
Matteo Baldoni, Antonio Boccalatte, Flavio De Paoli,
Maurizio Martelli, Viviana Mascardi (eds.)

Dagli Oggetti agli Agenti
Agenti e Industria:

Applicazioni tecnologiche degli agenti software

Ottava Edizione, WOA 2007
Genova, 24 e 25 Settembre 2007
Atti del Convegno

Seneca Edizioni, ISBN 978-88-6122-061-4

WOA 2007 Home Page:
http://woa07.disi.unige.it/

Prefazione

Il workshop “WOA dagli Oggetti agli Agenti” rappresenta da ormai otto anni
una consueta occasione di scambio di idee per tutti i ricercatori che operano
nell’ambito dei sistemi ad agenti.

La tecnologia ad agenti sta assumendo un ruolo centrale non solo nel settore
dell’intelligenza artificiale, ma anche in settori più tradizionali dell’informatica
quali l’ingegneria del software e i linguaggi di programmazione, dove il con-
cetto di agente viene considerato una naturale estensione di quello di oggetto.
L’importanza di tecniche orientate agli agenti è dimostrata anche in ambito
industriale dall’interesse per il loro utilizzo nella realizzazione di strumenti e
applicazioni in molteplici aree. L’edizione di WOA di quest’anno, patrocinata
dall’Associazione Italiana per l’Intelligenza Artificiale (AI*IA) e dall’Associazione
Italiana Tecnologie Avanzate Basate su concetti Orientati ad Oggetti (TABOO),
è infatti dedicata alle applicazioni delle tecnologie ad agenti in ambito industriale
ed alle possibilità future che l’industria vede dell’utilizzo degli agenti.

Questo volume contiene sedici articoli scelti dal Comitato di Programma per
essere presentati al workshop e quattro articoli che descrivono altrettanti pro-
totipi mostrati nella sessione demo. Il volume contiene anche l’articolo invitato di
Giovanni Rimassa, Whitestein Technologies AG, Svizzera, e Birgit Burmeister,
DaimlerChrysler AG, Germania, su un approccio alla gestione dei processi di
business che sfrutta la tecnologia ad agenti per ottenere un comportamento ag-
ile. Come di consueto il workshop sarà preceduto da una miniscuola per studenti
di dottorato e laureandi.

I contributi degli articoli coprono aree di ricerca estremamente attuali che
includono modelli logici per sistemi ad agenti, tecnologie ed approcci per il re-
cupero di risorse guidato dalla semantica, applicazioni di agenti e sistemi multi-
agente, agenti situati nell’ambiente, ruoli e fiducia tra agenti, agenti ed approcci
orientati ai servizi.

Il Comitato Scientifico Organizzatore ringrazia sentitamente tutti coloro che,
con il loro lavoro ed il loro entusiasmo, hanno contribuito al successo di questa
ottava edizione di WOA: i componenti del Comitato di Programma, il Dipar-
timento di Informatica, Sistemistica e Telematica (DIST) ed il Dipartimento
di Informatica e Scienze dell’Informazione (DISI) dell’Università degli Studi di
Genova, gli organizzatori locali, gli organizzatori della sessione demo e della mini-
scuola, gli sponsor e tutti collaboratori che hanno partecipato all’organizzazione.

10 Settembre 2007

Matteo Baldoni
Antonio Boccalatte

Flavio De Paoli
Maurizio Martelli
Viviana Mascardi

II

Comitato Scientifico Organizzatore

Matteo Baldoni, Università di Torino
Antonio Boccalatte, Università di Genova
Flavio De Paoli, Università di Milano - Bicocca
Maurizio Martelli, Università di Genova
Viviana Mascardi, Università di Genova

Organizzazione Sessione Demo

Alfredo Garro, Università della Calabria

Coordinatore Miniscuola

Matteo Baldoni, Università di Torino

Comitato Organizzatore Locale

Antonio Boccalatte, Università di Genova
Giovanni Casella, Università di Genova
Alberto Grosso, Università di Genova
Maurizio Martelli, Università di Genova
Viviana Mascardi, Università di Genova
Andrea Passadore, Università di Genova
Christian Vecchiola, Università di Genova

Comitato di Programma

Stefania Bandini, Università di Milano - Bicocca
Cristina Baroglio, Università di Torino
Pietro Baroni, Università di Brescia
Federico Bergenti, Università di Parma
Lorenzo Bettini, Università di Firenze
Enrico Blanzieri, Università di Trento
Paolo Bouquet, Università di Trento e IRST
Nadia Busi, Università di Bologna
Giacomo Cabri, Università di Modena e Reggio Emilia
Nicola Cannata, Università di Camerino
Massimo Cossentino, ICAR-CNR, Palermo

III

Francesco Donini, Università di Tuscia - Viterbo
Rino Falcone, ISTC-CNR, Roma
Giancarlo Fortino, Università della Calabria
Alfredo Garro, Università della Calabria
Laura Giordano, Università del Piemonte Orientale
Paolo Giorgini, Università di Trento
Letizia Leonardi, Università di Modena e Reggio Emilia
Marco Mamei, Università di Modena e Reggio Emilia
Sara Manzoni, Università di Milano - Bicocca
Rebecca Montanari, Università di Bologna
Massimo Paolucci, Università di Genova
Paola Quaglia, Università di Trento
Alessandro Ricci, Università di Bologna - Cesena
Giovanni Rimassa, Whitestein Tech, Zurich, Svizzera
Corrado Santoro, Università di Catania
Carla Simone, Università di Milano - Bicocca
Emilio Tuosto, University of Leicester, Regno Unito
Eloisa Vargiu, Università di Cagliari
Mario Verdicchio, Universit di Bergamo
Mirko Viroli, Università di Bologna - Cesena
Giuseppe Vizzari, Università di Milano - Bicocca

Revisori addizionali

Aliaksandr Birukou
Francesca Piersigilli

Leonardo Vito
Stefano Schivo

Hugo Andres Lopez
Michele Loreti

Direttivo WOA

Giuliano Armano Università di Cagliari
Matteo Baldoni Università di Torino
Antonio Corradi Università di Bologna
Flavio De Paoli Università di Milano - Bicocca
Emanuela Merelli Università di Camerino
Andrea Omicini Università di Bologna - Cesena
Agostino Poggi Università di Parma
Franco Zambonelli Università di Modena e Reggio Emilia

