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Abstract. In this work, we present a constrained-based representation
for specifying the goals of “course design”, that we call curricula model,
and introduce a graphical language, grounded into Linear Time Logic,
to design curricula models which include knowledge of proficiency levels.
Based on this representation, we show how model checking techniques
can be used to verify that the user’s learning goal is supplied by a cur-
riculum, that a curriculum is compliant to a curricula model, and that
competence gaps are avoided.

1 Introduction and Motivations

As recently underlined by other authors, there is a strong relationship between
the development of peer-to-peer, (web) service technologies and e-learning tech-
nologies [I7]. The more learning resources are freely available through the Web,
the more modern e-learning management systems (LMSs) should be able to take
advantage from this richness: LMSs should offer the means for easily retrieving
and assembling e-learning resources so to satisfy specific users’ learning goals,
similarly to how (web) services are retrieved and composed [12]. As in a com-
position of web services it is necessary to verify that, at every point, all the
information necessary to the subsequent invocation will be available, in a learn-
ing domain, it is important to verify that all the competencies, i.e. the knowledge,
necessary to fully understand a learning resource are introduced or available be-
fore that learning resource is accessed. The composition of learning resources, a
curriculum, does not have to show any competence gap. Unfortunately, this veri-
fication, as stated in [10], is usually performed manually by the learning designer,
with hardly any guidelines or support.

A recent proposal for automatizing the competence gap verification is done
in [I7] where an analysis of pre- and post-requisite annotations of the Learning
Objects (LO), representing the learning resources, is proposed. A logic based val-
idation engine can use these annotations in order to validate the curriculum/LO
composition. Melia and Pahl’s proposal is inspired by the CocoA system [g],
that allows to perform the analysis and the consistency check of static web-
based courses. Competence gaps are checked by a prerequisite checker for linear
courses, simulating the process of teaching with an overlay student model. Pre-
and post-requisites are represented as “concepts”.
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Together with the verification of consistence gaps, there are other kinds of ver-
ification. Brusilovsky and Vassileva [§] sketch some of them. In our opinion, two
are particularly important: (a) verifying that the curriculum allows to achieve
the users’ learning goals, i.e. that the user will acquire the desired knowledge,
and (b) verifying that the curriculum is compliant against the course design
goals. Manually or automatically supplied curricula, developed to reach a learn-
ing goal, should match the “design document”, a curricula model, specified by the
institution that offers the possibility of personalizing curricula. Curricula models
specify general rules for designing sequences of learning resources (courses). We
interpret them as constraints, that are expressed in terms of concepts and, in
general, are not directly associated to learning resources, as instead is done for
pre-requisites. They constrain the process of acquisition of concepts, indepen-
dently from the resources.

More specifically, in this paper we present a constraint-based representation
of curricula models. Constraints are expressed as formulas in a temporal logic
(LTL, linear temporal logic [I1]) represented by means of a simple graphical
language that we call DCML (Declarative Curricula Model Language). This logic
allows the verification of properties of interest for all the possible executions of
a model, which in our case corresponds to the specific curriculum. Curricula
are represented as activity diagrams [1]. We translate an activity diagram, that
represents a curriculum, in a Promela program [16] and we check, by means of
the well-known SPIN Model Checker [16], that it respect the model by verifying
that the set of LTL formulas are satisfied by the Promela program. Moreover,
we check that learning goals are achieved, and that the curriculum does not
contain competence gaps. As in [I0], we distinguish between competency and
competence, where by the first term we denote a concept (or skill) while by the
second we denote a competency plus the level of proficiency at which it is learnt
or known or supplied. So far, we do not yet tackle with “contexts”, as defined
in the competence model proposed in [10], which will be part of future work.

