Prospective Logic Agents

Luis Moniz Pereira and Gongalo Lopes

Centro de Intelig@ncia Artificial - CENTRIA
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
goncaloclopes@gmail.com
Imp@di.fct.unl.pt

Abstract. As we face the real possibility of modelling agent systems capable of
non-deterministic self-evolution, we are confronted with the problem winiga
several different possible futures for any single agent. This issngdthe chal-
lenge of how to allow such evolving agents to be abléotik ahead prospec-
tively, into such hypothetical futures, in order to determine the bestsesunf
evolution from their own present, and thence to prefer amongst theencdi
cept of prospective logic programs is presented as a way to addigfséssues.
We start by building on previous theoretical background, on evolviograms
and on abduction, to construe a framework for prospection andidesam ab-
stract procedure for its materialization. We take on several exampfesaglling
prospective logic programs that illustrate the proposed concepts eefly lolis-
cuss the ACORDA system, a working implementation of the previously ptede
procedure. We conclude by elaborating about current limitations ofytsters
and examining future work scenaria.

1 Introduction

Continuous developments in logic programming (LP) langusgmantics which can
account for evolving programs with updates [2, 3] have ofdethe door to new per-
spectives and problems amidst the LP and agents commurstyt i8 now possible
for a program to talk about its own evolution, changing andpdithg itself through
non-monotonic self-updates, one of the new looming chg#ens how to use such se-
mantics to specify and model logic based agents which am@xtapf anticipating their
own possible future states and of preferring among themdardo further their goals,
prospectively maintaining truth and consistency in so gofuch predictions need to
account not only for changes in the perceived external enmient, but need also to in-
corporate available actions originating from the agemrtfitand perhaps even consider
possible actions and hypothetical goals emerging in theigodf other agents.

While being immersed in a world (virtual or real), every pribae agent should be
capable, to some degree, of conjuring up hypothetitsdt-if scenaria while attending
to a given set of integrity constraints, goals, and partizdesvations of the environ-
ment. These scenaria can be about hypothetical obsersdtigrat-if this observation
were true?), about hypothetical actions (what-if this@attivere performed?) or hypo-
thetical goals (what-if this goal was pursued?). As we aadidg with non-monotonic
logics, where knowledge about the world is incomplete andable, a way to repre-
sent predictions about the future is to consider possil#eatia as tentative evolving

hypotheses whicimaybecome true, pending subsequent confirmation or disconfirma
tion on further observations, the latter based on the erpextinsequences of assuming
each of the scenaria.

We intend to show how rules and methodologies for the syiglaesl maintenance
of abductive hypotheses, extensively studied by sevethbasiin the field of Abductive
Logic Programming [9, 11, 17, 16], can be used for effectpet defeasible, prediction
of an agent’s future. Note that we are considering in thisknawvery broad notion
of abduction, which can account for any of the types of sdanaentioned above.
Abductive reasoning by such prospective agents also bemgéntly from employing
a notion of simulation allowing them to derive the consegasnfor each available
scenario, as the agents imagine the possible evolutionedf thture states prior to
actually taking action towards selecting one of them.

It is to be expected that a multitude of possible scenariafecavailable to choose
from at any given time, and thus we need efficient means toepiruelevant possibili-
ties, as well as to enact preferences and relevancy presooger the considered ones.
Such preference specifications can be enforced either & pria posteriori w.r.t hy-
potheses making. A priori preferences are embedded in tbwlkdge representation
theory itself and can be used to produce the most interestinglevant conjectures
about possible future states. Active research on the tdppreferences among ab-
ducibles is available to help us fulfill this purpose [6, 7Haesults from those works
have been incorporated in the presently proposed framework

A posteriori preferences represent meta-reasoning oeaetulting scenaria them-
selves, allowing the agent to actually make a choice baseth@rimagined conse-
guences in each scenario, possibly by attempting to confirdisconfirm some of the
predicted consequences, by attributing a measure of sttereach possible model, or
simply by delaying the choice over some models and pursuirtgdr prospection on
the most interesting possibilities which remain open. A, several hypotheses may
be kept open simultaneously, constantly updated by infoomdrom the environment,
until a choice is somehow forced during execution (e.g. liggusscape conditions), or
until a single scenario is preferred, or until none are gabssi

In prospective reasoning agents, exploration of the fuisiressentially an open-
ended, non-deterministic and continuously iterated m®cdistinct from the one-step,
best-path-takes-all planning procedures. First, the figbdwuction can dynamically ex-
tend the theory of the agent during the reasoning proces§iitsa context-dependent
way so that no definite set of possible actions is implicitjided. Second, the choice
process itself typically involves acting upon the envir@mito narrow down the num-
ber of available options, which means that the very procéselecting futures can
drive an agent to autonomous action. Unlike Rodin’s thinkgsrospective logic agent
is thus proactive in its look ahead of the future, acting ui@environment in order to
anticipate, pre-adapt and enact informed choices effigiefihese two features imply
that the horizon of search is likely to change at every iterneéind the state of the agent
itself can be altered during this search.