Sponsor

Indice dei Contenuti

Articolo invitato

Achieving Business Process Agility in Engineering Change Management
with Agent Technology . 1
Giovanni Rimassa, Birgit Burmeister

Prototipi di Sistemi Multiagente (Sessione Demo)

An implementation of roles as affordances: powerJava 8
Erik Arnaudo, Matteo Baldoni, Guido Boella, Valerio Genovese,
Roberto Grenna

ELDATool: A Statecharts-based Tool for Prototyping Multi-Agent Systems 14
Giancarlo Fortino, Alfredo Garro, Samuele Mascillaro, Wilma Russo

The PRACTIONIST Development Tool . 20
Fabio Centineo, Angelo Marguglio, Vito Morreale, Michele Puccio

A Framework for Execution and Visualization of Situated Agents Based
Virtual Environments . 22
Giuseppe Vizzari, Giorgio Pizzi, Flávio Soares Corrêa da Silva

Modelli Logici per Sistemi ad Agenti

Conceptual Foundations of Interrogative Agents . 26
Vincenzo Deufemia, Giuseppe Polese, Genoveffa Tortora, Mario Vacca

Declarative representation of curricula models: an LTL- and UML-based
approach . 34
Matteo Baldoni, Cristina Baroglio, Giuseppe Berio, Elisa Marengo

Tecnologie ed Approcci per il Recupero di Risorse
Guidato dalla Semantica

Semantic Resource Management in MAS . 42
Nicola Cannata, Flavio Corradini, Francesca Piersigilli, Emanuela
Merelli, Leonardo Vito

News Retrieval through a MultiAgent System . 48
Andrea Addis, Giuliano Armano, Francesco Mascia, Eloisa Vargiu

A Comparison of Upper Ontologies . 55
Viviana Mascardi, Valentina Cord̀ı, Paolo Rosso

V

Applicazioni di agenti e Sistemi Multiagente

A Swarm Intelligence Method Applied to Manufacturing Scheduling 65
Davide Anghinolfi, Antonio Boccalatte, Alberto Grosso, Massimo
Paolucci, Andrea Passadore, Christian Vecchiola

An Agent Based Solution for Dispatching Items in a Distributed
Environment . 71
Christian Vecchiola, Alberto Grosso, Andrea Passadore, Davide
Anghinolfi, Antonio Boccalatte, Massimo Paolucci

Agents and Security in a Cultural Assets Transport Scenario 78
Stefania Costantini, Arianna Tocchio, Panagiota Tsintza, Leonardo
Mostarda

A Multi-Agent Platform Supporting Maintenance Companies on the Field 87
Andrea Passadore, Giorgio Pezzuto

Agenti Situati nell’Ambiente

A Framework for Interacting Situated Agents in Virtual Environments . . . 96
Giuseppe Vizzari, Giorgio Pizzi, Flávio Soares Corrêa da Silva

Expectations driven approach for Situated, Goal-directed Agents 104
Michele Piunti, Cristiano Castelfranchi, Rino Falcone

Ruoli e Fiducia tra Agenti

Adding Roles to Relationship Patterns . 112
Matteo Baldoni, Guido Boella, Leon van der Torre

XML-based Trust Management in MAS . 126
Agostino Poggi, Michele Tomaiuolo

Agenti ed Approcci Orientati ai Servizi

Preserving players goals: a choreography-driven matchmaking approach . . 132
Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti,
Claudio Schifanella

simpA-WS: A Simple Agent-Oriented Programming Model &
Technology for Developing SOA & Web Services . 140
Alessandro Ricci, Enrico Denti

An Agent-Based Service Oriented Architecture . 157
Agostino Poggi, Michele Tomaiuolo, Paola Turci

Indice degli Autori . 166

Abstract— The importance of business processes for a

successful enterprise cannot be overestimated. They are core
assets through which a business turns its potential into actual
competitiveness on the market. To face the challenges posed by
today’s changing and uncertain business environment, traditional
BPM approaches are not sufficient anymore. This paper presents
an approach to business process management, which leverages
Agent Technology features to obtain agile business process
behavior. Beyond the problem and solution description, this work
presents a concrete case study in the domain of Engineering
Change Management..

Index Terms— agents, business process management,
engineering change management.

I. INTRODUCTION
USINESS processes are a fundamental component of any
enterprise across all kinds of industries. Their effective

setup, execution and evolution are of paramount importance to
successful business operations. By definition business
processes consist of a set of activities, connected in a
structured whole. They describe the modes of operation of a
business organization in given situations and their importance
is manifold:

They constitute the organizational knowledge of the
enterprise. The ways of operating that are captured by business
processes belong to the organization, and they are made public
and explicit in the face of personnel turnover and growth.

They gather and structure the identity of the enterprise,
express its specific way to conduct business and are often the
key to realizing an organization’s competitive advantage.
Moreover, they explicitly represent current organizational
setup and are amenable to assessment and continuous
improvement.

The whole set of activities that an organization performs in
order to create, maintain, control and evolve its business
processes is named Business Process Management (BPM for
short). BPM is an approach to administering business
processes that involves people, organizations and technologies.

Giovanni Rimassa is with Whitestein Technologies AG, Advanced
Technologies, Zurich, 8032 Switzerland (e-mail: gri@whitestein.com).

Birgit Burmeister is with DaimlerChrysler AG, Group Research, 71034
Böblingen, Germany (e-mail: birgit.burmeister@daimlerchrysler.com).

In addition, BPM can be carried out with varying levels of
automation.

The trend toward more flexible ways of working, shorter
organizational reaction times and fully embracing market and
business unpredictability, along with the increase in
distribution and the need to preserve understandability despite
more and more complexity, characterizes the past years and
shows no signs of abating.

