
Goal preservation by choreography-driven
matchmaking?

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, and Claudio Schifanella

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)
{baldoni,baroglio,mrt,patti,schi}@di.unito.it

Abstract. In this work we give a formal background and identify the
limits of applicability of local matching criteria (among which the well-
known Zaremski and Wings’s plugin-match) when they are used to auto-
matically retrieve all the capabilities that are necessary to instantiate a
given choreography. In doing this it is necessary to take into account and
somehow merge two possibly conflicting perspectives: the local criterion
for selecting single capabilities and the overall goal that we mean the
composition to pursue. Formally, the problem is interpreted as the study
of the preservation of the global properties of a choreography, when its
roles are played by specific services.

1 Introduction

Web services have a platform-independent nature, that endeavors enterprises to
develop new business processes by combining existing services, retrieved over
the web. Web service composition is still much of a costly and manual process,
which is made more and more difficult by the growing width of the space to
search. Hence, the need of methods for reducing the search space and for making
compositions in an automatic way. This direction has been investigated, in the
literature, for instance in [15], where a UML specification of a business process
was used to abstract the description of a composition away from the specification
of the actually composed services. The idea of capturing the overall schema of
interaction of a set of entities is exploited also in other areas, like multi-agent
systems. In this context, the role of the abstract specification is played by the
so-called “interaction protocol” [9].

The introduction of the concept of “choreography” (and of languages like
WS-CDL [20]) has opened new perspectives on the way an abstract specification
should be given, but the idea of using an abstract specification as a model for
guiding the selection and composition of services is still embryonic. In this work,

? This research has partially been funded by the 6th Framework Programme project
REWERSE number 506779 and by the Italian MIUR PRIN 2005. Claudio Schifanella
is partially supported by “Fondazione CRT - Progetto Lagrange”.



we study different kinds of match, that have been proposed for web service dis-
covery, in the perspective of using them for retrieving software components that
are to be assembled in the context given by a choreography, assuming that all
the parties share a common communication language. More precisely, the role
description is used as a schema of the desired implementation, for producing
a sort of policy skeleton; the adoption of the schema guarantees a priori the
interoperability with the other parties. A similar approach has been adopted,
in the past, for synthesizing agent behaviors from UML specifications [1, Sec-
tion 8.4]. As we have shown in [3], roles in a choreography must specify not only
the interaction schema, that intuitively defines the interoperability conditions
for the potential role players, but also the capabilities requested for playing the
role. Thus, it is important to enrich choreographies by specifying capability re-
quirements. A capability requirement expresses an operation, that a peer should
be able to perform at some specific point of the choreography1. Once defined
such requirements, the policy skeleton produced from the choreography can be
completed by substituting capabilities to capability requirements, so to make it
executable. In other words, in order for the role to be “playable” by the peer,
the peer must have the requested capabilities. For instance, it must have some
means for producing or retrieving a piece of information to send to a partner. The
specific implementation does not matter as long as the requirement is fulfilled.
The selection of those capabilities of the candidate player that will substitute
the capability requirements requires a matching process.

The task of retrieving capabilities that match given requirements is analogous
to the task of service discovery. Therefore, it is straightforward to think to use
the same techniques, like for instance [14, 21, 7]. In particular, in this work we
focus on the matches proposed by Zaremski and Wing in their seminal work [21],
where various kinds of relaxed match, that capture the notions of generalization,
specialization, and substitutability of software components, are proposed. The
specification is given in terms of pre- and post-conditions, written as predicates
in first-order logic. These matches are at the basis of many proposals, both for
software component match and for web service match [11, 14, 16, 13]. The idea
of working on a specification of software components (although not yet on pre-
and post-conditions) can be found also in earlier works, such as [8], where a
compositional method for the automatic analysis and verification in the area of
“transition systems” is given, in which interface specifications are used to express
context constraints between two processes.