The study of this new LP outlook is essentially an innovatembination of fruitful
research in the area, providing a testbed for experimentatinew theories of program
evolution, simulation and self-updating, while launchitige foundational seeds for

modeling rational self-evolving prospective agents. iRtiglary research results have
proved themselves useful for a variety of applications aageHed to the development
of the ACORDA! system, successfully used in modelling diagnostic sibumati[13].
This paper presents a more formal abstract descriptionegbithcedure involved in the
design and implementation of prospective logic agentse&Seramples are also pre-
sented as an illustration of the proposed system capabijlitind some broad sketches
are laid out concerning future research directions.

2 Logic Programming Framework

2.1 Language

Let £ be any first order language. A domain literaldris a domain atorm or its default
negatiomot A the latter expressing that the atom is false by default (E\&Adomain
rule in £ is a rule of the form:

A(—Ll,...7Lt (tZO)

whereAis a domain atom andl,, . . ., L, are domain literals. An integrity constraint in
L is a rule of the form:
J_<—L1,...,Lt (t>0)

where L is a domain atom denoting falsity, aiid, . . ., L; are domain literals.

A (logic) programP over L is a set of domain rules and integrity constraints, stand-
ing for all their ground instances. Every progr&1s associated with a set abducibles
A C L, consisting of literals which (without loss of generality) not appear in any
rule head of. Abducibles may be thought of as hypotheses that can be asedend
the current theory, in order to provide hypothetical solusi or possible explanations
for given queries.

2.2 Preferring Abducibles

An abducible can be assumed only if it is a considered oneit ii® expected in the
given situation, and moreover there is no expectation tatmérary [6, 7].

consider(A) «— expect(A), not expect_not(A).

The rules about expectations are domain-specific knowledgéined in the theory
of the agent, and effectively constrain the hypotheses f@mte scenaria) which are
available.

To express preference criteria among abducibles, we careidextended first order
languageL*. A preference atom irC* is one of the forma < b, wherea andb are
abduciblesa <b means that the abduciblds preferred to the abducible A preference
rule in £* is one of the form:

G/<lb<—L17...,Lt (tZO)

1 ACORDA literally means “wake-up” in Portuguese. TAMEORDAsystem project page is
temporarily set up ahttp://articaserv.ath.cx/

wherea < b is a preference atom and evely(1 < i < t) is a domain or preference
literal overC*.

Although the program transformation in [6, 7] accountedydol mutually exclu-
sive abducibles, we have extended the definition to alloveéts of abducibles, so we
can generatabductive stable mode]6, 7] having more than a single abducible. For a
more detailed explanation of the adapted transformatile@ase consult the ACORDA
project page, mentioned in the previous footnote.

3 Prospective Logic Agents

We now present the abstract procedure driving evolution mfogpective logic agent.
Although it is still too early to present a complete formal E@mantics to this com-
bination of techniques and methodologies, as the implesdesystem is undergoing
constant evolution and revision, it is to be expected theh suformalization will arise
in the future, since the proposed architecture is built gnablogically grounded and
semantically well-defined LP components. The procedulltuigtiated in Figure 1, and
is the basis for the implemented ACORDA system, which we déliail in Section 5.

Each prospective logic agent has a knowledge base corgaiome initial program
over L*. The problem of prospection is then one of finding abductiterssions to this
initial theory which are both:

— relevant under the agent’s current desires and goals
— preferred extensions w.r.t. the preference rules in the knowledge bas

We adopt the following definition for the relevant part of agramP under a literall:

Definition 1. LetL, B, C be literals in£*. We sayl. directly depends o iff B occurs

in the body of some rule iR with headL. We sayl. depends o iff L directly depends
on B or there is som&' such thatL directly depends o4’ and C depends orB. We
say thatRel (P), the relevant part oP, is the logic program constituted by the set of
all rules of P with headL or someB on whichZ depends on.