We believe that in the face of the challenges present in
today’s dynamic business environments, BPM falls short of
what it is commonly intended to achieve. This paper presents
agile business process management as an effective approach
to the challenges mentioned above. Moreover, the role and
contribution of Agent Technology is analyzed, and the
application to a concrete case is presented.
This paper is organized as follows. Section II presents the
problem of achieving agility in BPM, with particular reference
to the domain of Engineering Change Management (ECM for
short). Section III presents the role played by Agent
Technology in conceiving and realizing a solution for the
problem of agile BPM. Sections IV and V illustrate the major
concept of the solution, namely goal-oriented and autonomic
BPM. Lastly, Section VI introduces the concrete application of
the approach.

II. PROBLEM DEFINITION
Today any development project in the automotive industry

has to be supported by a powerful engineering change
management. The increasing complexity of the product, the
shortening of time-to-market and the growing dependencies on
the suppliers increase the number and the complexity of
change requests in all phases of the product development.
Therefore an efficient management of product changes is an
important success factor.

Compared to typical business processes, e.g. in call centers
or financial services, managing engineering processes is even
more challenging: Engineering processes are long running
tasks. Constructing a car lasts for many years. During this time
period many things change – what has been an up-to-date
approach in the beginning may be outdated at the end. Also,
engineering processes have to cope with uncertainty because
of their mixture of creative tasks, collaborative work and
repeating activities. This results in very complex processes

Achieving Business Process Agility in
Engineering Change Management

with Agent Technology
Giovanni Rimassa, Birgit Burmeister.

B

1

with many alternative paths and sections that cannot be
planned in advance.

Traditionally, BPM systems have been developed based on
a mind model of business processes as process chains or task
chains. Changes, uncertainty, and hidden processes are seen
(and sometimes handled) as exceptions instead as regular
events. Hence, support for the special demand of engineering
processes is limited [2]. Adequate support for engineering
processes in terms of modeling and execution obviously
requires a completely new approach for process management
that is able to deal with the requirements for flexibility,
transparency, and efficiency, both in design and execution of
the process.

A. Achieving Business Agility
A new modelling approach to enable agile processes has to

• Support the design of huge, complex processes, by
using a modular process model but also allowing
for an overall picture of the process.

• Decrease the effort for changing and maintaining
the process model.

• Allow flexibility and agility not only in process
modelling but also in process execution through
software systems.

We think that agent technology can offer approaches and
methods to meet these requirements. Agent-oriented software
technology was first introduced to deal with large-scale,
distributed software systems, which are embedded in dynamic
environments, and allow for the interaction of different
partners. The term “agent” is used as a name for an
autonomous software component, which is able to deal with
the dynamic environment and may interact with other agents
[3].

Inspired by agent technology and especially by the concepts
of goal orientation and decomposition the research department
of Daimler has developed the idea of a goal- and context-
oriented business process modelling. The main ideas of this
approach are (i) to have a modular process model that
describes the single steps of a process (sub-processes,
activities) separate from the goals of the process and the
different contexts in which the process can be executed; (ii) to
have different modelling levels, for the different parts of the
process model; and (iii) to have a seamless “translation” of the
process model into process execution. This modular, goal- and
context-based process model can then be directly executed as
an agile process, by considering current goal and context when
determining the next step in the process, just as realized in the
BDI agent architecture (see section III). For details see [4].

B. The ACM Project
The feasibility of the sketched goal- and context-oriented

modelling approach was first shown in a software
demonstrator implemented by Daimler Group Research and
applied to the area of engineering change management. This
demonstrator used the JadeX agent tool as the process
execution engine. JadeX is implemented by the University of

Hamburg enhancing the Jade platform with a BDI agent
architecture [5], see also next section.

III. THE ROLE OF AGENT TECHNOLOGY
As stated earlier agent technology is a specific approach to

software engineering. A system is composed of a number of
agents being autonomous in their behavior and interacting with
each other to achieve the desired overall functionality. A
specific architecture of an agent is the so-called BDI-agent. A
BDI- agent is described by its Beliefs, i.e. the information an
agent has about itself, its environment and possibly other
agents; its Desires, i.e. motivations of the agents that drive its
course of action; and finally its Intentions; i.e. the short-term
goals that the agent wants to achieve, derived from its desires
and external events, to which the agents wants to react.
Additionally an agent has certain plans how the
intentions/goals can be achieved. A plan consists of certain
actions/steps that have to be executed to achieve the
corresponding goal.

The BDI architecture was first implemented by [6]. The
execution of the formal framework sketched above is as
follows: The activities of an agent can be described as a
permanent jump between two different types of actions: on the
one hand the execution of basic tasks, which the agent uses to
fulfill currently active goals (“execution activity”), and on the
other hand the reasoning about the next basic action, which he
will execute (“control activity”). Execution activities can be
interacting with the environment, e.g. with the user of the
system, performing some kind of computation, manipulating
the agent’s own data base (belief base), and sending and
receiving messages to and from other agents.

A control activity results in the choice of an execution
activity, which will be performed next. To find out which
activity to execute next, the agent introspects its goal base, the
set of possible execution activities and the belief base. From
the goal base it extracts the goals, which are not yet fulfilled.
Then it collects all plans, which could be used to fulfill these
goals. Next, it checks which of the plans could be performed,
by checking the current context (i.e. the current belief base)
whether it fits to the context the plan was designed for.
Different plans are designed for different contexts, which is
described in the so-called context condition of the plan. Thus
the agent has to drop all plans that would fulfill a goal, but
only in another context. Among the remaining plans he
chooses now the one he will execute next (see Figure III-1).
The single steps of the plan are then executed as defined in the
plan.

2

Figure III-1. Choosing and Executing of Plans
The BDI architecture is well-established agent architecture

with several agent tools and applications supporting the
architecture. Georgeff also used the ideas of the BDI
architecture for business process modeling and management in
the Agentis platform [7].

Based on the ideas of goal-oriented and context-aware
execution of agent plans, and of using it for business process
modeling and execution, we have enhanced the ideas for a new
form of business process modeling.

IV. GOAL-ORIENTED BPM
In day-to-day management operations, it is natural to set

goals, decompose a goal into sub-goals, define or reuse plans,
and routinely track and check the execution of chosen plans in
order to detect problems as they occur (or even better before
they do), and to take appropriate actions.

On the other hand, today’s dominant IT approaches focus
almost exclusively on procedures. The concept of what the
procedure is meant to achieve, and why, typically remains
implicit in the mind of the humans who designed it. Because of
this, the increase in process management automation that
occurred with BPM systems has also shifted the focus away
from goals and plans and toward procedures.