This approach differs from previous work [5], where we presented an adaptive
tutoring system, that exploits reasoning about actions and changes to plan and
verify curricula. The approach was based on abstract representations, capturing
the structure of a curriculum, and implemented by means of prolog-like logic
clauses. Such representations were applied a procedure-driven form of planning,
in order to build personalized curricula. In this context, we proposed also some
forms of verification, of competence gaps, of learning goal achievement, and of
whether a curriculum, given by a user, is compliant to the “course design” goals.
The use of procedure clauses is, however, limiting because they, besides having
a prescriptive nature, pose very strong constraints on the sequencing of learning
resources. In particular, clauses represent what is “legal” and whatever sequence
is not foreseen by the clauses is “illegal”. However, in an open environment where
resources are extremely various, they are added /removed dynamically, and their
number is huge, this approach becomes unfeasible: the clauses would be too
complex, it would be impossible to consider all the alternatives and the clauses
should change along time.
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For this reason we considered as appropriate to take another perspective and
represent only those constraints which are strictly necessary, in a way that is
inspired by the so called social approach proposed by Singh for multi-agent and
service-oriented communication protocols [I8/T9]. In this approach only the obli-
gations are represented. In our application context, obligations capture relations
among the times at which different competencies are to be acquired. The advan-
tage of this representation is that we do not have to represent all that is legal
but only those necessary conditions that characterize a legal solution. To make
an example, by means of constraints we can request that a certain knowledge
is acquired before some other knowledge, without expressing what else is to be
done in between. If we used the clause-based approach, instead, we should have
described also what can legally be contained between the two times at which the
two pieces of knowledge are acquired. Generally, the constraints-based approach
is more flexible and more suitable to an open environment.

2 DCML: A Declarative Curricula Model Language

In this section we describe the Declarative Curricula Model Language (DCML,
for short), a graphical language to represent the specification of a curricula model
(the course design goals). The advantage of a graphical language is that draw-
ing, rather than writing, constraints facilitates the user, who needs to represent
curricula models, allowing a general overview of the relations which exist be-
tween concepts. DCML is inspired by DecSerFlow, the Declarative Service Flow
Language to specify, enact, and monitor web service flows by van der Aalst and
Pesic [21]. DCML, as well as DecSerFlow, is grounded in Linear Temporal Logic
[11] and allows a curricula model to be described in an easy way maintaining
at the same time a rigorous and precise meaning given by the logic represen-
tation. LTL includes temporal operators such as next-time (¢, the formula
© holds in the immediately following state of the run), eventually (O, ¢ is
guaranteed to eventually become true), always (O, the formula ¢ remains in-
variably true throughout a run), until (a U 3, the formula « remains true until
B3), see also [16, Chapter 6]. The set of LTL formulas obtained for a curricula
model are, then, used to verify whether a curriculum will respect it [4]. As an
example, Fig. [[] shows a curricula model expressed in DCML. Every box con-
tains at least one competence. Boxes/competences are related by arrows, which
represent (mainly) temporal constraints among the times at which they are to
be acquired. Altogether the constraints describe a curricula model.

2.1 Competence, Competency, and Basic Constraints

The terms competence and competency are used, in the literature concerning pro-
fessional curricula and e-learning, to denote the “effective performance within
a domain at some level of proficiency” and “any form of knowledge, skill, atti-
tude, ability or learning objective that can be described in a context of learning,
education or training”. In the following, we extend a previous proposal [4[7] so
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Fig. 1. An example of curricula model in DCML

as to include a representation of the proficiency level at which a competency is
owned or supplied. To this aim, we associate to each competency a variable k,
having the same name as the competency, which can be assigned natural num-
bers as values. The value of k£ denotes the proficiency level; zero means absence
of knowledge. Therefore, k encodes a competence, Fig.[2(a). On competences, we
can define three basic constraints.

[= 1] [ < 1
@ | (k) ® | (k) (k) | © (k, ) | @
@ | (k1) = (ky L) | | (k1) (ky L) | o
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Fig.2. Competences (a) and basic constraints (b), (c), and (d). Relations among
competences: (a) implication, (b) before, (¢) succession, (d) immediate implication, (e)
immediate before, (f) immediate succession, (g) not implication, (h) not immediate
before.

The “level of competence” constraint, Fig.[2l¢), imposes that a certain compe-
tency k must be acquired at least at level [. It is represented by the LTL formula
&(k > 1). Similarly, a course designer can impose that a competency must never
appear in a curriculum with a proficiency level higher than [. This is possible
by means of the “always less than level” constraint, shown in Fig.2(d). The LTL
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formula O(k < ) expresses this fact (it is the negation of the previous one). As
a special case, when the level [ is one (O(k < 1)), the competency k must never
appear in a curriculum.

The third constraint, represented by a double box, see Fig.[2l (b), specifies that
k must belong to the initial knowledge with, at least, level [. In other words, the
simple logic formula (k > I) must hold in the initial state.