Given the above definition, we say that an abductive extendi@f P (i.e. A C
Ap) is relevant under some querg iff all the literals in A belong toRela (P U A).
The first step thus becomes to select the desires and goathehagent will possibly
attend to during the prospective cycle.

3.1 Goals and Observations

Definition 2. An observation is a quaternary relation amongst the obserthe re-
porter; the observation name; and the truth value assodiatéh it.

observe(Observer, Reporter, Observation, V alue)

Observationgan stand for actions, goals or perceptions. dliserve/4 literals are
meant to represent observations reported by the envirarimterthe agent or from one
agent to another, which can also be itself (self-triggereals). We also introduce the

Start

Agent

Update -
Committed Abducibles N Knowledge » < IACUIVE)
> Base > oals + nFegnty
Constraints
Y Y
Moral Th Abductive
oral Theory Hypothesis
Y
a posteriori P Abductive P a priori
— Preferences . < Preferences
. Scenarios -
+ Utility Theory + Utility Theory
A A

y

Q External g

Oracles

Fig. 1. Prospective agent cycle.

correspondingn_observe/4 literal, which we consider as representing active goals or
desires that, once triggered, cause the agent to attenmps#tisfaction by launching
the queries standing for the observations contained inside

The prospecting mechanism thus polls fortheobserve /4 literals which are satis-
fied under the initial theory of the agent. In an abstractesgntation, we are interested
in thoseon_observe/4 literals which belong to the Well-Founded Model of the eviov
logic program at the current knowledge state.

Definition 3. The set of active goals of initial program is:
Goals(P) = {G : on_observe(agent, agent, G,true) € WFM(P)}

By adopting the more skeptic Well-Founded Semantics atstlige, we guarantee
a unique model for the activation of._observe/4 literals. It should be noted that there
can be many situations where more than one active goal igedetinder the current
knowledge theory of the agent. Since we are dealing with timebinatorial explosion
of all possible abductive extensions, it is possible thegnef no combination of ab-
ducibles satisfies the entire conjunction of active godlat at least a subset of those
goals will be satisfied in some models. In order to allow fa ¢feneration of all these
possible scenaria, we actually transform active goalsdetdative queries, encoded
in the following form:

try(G) — G try(G) < not try_not(G)
try-not(G) < not try(G)

In this way, we guarantee that computed scenaria will pewll possible ways
to satisfy the conjunction of desire®; possible subsets of desires, allowing us then
to apply selection rules to qualitatively determine whitllactive extensions to adopt
based on the relative importance or urgency of activatedsgtategrity constraints

are also considered, so as to ensure the agent always psrfiansitions into valid
evolution states. These can also be triggered on the bgstssible abductive scenaria,
as the next example will demonstrate.

Example 1.Prospecting the future allows for taking action before saxmected sce-
naria actually happen. This is vital in taking proactivei@tt not only to achieve our
goals, but also to prevent, or at least account for, catalsicdutures.

Consider a scenario where weather forecasts have beemitttmasforetelling the
possibility of a tornado. It is necessary to deal with thisegency beforehand, and take
preventive measures before the event actually takes pAgoespective logic program
that could deal with this scenario is encoded below.

L « consider(tornado), not deal_with_emergency(tornado)

expect(tornado) «— weather_forecast(tornado)
deal -with_emergency(tornado) < consider(decide_board_up_house)

expect(decide_board_up_house) — consider(tornado)
1« decide_board_up_house, not boards_at_home, not go_buy_boards

The first sentence expresses that, in case a tornado scenemigsidered, the pro-
gram should deal with the emergency. A possible way to detl this emergency is
deciding to board up the house. This hypothesis is only meaaiahle in the event of
a tornado, since we do not want in this case to account fordiigsion in any other
situation (we could change the correspondingect/1 rule to state otherwise). The
weather forecast brings about that a tornado is expectedthame being no contrary
expectation to this scenario, the above program presentpassible predictions about
the future. In one of the scenaria, the tornado is abseninlibie scenario where it is
actually confirmed, the decision to board up the house falag/a necessity.

If we commit to the decision of boarding up the house, by agsgrthe tornado
scenario is more relevant, and we do not have boards at hbieed@cessary that we
go and buy the boards. This is reflected by the second ingegmitstraint, which in
fact would launch a subgoal for buying boards. As such, efran goals were active,
the possibility of considering certain scenaria can triggeegrity constraints, and also
contextual abducibles which may in turn be used, once theyanfirmed, to support
activation of other goals.