Specifically, we consider the case when a role is adopted because it allows the
achievement of a goal of interest. The decision is taken after a reasoning process
applied to the specification. Intuitively, a role will be adopted if it allows an
execution that leads to the goal [4, 12]. If, on a hand, the decision is taken on the
role description, on the other hand, the actual execution will involve the policy for
the specific peer, i.e. an instantiation of the role in which capability requirements
have been substituted by matching capabilities. The natural question is: “will the
policy still allow to reach the goal?”. If the selected capabilities match in an exact

1 In [3] an extension of WS-CDL with capability requirements is presented.



way with the requirements, the obvious answer is yes. However, it is unlikely to
have capabilities that perfectly match the requirements and many kinds of match
that have been proposed in the literature are in some way partial. We show
that none of the partial matches in [21] guarantee that the policy, obtained by
performing the substitution, will allow to reach the goal of interest (Theorem 1,
Section 4). The reason is that, by their nature, they take into account only the
“local” information given by the capability requirement and do not consider
constraints posed by the choreography (“global” constraints). We also show how
to integrate the plugin match in the context given by a choreography in such a
way that the goal is preserved by the substitution (Theorem 2, Section 4).

The article is organized as follows. In Section 2 we recall the matches in-
troduced in [21], and explain their relations with a choreography and with the
goals. Section 3 introduces a simple representation for services and choreogra-
phies, that is based on a declarative language. Section 4 shows that the local
matches alone do not guarantee the preservation of the goal, and it also shows
how to integrate the plugin match so to produce substitutions that preserve the
goal. We will introduce the notion of conservative substitution. Conclusions and
related works end the paper.

2 Capability match: local vs. global properties

We suppose, in the line of previous work [3], that choreographies are enriched
with additional descriptions of those actions, that peers must be able to perform
for playing roles (capability requirements). Capability requirements are used to
select the specific capabilities that are necessary to build an executable policy.
This selection can be done by applying matching techniques that are analogous
to those used for service discovery. Zaremski and Wing [21] propose a formal
specification to describe the behavior of software components. Each software
component has precondition Spre and postcondition Spost. Requirements are
coherently specified as having precondition Rpre and postcondition Rpost. Five
kinds of relaxed match between R and S are defined:

– EM (Exact Pre/Post Match): Rpre ⇔ Spre ∧Rpost ⇔ Spost

– PIM (Plugin Match): Rpre ⇒ Spre ∧ Spost ⇒ Rpost

– POM (Plugin Post Match): Spost ⇒ Rpost

– GPIM (Guarded Plugin Match): Rpre ⇒ Spre ∧ ((Spre ∧ Spost) ⇒ Rpost)
– GPOM (Guarded Post Match): ((Spre ∧ Spost) ⇒ Rpost)

Exact pre/post match states the equivalence of R and S. Plugin match is weaker:
S must only be behaviorally equivalent to R when plugged-in to replace R. Plugin
post match relaxes the former: only the postcondition is considered. Guarded
matches focus on guaranteeing that the desired postcondition holds when the
precondition of S holds, not necessarily in general. The different matches can be
organized according to a lattice [21], that we have reported in Fig. 1.

In our application domain, R will be a capability requirement, while S will
be a capability. Capability requirements are contextualized in some choreogra-
phy. Capabilities are specific software components and depend on the player of



Fig. 1. The lattice of the different local matches: on top the strongest. Our claim is
that the local and global constraints are related; the stronger the local match, the
weaker the global constraints.

a choreography role: they are matched against requirements in the process of
checking if a player can play a certain role, by selecting –at the same time– its
right capabilities. In general, since the final aim is software reuse, it will be quite
difficult to retrieve an exact match for a capability requirement. More likely (and
more interesting) is the case when one of the other four degrees of match hold.