To specify relations among concepts, other elements are needed. In particular,
in DCML it is possible to represent Disjunctive Normal Form (DNF) formulas as
conjunctions and disjunctions of concepts. For lack of space, we do not describe
the notation here, however, an example can be seen in Fig.[Il

2.2 Positive and Negative Relations Among Competences

Besides the representation of competences and of constraints on competences,
DCML allows to represent relations among competences. For simplicity, in the
following presentations we will always relate simple competences, it is, however,
of course possible to connect DNF formulas. We will denote by (k,1) the fact
that competence k is required to have at least level [ (i.e. kK > ) and by —(k,1)
the fact that k is required to be less than [.

Arrows ending with a little-ball, Fig. [(f), express the before temporal con-
straint between two competences, that amount to require that (k1,l;) holds
before (ka,l2). This constraint can be used to express that to understand some
topic, some proficiency of another is required as precondition. It is important to
underline that if the antecedent never becomes true, also the consequent must
be invariably false; this is expressed by the LTL formula —(kz,l2) U (k1,11), i.e.
(k2 < l2) U (k1 > 1y). It is also possible to express that a competence must be
acquired immediate before some other. This is represented by means of a triple
line arrow that ends with a little-ball, see Fig. B(i). The constraint (ki,l1) im-
mediate before (ko,ls) imposes that (k1,l1) holds before (kq,l2) and the latter
either is true in the next state w.r.t. the one in which (kq,1;) becomes true or
ko never reaches the level l5. The difference w.r.t the before constraint is that it
imposes that the two competences are acquired in sequence. The corresponding
LTL formula is “(kl, ll) before (kg, lg)” /\D((kl,ll) D) (O(kQ,ZQ) \Y \:‘ﬁ(kg, lg)))

Both of the two previous relations represent temporal constraints between
competences. The implication relation (Fig. [(e)) specifies, instead, that if a
competency ki holds at least at the level [1, some other competency ks must be
acquired sooner or later at least at the level [5. The main characteristic of the
implication, is that the acquisition of the consequent is imposed by the truth
value of the antecedent, but, in case this one is true, it does not specify when the
consequent must be achieved (it could be before, after or in the same state of
the antecedent). This is expressed by the LTL formula < (ky,11) D O(ka,l2). The
immediate implication (Fig. [2A(h)), instead, specifies that the consequent must
hold in the state right after the one in which the antecedent is acquired. Note
that, this does not mean that it must be acquired in that state, but only that it
cannot be acquired after. This is expressed by the LTL implication formula in
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conjunction with the constraint that whenever k; > I3 holds, k2 > l2 holds in
the next state: <>(/€1, ll) D) <>(/€2, 12) A\ D((kl, ll) D) O(kg, 12))

The last two kinds of temporal constraint are succession (Fig.[2(g)) and im-
mediate succession (Fig. [X(j)). The succession relation specifies that if (ki,11)
is acquired, afterwards (kz,l2) is also achieved; otherwise, the level of ks is not
important. This is a difference w.r.t. the before constraint where, when the an-
tecedent is never acquired, the consequent must be invariably false. Indeed, the
succession specifies a condition of the kind if ky > I; then ko > I3, while be-
fore represents a constraint without any conditional premise. Instead, the fact
that the consequent must be acquired after the antecedent is what differen-
tiates tmplication from succession. Succession constraint is expressed by the
LTL formula ©(k1,l1) D (O(ka,la) A (m(ke,l2) U (k1,11))). In the same way,
the immediate succession imposes that the consequent either is acquired in the
same state as the antecedent or in the state immediately after (not before nor
later). The immediate succession LTL formula is “(k1,l1) succession (ka,l2)”
AO((k1,11) D O(ke,l2)).

After the “positive relations” among competences, let us now introduce the
graphical notations for “negative relations”. The graphical representation is very
intuitive: two vertical lines break the arrow that represents the constraint, see
Fig. RAk)-(1). (k1,11) not before (ka,l2) specifies that k1 cannot be acquired up to
level I; before or in the same state when (ko,l2) is acquired. The corresponding
LTL formula is = (ky1,11) U ((kz,l2) A —(k1,11)). Notice that this is not obtained
by simply negating the before relation but it is weaker; the negation of before
would impose the acquisition of the concepts specified as consequents (in fact,
the formula would contain a strong until instead of a weak until), the not before
does not. The not immediate before is translated exactly in the same way as the
not before. Indeed, it is a special case because our domain is monotonic, that is
a competency acquired at a certain level cannot be forgotten.