3.2 Generating Scenaria

Once the set of active goals for the current state is knowenéxt step is to find out
which are the relevant abductive extensions which are dersil in the situation. They
can be found by reasoning backwards from the goals into ablésovhich come up
underconsider/1 literals. Each abducible represents a choice: the ageneitaer
assume it true, or assume it false, meaning that it may patigntace a number of
interpretations equal to all possible combinations ofuaié abducibles. In practice,
the combinatorial explosion of possible interpretatianedntained and made tractable
by a number of factors.

To begin with, the simple fact that all abducibles are caised to the relevant part
of the program under the active goals already leaves alttbkevant abducibles out of
the generation of scenaria. Secondly, the context-depémdies presented in Section
2.2 for considering abducibles further excludes those eibtks which are not rele-
vant to the actual situation of the agent. Furthermore,dftisn the case that available
abducibles are contradictory, i.e. considering an abdeieittually precludes consider-
ing another one, for instance, when choosing between dwnéoffee or drinking tea
[6, 7]. Finally, this step includes the application of a prioreferences in the form of
contextual preference rules among the available abdwcible

In each possible interpretation, or scenario, thus geegrate also reason forwards
from abducibles to obtain the relevant consequences oélcttommitting to each of
them. Each abductive stable model is characterized by tihgcilile choices contained
in it, but is in fact a whole model of the program sent to it.dmhation about each of
the models will then be used to enact preferences over timasosa posteriorj taking
into account the consequences in each scenario

3.3 Preferring a posteriori

Once each possible scenario is actually obtained, therz muenber of different strate-
gies which can be used to choose which of the scenaria leatdsr® favorable con-
sequences. A possible way to achieve this was first presemfdé], using numeric
functions to generate a quantitative measure of utilityefach possible action. We al-
low for the application of a similar strategy, by making aogpiriassignments of prob-
ability values to uncertain literals and utilities to red@t consequences of abducibles.
We can then obtain a posteriori the overall utility of a mdoleweighing the utility of
its consequences by the probability of its uncertain ligedais then possible to use this
numerical assessment to establish a preorder among reqpanadels.

Although such numerical treatment of a posteriori prefeesncan be effective in
some situations, there are occasions where we do not waatytem probability and
utility alone, especially if we are to attribute tasks ofpessibility to such autonomous
agents. In particular, it may become necessary to endow agehts with a set of be-
haviour precepts which are to be obeyed at all times, no mattat the quantitative
assessments may say. This is the role of the moral theorgmeztin the figure. Al-
though being clearly outside the scope of the presented,werkegard it as a growing
concern which must be weighed as more intelligent and aatons agents are built
and put to use. A more detailed analysis of this moral petsecan be found in [15].

Both gqualitative and quantitative evaluations of the sdesacan be greatly im-
proved by merely acquiring additional information to makéral decision.We next
consider the mechanism that our agents use to questiomakssistems, be they other
agents, actuators, sensors or other procedures. Eachsef ¢beves the purpose of an
oracle which the agent can probe through observations of its ofwecform

observe(agent, oracle_-name, query, Value) « oracle, L1, ..., Ly (t > 0)

representing that the agent is performing the observatigmy on the oracle iden-
tified by oracle_.name, whenever oracle observations are allowed (governed by the

reserved toggle literadracle) and given that domain literalg, . .., L; hold in the
current knowledge state. Following the principle of paiy it is not desirable that
the oracles be consulted ahead of time in any situation. &léhe procedure starts by
using its available local knowledge to generate the prefeabductive scenaria (i.e. the
toggle is turned off), and then extends the search to inchvddable oracles, by tog-
gling oracle on. Each oracle mechanism may in turn have certain condiipacifying
whether it is available for questioning. At the next itepatithis toggle is turned off, as
more consequences will be computed using the additionalrition.

Whenever the agent acquires additional information to déhlawproblem at hand,
it is possible, and even likely, that ensuing side-effecty raffect its original search.
Some considered abducibles may now be disconfirmed, budlgdspossible that some
new abducibles which were previously unavailable are nigg#red by the information
obtained by the oracle observations. To ensure all possid&effects are accounted
for, a second round of prospection takes place, by relangdfie whole conjunctive
query. Information returned from the oracle may change tieéepred scenaria previ-
ously computed, which can in turn trigger new questions &zles, and so on, in an
iterated process of refinement, which stops if no changdsetonodels have been en-
acted, and there are no new oracle questions to performeoupslates to execute.

