificial Intelligence (IJCAI), 2007.
[MSS05] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with

rules. J. of Web Semantics, 3(1):41–60, 2005.
[MSvL06] W. May, F. Schenk, and E. von Lienen. Extending an OWL Web Node

with Reactive Behavior. In Principles and Practice of Semantic Web Reasoning
(PPSWR), Springer LNCS 4187, pp. 134–148, 2006.

[OWL04] OWL Web Ontology Language. http://www.w3.org/TR/owl-features/, 2004.
[Pel] Pellet: An OWL DL Reasoner. http://pellet.owldl.com.
[Poo94] D. Poole. Default Logic. In [GHR94].
[Rei80] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 12(1,2), 1980.
[Ros06] R. Rosati. DL+log: Tight Integration of Description Logics and Disjunctive

Datalog. In Principles of Knowledge Representation and Reasoning (KR), 2006.
[SPQ06] SPARQL Query Language for RDF. www.w3.org/TR/rdf-sparql-query/, 2006.