(k1,11) not implies (ko,l2) expresses that if (k1,l1) is acquired ko cannot be
acquired at level lo; as an LTL formula: &(kq, 1) D O-(ke,l2). Again, we choose
to use a weaker formula than the natural negation of the implication relation
because the simple negation of formulas would impose the presence of certain
concepts. (k1,01) not immediate implies (ko,l2) imposes that when (k1,!;) holds
in a state, ko > I3 must be false in the immediately subsequent state. Afterwards,
the proficiency level of ko does not matter. The corresponding LTL formula
is O(kl,ll) D) (\:‘ﬁ(kg,lg) V O((kl,ll) A O"(kg,lg))), that is weaker than the
“classical negation” of the immediate implies.

The last relations are not succession, and not immediate succession. The first
imposes that a certain competence cannot be acquired after another, (either
it was acquired before, or it will never be acquired). As LTL formula, it is
Ok, 1) D (8- (ke,l2)V “(k1,11) not before (ka,l3)”). The second imposes that
if a competence is acquired in a certain state, in the state that follows, another
competence must be false, that is O(k1, 1) D (O-(ke,l2)V “(k1,11) not before
(k2,12)” VO((k1, 1) A O(k2, l2)))-
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3 Representing Curricula as Activity Diagrams

Let us now consider specific curricula. In the line of [5J3[4], we represent curric-
ula as sequences of courses/resources, taking the abstraction of courses as simple
actions. Any action can be executed given that a set of preconditions holds; by
executing it, a set of post-conditions, the effects, will become true. In our case,
we represent courses as actions for acquiring some concepts (effects) if the user
owns some competences (preconditions). So, a curriculum is seen as a sequence
of actions that causes transitions from the initial set of competences (possibly
empty) of a user up to a final state that will contain all the competences owned
by the user in the end. We assume that concepts can only be added to states and
competence level can only grow by executing the actions of attending courses
(or more in general reading a learning material). The intuition behind this as-
sumption is that no new course erases from the students memory the concepts
acquired in previous courses, thus knowledge grows incrementally. We represent

Lab of
Web Sevices
Advanced Java
Programming

Database ||

Logic Java
9 Programming |

Introduction
to DB
‘ [Transaction >= 1 & ‘

Data Recovery >= 1]

Database |

Java
Programming If

Fig. 3. Activity diagram representing a set of eight different curricula. Notice that
Logic and Java Programming I can be attended in any order (even in parallel), as
well as Advanced Java Programming and Lab DB, while Introduction to DB will be
considered only if the guard Transaction and Data Recovery is false.

curricula as activity diagrams [I], normally used for representing business pro-
cesses. We decided to do so, because they allow to capture in a natural way the
simple sequencing of courses as well as the possibility of attending courses in
parallel or in possibly conditioned alternatives. An example is reported in Fig. Bl
Besides the initial and the final nodes, the graphical elements used in an ac-
tivity diagram are: activity nodes (rounded rectangle) that represent activities
(attending courses) that occur; flow/edge (arrows) that represent activity flows;
fork (black bar with one incoming edge and several outgoing edges) and join
nodes (black bar with several incoming edges and one outgoing edge) to denote
parallel activities; and decision (diamonds with one incoming edge and several
outgoing edges) and merge nodes (diamonds with several incoming edges and
one outgoing edge) to choose between alternative flows.

In the modeling of learning processes, we use activities to represent attending
courses (or reading learning resources). For example, by fork and join nodes we
represent the fact that two (or more) courses or sub-curricula are not related
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and, it is possible for the student to attend them in parallel. This is the case
of Java Programming I and Logic, as well as Advanced Java Programming and
Lab. of DB showed in Fig. Bl Till all parallel branches have not been attended
successfully, the student cannot attend other courses, even if some of the parallel
branches have been completed. Parallel branches can also be used when we want
to express that the order among courses of different branches does not matter.

Decision and merge nodes can be used to represent alternative paths. The stu-
dent will choose only one of these. Alternative paths can also be conditioned, in
this case a guard, a boolean condition, is added at the beginning of the branch.
Guards should be mutually exclusive. In our domain, the conditions are ex-
pressed in terms of concepts that must hold, otherwise a branch is not accessi-
ble. If no guards are present, the student can choose one (and only one) of the
possible paths. In the example in Fig. [3] the guard consists of two copetences:
Transaction and Data Recovery. If one of these does not hold the student has to
attend the course Introduction to DB, otherwise does not.