Even after extending the search to allow for experimentay still be the case
that some abducibles are tied in competition to explain te goals, e.g. if some
available oracle was unable to provide a crucial decidimqgearment. In this case, the
only remaining possible action is to branch the simulatida two or more possible up-
date sequences, each one representing an hypotheticdlwilugte the agent simulates
commitment to the respective abducible. This means dejatyia choice, and keep-
ing in mind the evolution of the remaining scenaria untilytfa@e gradually defeated
by future updates, or somehow a choice is enforced. Exactly these branches are
kept updated and eventually eliminated is not trivial, amd s why we purposefully
leave undefined the procedure controlling the evolutiornesé branching prospective
sequences. Another interesting possibility would be tosimter those abductions com-
mon to all the models and commit to them, in order to prune sorakevant models
while waiting for future updates to settle the matter.

3.4 Prospective procedure

We conclude this section by presenting the full abstraatguare defining the cycle of
a prospective logic agent.

Definition 4. Let P be an evolving logic program, representing the knoggettieory of

an agent at state S. Letacle be the propositional atom used as a toggle to restrict ac-
cess to additional external observations. A prospectivéution of P is a set of updates
onto P computed by the following procedure:

1. Let O be the (possibly empty) set of allolbserve/4 atoms which hold at S.

2. Obtain the set of stable models of the residual programvddrby evaluating
the conjunctionQ = {Gi,...,G,,notL},n > 0, where eachG; represents
the goal contained in a distinct observe/4 literal obtairfexin the corresponding
on.observe/4 in O.

3. If the set contains a single model, update the abductieé&eh characterizing the
model onto P as facts, toggle theacle off and stop.

4. Otherwise, iforacle currently holds and no new information from the oracles or
from the scenaria is derived, for each abductive stable maddgecreate a new
branching evolution sequendeg and update the abductive choiceshify onto P;.
Execute the procedure starting from step 1 on each brancbéiogence’;.

5. Otherwise, toggle theracle on and return to 2.

4 Modelling Prospective Logic Agents

4.1 Accounting for Emergencies

Example 2.Consider the emergency scenario in the London undergrdiiigdyhere
smoke is observed, and we want to be able to provide an exjarfar this observa-
tion. Smoke can be caused by fire, in which case we should afssider the presence
of flames, but smoke could also be caused by tear gas, in cas®icé intervention.
Thetu literal in observation values stands for true or undefined.

smoke — consider(fire) smoke — consider(tear_gas)
flames «— consider(fire) eyes_cringing < consider(tear_gas)

expect(fire) L « observation(smoke), not smoke
expect(tear_gas) observation(smoke)
fire atear_gas

L «— flames, not observe(program,user, flames, tu)
L «— eyes_cringing, not observe(program, user, eyes_cringing, tu)

This example illustrates how an experiment can be derivdieinof the conse-
quences of an abduction. In order for fire to be abduced, we toelee able to confirm
the presence of flames, which is a necessary consequendegeelwe trigger the ob-
servation to confirm flames, expressed in the second ingegpitstraint. Only in case
this observation does not disconfirm flames are we allowetdace fire.

4.2 Automated Diagnosis

Prospective logic programming has direct application itoaated diagnosis scenaria,
as previously shown in [13]. Another illustration is thatafise case in ongoing research
on diagnosis of self-organizing industrial manufactursygtems [4].

Example 3.Consider a robotic gripper immersed in a collaborative m&dg-line en-
vironment. Commands issued to the gripper from its corgralte updated to its evolv-
ing knowledge base, as well as regular readings from theoseifier expected exe-
cution of its commands, diagnosis requests by the systernssuied to the gripper's
prospecting controller, in order to check for abnormal véha. When the system is
confronted with multiple possible diagnosis, requestsfgeriments can be asked of

the controller. The gripper can have three possible logitzdEs: open, closed or some-
thing intermediate. The available gripper commands ar@lyimpen andclose. This
scenario can be encoded as the initial prospective progedowb

open «— request_open, not consider (abnormal(gripper))
open «— sensor(open), not consider(abnormal(sensor))

intermediate < request_close, manipulating_part,
not consider(abnormal(gripper)), not consider(lost_part)
intermediate — sensor(intermediate), not consider(abnormal(sensor))

closed «— request_close, not manipulating_part,
not consider(abnormal(gripper))
closed — sensor(closed), not consider(abnormal(sensor))