The limiting consequence is that processes have become
more efficient in execution but less flexible in adaptation. To
maintain effectiveness without sacrificing agility, the concept
of plan and goal must be brought back to center stage in BPM
solutions.

A. Plans and Goals to Express Processes
Using a goal-oriented approach separates the statement of

what the desired system behavior is, from the possible ways to
perform such behavior. More precisely:

The desired result is described by achievement conditions to
make true and as maintenance invariants whose violation must
be avoided.

The possible ways to obtain a result are represented by
plans: process graphs decorated with the conditions where they
are applicable and the results they obtain when successful.

In business organizations there is an upper management
level, which coarsely drives the more detailed project planning
and tracking. Such a level gives clear direction without
unnecessarily limiting the decisional power and the adaptation
leeway of the finer-grained management operations.

It is thus natural for upper managers to be more concerned
with (and express their views in terms of) what is to be

achieved than how to achieve it. Operating at the goal level is
a natural approach for such people with the core of the
business process captured through goals and sub-goals
independently of the actual activities.

When moving to detailed planning in business or project
management, there is usually more to the plan than just its
tasks and structure. At the very least, the expected objectives
of the plan need be stated, and also, in many cases, the initial
requirements. Moreover, additional information such as
resource and time consumption is also often attached to a plan.

To effectively tackle challenges at the organizational level,
management agility has become a strategy of choice; perhaps
one of the most decisive weapons in the day-to-day business
world.

B. Keeping the Goal Level Alive
The procedural nature of computers and software must not

cripple the management processes just described. In particular,
a detailed, explicitly directive process specification that
identifies precisely what to do in each and every envisaged
variation, e.g., a BPEL execution engine, allows agility only
up to a certain level.

In fact the more complex and unpredictable the situation,
the more convoluted an automated directive process may
become. This most often results in brittle behavior
specifications that become progressively harder to extend,
change and test.

To move forward and enable a BPM system to support the
management of complex processes, or execute in a dynamic
and unpredictable environment, both an explicit representation
and a clear separation of goal and plan levels are essential.

In principle, the steps to perform goal-oriented business
process modeling are:

• Expressing the intentions and requirements of the
process through goals and sub-goals, connected as
necessary (“Think the end first!”).

• Organizing processes into plans by attaching them
the statement of what they require and what they
achieve, and grouping them when they achieve the
same goals in different ways.

• Decomposing processes into tasks, specifying their
aggregation structure.

Once these steps are taken, business processes in an
enterprise can be modeled as a set of related goals to be
achieved or maintained. One or many plans are attached to
these goals, and each plan has its own feasibility requirements.
Attributes such as expected completion time or resource cost
can also be associated to plans.

Adopting goal-oriented BPM results in several benefits,
such as:

• Business user empowerment. Users can work at the
goal level, expressing what is to be achieved as the
defining core of the business process. The details
can be left out of this essential picture.

• Increased process understandability. The goal
level alone already shows what the business

3

process is supposed to achieve (main goal) and
which are the fundamental milestones (intermediate
goals). This increased understandability is also
leveraged to acquire visibility of the whole process
even across organizational boundaries.

• Improved process tracking and monitoring. The
goal level allows tracking of business process
evolution independently of operational details. If
needed, the structure at the plan level, together
with plan attributes such as cost and time, allows
the continuous fine assessment of the current state
of the work.

• Encapsulation of tactics. The set of plans attached
to a given goal represents a collection of different
tactics. The details of these tactics do not spark
dependency chains across involved systems.

• Lowered maintenance costs. The widespread use
of declarative specification reduces the dependence
on details and makes the business process models,
and their implementation, both more stable and
easier to change. Moreover, plans can be reused
and combined to more efficiently deal with process
goals.

C. The GO-BPMN Language
The ideas of goal-oriented BPM are supported at the

modeling and execution level by the Goal-Oriented Business
Process Modeling Notation (GO-BPMN) for modeling
processes. GO-BPMN is a visual modeling language for the
specification of business processes, enriching BPMN by the
explicit modeling of goals, plans and their relationships.
Moreover, GO-BPMN precisely specifies the operational
semantics of all its elements, including the used standard
BPMN ones, so that compliant and unambiguous model
execution can be obtained.

A GO-BPMN model explicitly contains elements such as:
• Achieve goals. They represent overall or

intermediate goals that the system will try to bring
about. These goals become active when some
context condition is true. Achieve goals are
arranged into hierarchies with a decomposition
relation.

• Maintain goals. These goals are used to describe
safety conditions that have to be verified at all
times. Whenever one of such conditions is negated,
a compensation plan is automatically scheduled.

• Plans. They are attached to goals and contain as
body a BPMN-compliant activity. Moreover, a
plan has a context condition that tells in which
situations it can be executed

The Figure IV-1 shows a small sample of a GO-BPMN
diagram.

Figure IV-1. Goal-oriented modeling with GO-BPMN

V. AUTONOMIC BPM
Effectively managing complex business processes in the

face of a dynamic and unpredictable environment requires
striking a careful balance between flexibility and safety.

During operation, the definition and execution of business
processes has to be easily adapted to unforeseen changes. It
must also be possible to ensure that these changes are correct
and do not incur any unfavorable consequences.

While some human inspection tools can and should be
provided, it is unreasonable to expect that all safety controls
can be handled manually. This would simply void most of the
improvements in timeliness and adaptivity gained with an
increased level of automation.

The only way out of this is to provide the system with means
of self-management. This implies that the system itself (i.e.,
the business process management engine) is able to monitor its
own operation and, to a certain extent, recognize and
counteract undesirable situations. Following Autonomic
Computing terminology, one can mention the major facets of
autonomic, self-managing systems:

• Self-healing. The system is able to recover from
unfavorable conditions that may result in
malfunctions, by autonomously attempting to
determine compensation actions and then
performing them.

• Self-optimization. The system continuously
assesses its own performance, explores possible
courses of actions that would result in performance
improvements, and adopts the ones that are
sufficiently promising.

• Self-protection. The system detects threats and puts
in place preventive and corrective measures to
ensure correct operation even in the face of these
threats.

