
Preserving player’s goals: a choreography-driven
matchmaking approach

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, and Claudio Schifanella

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)
{baldoni,baroglio,mrt,patti,schi}@di.unito.it

Abstract—An agent interaction protocol, a service choreogra-
phy, can quite naturally be interpreted as an alliance of parties,
which cooperate to achieve a goal. On the other hand, each
participant entered the alliance moved by goals of its own, which
it would like to fulfill by playing one of the roles. The achievement
of the shared and of the specific goals depend both on the
interaction schema, that is captured by the choreography, and
on the participant’s capabilities, where by this word we mean
the skills of the participant, the actions that it can execute. We
show in this paper that the choice of which capabilities to use
cannot rely totally on local criteria, as instead it is commonly
done by the approaches to matchmaking, but it must take into
account the choreography/protocol. This happens whenever the
match is not exact, e.g. when plugin match is used. We also
describe an extended plugin match that takes into account also
the constraints given by the choreography for performing the
capability selection.

I. I NTRODUCTION

Web services have a platform-independent nature, that en-
deavors enterprises to develop new business processes by
combining existing services, retrieved over the web. Web
service composition is still much of a costly and manual
process, which is made more and more difficult by the growing
width of the space to search. Hence, the need of methods for
reducing the search space and for making compositions in
an automatic way. This direction has been suggested in [1],
where a UML specification of a business process was used
to abstract the description of a composition away from the
specification of the actually composed services. This abstract
specification defined amodel, used for driving the retrieval and
the composition task. The idea of capturing the overall schema
of interaction of a set of entities is exploited also in other
areas, like multi-agent systems. In this context, the role of the
abstract specification is played by the so-called “interaction
protocol” [2], while actions take the place of services..

Kolp, Giorgini, and Mylopoulos have investigated [3] the
possibility of using real world organizational structuresas
a metaphor for defining MAS architectures. The derived
architectures are evaluated w.r.t. a set of quality attributes,
amongst which predictability and adaptability. One of the
studied human organizational structures is “strategic alliance”.
A strategic alliance links specific facets of a group of organi-
zations and is defined with the purpose of achieving an overall,
shared goal. The organizations within the alliance, however,

remain independent and have control over the assigned tasks.
Each actor, however, has to reconcile and adjust its own
views with the policies of the organization. This is particularly
true in the case of “co-optation”, a special kind of strategic
alliance, in which the partners become part of a newly founded
organization, hence having, on the one hand, a commitment
on pursuing the alliance goals and interests, and, on the other
hand, their own and specific goals to reach.

Among the many quality attributes that the authors define,
the following are particularly interesting w.r.t. our work.

• Coordinability: agents are not really useful if they can-
not coordinate. Coordination is used to distribute exper-
tise, information, etc. among agents, which depend on
one another.Cooperativity is a form of coordination.
Cooperation is achieved either communicative or non-
communicative.

• Modularity: it increases the efficiency of task execution,
results in higher flexibility and reduces the communica-
tion overhead, although, on the other hand it constrains
inter-module communication.

• Predictability: agents have many degrees of freedom in
the way they undertake action, in their domains. The
capability of predicting the behaviour of the individuals
is important when we need to aggregate such individuals
in an organization.

It is quite natural, then, in the case of multi-agent systems
and of (web) services, to interpret an interaction protocol,
or a choreography, as the specification of an alliance (in
particular, a joint venture or a co-optation), because they
specify a coordination pattern based on communication. Roles
can be considered as modules that capture an activity within
the schema, constraining the interaction of the partners. The
fact that a partner takes a role in a choreography guarantees
that the partner will behave as expected (predictability of
the behavior). The choreography/protocol can be seen as an
alliance of independent partners. This alliance is aimed at
pursuing a goal, that is subscribed by all the participants,but
each partner has alsoits owngoals, that motivate its taking part
to the alliance. The achievement of the shared goal and of the
specific agent’s goal not only depends upon the choreography-
given schema of interaction but also on the skills that each

agent has, i.e. by each agent’s specificcapabilities. Indeed,
every agent has control over the ways for accomplishing the
assigned tasks. Thus, before an agent subscribes the alliance,
there is a need to check if its capabilities match with those that
are requested by a role, i.e. if its capabilities allow it to achieve
its goal in the context of the given choreography. It is implicit
that the choreography (the protocol) specify in some way
the necessary capabilities. In [4], we have shown that there
is the need of enriching the choreography specification by
introducing the concept ofcapability requirement. A capability
requirement expresses an operation that a peer should be able
to perform at some specific point of the choreography.

(Web) services share many facets with multi-agent systems
[5]. The introduction of the concept of “choreography” (andof
languages like WS-CDL [6]) has opened new perspectives on
the way an abstract specification of a system of services should
be described. Choreographies can be used to build policies that
some peer will execute. In order for a policy to be “playable”
by a peer, the peer must have the requested capabilities. For
instance, it must have some means for producing or retrieving
(e.g. by contacting a third service) a piece of information to
send. This approach can be extended by considering different
kinds of actions (e.g. communicative actions) or a different
granularity (e.g. agents, services, or other software compo-
nents). More in details, a role specification in a choreography
can be used to produce apolicy skeleton, which is to be com-
pleted bysubstitutingcapabilities to capability requirements,
so to make it executable. The substitution can be defined by
applying amatching processbetween the abstract specification
given by capability requirements and the available capabilities.
In general, it is unlikely to have capabilities that perfectly
match the requirements; the retrieval process will identify
capabilities whichslightly differ from the specification. If one
wants to use them anyway, rather than writing new software,
it is necessary to verify that the policy obtained after the
substitution still allows the achievement of the goal, which
is not granted anymore [4].