L« open,intermediate 1L < open, closed
1« closed, intermediate

expect(abnormal(gripper)) expect(lost_part) «— manipulating_part
expect(abnormal(sensor))
expect_not(abnormal(sensor)) —

manipulating_part, observe(system, gripper, ok(sensor), true)

observe(system, gripper, Experiment, Result) «—
oracle, test_sensor(Experiment, Result)

abnormal(gripper) < abnormal(sensor) «—

request_open, not sensor(open), not sensor(closed)
lost_part < abnormal(gripper) «—

observe(system, gripper, ok(sensor), true), sensor(closed)
abnormal(gripper) <lost_part < not (lost_part < abnormal(gripper))

For each possible logical state, we encode rules preditiatgstate from requested
actions and from provided sensor readings. We consideeitgiution of actions may
fail, or that the sensor readings may be abnormal. Therelswesduations where me-
chanical failure did not occur and sensor readings are algect, but there was some
other failure, like losing the part the robot was manipulgtiby dropping it.

In this case, there is an available experiment to test whetieesensor is malfunc-
tioning, but resorting to it should be avoided as much asiplesss it will imply occu-
pying additional resources from the assembly-line caalitiAs expected, evaluation is
context-dependent on the situation. Consider this ilauste update set:

U = {manipulating_part, request_close, sensor(closed)}.

It represents the robot in the process of manipulating soang feceiving an order to
close the gripper in order to grab it, but the sensor reppittie gripper is completely
closed. This violates an integrity constraint, as the grigghould be in an intermediate

state, taking hold of the part. At the start of a diagnosisgdtabductive hypotheses are
expected and considered,

Ap = {lost_part, abnormal(gripper), abnormal(sensor)}.

Without further information, abducibl@bnormal(gripper)s preferred tdost part, but
still no single scenario has been determined. Activatirrglerqueries, the system finds
the experiment to test the sensor. If it corroborates closetlonly the abduciblab-
normal(sensor)s defeated, but alsabnormal(gripper) sincelost part is preferred.
However, failure to confirm the sensor reading would resutta single scenario being
abduced for this situation, and other measures would halve taken.

4.3 Encoding Actions

Another interesting possibility in future prospectionasconsider the dynamics of ac-
tions. To perform an action, a prospective agent needs sotgiconsider the necessary
preconditions for executing it in the present, but also tklahead at the consequences
it will entail in a future state. These two verifications tgiace on different reason-
ing moments. While the preconditions of an action can be evetlimmediately when
collecting the relevant abducibles for a given knowledggestits postconditions can
only be taken into consideration after the model generatidven the consequences of
hypothetically executing an action are known.

The execution of an action can be encoded in EVOLP by meaass#frt/1rules,
of the form:

assert(A) «— Ly,..., Ly (t>0)

whereA is a domain atom representing the name of the actionZand. ., L, are do-
main literals representing the preconditions for the actidhe preconditions can them-
selves contain othetssert/1 literals in their bodies, allowing lookahead into future
updates. The postconditions of a given action can be enaxledegrity constraints on
the name of the action and will be triggered during genenatithe stable models.

Example 4.Consider an agent choosing an activity in the afternoorariteither go to
the beach, or to the movies, but not both, and it can only gaseevie after buying
tickets to it. The abducibles in this case atp = {go_to_beach, go_to_movies}. There
is a single integrity constraint stating that tickets carve bought without money. In
ACORDA syntax:

afternoon_activity < assert(beach)
a fternoon_activity < assert(movies)

assert(beach) «— consider(go_to_beach) expect(go_to_beach)
assert(movies) « tickets expect(go_to_movies)
assert(tickets) « consider(go_to-movies) L « tickets, not money

The abduction of eithejo_to_beach or go_to_movies fulfills, respectively, the pre-
conditions for the actioheach and the actiortickets. The consequence of buying the

tickets is that the precondition for going to the movies ifilfad. However, that con-
sequence may also trigger the integrity constraint if thenagloes not have money.
Fortunately, by simulating the consequences of actionseémext state, the agent can
effectively anticipate that the constraint will be violdf@nd proceed to choose the only
viable course of action, that is going to the beach.