• Self-configuration. The system is able to change its
operating parameters to adapt to mutable external
conditions, some of which may even be

4

unpredictable at system design time.

A. From Autonomic IT to Autonomic BPM
The original focus of Autonomic Computing was on IT

infrastructure with the targeted problem being the
administration and management of complex computing
environments. Nevertheless, the basic idea and the primary
concepts of Autonomic Computing apply to most systems and
even to organizational entities. Introducing self-management
properties into applications can yield significant benefits.

Both for infrastructure and applications, a key to the
Autonomic Computing vision is the presence of feedback
control loops in the system. In principle, a system exhibiting
autonomic self-management can be divided into:

• A base system, providing concrete functionality
that is required to meet the system design goals.

• An autonomic controller, monitoring the base
system and the external environment, and deciding
and enacting self-management policies.

When the base system is not simply a software application,
but a whole business process management system, the addition
of an autonomic controller results in Autonomic Business
Process Management.

In autonomic BPM, the “system” is the overall ensemble of
software, hardware, human and physical resources, together
with the norms and policies defining it. This system is the one
that exhibits self-management and in particular the self-
management qualities.

The benefits of the autonomic BPM approach result from
the effect of self-management at various levels, such as self-
healing of process activities through alternative backup tactics,
or self-optimization by automatically detecting feasible
remedies and proposing reasonable options to a human for
selection.

In general, the above benefits can be summed up in two
broad cases:

• Self-management at the process level. This means
that the definition and enactment of the business
process itself have some or all the self-management
properties. There can be, e.g., special control
processes that are added to the base processes. The
way people are involved within the business
process also has some autonomic traits.

• Self-management at the engine level. This means
that the BPM runtime environment has self-
management built into it. The BPM engine exhibits
self-healing, self-optimization and other similar
features.

VI. APPLYING GOAL-ORIENTED AUTONOMIC BPM
The two technological traits of goal-oriented and autonomic

BPM, previously described in Section IV and Section V, are
leveraged by the ACM system in a practical way.

A. The ACM System Architecture
The Figure VI-1 depicts the architecture of the ACM

system. There the division into Presentation, Logic and Data
tiers is visible. This approach represents a standard solution
more and more adopted along the past ten years, and found in
many installations today.

Each tier is well separated from the others and the
presentation tier does not communicate at all with the data tier.
The logic tier connects the presentation and the data tiers, and
it is also where the complex application behavior is defined.
Therefore, a lot of infrastructural issues such as
communication protocols, security and resource control belong
to the middle, logic tier.

Figure VI-1. Overall architecture of the ACM system
Instead of taking care of all these complex issues within the

application, a popular and more effective approach is to rely
on a support layer (called middleware, broker, or application
server in different situations) that provides them. This is also
shown, e.g., by blocks such as J2EE Runtime Environment and
is another major best practice in modern business application
development.

All the above configures a state-of-the-art architecture, but it
is still not enough to cope with the agility requirement and its
consequences that sit at the heart of the improvement expected
from the ACM system.

While the confinement of business logic to the middle tier
and the reliance on a middleware are kept, a major step
forward is taken when choosing the component model for the
ACM application.

The chosen component model is a major way that Agent
Technology contributes to the system concept and features. In
particular, two kinds of components will execute within the
ACM system:

• Agents. Autonomous and situated software
components, capable of proactive and reactive
behavior.

• Services. Non-autonomous software components,
which are only capable of reactive behavior.

The interaction between two or more agents is based on
asynchronous message passing, whereas the interaction
between an agent and a service relies on the abstraction of
operation invocation (which can itself be synchronous or
asynchronous).

5

Both the agent-to-agent messaging and the agent-to-service
invocation adopt a structured data model to express the topic
of the interaction. Such topics are gathered in one or more
ontologies, which are then made available at run-time
providing advanced introspection on all the aspects of system
behavior and give first-class status to entities such as
resources, protocols, and organizations.

Multi-agent systems provide the right set of concepts to
express and realize the loosely coupled, dynamically
assembled and highly reflective architecture that can grant the
desired agility and prompt adaptation to changes.

Moreover, in order to still achieve a satisfactory quality
level, with particular respect to the non-functional qualities of
software, such as modifiability, reliability and dependability,
the approach of having multiple layered execution
environments is followed.

The major point of the approach is to define a series of
layers of abstraction, from the lower, more basic ones to the
upper, more abstract ones. Each of these layers has two parts:

• Execution environment, which is fixed and sets the
boundaries that define the abstraction layer.

• Execution specification, which can be changed,
and defines the system behavior within the
boundaries of the execution environment.

The execution environment acts as a containment envelope
for the execution specification, preventing it from affecting
other layers of the system.

This layering allows striking a good balance between
flexibility and safety in modifying the system. Different users,
with different skills and focuses, can operate at one or more of
these abstraction levels. Concretely, in the ACM system these
are:

• Final business process models described with the
GO-BPMN graphical executable modeling
language, for highest abstraction and safety. Both
business and IT modelers can use the language
effectively.

• GO-BPMN reusable modules, containing
parametric goals and plan sets to be configured for
application in several process models.

• High level scripting language to quickly express
more complex behavior, within a well isolated
programming environment, providing an easy to
use API for most of the system functionalities.

• Java API to implement the core parts such as
atomic tasks or intermediate service components
(e.g., for specialized system integration needs).

B. Process Modelling with the ACM System
As described in [4] first experiences with the goal-oriented

modeling approach where made during modeling the ECM
process for the research demonstrator. It proved useful to
concentrate on the “what should the process achieve”, i.e. the
goals with process analysts. When talking to IT-people about
“how it should be done”, the concrete sub-processes and all
the detailed context specifications could be modeled. As a

result a goal-hierarchy of the ECM process was built up. The
first challenge in the ACM project was to translate this goal-
and context-oriented model of the ECM process into the
Whitestein platform. Since the common underlying agent
technology, with the BDI agent execution engine included in
the LS/TS middleware, this was rather straightforward to
achieve. The Whitestein platform and idea of goal-oriented
BPM turned out to be the “perfect match” for the idea of goal-
and context-oriented BPM. The model could easily be built up
with the modeler. Moreover, the seamless transfer from
modeling into process execution was demonstrated as
expected.