All these matches have been defined for the retrieval of single components,
and have a local nature, i.e. they compare a requirement to a software specifi-
cation (in our case, a capability) independently of the context of usage (in our
work, the service choreography). In other words, the software specification must
respect some constraints. Relaxing the exact match means relaxing these “local
constraints” (see Fig. 1). On the other hand, a choreography defines the global
execution context, in which capability requirements are immersed. Intuitively, the
selection of a capability (for replacing a capability requirement) should preserve
those properties of the choreography that motivated its choice, in particular, the
goal for which it was chosen. In the case of the exact match, the whole verifica-
tion is done locally. Due to the fact that it is a kind of equivalence, matching
exactly a requirement is a sufficient condition to preserve the goal. As we will see
in Section 4, the other kinds of match do not give this guarantee. It becomes,
therefore, necessary to add some constraints by using the available source of
global information: the choreography.

Our claim (see Fig. 1) is that the more relaxed is the local match, the stronger
should be the compensation supplied at the global level. The extreme is given by
the bottom of the lattice: the match that returns always true. In this case, the
choice of the capabilities could be performed, for instance, by randomly choosing
capabilities and by substituting the to the requirements while simulating the
execution of the policy. When the goal is not verified by the current choice,
a backtracking mechanism allows the revision. The whole process relies on the
choreography. Checking global constraints can be expensive but it is possible to



reduce the costs by limiting the attention to those capability requirements which
belong to the execution traces, which actually allow to achieve the goal.

3 Reasoning about capabilities

For what concerns the representation of choreographies and specific peers, in
order to abstract from the specific language (e.g. WS-CDL, WSDL) and from
the details of the implementation, we adopt a declarative representation and
focus on the study of the properties of interest.

Each choreography is made of a set of interacting roles. It can be described as
a set of subjective views of the interaction that is encoded, each corresponding
to one of the roles. We call the implementation of each role a policy. We will
represent both roles and policies by means of the declarative language DyLOG [4],
by interpreting interactions among services, capabilities and capability require-
ments as actions, and by using reasoning about actions for making predictions
about the effects of role and policies executions.

DyLOG has been developed as a language for programming agents and is
based on a logical theory for reasoning about actions and change in a modal
logic programming setting. DyLOG is equipped with a communication kit for
dealing with interactions, and has already been used for customizing Web service
composition [2]. An agent’s behavior is described in a non-deterministic way by
giving the set of actions that it can perform. Each action can have preconditions
to its application and cause some effects. Given this view of actions, we can think
to the problem of reasoning as the act of building or of traversing a sequence
of transitions between states. A state is a set of fluents, i.e., properties whose
truth value can change over time. Such properties encode the information that
flows during the execution of the agent actions. In DyLOG we do not assume that
the value of each fluent in a state is known: it is possible to represent unknown
fluents and to reason about the execution of actions on incomplete states. We
introduced an epistemic operator Bi, to represent the beliefs an entity i has
about the world: Bif means that the fluent f is believed to be true by the entity
i, Bi¬f means that the fluent f is believed to be false. A fluent f is undefined,
ui(f), when both ¬Bif and ¬Bi¬f hold. Thus each fluent in a state can have
one of the three values: true, false or unknown.

In a DyLOG description of a service role (or policy) the interactions between
the service and its interlocutor(s) can be defined in terms of communicative
actions performed by the service (speech acts) and get-message actions. A speech
act is an atomic action of form performative(sender, receiver, content), where
performative is the kind of speech act (e.g. inform), sender and receiver are
the name of the interacting peers, while content is the piece of information
that is passed by its execution. The set of all performatives is supposed to be
shared by the two parties. Get-message actions allow to represent the reception
of information and to reason about the outcome of the speech acts performed
by the interlocutor. The range of possible incoming speech acts is supposed
to be finite: the interlocutor is supposed to use a performative out of a finite



and predefinite set to produce its answer within a choreographed interaction.
Capability requirements/capabilities in a service role/policy are represented as
(possibly communicative) atomic actions.

Complex behaviors can be specified in DyLOG by means of procedures, Prolog-
like clauses built upon the other kind of actions mentioned. We represent the
behavior of both roles and policies by DyLOG procedures 2. Intuitively, a role is
a procedure that combines speech acts, get-message acts, capability requirements
and procedure calls, and a policy is a procedure combining speech acts, get-
message acts, capabilities and procedure calls.