5 Implementing the ACORDA System

The basis for the developed ACORDA system is an EVOLP md&preter on which
we can evaluate literals for truth according to three- anoh¥alued semantics. Both
this meta-interpreter and the remaining components wevela@ed on top of XSB
Prolog, an extensively used and stable LP inference engipkimentation, following
the Well-Founded Semantics (WFS) for normal logic programs.

The tabling mechanism [18] used by XSB not only provides ificant decrease
in time complexity of logic program evaluation, but alscoals for extending WFS to
other non-monotonic semantics. An example of this is the RA8erface (standing
for XSB Answer Set Programming), which extends computatibthe WFM, using
Smodels [14] to compute two-valued models from gidual progranresulting from
querying the knowledge base [5]. This residual programpsagented by delay lists,
that is, the set of undefined literals for which the programl@aot find a complete
proof, due to mutual dependencies or loops over defaulttivegtor that set of liter-
als, detected by the XSB tabling mechanism. It is also ptessibaccess Smodels by
building up a clause store in which a normal logic programasposed, parsed and
evaluated, with the computed stable models sent back to $i2system.

This integration allows one to maintain the relevance [@Jparty for queries over
our programs, something that the Stable Models semant&s it originally enjoy. In
Stable Models, by the very definition of the semantics, igisassary to compute all the
models for the whole program. Furthermore, since computatf all the models is NP-
complete, it would be unwise to attempt it in practice for wtele knowledge base in
a logic program, which can contain literally thousands ¢éswand facts and unlimited
abducibles. In our system, we sidestep this issue, usingPXidompute the relevant
residual program on demand, usually after some degreerafftianation. Only the re-
sulting program is then sent to Smodels for computation ebjibe futures. The XSB
side of the computation also plays the role of an efficienugder for rules sent to
Smodels, that otherwise resorts to Herbrand base expamgidch can be considerably
hastened if we can provide a priori the grounding of domderdis. Also, the stable
models semantics is not cumulative [8], which is a prohibitiestriction when consid-
ering self-evolving logic programs, in which it is extrempeiseful to store previously
deduced conclusions as lemmas to be reused.

6 Conclusions and Future Work

As far as we know, the only other authors taking a similar LBraach to the deriva-
tion of the consequences of candidate abductive hypotleeed4d 1, 10], and [16, 17].
Both represent candidate actions by abducibles and use poggrams to derive their

possible consequences, to help in deciding between themwewws, they do not derive
consequences of abducibles that are not actions, such evatisns for example. Nor
do they consider the possibility of determining the valueuoknown conditions by
consulting an oracle or by some other process.

Poole uses abduction, restricted to acyclic programs, d@gige explanations for
positive and negative goals. An explanation represents afsadependent choices,
each of which is assigned a probability value. The probgbilf a goal can be found
by considering the set of abductively generated possibld#&aontaining an abductive
explanation for the goal. His main concern is to compute goaértainty, with a view to
decision making, taking into account both the probabgitéthe abductive assumptions
and the utilities of their outcomes.

Kowalski argues that an agent can be more intelligent if &bt to reason pre-
actively - that is to say, to reason forward from candidatéas to derive their pos-
sible consequences. These consequences, he recognigealsmaepend upon other
conditions over which the agent has no control, such as ttienacof other agents
or unknown states of the environment. He considers the uS@oision Theory, like
Poole, to choose actions that maximise expected utility.H&lhas not explored ways
of obtaining information about conditions over which theagdoes not have control,
nor the use of preferences to make choices [12].

Compared with Poole and Kowalski, one of the most intergst#atures of our
approach is the use of Smodels to perform a kind of forwardamiag to derive the
consequences of candidate hypotheses, which may thendeatutther cycle of ab-
ductive exploration, intertwined with preferences forming and for directing search.

With branching update sequences we have begun to addrepsotiiem of how
to arbitrarily extend the future lookahead within simutat. Independent threads can
evolve on their own by commiting to surviving assumptions gossibly triggering
new side-effects which will only take place after such cotnmeint.Nevertheless, some
issues in the management of these branching sequencestithlg tackled, namely
envolving coordination and articulation of informatiorased among threads belonging
to a common trunk, as well as the control of the lifetime ofreidlividual thread.

Preferences over observations are also desirable, sin@vexy observation costs
the same for the agent. For example, in the industrial mahwia example, the exper-
iment for testing the sensor was costly, but additional dmehper experiments could
eventually be developed, and they should be preferred tmtre expensive one when-
ever possible. Furthermore, abductive reasoning can leetaggenerate hypotheses of
observations of events possibly occurring in the futureglihe lines of [1].