Also the ability to change or enhance the process model
quickly and easily was used. Today, once a business process is
modeled and realized as a system, it is rather hard to change
the model and system. Normally bi-annual release dates exits
for new system releases. This may be too long, if the process
and system have to change quickly, because, e.g., a new
accelerated process has to be used soon due to business
requirements. Due to the seamless translation of process model
to execution a changed process model can be transferred to the
execution within short time, and any new processes can take
the new model.

Beyond the operational goals (i.e. to realize a change in a
car) several other goals where identified during process
analysis. These goals are “goals to be monitored during
execution” like e.g. the time of the process is below a certain
limit, or cost should not increase a value. An agent, according
to the ideas of autonomic BPM discussed in Section IV, can
autonomously monitor these goals.

VII. CONCLUSION
Business processes are of paramount importance to the

successful operation of a modern enterprise. While the field of
BPM has introduced noteworthy progress in the computer
support for handling business processes, more advanced
approaches are necessary in order to meet the challenges of
business agility.

The ACM system has to effectively deal with a complex
and challenging set of requirements, bringing an agile but
dependable software infrastructure to the Change Management
process at Daimler. Change Management is a critical activity
to keep a constant product quality and customer satisfaction
level while operating in a competitive and dynamic market.

The technological leverage of Agent Technology, together
with the combined concepts of goal- and context- orientation
as well as Autonomic Computing, allow the conception and
realization of an advanced BPM product, and of an innovative
application in the Engineering Change Management domain at
Daimler, such as the ACM system is going to be.

6

REFERENCES
[1] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J.

O. Kephart, S. R. White: A Multi-Agent Systems Approach to
Autonomic Computing. AAMAS 2004: 464-471

[2] T. Beuter: Workflow-Management für Produkt-entwicklungsprozesse.
Dissertation Universität Ulm. (2002) (in German)

[3] N.R. Jennings, M.J. Wooldridge (Eds.): Agent Technology –
Foundations, Applications, and Markets. Springer. (1998)

[4] B.Burmeister, H.-P. Steiert, T. Bauer, H. Baumgärtel: Agile Processes
through Goal- and Context-oriented Business Process Modeling. in: J.
Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103,
Sprnger, 215 – 226, 2006.

[5] L. Braubach, A. Pokahr, W. Lamersdorf: Jadex: A BDI-Agent System
Combining Middleware and Reasoning. In: 18. R. Umland, M. Klusch,
M. Calisti (Eds.): Software Agent-Based Applications, Platforms, and
Development Kits. Whitestein Series in Software Agent Technology.
Birkhäuser. (2005)

[6] A.S. Rao, M.P. Georgeff: BDI Agents: From Theory to Practice. In V.
Lesser (ed.) Proc. 1st International Conf. on Multi-Agent Systems. MIT-
Press. (1995)

[7] Agentis Software: Adaptive Enterprise™ Solution Suite.
http://www.agentissoftware.com

7

Abstract. This document shortly describes powerJava, a Java

extension which provides the instructions to manage roles. After
defined the environment in which we have worked, we will
discuss the language’s new instructions and we will show an
example.

I. SOMETHING ABOUT ROLES
Object orientation is a leading paradigm in programming

languages, modeling, knowledge representation and
databases. When we think to an object, we do it in terms of
attributes and methods, and if we refer to object interaction,
we do it in terms of public attributes and public methods:
these are the only ways to realize it!

In computer science literature, other kinds of interaction
between entities have been proposed at levels higher than
programming languages. We can properly speak about
sessions, which contain the interaction state (as at web
services level), but a very important concept is that of role.
Steimann [1] provided an interesting role representation,
giving three types of “role as”: roles as named places, role as
specialization and/or generalization, roles as adjunct
instances. Our approach is to consider roles as affordances;
we consider roles as instances having a different identity
respect to the players that play them. Inspired by research in
cognitive science, this view sees the properties (attributes and
operations) of an object as something not independent from
whom is interacting with it. In this way, an object “affords”
different ways of interaction to different kinds of objects.

The notion of “affordance” has been made popular by
Norman [3] (p. 9): “The term affordance refers to the
perceived and actual properties of the thing, primarily those
fundamental properties that determine just how the thing
could possibly be used. A chair affords (‘is for’) support, and,
therefore, affords sitting.”

How can we use the concept of “affordance” to introduce
new modeling concepts in object oriented knowledge
representation? The affordances of an object are not isolated,
but they are associated with a given specie. So we have to
consider sets of affordances. We will call a role type the
different sets of interaction possibilities, the affordances of an
object, which depend on the class of the interactant
manipulating the object: the player of the role. To manipulate
an object it is necessary to specify the role in which the
interaction is made.

A given role type can be instantiated, depending on a
certain player of a role (which must have the required
properties), and the role instance represents the state of the

interaction with that role player. Just to better explain the
possible use of roles as affordances, we introduce the
following figures, which introduce different ways to interact
with an object through the roles it offers.

Figure 1 - An object interacts with another one by means of the role

offered by it.

Figure 2 - An object interacting in two different roles with another

Figure 3 - Two objects which interact with each other by means of the

roles of another object.

An implemetation of roles as affordances:
powerJava

Erik Arnaudo, Matteo Baldoni, Guido Boella, Valerio Genovese, and Roberto Grenna

8

Figure 4 - Two objects interact with each other, each one playing a role

offered by the other.

The idea behind affordances is that the interaction with an

object does not happens directly with it by accessing its
public attributes and invoking its public operations. Rather,
the interaction with an object happens via a role: to invoke an
operation, it is necessary first to be the player of a role offered
by the object the operation belongs to. The roles which can be
played depend on the properties of the role player (the
requirements), since the roles represent the set of affordances
offered by the object.

II. POWERJAVA AND ITS ENVIRONMENT

In order to translate the roles as affordances approach, we
realize powerJava.

What we did, simply was an extension of Java 1.4
grammar, implemented using JavaCC (Java Compiler
Compiler), which is a parser generator that returns in output
Java code.

This parser generator is a program which reads a grammar
specification and converts it in a Java program (parser) that
can recognize this grammar.