A role in a choreography can, therefore, be specified as a quadruple of the
form Rd = 〈SA,GA, CR,P〉, where:

1. SA is a set of speech acts, represented as:

performative(sender, receiver, l) causes {E1, . . . , En}
performative(sender, receiver, l) possible if {P1, . . . , Pt}

where Ei, and Pj are respectively: the fluents that are obtained as effect of
the speech act, and the precondition to the execution of the performative.

2. GA is a set of get-message actions, they are represented as: receive act(receiver,
sender, [l1, . . . , ln]) receives I, where I is a set of alternative speech act,
that can be received by the executor of receive act; each speech act in I has
an element in [l1, . . . , ln] as content.

3. CR is a set of capability requirements, they are modeled as atomic actions
and are represented as:

c causes {E1, . . . , Em}
c possible if {P1, . . . , Pt}

where c is the name of the required capability and the semantics of the clauses
is the same as above. We will use the functions Effs(c) = {E1, . . . , Em} and
Precs(c) = {P1, . . . , Pt} to return the effects and the preconditions of c. The
same functions apply also to speech acts.

4. P encodes the behavior for the role; it is represented as a collection of clauses
of the kind p0 is p1, . . . , pn (n ≥ 0), where p0 is the name of the procedure
and pi, i = 1, . . . , n, is either an atomic action, a get-message action, a
test action, or a procedure name (i.e. a procedure call). Procedures can be
recursive and are executed in a goal-directed way, similarly to standard logic
programs, and their definitions can be non-deterministic as in Prolog.

Policies are defined in a way that is analogous to role descriptions. Let C be
the set of capabilities of a peer, then, a policy is quadruple Pd = 〈SA,GA, C,P〉,
where SA, GA, and P are defined as above.

In DyLOG, it is possible to perform a form of reasoning known as temporal
projection, by means of existential queries of the form: Fs after p, where p is a
2 Since our focus is to study the preservation of global properties, we will assume that

the sets of terms used for representing speech acts and capabilities are the same in
the choreography and in the peer description.



policy name and Fs is a conjunction of fluents. Checking if a formula of this kind
holds corresponds to answering the query “Is there an execution trace of p that
leads to a state in which Fs is true?”. By execution trace we mean a sequence of
atomic actions, i.e. speech acts and capabilities (capability requirements). When
the answer is positive, such sequence is a plan to bring about Fs. This plan can
be conditional because whenever a get-message action is involved none of the
possible answers from the interlocutor can be excluded. In other words, we will
have a different execution branch for every option.

Let us consider a role description Rd = 〈SA,GA, CR,P〉. We can apply tem-
poral projection to P to find an execution trace, that makes a goal of interest
become true. Let us, then, consider a procedure p belonging to P, and denote
by G the DyLOG query: Fs after p, where Fs is the set of fluents that we want
to be true after the execution of p. Given a state S0, containing all the fluents
that we know as being true in the beginning, we will denote the fact that G is
successful in Rd by:

(〈SA,GA, CR,P〉, S0) ` G

The execution of the above query returns as a side-effect an execution trace σ
of p. The execution trace σ can either be linear, i.e. a terminating sequence
a1, . . . , an of atomic actions, or it can be conditional, when the procedure con-
tains get-message actions. Intuitively, by this mechanism it is possible to verify,
by reasoning about the choreography, if the role allows for an execution after
which a condition of interest holds.

A policy can be built from a role description by substituting capability re-
quirements with a set of capabilities of a peer that should play the role. If we
denote by C the capabilities of the peer, by CR the capability requirements,
and by θ the substitution [C/CR], the policy built from the role description
Rd = 〈SA,GA, CR,P〉 will be Pd = 〈SA,GA, C,Pθ〉. Given a policy description
Pd = 〈SA,GA, C,Pθ〉, a goal G = Fs after p, and an initial state S0, we can
verify if G is successful in Pd by:

(〈SA,GA, C,Pθ〉, S0) ` G

Intuitively, this allows to verify, by reasoning about the peer description, if the
policy allows for an execution that brings about the condition of interest.