The task of retrieving capabilities that match given require-
ments is analogous to the task of service discovery. We can,
then, think to use the same techniques, e.g. [7], [8], [9], [10]. In
particular, in this work we focus on the matches proposed by
Zaremski and Wing in their seminal work [8], where various
kinds of relaxed match are proposed. We show that none of
the matches (but the so-called exact pre/post match) guarantee
that a synthesized policy, in which capabilities have been
selected according to them, will still allow to reach the goal
of interest. The reason is that they take into account only the
“local” information given by the capability requirement and do
not consider constraints posed by the choreography (“global”
constraints). We also show how to integrate theplugin match
in the context given by a choreography in such a way that the
goal is preserved by the substitution.

The article is organized as follows. In Section II we recall
the matches introduced in [8], and explain their relations with
a choreography and with the goals. Section III introduces a
simple representation for services and choreographies, that is

Fig. 1. The lattice of the different local matches: on top the strongest. Our
claim is that the local and global constraints are related; the stronger the local
match, the weaker the global constraints.

based on a declarative language. Section IV shows that the
local matches alone do not guarantee the preservation of the
goal, and it also shows how to integrate the plugin match
so to produce substitutions that preserve the goal. We will
introduce the notion ofconservative substitution. Conclusions
and related works end the paper.

II. CAPABILITY MATCH : LOCAL VS. GLOBAL PROPERTIES

We suppose, in the line of previous work [4], that chore-
ographies are enriched with additional descriptions of those
actions, that peers must be able to perform for playing roles
(capability requirements). Capability requirements are used
to select the specific capabilities that are necessary to build
an executable policy. As mentioned in the introduction, this
selection can be done by applying matching techniques that
are analogous to those used for service discovery. Zaremski
and Wing [8] propose a formal specification to describe the
behavior of software components. Each software component
has preconditionSpre and postconditionSpost written as
predicates in first-order logic. Requirements are coherently
specified as having preconditionRpre and postconditionRpost.
Five kinds of relaxed match betweenR andS are defined:

• EM (Exact Pre/Post Match): Rpre ⇔ Spre ∧ Rpost ⇔
Spost

• PIM (Plugin Match): Rpre ⇒ Spre ∧ Spost ⇒ Rpost

• POM (Plugin Post Match): Spost ⇒ Rpost

• GPIM (Guarded Plugin Match): Rpre ⇒ Spre ∧ ((Spre ∧
Spost) ⇒ Rpost)

• GPOM (Guarded Post Match): ((Spre ∧Spost) ⇒ Rpost)

Exact pre/post matchstates the equivalence ofR andS. Plugin
matchis weaker:S must only be behaviorally equivalent toR
when plugged-in to replaceR. Plugin post matchrelaxes the
former: only the postcondition is considered.Guarded matches
focus on guaranteeing that the desired postcondition holds
when the precondition ofS holds, not necessarily in general.
The different matches can be organized according to a lattice
[8], that we have reported in Fig. 1.

In our application domain,R will be a capability require-
ment, whileS will be a capability. Capability requirements

are contextualized in some choreography. Capabilities are
specific software components and depend on the player of a
choreography role: they are matched against requirements in
the process of checking if a player can play a certain role, by
selecting –at the same time– its right capabilities. In general,
since the final aim is software reuse, it will be quite difficult
to retrieve an exact match for a capability requirement. More
likely (and more interesting) is the case when one of the other
four degrees of match hold.

All these matches have been defined for the retrieval of
single components, and have alocal nature, i.e. they compare
a requirement to a software specification (in our case, a
capability) independently of the context of usage (in our
work, the service choreography). In other words, the software
specification must respect some constraints. Relaxing the exact
match means relaxing these “local constraints” (see Fig. 1). On
the other hand, a choreography defines theglobal execution
context, in which capability requirements are immersed. Intu-
itively, the selection of a capability (for replacing a capability
requirement) shouldpreservethose properties of the chore-
ography that motivated its choice, in particular, thegoal for
which it was chosen. In the case of theexact match, the whole
verification is donelocally. Due to the fact that it is a kind
of equivalence, matching exactly a requirement is a sufficient
condition to preserve the goal. As we will see in Section IV,
the other kinds of match do not give this guarantee. It becomes,
therefore, necessary toadd some constraintsby using the
available source of global information: the choreography.

Our claim (see Fig. 1) is that the more relaxed is the local
match, the stronger should be the compensation supplied at
the global level. The extreme is given by the bottom of the
lattice: the match that returns alwaystrue. In this case, the
choice of the capabilities could be performed, for instance,
by randomly choosing capabilities and by substituting the to
the requirements while simulating the execution of the policy.
When the goal is not verified by the current choice, aback-
tracking mechanism allows the revision. The whole process
relies on the choreography. Checking global constraints can
be expensive but it is possible to reduce the costs by limiting
the attention to those capability requirements which belong to
the execution traces, which actually allow to achieve the goal.