4 Verifying Curricula by Means of SPIN Model Checker

In this section we discuss how to validate a curriculum. As explained, three
kinds of verifications have to be performed: (1) verifying that a curriculum does
not have competence gaps, (2) verifying that a curriculum supplies the user’s
learning goals, and (3) verifying that a curriculum satisfies the course design
goals, i.e. the constraints imposed by the curricula model. To do this, we use
model checking techniques [9].

By means of a model checker, it is possible to generate and analyze all the possi-
ble states of a program exhaustively to verify whether no execution path satisfies
a certain property, usually expressed by a temporal logic, such as LTL. When a
model checker refuses the negation of a property, it produces a counterexample
that shows the violation. SPIN, by G. J. Holzmann [I6], is the most representa-
tive tool of this kind. Our idea is to translate the activity diagram, that represents
a set of curricula, in a Promela (the language used by SPIN) program, and, then
to verify whether it satisfies the LTL formulas that represents the curricula model.

In the literature, we can find some proposals to translate UML activity dia-
grams into Promela programs, such as [I3I14]. However, these proposals have a
different purpose than ours and they cannot be used to perform the translation
that we need to perform the verifications we list above. Generally, their aim is de-
bugging UML designs, by helping UML designers to write sound diagrams. The
translation proposed in the following, instead, aims to simulate, by a Promela
program the acquisition of competencies by attending courses contained into the
curricula represented by an activity diagram.

Given a curriculum as an activity diagram, we represent all the competences in-
volved by its courses as integer variables. In the beginning, only those variables that
represent the initial knowledge owned by the student are set to a value greater than
zero. Coursesare represented as actions that can modify the value of such variables.
Since our application domain is monotonic, the value of a variable can only grow.
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The Promela program consists of two main processes: one is called Curricu-
lum Verification and the other UpdateState. While the former contains the actual
translation of the activity diagram and simulates the acquisition of the compe-
tences for all curricula represented by the translated activity diagram, the latter
contains the code for updating the state, i.e. the competences achieved so far,
according to the definition in terms of preconditions and effects of each course.
The processes Curriculum Verification and UpdateState communicate by means
of the channel attend. The notation attend/courseName represents the fact that
the course with name “courseName” is to be attended. On the other hand, the
notation attend?courseName represents the possibility for a process of receiv-
ing a message. For example, the process Curriculum Verification for the activity
diagram of Fig. Blis defined as follows:

proctype CurriculumVerification()

{ activity_forkjoin_10);
course_java_programming_II();
activity_decisionmerge_1();
course_database_I();
course_database_II();
activity_forkjoin_2Q);
course_lab_of_web_services();
attend!stop; }

If the simulation of all its possible executions end, then, there are no competence
gaps; attend!stop communicates this fact and starts the verification of user’s
learning goal, that, if passed, ends the process. Each course is represented by
its preconditions and its effects. For example, the course “Laboratory of Web
Services” is as follows:

inline preconditions_course_lab_of_web_services()

{ assert(N_tier_architectures >= 4 && sql >= 2); }

inline effects_course_lab_of_web_services()

{ SetCompetenceState(jsp, 4); [...]
SetCompetenceState (markup_language, 5); }

inline course_lab_of_web_services()

{ attend!lab_of_web_services; }

assert verifies the truth value of its condition, which in our case is the precondi-
tion to the course. If violated, SPIN interrupts its execution and reports about
it. SetCompetenceState increases the level of the passed competence if its current
level is lower than the second parameter. If all the curricula represented by the
translated activity diagram have no competence gaps, no assertion violation will
be detected. Otherwise, a counterexample will be returned that corresponds to
an effective sequence of courses leading to the violation, giving a precise feedback
to the student/teacher/course designer of the submitted set of curricula.