4 Choreography-driven match

When the matching process is applied for selecting a capability that is part
of a role specification, the desire is that the selected capability preserves the
properties of the specification. Generally, the matchmaking process will result in
a set of alternative θi because each capability requirement has a set of matching
capabilities. The selected θ not only must satisfy the matching rules but it must
also be conservative, i.e. it must guarantee that those goals, that can be achieved
by reasoning on the role specification, will be achieved also after the substitution.
Then, the following implication must hold:



Definition 1 (Conservative substitution). Let 〈SA,GA, CR,P〉 be a role de-
scription, S0 the initial state, and G the goal of interest. Suppose that the fol-
lowing relation holds:

∃σ, θ = [C/CRσ], CRσ ⊆ CR s.t.
(〈SA,GA, CR,P〉, S0) ` G w.a. σ ⇒ (〈SA,GA, C,Pθ〉, S0) ` G w.a. σθ

where σ is an execution trace which makes the goal true when reasoning at the
level of the choreography, and θ is a substitution CRσ → C, where CRσ ⊆ CR,
CRσ = {cr ∈ CR | cr occurs in σ}. In this case, the substitution θ is conserva-
tive.

Notice that we are interested in a substitution θ that involves only the capability
requirements contained in the execution trace σ, which is, therefore, used to
select the requirements to be matched. The substitution θ is obtained by applying
one of the matching rules, described in Section 2, that we here rephrase as follows
(c represents a single capability and cr a single capability requirement):

– EM (Exact Pre/Post Match): Precs(cr) = Precs(c) ∧ Effs(cr) = Effs(c)
– PIM (Plugin Match): Precs(cr) ⊇ Precs(c) ∧ Effs(c) ⊇ Effs(cr)
– POM (Plugin Post Match): Effs(c) ⊇ Effs(cr)
– GPIM (Guarded Plugin Match): Precs(cr) ⊇ Precs(c)∧((Precs(c)∪Effs(c)) ⊇

Effs(cr))
– GPOM (Guarded Post Match): ((Precs(c) ∪ Effs(c)) ⊇ Effs(cr))

For short, we will respectively denote by θEM , θPIM , θPOM , θGPIM , θGPOM , the
substitutions obtained by applying the five degrees of match. For simplicity we
will call a substitution obtained by applying the plugin match a PIM substitu-
tion, the one obtained by applying Exact Pre/Post match an EM substitution,
and so on for the other kinds. It is immediate to see that any substitution,
obtained by applying the exact pre/post match, satisfies Definition 1. In other
words, the local constraints are sufficient to guarantee the property (see Fig. 1).
However this is not true for the other kinds of match.

Theorem 1. The class of PIM, POM, GPIM and GPOM substitutions are not
conservative.

Proof. The proof is given by a counterexample. Let us consider a role description
Rd = 〈SA,GA, CR,P〉, where P = {p is cr1, a}, SA = {a}, GA is empty, and
the capability requirement cr1 in CR and the speech act a in SA are described
by 3:

cr1 causes {Bl1} a causes {Bl2}
cr1 possible if true a possible if {Bl1,Bl3}

Assuming as goal G = Bl2 after p, where the initial state contains Bl3 while all
the other fluents are unknown, the reasoning process will generate the execution
trace σ = cr1; a for achieving G. If we consider the set of capabilities C = {c1}:
3 For the sake of readability, we will omit the indexing of modal operator B when the

entity that owns the belief is clear from the context.