III. R EASONING ABOUT CAPABILITIES

For what concerns the representation of choreographies
and specific peers, in order to abstract from the specific
language (e.g. WS-CDL, WSDL) and from the details of the
implementation, we adopt adeclarative representation and
focus on the study of the properties of interest.

Each choreography is made of a set ofinteracting roles. It
can be described as a set of subjective views of the interaction
that is encoded, each corresponding to one of the roles. We call
the implementation of each role apolicy. We will represent
both roles and policies by means of thedeclarative language
DyLOG [11], by interpreting interactions among services,
capabilities and capability requirements asactions, and by

using reasoning about actionsfor making predictions about
the effects of role and policies executions.

DyLOG has been developed as a language for programming
agents and is based on a logical theory for reasoning about
actions and change in a modal logic programming setting.
DyLOG is equipped with a communication kit for dealing with
interactions, and has already been used for customizing Web
service composition [12]. An agent’s behavior is describedin
a non-deterministic way by giving the set of actions that it can
perform. Each action can have preconditions to its application
and cause some effects. Given this view of actions, we can
think to the problem of reasoning as the act of building or of
traversing a sequence of transitions betweenstates. A state is
a set offluents, i.e., properties whose truth value can change
over time. Such properties encode the information that flows
during the execution of the agent actions. InDyLOG we do
not assume that the value of each fluent in a state is known: it
is possible to represent unknown fluents and to reason about
the execution of actions on incomplete states. We introduced
an epistemic operatorBi, to represent the beliefs that an entity
i has about the world:Bif means that the fluentf is believed
to be true by the entityi, Bi¬f means that the fluentf is
believed to be false. A fluentf is undefined,ui(f), when
both ¬Bif and¬Bi¬f hold. Thus each fluent in a state can
have one of the three values:true, falseor unknown.

In a DyLOG description of a service role (or policy) the
interactions between the service and its interlocutor(s) can
be defined in terms of communicative actions performed by
the service (speech acts) and get-message actions. A speech
act is an atomic action of formperformative(sender, receiver,
content), whereperformativeis the kind of speech act (e.g.
inform), senderand receiverare the name of the interacting
peers, whilecontent is a fluent literal representing the piece
of information that is passed by its execution. The set of all
performatives is supposed to beshared by the two parties. Get-
messageactions allow to represent the reception of information
and to reason about the outcome of the speech acts performed
by the interlocutor. The range of possible incoming speech
acts is supposed to be finite: the interlocutor is supposed
to use a performative out of a finite and predefinite set
to produce its answer within a choreographed interaction.
Capability requirements/capabilities in a service role/policy
are represented as (possibly communicative) atomic actions.

Complex behaviors can be specified inDyLOG by means
of procedures, Prolog-like clauses built upon the other kind of
actions mentioned. We represent the behavior of bothrolesand
policiesby DyLOG procedures1. Intuitively, a role is a pro-
cedure that combines speech acts, get-message acts,capability
requirementsand procedure calls, and apolicy is a procedure
combining speech acts, get-message acts,capabilities and
procedure calls.

A role in a choreography can, therefore, be specified as a
quadruple of the formRd = 〈SA,GA, CR,P〉, where:

1Since our focus is to study the preservation of global properties, we will
assume that the sets of terms used for representing speech actsand capabilities
are the same in the choreography and in the peer description.

1) SA is a set ofspeech acts, represented as2:

performative(sender, receiver, l)
causes {E1, . . . , En}

performative(sender, receiver, l)
possible if {P1, . . . , Pt}

whereEi, andPj are respectively: the fluents that are
obtained as effect of the speech act, and the precondition
to the execution of the performative.

2) GA is a set of get-message actions, they
are represented as: receive act(receiver,
sender, [l1, . . . , ln]) receives I, where I is a
set of alternative speech act, that can be received by
the executor ofreceive act; each speech act inI has
an element in[l1, . . . , ln] as content.

3) CR is a set of capability requirements, they are modeled
as atomic actions and are represented as:

c causes {E1, . . . , Em}
c possible if {P1, . . . , Pt}

where c is the name of the required capability and
the semantics of the clauses is the same as above. We
will use the functionsEffs(c) = {E1, . . . , Em} and
Precs(c) = {P1, . . . , Pt} to return the effects and the
preconditions ofc. The same functions apply also to
speech acts.

4) P encodes the behavior for the role; it is represented as a
collection of clauses of the kindp0 is p1, . . . , pn (n ≥
0), where p0 is the name of the procedure andpi,
i = 1, . . . , n, is either an atomic action, aget-message
action, a test action, or a procedure name (i.e. a proce-
dure call). Procedures can be recursive and are executed
in a goal-directed way, similarly to standard logic pro-
grams, and their definitions can be non-deterministic as
in Prolog.

Policies are defined in a way that is analogous to role
descriptions. LetC be the set of capabilities of a peer, then, a
policy is quadruplePd = 〈SA,GA, C,P〉, whereSA, GA, and
P are defined as above.

Example 1:As an example, let us introduce a choreography
(enriched with capability requirements) that rules a simple
room reservation protocol with two roles: thebuyer wants to
book a room at the hotel managed by theseller. Figure 2
depicts the interaction between the two roles: first the buyer
sends to the seller the date for the room reservation; then, the
seller must have the capability of performing areserveRoom
action, and inform the buyer about the room price. The buyer
checks the price, by performing anevaluatePriceaction. Then,
it informs the seller about the results of this evaluation: it can
either decide to refuse the offer and conclude the interaction or
it can inform the seller about the desired payment mode (cash
or credit card). At this point, the seller must have the capability

2In DyLOG the semantics of speech acts is inspired to the standard
semantics of FIPA Communicative Acts [13]. Therefore speech acts are
characterized in terms of (a) feasibility preconditions denoting the ability of
the speaker to perform the act and (b) the desired and rational perlocutionary
effectsof the utterance. See [11] for more details.

