
Reasoning-Based Curriculum Sequencing and
Validation: Integration in a Service-Oriented

Architecture

Matteo Baldoni1, Cristina Baroglio1, Ingo Brunkhorst2,
Elisa Marengo1, and Viviana Patti1

1 Dipartimento di Informatica, Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino, Italy

{baldoni,baroglio,patti}@di.unito.it,elisa.mrng@gmail.com
2 L3S Research Center, University of Hannover, D-30539 Hannover, Germany

brunkhorst@l3s.de

Abstract. We present a service-oriented personalization system, set in an educa-
tional framework, based on a semantic annotation of courses including prerequi-
sites and learning objectives. The system supports users in planning personalized
curricula and in verifying the compliance of curricula against a model describing
the designer goals. We have developed a prototype of the planning and validation
services, by using SWI-Prolog and the SPIN model checker as reasoning engines.
The services are supplied and combined in the Personal Reader framework.

1 Introduction

So far, reasoning in the Semantic Web is mostly reasoning about knowledge expressed
in some ontology. However, personalization may involve also other kinds of reasoning
and knowledge representation. Moreover, the next Web generation promises to deliver
Semantic Web Services, that can be retrieved and combined in a way that satisfies the
user. It opens the way to many forms of service-oriented personalization. Web services
provide an ideal infrastructure for enabling interoperability among personalization ap-
plications and for constructing Plug&Play-like environments, where the user can select
and combine the preferred kinds of services. Based on our previous work [2,3], our cur-
rent goal is to implement such results in an organic system, where different reasoning-
based personalization services can be combined for supporting the user in building a
curriculum from a set of learning resources (courses). We achieve this by developing a
Planner and a Validation Service within the Personal Reader(PR) Framework, where a
service oriented approach to personalization is taken [12].

While in early times learning resources were simply considered as “contents”, strictly
tied to the platform used for accessing them, attention has been posed on the issue of
re-use and of a cross-platform use of educational contents. The proposed solution is
to adopt a semantic annotation of contents based on standard languages, e.g. RDF and
LOM, and then to create learning resources formed by educational contents plus se-
mantic meta-data, which supply information on the resources at a knowledge level (e.g.
concepts from an ontology of the educational domain). Learning Resources are inter-
preted as actions [3,4], capturing the learning objectives and pre-requisites. Thus, we

E. Duval, R. Klamma, and M. Wolpers (Eds.): EC-TEL 2007, LNCS 4753, pp. 426–431, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reasoning-Based Curriculum Sequencing and Validation 427

can rely on a classical theory of actions and apply different reasoning methods, like
planning, for building personalized curricula. Our interpretation of learning resources
also enables the use of model checking techniques for developing a validation service
that detects if a curriculum is compliant w.r.t an abstract model, which encodes the
curricula-design goals.

Motivating Scenario. Curriculum planning and validation offer useful support in many
practical contexts for helping both students and teaching institutions. Since taking
courses at different Universities is becoming more common in Europe, creating a per-
sonalized curriculum becomes a difficult task for students. Even if the students know
what competency they would like to acquire, it’s harder to find the courses that help to
acquire it: an automatic system that can suggest a pathway through the course reposi-
tory can be very helpful. The need for support in building personalized paths through
learning resources has to be combined with the ability to ensure the compliance of the
resulting curriculum with curricula-design goals, expressed by the teachers or by the in-
stitution offering the courses. Curricula models specify general rules for building learn-
ing paths, e.g. constraints designed by the University for guaranteeing the achievement
of certain learning goals. These constraints are to be expressed in terms of knowledge
elements, and maybe also on features that characterize the resources. For a provider or
university, which needs to certify that a specific offered curricula for achieving a certain
educational goal respects some European guidelines, we could define the guidelines as
a set of constraints at an abstract level, i.e. as relations among a set of competencies
which should be offered in a way that meets some given scheme. The automatic check-
ing of compliance combined with curriculum planning could be used for implementing
processes like cooperation among institutes in curricula design and integration, which
are the focus of the Bologna Process [11], promoted by the EU.

2 Curricula Representation and Reasoning

All the different kinds of objects that we need to tackle (learning resources, curricula,
and curricula models) are described on the basis of a set of competencies, i.e. terms
identifying specific knowledge elements. Competencies can be thought of, and imple-
mented, as concepts in a shared ontology. In our implementation, competencies have
been semi-automatically extracted, and then stored in a RDF file (see the next section).