c1 causes {Bl1,B¬l3}
c1 possible if true

By applying the substitution θ = {[c1/cr1]} we obtain the new policy Pθ =
{p is c1, a}. However, by using this policy, the query (〈SA, GA, C,PθPIM 〉, S0) `
G does not succeed: in fact, the additional effect B¬l3 of the capability c1 inhibits
the executability of the speech act a. On the other hand, it is easy to check that
θ is an instance of all the kinds of substitutions that we have listed, i.e. it is a
PIM substitution as well as a POM, a GPIM and a GPOM substitution. ¤

This example witnesses that working at the level of the local constraints is
not sufficient. Our claim is that, in general, in order for a substitution to be
conservative, it must take into account not only the local aspects but also the
overall structure, encoded by the choreography. The locality of the matches used
in the matchmaking phase, indeed, seriously limits the possibility of re-using
software (services) by selecting and composing it in an automatic way.

Let us now focus on the plug-in match (PIM), which is one of the most used
and which immediately follows the exact match in the lattice (therefore it is the
strongest of the flexible matches). We show that, by introducing appropriate con-
straints at the level of the choreography, it is possible to guarantee the selection
of conservative substitutions. To this aim, we take into account the dependencies
between actions, which produce as effects fluents, that are used as preconditions
by subsequent action. Intuitively, the idea is to verify that the “causal chain”
which allows the execution of the sequence of actions, is not broken by the dif-
ferences between capabilities and capability requirements, as instead happens in
the example. The obvious hypothesis is that we have a choreography and that we
know that it allows to achieve the goal of interest, i.e. that there is an execution
σ of the role specification, which allows the achievement of the goal. We will use
this trace for defining the additional properties for the match.

Let us start by introducing the notions that define dependencies between ac-
tions and dependency sets for fluents. Consider a role description Rd = 〈SA,GA,
CR,P〉 and suppose that, given the initial state S0, the goal G = Fs after p
succeeds, thus obtaining as answer the successful sequence of actions σ = a1; a2;
. . . ; an, which is an execution trace of p.4 We denote by σ the sequence of actions
a0; a1; a2; . . . ; an; an+1, where a0 and an+1 are two fictitious actions that will be
used respectively to represent the initial state S0 and the set of fluents Fs, which
must hold after σ. That is, we assume a0 has no precondition and Effs(a0) = S0,
and that an+1 has no effect but Precs(an+1) = Fs.

Consider two indexes i and j, such that j < i, i, j = 0, . . . , n + 1. We say
that in σ the action ai depends on aj for the fluent Bl, written aj Ã〈Bl,σ〉 ai,
iff Bl ∈ Effs(aj), Bl ∈ Precs(ai), and there is not a k, j < k < i, such that
Bl ∈ Effs(ak). Given a fluent Bl and a sequence of actions σ, we can, therefore,
define the dependency set of Bl as Deps(Bl, σ) = {(j, i) | aj Ã〈Bl,σ〉 ai}.

Let [c/cr] be a specific substitution of a capability requirement with a ca-
pability, that is contained in θPIM , we say that a fluent Bl ∈ Effs(c) − Effs(cr)
4 In the following we focus on linear plans. Conditional plans can be tackled by con-

sidering each path separately.



(i.e. an additional effect of the capability c w.r.t. the effects of the capability
requirement cr) is an uninfluential fluent w.r.t. the sequence σθPIM iff for all
pairs (j, i) ∈ Deps(B¬l, σ), identifying by k the position of cr in σ, we have that
k < j or i ≤ k, Intuitively, this means that the fluent will not break any depen-
dency between the actions which involve the inverse fluent because either it will
be overwritten or it will appear after its inverse has already been used. Note that
σ and σθPIM have the same length and are identical as sequences of actions but
for the fact that in the latter capabilities substitute capability requirements. For
this reason, we can reduce to reasoning on σ for what concerns the action posi-
tions. A substitution θPIM is called uninfluential iff for any substitution [c/cr]
in θPIM , all beliefs in Effs(c)−Effs(cr) are uninfluential fluents w.r.t. σ. Now we
are in position to prove that a substitution which exploits the plugin match and
which is also uninfluential, is conservative.