Fig. 2. The Room Reservation Protocol, represented by means of UML
sequence diagrams, and enriched with capability requirements (oval elements).

of performing thepaymentaction, and finalize the business
transaction. Finally it notifies the buyer the reservation and
transaction numbers.

Let us focus on theseller role description3 Rseller =
〈SA,GA, CR,P〉, whereP = {booking, finalize reservation},
SA = {inform(s, b, price), inform(s, b, resNum), inform(s
, b, transNum)}, GA = {receive date(s, b, date),
receive evaluation(s, b, [no business, cash, cc])},
CR = {reserve roomCR, paymentCR}. The procedures
in P are described by the following clauses:

booking is receive date(s, b, date),
reserve roomCR, inform(s, b, price),
receive evaluation(s, b, [no business, cash, cc]),
finalize reservation

finalize reservation is Bno business?
finalize reservation is paymentCR, inform(s, b, resNum),

inform(s, b, transNum)
The get message actions inGA are described by:

receive date(s, b, date) receives [inform(b, s, date)]
receive evaluation(s, b, [no business, cash, cc])

receives [inform(b, s, no business) or

inform(b, s, cash) or inform(b, s, cc)]
The capability requirements inCR:

reserve roomCR causes {Bprice}
reserve roomCR possible if {Bdate}
paymentCR causes {BtransNum,BresNum}
paymentCR possible if {BPcashSupported,

BPccSupported}
Finally, the semantics of theinform(sender, receiver, l) ac-
tions inSA andGA is given by the rules (for more details see
[12]):

inform(s, b, l) possible if {Bsl}
inform(s, b, l) causes {}
inform(b, s, l) possible if {}

3In the following examples all the beliefs refer to the seller mental state,
thus, for sake of readability we will omit to index the modal operatorB.

inform(b, s, l) causes {Bsl}
Intuitively, the first two clauses state that I (the seller) can
execute an inform act only if I believel; the execution of
the action will modify the interlocutor’s mental state, while
do not have any effects on my mental state. The last two
clauses describe what happen in my mental state when I am
the receiver of the information. In this case, since I am not the
actor, the action of informing is consideredalwaysexecutable;
moreover I will adoptl as my own belief.�

In DyLOG, it is possible to perform a form of reasoning
known astemporal projection, by means ofexistentialqueries
of the form: Fs after p, where p is a policy name and
Fs is a conjunction of fluents. Checking if a formula of this
kind holds corresponds to answering the query “Is there an
execution trace ofp that leads to a state in whichFs is true?”.
By execution trace we mean a sequence of atomic actions, i.e.
speech acts and capabilities (capability requirements). When
the answer is positive, such sequence is a plan to bring about
Fs. This plan can beconditional because whenever aget-
messageaction is involved none of the possible answers from
the interlocutor can be excluded. In other words, we will have
a different execution branch for every option.

Let us consider a role descriptionRd = 〈SA,GA, CR,P〉.
We can apply temporal projection toP to find an execution
trace, that makes a goal of interest become true. Let us, then,
consider a procedurep belonging toP, and denote byG the
DyLOG query: Fs after p, whereFs is the set of fluents
that we want to be true after the execution ofp. Given a state
S0, containing all the fluents that we know as being true in
the beginning, we will denote the fact thatG is successful in
Rd by:

(〈SA,GA, CR,P〉, S0) ⊢ G

The execution of the above query returns as a side-effect anex-
ecution traceσ of p. The execution traceσ can either belinear,
i.e. a terminating sequencea1, . . . , an of atomic actions, or it
can beconditional, when the procedure contains get-message
actions. Intuitively, by this mechanism it is possible to verify,
by reasoning about the choreography, if the role allows for an
execution after which a condition of interest holds.

Example 2: In the context of the Example 1, let us consider
the goal:

G = {BtransNum,BresNum} after booking

where the initial state S0 contains the fluents
{BPcashSupported, BPccSupported}, while all the
other fluents are unknown. There are two possible execution
traces that lead to a state whereG holds, hereafter we report
one of them:

σ = inform(b, s, date); reserve roomCR;
inform(s, b, price); inform(b, s, cc); paymentCR;
inform(s, b, resNum); inform(s, b, transNum).
�

A policy can be built from arole descriptionby substituting
capability requirements with a set of capabilities of a peer
that should play the role. If we denote byC the capabilities

of the peer, byCR the capability requirements, and byθ the
substitution[C/CR], the policy built from the role description
Rd = 〈SA,GA, CR,P〉 will be Pd = 〈SA,GA, C,Pθ〉.
Given a policy descriptionPd = 〈SA,GA, C,Pθ〉, a goal
G = Fs after p, and an initial stateS0, we can verify
if G is successful inPd by:

(〈SA,GA, C,Pθ〉, S0) ⊢ G

Intuitively, this allows to verify, by reasoning about the peer
description, if the policy allows for an execution that brings
about the condition of interest.