Learning Resources and Curricula. A curriculum is a sequence of learning resources
that are homogeneous in their representation. Based on work in [3,4], we rely on an ac-
tion theory, and take the abstraction of resources as atomic actions. A learning resource
is modelled as an action for acquiring some competencies, called effects. For under-
standing the contents supplied by a learning resource, the user can be required to own
other competencies, called preconditions. Both preconditions and effects can be ex-
pressed by means of a semantic annotation of the learning resource [4]. Since we will
focus on university curricula, we will refer to learning resources as “courses”. Given
the above interpretation of learning resources, a curriculum is modelled as a plan, i.e.
as a sequence of actions, whose execution causes transitions from a state to another,
until some final state is reached. The initial state (possibly empty) contains all the

428 M. Baldoni et al.

competences that we suppose available before the curriculum is taken, e.g. the knowl-
edge that the student already has. This set typically grows as the student studies and
learns. Curricula are usually designed so to allow the achievement of a learning goal; in
such cases the final state should contain specific knowledge elements, e.g. all those that
compose the user’s learning goal. A transition between two states is due to the applica-
tion of the action corresponding to a learning resource. For an action to be applicable,
its preconditions must hold in the state to which it should be applied. The application
of the action consists in an update of the state. We assume that competences can only
be added to states. The intuition behind this assumption is that the act of using a new
resource will never erase from the students’ memory the concepts acquired insofar.

Curricula Models. We would like to restrict the set of possible sequences of resources
composing a curriculum, by imposing constraints on the order by which knowledge
elements are added to the states, e.g. “a knowledge element α is to be acquired before a
knowledge element β”, or by specifying some educational objective to be achieved, in
terms of knowledge that must be contained in the final state, e.g. “a knowledge element
α must be acquired sooner or later”. Therefore, we represent a curricula model as a
set of temporal constraints building upon knowledge elements. A model is independent
from the available resources and it can be reused in different contexts. A natural choice
for representing temporal constraints on action paths is linear-time temporal logic (LTL)
[10]. This kind of logic allows to verify if a property of interest is true for all the possible
executions of a model (in our case the specific curriculum). This is often done by means
of model checking techniques [8]. A curriculum as we represent it is, actually, a Kripke
structure, that identifies a set of states with a transition relation for passing from a
state to another. Since in our domain we assume that knowledge only grows, states will
always contain all the competencies acquired up to that moment. The transition relation
is given by the actions that are contained in the curriculum that is being checked. The
LTL logic can be used to verify if a given formula holds starting from a state or if it holds
for a set of states. For instance, in order to specify in the curricula model constraints
on what to achieve, we can use the formula �α (� is the eventually operator), meaning
that a set of knowledge elements will be acquired sooner or later. Instead, constraints
on how to achieve the educational objectives, such as “a knowledge element β cannot
be acquired before the knowledge element α is acquired”, can be expressed by the LTL
formula ¬β U α, where U is the weak until operator. Writing curricula models directly
in LTL is not an easy task for the user. We are developing a graphical language, called
DCML (Declarative Curricula Model Language) [5], inspired by DecSerFlow [15]. By
means of DCML the user can easily write curricula models, maintaining a rigorous
meaning due to the logic grounding of the language.

Curriculum Planning and Validation. Given a semantic annotation with precondi-
tions and effects of the courses, classical planning techniques are exploited for creating
personalized curricula, in the spirit of the work in [3,4]. Intuitively the idea is that, given
a repository of annotated learning resources the user expresses a learning goal as a set
of knowledge elements he/she would like to acquire, and possibly also a set of already
owned competencies. Then, the system applies planning to build a sequence of learning
resources that will allow him/her to achieve the goal. The planning methodology that

Reasoning-Based Curriculum Sequencing and Validation 429

we implemented (see Section 3) is a simple depth-first forward planning where actions
cannot be applied more than once. An early prototype was presented in [1].