Theorem 2. Let G be a goal and let Rd = 〈SA,GA, CR,P〉 a role description.
If (〈SA,GA, CR,P〉, S0) ` G w.a. σ and there is an uninfluential substitution
θPIM = [C/CRσ], CRσ ⊆ CR then (〈SA,GA, C,PθPIM 〉, S0) ` G w.a. σθPIM .

Proof. The proof is by absurd and it uses the proof theory introduced in [4]. Let
us assume that (〈SA,GA, CR,P〉, S0) ` G w.a. σ but (〈SA,GA, C,PθPIM 〉, S0) 6`
G w.a. σθPIM . Since, by hypothesis, for any substitution [c/cr] in θPIM , Effs(c) ⊆
Effs(cr) holds, there exists a fluent F such that a0, a1, . . . , ai−1 ` F but (a0, a1, . . . ,
ai−1)θPIM 6` F , where σ = a0, a1, . . . , ai−1, ai, . . . , an and F ∈ Precs(ai). Now,
since a0, a1, . . . , ai−1 ` F , there exists j ≤ i − 1, such that a0, a1, . . . , aj ` F
and F ∈ Effs(aj) but (a0, a1, . . . , aj)θPIM 6` F , that is F 6∈ Effs(ajθPIM ). This
is absurd due to the hypothesis that θPIM is an uninfluential substitution. ¤

The verification that a substitution is uninfluential involves the derivation σ,
and it is based on checking whether the chains of dependencies between actions
for the various fluents are not interrupted by some opposite fluent. Obviously,
if the domain is such that no fluent, once asserted, can be negated, any θPIM

will be conservative. This can be verified statically on the choreography and
the set of capabilities, by checking that every fluent (that appears as effect of
some action) is always positive or negative, including the initial state and the
goal in the verification. Indeed, the application domains in which actions produce
knowledge are of this kind. One example is given by e-learning applications where
the capabilities supply knowledge elements that are either supplied or used as
prerequisites.

5 Conclusions and related works

In this work we have studied the relation between the matchmaking and the
achievement of a goal in a choreography. We have proved that local matches
(but the exact match) do not preserve the goal when capabilities are substituted
to capability requirements. It is necessary to introduce a verification that in-
volves the choreography definition. We argue that the more relaxed are the local



matches, the stricter must be the the global verification. As an example, we have
presented the integrated approach in the case for the plugin match. Notice that
the goals that we consider are existential, i.e. they allow to verify the existence
of an execution trace with given properties. We do not consider universal prop-
erties, e.g. “never a server ends with an incorrect state”, which are of greater
interest when designing a system. For lack of space we cannot include a complete
example in this paper. Examples of the use of DyLOG can be found in [2], while
examples of capability requirement substitutions will soon appear in [18].

The matches proposed in [21] have inspired most of the semantic matches for
web service discovery. Amongst them, Paolucci et al. [16] propose four degrees of
match (exact, plugin, subsumes, and fail) that are computed on the ontological
relations of the outputs of an advertisement for a service and a query.

WSMO (Web Service Modeling Ontology) [7] is an organizational framework
for semantic web services. As such, it does not suggest a specific matching rule,
which is up to the specific implementations. However, the authors propose in [11]
an approach that is based on [21] and on [13], which, in turn, is based upon [16].
More recently, a WSMO matchmaker has been proposed in [10], which combines
several aspects: type matching, relation matching, constraint matching, param-
eter matching, intentional matching. Last but not least, in [14] a multi-level
evaluation model is proposed, for deciding whether two services are composable.
This is done through four levels of control (quality, dynamic semantics, static
semantics, and syntax). Dynamic semantics is the name given to the matches of
[21]. None of these approaches relates the matching with the possible context of
application of the sought services, even WSMO which, as a framework, includes
the possibility of composing orchestrations of services. On the other hand, so
far we have not yet tackled the integration of ontological reasoning in our work.
This is surely an interesting extension that we will face soon, given that all these
proposals as well as ours have the same kernel, and we expect similar results.