IV. CHOREOGRAPHY-DRIVEN MATCH

When the matching process is applied for selecting a
capability that is part of a role specification, the desire is
that the selected capability preserves the properties of the
specification. Generally, the matchmaking process will result
in a set of alternativeθi because each capability requirement
has a set of matching capabilities. The selectedθ not only must
satisfy the matching rules but it must also beconservative, i.e.
it must guarantee that thosegoals, that can be achieved by
reasoning on therole specification, will be achieved also after
the substitution. Then, the following implication must hold:

Definition 1 (Conservative substitution):Let
〈SA,GA, CR,P〉 be a role description,S0 the initial
state, andG the goal of interest. Suppose that the following
relation holds:

∃σ, θ = [C/CRσ], CRσ ⊆ CR s.t.
(〈SA,GA, CR,P〉, S0) ⊢ G w.a. σ ⇒

(〈SA,GA, C,Pθ〉, S0) ⊢ G w.a. σθ
where σ is an execution trace which makes the goal true
when reasoning at the level of the choreography, andθ is a
substitutionCRσ → C, whereCRσ ⊆ CR, CRσ = {cr ∈
CR | cr occurs inσ}. In this case, the substitutionθ is
conservative.
Notice that we are interested in a substitutionθ that involves
only the capability requirements contained in the execution
traceσ, which is, therefore, used to select the requirements to
be matched. The substitutionθ is obtained by applying one
of the matching rules, described in Section II, that we here
rephrase as follows (c represents a single capability andcr a
single capability requirement):

• EM (Exact Pre/Post Match): Precs(cr) = Precs(c) ∧
Effs(cr) = Effs(c)

• PIM (Plugin Match): Precs(cr) ⊇ Precs(c) ∧ Effs(c) ⊇
Effs(cr)

• POM (Plugin Post Match): Effs(c) ⊇ Effs(cr)
• GPIM (Guarded Plugin Match): Precs(cr) ⊇ Precs(c) ∧

((Precs(c) ∪ Effs(c)) ⊇ Effs(cr))
• GPOM (Guarded Post Match): ((Precs(c) ∪ Effs(c)) ⊇

Effs(cr))

For short, we will respectively denote byθEM , θPIM , θPOM ,
θGPIM , θGPOM , the substitutions obtained by applying the
five degrees of match. For simplicity we will call a substitution
obtained by applying the plugin match a PIM substitution,
the one obtained by applying Exact Pre/Post match an EM

substitution, and so on for the other kinds. It is immediate
to see that any substitution, obtained by applying theexact
pre/post match, satisfies Definition 1. In other words, the local
constraints are sufficient to guarantee the property (see Fig. 1).
However this is not true for the other kinds of match.

Theorem 1:The class of PIM, POM, GPIM and GPOM
substitutions are not conservative.

Proof: The proof is given by a counterexample.
Let us consider a role descriptionRd = 〈SA,GA, CR,P〉,

whereP = {p is cr1, a}, SA = {a}, GA is empty, and the
capability requirementcr1 in CR and the speech acta in SA

are described by4:

cr1 causes {Bl1} a causes {Bl2}
cr1 possible if true a possible if {Bl1,Bl3}

Assuming as goalG = Bl2 after p, where the initial state
containsBl3 while all the other fluents are unknown, the rea-
soning process will generate the execution traceσ = cr1; a for
achievingG. If we consider the set of capabilitiesC = {c1}:

c1 causes {Bl1,B¬l3}
c1 possible if true

By applying the substitutionθ = {[c1/cr1]} we obtain the new
policy Pθ = {p is c1, a}. However, by using this policy,
the query(〈SA, GA, C,PθPIM 〉, S0) ⊢ G does not succeed: in
fact, the additional effectB¬l3 of the capabilityc1 inhibits the
executability of the speech acta. On the other hand, it is easy
to check thatθ is an instance of all the kinds of substitutions
that we have listed, i.e. it is a PIM substitution as well as a
POM substitution, a GPIM and a GPOM substitution.
This example witnesses that working at the level of the local
constraints is not sufficient. Our claim is that, in general,in
order for a substitution to be conservative, it must take into
account not only thelocal aspects but also theoverall struc-
ture, encoded by the choreography. The locality of the matches
used in the matchmaking phase, indeed, seriously limits the
possibility of re-using software (services) by selecting and
composing it in an automatic way.

Let us now focus on theplug-in match(PIM), which is one
of the most used and which immediately follows the exact
match in the lattice (therefore it is the strongest of the flexible
matches). We show that, by introducing appropriate constraints
at the level of the choreography, it is possible to guaranteethe
selection of conservative substitutions. To this aim, we take
into account thedependenciesbetween actions, which produce
as effects fluents, that are used as preconditions by subsequent
action. Intuitively, the idea is to verify that the “causal chain”
which allows the execution of the sequence of actions, is not
broken by the differences between capabilities and capability
requirements, as instead happens in the example. The obvious
hypothesis is that we have a choreography and that we know
that it allows to achieve the goal of interest, i.e. that there
is an executionσ of the role specification, which allows the

4In the following, for the sake of readability, we will omit theindexing of
the modal operatorB when it is clear that the beliefs belong to the same role.

achievement of the goal. We will use this trace for defining
the additional properties for the match.