There are two main validation tasks that can be performed on curricula and curricula
models. The simplest one consists in checking the soundness w.r.t. the learning depen-
dencies and the learning goal of curricula which are built by hand by users themselves.
Usually, soundness verification is performed manually by the learning designer, with
hardly any guidelines or support [9]. Not all sequences which can be built starting from
a set of learning resources are lawful. It is important to verify that all the competencies,
that are necessary to fully understand the contents, offered by a learning resource, are
introduced or available before that resource is accessed. In other words, a course can
appear at a certain point in a sequence only there are no competency gaps. These im-
plicit “applicability constraints” capture dependencies that are innate to the nature of
the taught concepts. Given the interpretation of resources as actions, the verification of
the soundness of a curriculum, w.r.t. the learning dependencies and the learning goal,
can be interpreted as an executability check of the curriculum.

The other interesting verification task consists in checking if a curriculum (possibly
automatically generated by a personalization service) is compliant against the course
design goals [7]. A curriculum personalized w.r.t. the user desires, that is proved to be
sound, cannot automatically be considered as being valid w.r.t. a particular curricula
model describing some designer goal. The curricula model imposes further constraints
on what to achieve and how achieving it. In our validation service (Section 3) the ver-
ification tasks are performed by using the SPIN model checker [13]. SPIN is used for
verifying systems that can be represented by finite state structures, where the specifi-
cation is given in an LTL logic. The verification algorithm is based on the exploration
of the state space. This is exactly what we need for performing all the verification tests
that we mentioned, provided that we can translate the curriculum in the internal repre-
sentation used by the model checker (in SPIN such representation is given in Promela).

3 Implementation in the Personal Reader Framework

The Personal Reader Platform provides a framework for implementing personalization
in the Semantic Web in a service-oriented approach, allowing to investigate how (se-
mantic) web service technologies can provide a suitable infrastructure for building per-
sonalization applications. So called Personalization Services (PServices) [12] are the
basic building blocks for implementing plug-and-play like personalization services in
this architecture, they are semantic in the sense that they communicate solely on the ba-
sis of RDF documents. Besides PServices, the PR framework also includes other kinds
of components, namely Syndication Services, User Interfaces and a Connector.

Corpus of Courses and Metadata Description. Despite some manual post-processing
for fixing inconsistencies, we extracted a corpus of courses and the related meta-data by
extracting real data from the Hannover University database via an automatic extraction
with the Lixto [6] tool. We focussed only on a subset of the courses and manually
post-processed the data, resulting in corpus with 65 courses, with 390 effects and 146
preconditions. Metadata contains also course names, semester, credit points, the type of
course (e.g. laboratory, etc.), schedule and location.

430 M. Baldoni et al.

Reasoners as PServices. We implemented two independent PServices for our sys-
tem, the “Curriculum Planning PService”, and the “Curriculum Validation PService”
(Fig. 1), whic can be used by other applications as well.

User can select the
effects / knowledge
she wants to acquire

The system displays
the result in a way, so

the user can add,
remove, modify ele-
ments in her plan

The user can submit an
existing plan or re-use

one stored in her
profile

The system shows a
summary of the
validation step

PLANNER
SWI-Prolog

The system
validates the plan

The system
validates the plan

Generating the plan
from the request

The user can go back
to refine her plan

VALIDATION
SPIN model checker

VALIDATION
SPIN model checker

Fig. 1. The interaction with the system

The Curriculum Planning PService is basically divided in two parts: the core reasoner
(the planner) and the wrapper (the web service implementation) interfacing with the PR
framework. The reasoning engine that actually accomplish the curriculum planning task
has been implemented in SWI Prolog by using a classical depth-first search algorithm.
The initial state is set by using information about the user’s context provided by the User
Modelling module of the PR. SWI Prolog contains a semantic web library allowing to
deal with RDF statements. Since all the inputs are sent to the reasoner in a RDF request
document, it actually simplifies the process of interfacing the planner with the PR. The
request document contains: a) links to the RDF document containing the database of
courses, annotated with metadata, b) a reference to the user’s context c) the user’s actual
learning goal, i.e. a set of knowledge concepts that the user would like to acquire, and
that are part of the domain ontology used for the semantic annotation of the actual
courses. The reasoner can also deal with information about credits provided by the
courses, when the user sets a credit constraint together with the learning goal. The
reasoner returns as output a RDF response document, which contains a list of plans that
fulfill the user’s learning goals and profile. Information stored in the user profile is used
for ranking higher those plans that include the user’s preferred topics.