The fork/join nodes are simulated by activating as many parallel processes as
their branches. Each process translates recursively the corresponding sub-activity
diagram. Thus, SPIN simulates and verifies all possible interleavings of the courses
(we can say that the curriculum is only one but it has different executions). The
join nodes are translated by means of the synchronization message done that each
activated process must send to the father process when it finishes its activity:



480 M. Baldoni, C. Baroglio, and E. Marengo

proctype activity_joinfork_11()

{ course_java_programming I(); joinfork_11!done; }

proctype activity_joinfork_12()

{ course_logic(); joinfork_12!done; 7

inline activity_joinfork_1()

{ run activity_joinfork_11(); run activity_joinfork_12();
joinfork_117done; joinfork_127done; }

Finally, decision and merge nodes are encoded by either conditioned or non-
deterministic if. Each such if statement refers to a set of alternative sub-activity
diagrams (sub-curricula). Only one will be effectively attended but all of them
will be verified:

inline activity_decisionmerge_11()
{ course_introduction_to_database(); }
inline activity_decisionmerge_12() { skip; }
inline activity_decisionmerge_1()
{ if
(transaction >= 1 && data_recovery >= 1) ->
activity_decisionmerge_12();
:: else -> activity_decisionmerge_11();
fi }
On the other hand, the process UpdateState, after setting the initial competences,
checks if the preconditions of the courses communicated by Curriculum Verifi-
cation hold in the current state. If a course is applicable it also updates the
state. The test of the preconditions and the update of the state are performed

as an atomic operation. In the end if everything is right it sends a feedback to
Curriculum Verification (feedback!done):

proctype UpdateState() { SetInitialSituation();

do [ ... 1]

:: attend?lab_of_web_services -> atomic {
preconditions_course_lab_of_web_services();
effects_course_lab_of_web_services(); }

:: attend?stop -> LearningGoal(); break;

od }

When attend?stop (see above) is received, the check of the user’s learning goal is
performed. This just corresponds to a test on the knowledge in the ending state:

inline LearningGoal()
{ assert(advanced_java_programming>=5 && N_tier_architectures
>= 4 && relational_algebra>=2 && ER_language>=2); }

To check if the curriculum complies to a curricula model, we check if every
possibly sequence of execution of the Promela program satisfies the LTL for-
mulas, now transformed into never claims directly by SPIN. For example, the
curriculum shown in Fig. Bl respects all the constraints imposed by the curricula
model described in Fig. [[l taking into account the description of the courses
supplied at the URL above. The assertion verification takes very few seconds
on an old notebook; the automaton generated from the Promela program on
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that example has more than four-hundred states, indeed, it is very tractable.
Also the verification of the temporal constraints is not hard if we check the con-
straints one at the time. The above example is available for download at the
URL http://www.di.unito.it/"baldoni/DCML/AIIAQT.

5 Conclusions

In this paper we have introduced a graphical language to describe curricula mod-
els as temporal constraints posed on the acquisition of competences (supplied by
courses), therefore, taking into account both the concepts supplied /required and
the proficiency level. We have also shown how model checking techniques can be
used to verify that a curriculum complies to a curricula model, and also that a
curriculum both allows the achievement of the user’s learning goals and that it
has no competence gaps. This use of model checking is inspired by [21], where
LTL formulas are used to describe and verify the properties of a composition of
Web Services. Another recent work, though in a different setting, that inspired this
proposal is [20], where medical guidelines, represented by means of the GLARE
graphical language, are translated in a Promela program, whose properties are
verified by using SPIN. Similarly to [20], the use of SPIN, gives an automa-based
semantics to a curriculum (the automaton generated by SPIN from the Promela
program) and gives a declarative, formal, representation of curricula models (the
set of temporal constraints) in terms of a LTL theory that enables other forms
of reasoning. In fact, as for all logical theories, we can use an inference engine to
derive other theorems or to discovery inconsistencies in the theory itself.

The presented proposal is an evolution of earlier works [6I3/5], where we ap-
plied semantic annotations to learning objects, with the aim of building compo-
sitions of new learning objects, based on the user’s learning goals and exploiting
planning techniques. That proposal was based on a different approach that relied
on the experience of the authors in the use of techniques for reasoning about
actions and changes which, however, suffers of the limitations discussed in the
introduction. We are currently working on the automatic translation from a tex-
tual representation of DCML curricula models into the corresponding set of LTL
formulas and from a textual representation of an activity diagram, that describes
a curriculum (comprehensive of the description of all courses involved with their
preconditions and effects), into the corresponding Promela program. We are also
going to realize a graphical tool to define curricula models by means of DCML.
We think to use the Eclipse framework, by IBM, to do this. In [2], we discuss
the integration into the Personal Reader Framework [15] of a web service that
implements an earlier version of the techniques explained here, which does not
include proficiency levels.
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