Prospective LP accounts for abducing the possible meareatthran end, but the
converse problem is also of great interest, that is, giverottservations of a set of ac-
tions, abduce the goal that led to the selection of thoseratil his would be invaluable
in abducing the intentions of other agents from the sequehaetions they exhibit.

Although we are currently dealing only with prospection lué future, prospective
simulations of the past can also be of interest to accourddore learning capabilities
based on counterfactual thought experiments. This meaismb can go back to a
choice point faced in the past and relaunch the questionarfadhm "What would
happen if | knew then what | know now?", incorporating newrekents on reevaluating

past dilemmas. This could allow for debugging of prospecttrategies, identifying
experiments that could have been done as well as alterrstdrearios that could have
been pursued so that in the future the same errors are nattegpe

References

[1] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Abductiwith hypotheses
confirmation. InProc. of the 19th Intl. Joint Conf. on Atrtificial Intelligence (IJCAI-05)
pages 1545-1546, 2005.

[2] J.J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolvingimgrograms. In S. Flesca
et al., editor,Procs. 8th European Conf. on Logics in Artificial Intelligence (JELE,0
pages 50-61, 2002.

[3] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, an€TPrzymusinski. Dy-
namic updates of non-monotonic knowledge badekogic Programming45(1-3):43-70,
September/October 2000.

[4] J. Barata, L. Ribeiro, and M. Onori. Diagnosis on evolvable préidacystems. lriProcs.
of the IEEE Intl. Symp. on Industrial Electronics (ISIE'QV)go, Spain, Forthcoming 2007.

[5] L. Castro, T. Swift, and D. S. WarrenXASP: Answer Set Programming with XSB and
Smodelshttp://xsb.sourceforge.net/packages/xasp.pdf

[6] P. DellAcqua and L. M. Pereira. Preferential theory revision. LlnM Pereira and
G. Wheeler, editorsProcs. Computational Models of Scientific Reasoning and Applica-
tions, pages 69-84, 2005.

[7] P.Dell’Acqua and L. M. Pereira. Preferential theory revisiort.(jexd. Applied Logi¢c2007.

[8] J. Dix. A classification theory of semantics of normal logic prograimstrong properties,
ii. weak propertiesFundamenta Informatica®2(3):227—-255,257-288, 1995.

[9] A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic gramming. In
D. Gabbay, C. Hogger, and J. Robinson, editbliemdbook of logic in Artificial Intelligence
and Logic Programmingvolume 5, pages 235-324. Oxford University Press, 1998.

[10] R.Kowalski. How to be artificially intelligentttp://www.doc.ic.ac.uk/ ~rak/ ,
2002-2006.

[11] R. Kowalski. The logical way to be artificially intelligent. In F. Toni andiBrroni, editors,
Proceedings of CLIMA VILNAI, pages 1-22. Springer Verlag, 2006.

[12] R. Kowalski. Private communication. 2007.

[13] G. Lopes and L. M. Pereira. Prospective logic programming wilORDA. In G. Sut-
cliffe, R. Schmidt, and S. Schulz, editoRrocs. of the FLoC'06 Ws. on Empirically Suc-
cessful Computerized Reasoning, 3rd Intl. J. Conf. on AutomatedRiagsnumber 192
in CEUR Workshop Procs., 2006.

[14] 1. Niemek and P. Simons. Smodels: An implementation of the stable model and well-
founded semantics for normal logic programs. In J. Dix, U. Furbacid A. Nerode,
editors,4th Intl. Conf. on Logic Programming and Nonmonotonic ReasqriihNg\l 1265,
pages 420-429, Berlin, 1997. Springer.

[15] L. M. Pereira and A. Saptawijaya. Modelling morality with prospectivgic. In J. M.
Neves, M. F. Santos, and J. M. Machado, editt®cs. 13th Portuguese Intl.Conf. on
Artificial Intelligence (EPIA'07) LNAI. Springer, December 2007.

[16] D. Poole. The independent choice logic for modelling multiple agentieuuncertainty.
Artificial Intelligence 94(1-2):7-56, 1997.

[17] D. Poole. Abducing through negation as failure: Stable models witl@nntlependent
choice logic.Journal of Logic Programmingd4:5-35, 2000.

[18] T. Swift. Tabling for non-monotonic programmingnnals of Mathematics and Atrtificial
Intelligence 25(3-4):201-240, 1999.