An early prototype1 of the Curriculum Validation PService based on the model
checker SPIN has been designed and is currently being embedded in the PR. Model
checking is the algorithmic verification of the fact that a finite state system complies
to its specification. In our case the specification is given by the curricula model and
consists of a set of temporal constraints, while the finite state system is the curricu-
lum to be verified. The advantage of using a model checker like SPIN, rather than an
ad hoc implementation is that it can handle any kind of LTL temporal formula. More-
over, we can also deal with the validation of non-linear curricula, i.e. curricula that
contain branching points. This kind of curricula allow to account for uncertainties of
the user. In fact a branching point corresponds to a possible choice among alternative
resources.

1 http://www.l3s.de/∼brunkhor/semweb/curriculum/

http://www.l3s.de/~brunkhor/semweb/curriculum/

Reasoning-Based Curriculum Sequencing and Validation 431

4 Conclusion

In this work we have sketched the current state of the integration of semantic personal-
ization web services for Curriculum Planning and Validation within the Personal Reader
Framework. We are actually investigating how to extend the application with a module
of geo-spatial reasoning working on meta-data like floor-plans and locations.

In [14] an analysis of pre- and post-requisite annotations of learning object is
proposed with the aim of dealing with competency gap verification. In this approach,
whenever an error will be detected by the validation phase, a correction engine will be
activated, that produce suggestions on how to correct the wrong curriculum, by using
reasoning-by-cases. The suggestions are presented to the course developer, who can de-
cide which ones to adopt. Once a curriculum have been corrected, it must be validated
again: the corrections might introduce errors. The proposal is inspired by the CocoA
system [7], that allows to perform the consistency check of web-based courses.

References

1. Baldoni, M., Baroglio, C., Brunkhorst, I., Henze, N., Marengo, E., Patti, V.: A Personaliza-
tion Service for Curriculum Planning. In: Proc. of the 14th Workshop on Adaptivity and User
Modeling in Interactive Systems, ABIS 2006, pp. 17–20. Hildesheim, Germany (2006)

2. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Torasso, L.: Verifying the compliance of
personalized curricula to curricula models in the semantic web. In: Proc. of the Semantic
Web Personalization Workshop, pp. 53–62, Budva, Montenegro (2006)

3. Baldoni, M., Baroglio, C., Patti, V.: Web-based adaptive tutoring: An approach based on
logic agents and reasoning about actions. Artificial Intelligence Review 1(22), 3–39 (2004)

4. Baldoni, M., Baroglio, C., Patti, V., Torasso, L.: Reasoning about learning object metadata
for adapting SCORM courseware. In: Proc. of EAW’04, pp. 4–13 (2004)

5. Baldoni, M., Marengo, E.: Curricula model checking: declarative representation and verifi-
cation of properties. In: Proc. of EC-TEL’07. LNCS, Springer, Heidelberg (2007)

6. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with Lixto. In:
VLDB, pp. 119–128. Morgan Kaufmann, San Francisco (2001)

7. Brusilovsky, P., Vassileva, J.: Course sequencing techniques for large-scale web-based edu-
cation. Int. J. Cont. Engineering Education and Lifelong learning 13(1/2), 75–94 (2003)

8. Clarke, O.E.M., Peled, D.: Model checking. MIT Press, Cambridge, MA, USA (2001)
9. De Coi, J.L., Herder, E., Koesling, A., Lofi, C., Olmedilla, D., Papapetrou, O., Sibershi, W.:

A model for competence gap analysis. In: Proc. of WEBIST 2007 (2007)
10. Emerson, E.A.: Temporal and modal logic. Handbook of Theoretical Computer Science B,

997–1072 (1990)
11. European Commission, Education and Training. The Bologna process,

http://europa.eu.int/comm/education/policies/educ/bologna/
bologna en.html

12. Henze, N., Krause, D.: Personalized access to web services in the semantic web. In: The 3rd
Int. Semantic Web User Interaction Workshop, SWUI (November 2006)

13. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2003)
14. Melia, M., Pahl, C.: Automatic Validation of Learning Object Compositions. In: Information

Technology and Telecommunications Conf. IT&T’2005: Doctoral Symposium (2006)
15. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow

Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
Springer, Heidelberg (2006)

http://europa.eu.int/comm/education/policies/educ/bologna/bologna_en.html
http://europa.eu.int/comm/education/policies/educ/bologna/bologna_en.html

	Introduction
	Curricula Representation and Reasoning
	Implementation in the Personal Reader Framework
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