The idea of synthesizing a policy from an abstract specification (a choreog-
raphy) is also stated in [6], where it is observed that services are often conceived
so as to be delivered individually, while there is a growing need of reusing this
software, either by composing services or by tailoring a composition to some
specific client. In [19] a tool for service (activity in the paper) coordination
and evaluation, based on the MetaFrame open tool coordination environment,
is introduced. Differently than in our approach, there is no specification of a
choreography as we have used here but the desired behavior is given in terms of
global constraints. Temporal logic is used to express both the constraints and the
goal to achieve, enabling the automatic synthesis of a composition of activities.

Finally, works like [17, 5] propose approaches for goal-driven service composi-
tion based on planning. However, this task is accomplished without reference to
any choreography. In particular, in [17] the composition phase and the semantic
reasoning phase (carried on on inputs and outputs) are separated and the latter
is performed on a local basis only.



References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer, 2004.
2. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction

protocols for customizing web service selection and composition. JLAP, special
issue on Web Services and Formal Methods, 70(1):53–73, 2007.

3. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Reasoning
on choreographies and capability requirements. International Journal of Business
Process Integration and Management, 2007. to appear.

4. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. AMAI, 41(2-4):207–257, 2004.

5. J. Bryson, D. Martin, S. McIlraith, and L. A. Stein. Agent-based composite services
in DAML-S: The behavior-oriented design of an intelligent semantic web. In Web
Intelligence. Springer, 2003.

6. F. Casati and M. C. Chien. Dynamic and adaptive composition of e-services.
Information Systems, 26:143–163, 2001.

7. Dieter Fensel, Holger Lausen, Jos de Bruijn, Michael Stollberg, Dumitru Roman,
and Axel Polleres. Enabling Semantic Web Services : The Web Service Modeling
Ontology. Springer.

8. Susanne Graf and Bernhard Steffen. Compositional minimization of finite state
systems. In CAV, pages 186–196, 1990.

9. M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In Communication
in Multiagent Systems, LNAI 2650, pages 179–193. Springer, 2003.

10. F. Kaufer and M. Klusch. Wsmo-mx: A logic programming based hybrid service
matchmaker. In Proc. of ECOWS’06, pages 161–170. IEEE Comp. Soc., 2006.

11. U. Keller, R. Laraand A. Polleres, I. Toma, M. Kifer, and D. Fensel. D5.1 v0.1
wsmo web service discovery. Technical report, WSML deliverable, 2004.

12. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
logic programming language for logic domains. JLP, 31:59–83, 1997.

13. L. Li and I. Horrocks. A software framework for matchmaking based on semantic
technology. In Proc. of WWW Conference. ACM Press, 2003.

14. B. Medjahed and A. Bouguettaya. A multilevel composability model for semantic
web services. IEEE Trans. on KDE, 17(7):954–968, 2005.

15. B. Örrens, J. Yang, and M.P. Papazoglou. Model driven service composition. In
ICSOC 2003, 2003.

16. M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic matching of
web services capabilities. In Proc. of ISWC ’02, pages 333–347. Springer, 2002.

17. M. Pistore, L. Spalazzi, and P. Traverso. A minimalist approach to semantic
annotations for web processes compositions. In ESWC, pages 620–634, 2006.

18. C. Schifanella. Enhancing Interoperability with Capability Requirements. PhD the-
sis, Dip. Informatica, Università degli Studi di Torino, Italy, 2007. In preparation.

19. Bernhard Steffen, Tiziana Margaria, and Volker Braun. The electronic tool inte-
gration platform: Concepts and design. STTT, 1(1-2):9–30, 1997.

20. WS-CDL. http://www.w3.org/tr/ws-cdl-10/.
21. A. Moormann Zaremski and J. M. Wing. Specification matching of software com-

ponents. ACM Transactions on SEM, 6(4):333–369, 1997.