Let us start by introducing the notions that define dependen-
cies between actions and dependency sets for fluents. Consider
a role descriptionRd = 〈SA,GA, CR,P〉 and suppose that,
given the initial stateS0, the goalG = Fs after p succeeds,
thus obtaining as answer the successful sequence of actions
σ = a1; a2; . . . ; an, which is an execution trace ofp.5 We
denote byσ the sequence of actionsa0; a1; a2; . . . ; an; an+1,
wherea0 andan+1 are twofictitious actions that will be used
respectively to represent the initial stateS0 and the set of
fluentsFs, which must hold afterσ. That is, we assumea0

has no precondition andEffs(a0) = S0, and thatan+1 has no
effect butPrecs(an+1) = Fs.

Consider two indexesi and j, such thatj < i, i, j =
0, . . . , n + 1. We say thatin σ the actionai depends onaj

for the fluentBl, written aj 〈Bl,σ〉 ai, iff Bl ∈ Effs(aj),
Bl ∈ Precs(ai), and there is not ak, j < k < i, such
that Bl ∈ Effs(ak). Given a fluentBl and a sequence of
actionsσ, we can, therefore, define thedependency setof Bl
asDeps(Bl, σ) = {(j, i) | aj 〈Bl,σ〉 ai}.

Let [c/cr] be a specific substitution of a capability require-
ment with a capability, that is contained inθPIM , we say that
a fluentBl ∈ Effs(c) − Effs(cr) (i.e. an additional effect of
the capabilityc w.r.t. the effects of the capability requirement
cr) is anuninfluential fluentw.r.t. the sequenceσθPIM iff for
all pairs (j, i) ∈ Deps(B¬l, σ), identifying by k the position
of cr in σ, we have thatk < j or i ≤ k, Intuitively, this
means that the fluent will not break any dependency between
the actions which involve the inverse fluent because either
it will be overwritten or it will appear after its inverse has
already been used. Note thatσ and σθPIM have the same
length and are identical as sequences of actions but for the fact
that in the latter capabilities substitute capability requirements.
For this reason, we can reduce to reasoning onσ for what
concerns the action positions. A substitutionθPIM is called
uninfluentialiff for any substitution[c/cr] in θPIM , all beliefs
in Effs(c)−Effs(cr) are uninfluential fluents w.r.t.σ. Now we
are in position to prove that a substitution which exploits the
plugin matchand which is alsouninfluential, is conservative.

Theorem 2:Let G be a goal and letRd = 〈SA,GA, CR,P〉
a role description. If(〈SA,GA, CR,P〉, S0) ⊢ G w.a. σ and
there is an uninfluential substitutionθPIM = [C/CRσ],
CRσ ⊆ CR then(〈SA,GA, C,PθPIM 〉, S0) ⊢ G w.a. σθPIM .

Proof: The proof is by absurd and it uses
the proof theory introduced in [11]. Let us
assume that (〈SA,GA, CR,P〉, S0) ⊢ G w.a. σ but
(〈SA,GA, C,PθPIM 〉, S0) 6⊢ G w.a. σθPIM . Since,
by hypothesis, for any substitution[c/cr] in θPIM ,
Effs(c) ⊆ Effs(cr) holds, there exists a fluentF such
that a0, a1, . . . , ai−1 ⊢ F but (a0, a1, . . . , ai−1)θPIM 6⊢ F ,
where σ = a0, a1, . . . , ai−1, ai, . . . , an and F ∈ Precs(ai).
Now, sincea0, a1, . . . , ai−1 ⊢ F , there existsj ≤ i − 1,

5In this work we focus on linear plans. Conditional plans can be tackled
by considering each path separately.

such that a0, a1, . . . , aj ⊢ F and F ∈ Effs(aj) but
(a0, a1, . . . , aj)θPIM 6⊢ F , that is F 6∈ Effs(ajθPIM). This
is absurd due to the hypothesis thatθPIM is an uninfluential
substitution.

Example 3:Let us refer to the running example introduced
in Section III and let us consider the set of capabilitiesC =
{reserve roomC1, reserve roomC2, paymentC}:

reserve roomC1 causes {B¬PccSupported,Bprice}
reserve roomC1 possible if {Bdate}
reserve roomC2 causes {BfreeDinner,Bprice}
reserve roomC2 possible if {Bdate}
paymentC causes {BtransNum,BresNum}
paymentC possible if {BPcashSupported,

BPccSupported}

By choosing theplugin matchas matching rule, there are two
possible substitutions calledθ′PIM andθ′′PIM respectively:

θ′PIM = {[reserve roomC1/reserve roomCR],
[paymentC/ paymentCR]},

θ′′PIM = {[reserve roomC2/reserve roomCR],
[paymentC/ paymentCR]}.