JavaCC offers other tools too. For example, JJTree, that
realizes (before obtaining the parser) a tree from the grammar
written by the user. By JJTree exists the possibility of
inserting code (written in Java, obviously), to “drive” the
behavior of the parser in some cases. It defines the Node
interface too. The Node interface is the interface that each
node of the tree has to implement, and it offers some methods
for setting the node parent or its sons.

JavaCC is a top-down parser, but JJTree generates the tree
in a bottom-up mode, using a stack to contain the nodes after
creating them.

The idea is that the tokens are serialized in a chain, but
from each of them is possible to reach its parents (father,
grandfather and so on). In this way it’s possible to manage
many events, and it’s clear that for each new token it’s
possible to define the correct behavior.

The token concept (together with, for example, the skip
concept) is something of very powerful, that collocates
JavaCC at an higher level than other parsers.

JavaCC generate a LL(1) parser, but in some points of the
grammar the parser can works as a LL(k) one: defining some
lookaheads it’s possible to manage expressions made by k
words. In other cases, the parser works as a LL(1), with all
obvious advantages in terms of performances.

The use is very simple. The grammar files have a .jj or .jjt
extension. When we start from a .jjt file, we have simply to
perform:

C:\>JJTree filename.jjt

The next step is to execute:

C:\>JavaCC filename.jj

which generates all the .java files needed, including our

parser. All that we have to do is to compile all the .java files.
Before continuing, we have to say that we can customize a

lot of the generated classes, like SimpleNode.java, or
UnparseVisitor.java. “Visitor” is the pattern that JavaCC uses
for visiting the nodes.

After this short description of the environment, in Figure 5
is shortly described the extension of the grammar syntax to
obtain powerJava.

The system requirements to use powerJava environment
are very simple: you’ve only to have JDK 1.4 or later on your
pc.

Please note that the name powerJava is due to the fact that
we call the methods offered by roles “powers”, because they
offer the possibility to modify the private state and access
private methods of the institution which defines them, and the
state of the other roles defined in the same institution.

III. AN EXPLENATORY EXAMLPE

To make an example (see [4]), let’s suppose to model a
class Printer. The interaction possibilities offered by the class

Figure 5 - The first extension of the Java (1.4) syntax in powerJava.

rolespec ::= "role" identifier ["extends" identifier*] "playedby"
identifier interfacebody

classdef ::= ["public"|"private"|...] "class" identifier
["extends" identifier] ["implements" identifier*] classbody

classbody ::= "{" fielddef* constructors* methoddef* roleimpl* "}"

roleimpl ::= “class” identifier_1 "realize" identifier_2 rolebody

rolebody ::= "{" fielddef* constructors* methoddef* "}"

rcast ::= (expr.identifier) expr

keyword ::= that | ...

9

are different and depend on which objects invoke its methods.
For example, some objects have more privileges than other
ones, and thus they can invoke methods which are not
available to other objects interacting with the same printer.
Moreover, some methods keep track of the interaction with
each specific object invoking them. For example, print counts
the number of pages printed by each object invoking it to
check whether the quota assigned to the object is respected.
However, objects with more privileges do not have a quota of
printed pages.

The Printer can be seen as an institution which supplies
two different roles for interacting with it (the set of methods a
caller can invoke): one role of normal User, and the other role
of SuperUser. The two roles offer some common methods
(roles are classes) with different implementations, but they
also offer other different methods to their players (and there is
no direct way to interact with the Printer). For example,
Users can print their jobs and the number of printable pages is
limited to a given maximum; thus, the number of pages is
counted (the role associates new attributes with the player):
each User should be associated with a different state of the
interaction (the role has an instance with a state which is
associated with its player). The User can print since the
implementation of its methods has access to the private
methods of the Printer (the methods of the User access the
private attributes and operations of another object, the
institution). SuperUsers have the method print with the same
signature, but with a different implementation: they can print
any number of pages; moreover, they can reset the page
counter of Users (a role can access the state of another role,
and, thus, roles coordinate the interaction).

A role like SuperUser can access the state of the other User
roles and of the callee object (the institution Printer) in a safe
way only if it encapsulated in the institution Printer. Thus the
definition of the role must be given by the same programmer
who defines the institution (the class of the role belongs to the
same institution class namespace, or, in Java terminology, it is
included in it).

In order to interact as User or SuperUser it is necessary to
exhibit some requested behavior. For example, in order to be
a User a caller object must have an account (it must be an
Accounted), which is printed on the pages (returned by a
method offered by the player of the role). A SuperUser can
have more demanding requirements.

Finally, a role User can be played only when there is an
instance of Printer and an instance of a class implementing
Accounted which can play the role.

In the following figure there is the code of our example.
First, we have to import package to manage roles (Figure

6-[1]), then, we define the class for the Login (Figure 6-[2])
and the class for the Job (Figure 6-[3]).

User (Figure 6-[5]) and SuperUser (Figure 6-[6]) are roles,
both played by an AccountedPerson (Figure 6-[4]).

import it.unito.di.javarole.*; [1]
class Login [2]
{
 private String ID;

 public Login(String ID)
 {
 this.ID = ID;
 }
}
class Job [3]
{
 private int ID;
 private int numberOfPages;

 public Job()
 {
 this.ID = -1;
 this.numberOfPages = 1;

 }

 public Job(int ID, int n)
 {
 this.ID = ID;
 this.numberOfPages = n;
 }

 public int getID()
 {
 return this.ID;
 }

 public int getNumberPages()
 {
 return this.numberOfPages;
 }
}
interface AccountedPerson [4]
{
 Login getLogin();
}
role User playedby AccountedPerson [5]
{
 int print(Job job);
 int getPrintedPages();
}
role SuperUser playedby AccountedPerson [6]
{
 int print(Job job);
 int getTotalPages();
}
class Person implements AccountedPerson [7]
{
 private Login login;

 public Login getLogin()
 {
 return login;
 }

 public void setLogin(String ID)
 {
 login = new Login(ID);
 }
}

Figure 6 – Our example’s code – Part 1 of 3

10

Then we have to write the code for the Person class (Figure
6-[7]), which implements AccountedPerson; what we have
now to do is to write our institution class: Printer (Figure 7-
[9]). In Printer we write two inner classes, U (Figure 7-[9])
and S (Figure 7-[10]), which are the roles offered by it.