While paymentC exactly matchespaymentCR, reserve roomC1

and reserve roomC2 slightly differ from the requirement. By
applying the substitutionθ′PIM we obtain the set of policies
Pθ′PIM :

booking is receive date(s, b, date), reserve roomC1,
inform(s, b, price), receive evaluation(s, b,
[no business, cash, cc]), finalize reservation

finalize reservation is Bno business?
finalize reservation is paymentC, inform(s, b, resNum),

inform(s, b, transNum)

Differently than in Example 2, by using the resulting policies,
the query(〈SA, GA, C,Pθ′PIM 〉, S0) ⊢ G does not succeed: in
fact, the additional effectB¬PccSupported of the capability
reserve roomC1 inhibits the executability of the capability
paymentC. On the other hand, we observe that the application
of the other substitutionθ′′PIM , provides the agent with a
set of policies (Pθ′′PIM) that allows to satisfy the query
(〈SA, GA, C,Pθ′PIM 〉, S0) ⊢ G. Thus, θ′′PIM represents an
uninfluential substitution. �

The verification that a substitution is uninfluential involves
the derivationσ, and it is based on checking whether the
chains of dependencies between actions for the various fluents
are not interrupted by some opposite fluent. Obviously, if
the domain is such that no fluent, once asserted, can be
negated, anyθPIM will be conservative. This can be verified
statically on the choreography and the set of capabilities,by
checking that every fluent (that appears as effect of some
action) is always positive or negative, including the initial
state and the goal in the verification. Indeed, the application
domains in which actions produceknowledgeare of this kind.
One example is given by e-learning applications where the
capabilities supply knowledge elements that are either supplied
or used as prerequisites.

V. CONCLUSIONS AND RELATED WORKS

In this work we have studied the relation between the match-
making and the achievement of a goal in an interaction ruled
by a choreography. We have proved that local matches (but
the exact match) do not preserve the goal when capabilities
are substituted to capability requirements. It is necessary to
introduce a verification that involves the choreography defini-
tion. We argue that the more relaxed are the local matches,
the stricter must be the the global verification. As an example,
we have presented the integrated approach in the case for the
plugin match.

In the agent framework, the adoption of an interaction policy
has been proposed in CooBDI and Coo-AgentSpeak [14], [15].
These works extend the BDI (Belief, Desire, Intention) model
in such a way that agents are enabled to exchange plans.
This mechanism is activated when the agent cannot find a
plan, for pursuing a goal of interest, by just exploiting its
own capabilities. The ideas behind the CooBDI theory have
been implemented by means of web services technologies,
leading [16] to the development of CooWS agents. Another
recent work is the one by [17]. Here, in the setting of the
DALI language, agents can cooperate by exchanging sets
of rule that can either define a procedure, or constitute a
module for coping with some situation, or be just a segment
of a knowledge base. Agents have reasoning techniques that
enable them to evaluate how useful the new knowledge is.
Nevertheless, these techniques cannot be directly imported in
the context of service-oriented computing. The reason is that,
while in agent systems it is not a problem to discover during
the interaction that an agent does not own all the necessary
actions, in service composition it is necessary that all theactors
are known before the interaction takes place.

In [18] (inspired by JACK [19] and extended in [20]), the
term “capability” is used for identifying the “ability to react
rationally towards achieving a particular goal” in the BDI
framework. An agent has the capability to achieve a goal if its
plan library contains a plan for reaching the goal. Therefore, an
agent’s goals and intentions are constrained to be compatible
with its capabilities.

For what concerns (web) services and matchmaking, it
is not easy to be exhaustive. The matches proposed in [8]
have inspired most of the semantic matches for web service
discovery. Amongst them, Paolucci et al. [9] propose four
degrees of match (exact, plugin, subsumes, and fail) that are
computed on the ontological relations of the outputs of an
advertisement for a service and a query.

WSMO (Web Service Modeling Ontology) [10] is an orga-
nizational framework for semantic web services. As such, it
does not suggest a specific matching rule, which is up to the
specific implementations. However, the authors propose in [21]
an approach that is based on [8] and on [22], which, in turn,
is based upon [9]. More recently, a WSMO matchmaker has
been proposed in [23], which combines several aspects: type
matching, relation matching, constraint matching, parameter
matching, intentional matching. Last but not least, in [7] a

multi-level evaluation model is proposed, for deciding whether
two services are composable. This is done through four levels
of control (quality, dynamic semantics, static semantics,and
syntax). Dynamic semantics is the name given to the matches
of [8]. None of these approaches relates the matching with
the possible context of application of the sought services,
even WSMO which, as a framework, includes the possibility
of composing orchestrations of services. On the other hand,
so far we have not yet tackled the integration of ontological
reasoning in our work. This is surely an interesting extension
that we will face soon, given that all these proposals as well
as ours have the same kernel, and we expect similar results.

The idea of synthesizing a policy from an abstract spec-
ification (a choreography) is also stated in [24], where it
is observed that services are often conceived so as to be
delivered individually, while there is a growing need of reusing
this software, either by composing services or by tailoring
a composition to some specific client. In [25] a tool for
service (activity in the paper) coordination and evaluation is
introduced, based on the MetaFrame open tool coordination
environment. Differently than in our approach, there is no
specification of a choreography as we have used here but
the desired behavior is given in terms of global constraints.
Temporal logic is used to express both the constraints and
the goal to achieve, enabling the automatic synthesis of a
composition of activities.

Finally, works like [26], [27] propose approaches for goal-
driven service composition based on planning. However, this
task is accomplished without reference to any choreography.
In particular, in [26] the composition phase and the semantic
reasoning phase (carried on on inputs and outputs) are sepa-
rated and the latter is performed on a local basis only.

ACKNOWLEDGMENT

This research has partially been funded by the European
Commission and by the Swiss Federal Office for Education
and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net), and it
has also been supported by MIUR PRIN 2005 “Specifica-
tion and verification of agent interaction protocols” national
project. Claudio Schifanella is partially supported by the
fellowship program “Fondazione CRT - Progetto Lagrange”
(cf. http://www.progettolagrange.it).

REFERENCES

[1] B. Örriens, J. Yang, and M. Papazoglou, “Model driven service compo-
sition,” in ICSOC 2003, 2003.

[2] M. P. Huget and J. Koning, “Interaction Protocol Engineering,” in
Communication in Multiagent Systems, ser. LNAI 2650. Springer, 2003,
pp. 179–193.

[3] M. Kolp, P. Giorgini, and J. Mylopoulos, “Multi-agent architectures as
organizational structures,”Autonomous Agents and Multi-Agent Systems,
vol. 13, no. 1, 2006.

[4] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “Rea-
soning on choreographies and capability requirements,”International
Journal of Business Process Integration and Management, 2007, to
appear.

[5] M. Singh and M. Huhns,Service-Oriented Computing: Semantics,
Processes, Agents. John Wiley and sons, Ltd., 2005.

[6] WS-CDL, “http://www.w3.org/tr/ws-cdl-10/.”

[7] B. Medjahed and A. Bouguettaya, “A multilevel composability model
for semantic web services,”IEEE Trans. on KDE, vol. 17, no. 7, pp.
954–968, 2005.

[8] A. M. Zaremski and J. M. Wing, “Specification matching of software
components,”ACM Transactions on SEM, vol. 6, no. 4, pp. 333–369,
1997.

[9] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic match-
ing of web services capabilities,” inProc. of ISWC ’02. Springer, 2002,
pp. 333–347.

[10] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman, and
A. Polleres,Enabling Semantic Web Services : The Web Service Mod-
eling Ontology. Springer.

[11] M. Baldoni, L. Giordano, A. Martelli, and V. Patti,
“Programming Rational Agents in a Modal Action Logic,”
AMAI, vol. 41, no. 2-4, pp. 207–257, 2004. [Online]. Available:
http://www.kluweronline.com/issn/1012-2443

[12] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
interaction protocols for customizing web service selection and com-
position,” JLAP, special issue on Web Services and Formal Methods,
vol. 70, no. 1, pp. 53–73, 2007.

[13] F. for Intelligent Physical Agents, “FIPA communica-
tive act library specification, 2002.” [Online]. Available:
http://www.fipa.org/repository/aclspecs.html

[14] D. Ancona and V. Mascardi, “Coo-BDI: Extending the BDI Model with
Cooperativity,” in Proc. of the 1st Declarative Agent Languages and
Technologies Workshop (DALT’03), Revised Selected and Invited Papers,
J. A. Leite, A. Omicini, L. Sterling, and P. Torroni, Eds. Springer, 2004,
pp. 109–134, lNAI 2990.

[15] D. Ancona, V. Mascardi, J. F. Ḧubner, and R. H. Bordini, “Coo-
AgentSpeak: Cooperation in AgentSpeak through Plan Exchange,” in
Proc. of AAMAS 2004. ACM press, 2004, pp. 698–705.

[16] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta, “CooWS:Adaptive
BDI agents meet service-oriented computing,” inProceedings of the Int.
Conference on WWW/Internet, 2005, pp. 205–209.

[17] A. T. S. Costantini, “Learning by knowledge exchange inlogical agents,”
in Proc. of WOA 2005: Dagli oggetti agli agenti, simulazione e analisi
formale di sistemi complessi, F. Corradini, F. De Paoli, E. Merelli, and
A. Omicini, Eds. Camerino, Italy: Pitagora Editrice Bologna,november
2005.

[18] L. Padgham and P. Lambrix, “Agent capabilities: Extending BDI
theory,” in AAAI/IAAI, 2000, pp. 68–73. [Online]. Available:
citeseer.ist.psu.edu/625805.html

[19] P. Busetta, N. Howden, R. Ronquist, and A. Hodgson, “Structuring bdi
agents in functional clusters,” inProc. of the 6th Int. Workshop on Agent
Theories, Architectures, and Languages (ATAL99), 1999.

[20] V. Padmanabhan, G. Governatori, and A. Sattar, “Actionsmade explicit
in BDI,” in Advances in Artificial Intelligence, ser. LNCS, no. 2256.
Springer, 2001, pp. 390–401.

[21] U. Keller, R. L. A. Polleres, I. Toma, M. Kifer, and D. Fensel, “D5.1 v0.1
wsmo web service discovery,” WSML deliverable, Tech. Rep., 2004.

[22] L. Li and I. Horrocks, “A software framework for matchmaking based
on semantic technology,” inProc. of WWW Conference. ACM Press,
2003.

[23] F. Kaufer and M. Klusch, “WSMO-MX: A logic programming based
hybrid service matchmaker,” inProc. of ECOWS’06. IEEE Computer
Society, 2006, pp. 161–170.

[24] F. Casati and M. Chien, “Dynamic and adaptive compositionof e-
services,”Information Systems, vol. 26, pp. 143–163, 2001.

[25] B. Steffen, T. Margaria, and V. Braun, “The electronic tool integration
platform: Concepts and design.”STTT, vol. 1, no. 1-2, pp. 9–30, 1997.

[26] M. Pistore, L. Spalazzi, and P. Traverso, “A minimalist approach to
semantic annotations for web processes compositions.” inESWC, 2006,
pp. 620–634.

[27] J. Bryson, D. Martin, S. McIlraith, and L. A. Stein, “Agent-based
composite services in DAML-S: The behavior-oriented designof an
intelligent semantic web,” inWeb Intelligence. Springer, 2003.