 (Figure 8-[11]) showes the code for the main, in which we
can also see the .transfer method (Figure 8-[12]). In last build
of our environment, in fact, we have also implemented
methods to transfer and to remove a role. When Sergio
transfers his SuperUser role to chris, he will irremediably lose
it. In this way, he is having no role, so that an opportune
exception will be thrown if he would to play it.

Once we’ve written the code, we simply have to compile
(better, pre-compile) it, in order to obtain a standard Java
program. To do it, it’s enough to run:

C:\>java JavaRolePreCompiler <MyFile.java>

TargetFile.java

where MyFile.java is the source we’ve written few minutes

ago, while TargetFile.java is the file that we will compile
once we have it. It’s a good choice to name the class that
contain the main with TargetFile name.

Let’s suppose that we saved our file as Test1.java, so we
have to write:

C:\>java JavaRolePreCompiler <Test1.java> TestOne.java

Now we can compile TestOne.java, obtaining the

executable:

C:\>javac TestOne.java

And, finally, we can execute:

C:\>java TestOne.java

You can download this (really working!) example (within

all the work environment) from the website
http://www.powerjava.org.

IV. JUST AN IDEA OF THE PRE-COMPILING RESULT

Only for give a track about the target of pre-compiling
operations, we write an interesting example involving the
User role.

In Figures 9, 10, 11 you can see the original code (before
pre-compiling) and the pre-compiled code (in italic).

First, let’s consider the User role definition (Figure 9-[13])
and it’s corresponding pre-translation (Figure 9-[14]).

Following, we focus on the the class Printer (Figure 9-[15],
10-[16]), and in a particular way to those variables and
structures added by the pre-compiler. We can see the

HashTable rolelist (Figure 10-[17]), that will contain the class
offering role definitions.

We defined an inner class U (Figure 10-[18]), realizing
User, inside class Printer (which translation is in Figure 10-
[19] – Figure 11).

It’s very interesting to note the use of keyword that. It
refers to that object is playing the role at issue, and it’s used
only in role implementation. An example is the invocation of
that.getLogin() as a parameter of the print method in the
previous code.

class Printer [8]
{
 private int totalPrintedPages = 0;
 private int MAX_PAGES_USER = 100;
 private void print(Job job, Login login)
 {
 System.out.println("Printed job " + job.getID());
 totalPrintedPages += job.getNumberPages();
 }
 class U realizes User [9]
 {
 int counter = 0;

 public U(){}
 public U(int i){}
 public int print(Job job)
 {
 if (counter > MAX_PAGES_USER)
 //throw new IllegalPrintException();
 {
 System.out.println("Too many pages printed!");
 return 0;
 }
 else
 {
 counter += job.getNumberPages();
 Printer.this.print(job, that.getLogin());
 return counter;
 }
 }
 public int getPrintedPages()
 {
 return counter;
 }
 }
 class S realizes SuperUser [10]
 {
 public int print(Job job)
 {
 Printer.this.print(job, that.getLogin());
 return totalPrintedPages;
 }
 public int getTotalPages()
 {
 return totalPrintedPages;
 }
 }
}

Figure 7 – Our example’s code – Part 2 of 3

11

V. FUTURE DEVELOPMENTS
Our next goal is to implement features that make

powerJava able to model all the cases represented in Figures
1-4; we will work to implement something of more
collaborative too, and we can’t exclude to try interactions
between powerJava and other environments. We will surely
work focusing on relations, as defined in [5] and [6], and
sessions, as defined in [7].

 public class TestOne [11]
{
 public static void main(String[] args)
 {
 Job j1 = new Job(1, 57);
 Job j2 = new Job(2, 160);
 Job j3 = new Job(3, 94);
 Job j4 = new Job(4, 211);
 Printer hp8100 = new Printer();
 Person chris = new Person();
 Person sergio = new Person();
 hp8100.new U(chris);
 hp8100.new S(sergio);
 ((hp8100.U)chris).print(j2);
 ((hp8100.S)sergio).print(j4);
 ((hp8100.U)chris).print(j1);
 ((hp8100.S)sergio).transfer(chris); [12]
 ((hp8100.U)chris).print(j1);
 ((hp8100.S)sergio).print(j3);
 System.out.println("Chris printed "
+ ((hp8100.U)chris).getPrintedPages() + " pages.");
 System.out.println("The printer printed "
+ ((hp8100.S)sergio).getTotalPages() + " pages.");
 }
}

Figure 8 – Our example’s code – Part 3 of 3

class Printer implements ObjectWithRoles [16]
{
 private java.util.Hashtable rolelist = new java.util.HashTable(); [17]
 private int totalPrintedPages = 0;
 private int MAX_PAGES_USER = 100;
…
…
}

class U realizes User [18]
{
 int counter = 0;

 public U(){}
 public U(int i){}

 public int print(Job job)
 {
 if (counter > MAX_PAGES_USER)
//throw new IllegalPrintException();
 {
 System.out.println("Too many pages printed!");
 return 0;
 }
 else
 {
 counter += job.getNumberPages();
 Printer.this.print(job, that.getLogin());
 return counter;
 }
 }

 public int getPrintedPages()
 {
 return counter;
 }
}

class U implements ObjectWithRoles, RoleInterface, User [19]
{
 private AccountedPerson that;
 public void destroy()
 {
 ((ObjectWithRoles)this.that).removeRole(this, Printer.this);
 this.that = null;
 }
 public void transfer()
 {
 ((ObjectWithRoles)this.that).removeRole(this, Printer.this);
 this.that = (AccountedPerson)req;
 ((ObjectWithRoles)this.that).setRole(this, Printer.this);
 }
 … // Code defining the possibility for
 … // the class to offer roles
 int counter = 0;

Figure 10– Pre-compiling example – Part 2 of 3

role User playedby AccountedPerson [13]
{
 int print(Job job);
 int getPrintedPages();
}

interface User [14]
{
 int print(Job job);
 int getPrintedPages();
}

class Printer [15]
{
 private int totalPrintedPages = 0;
 private int MAX_PAGES_USER = 100;
…
…
}

Figure 9 – Pre-compiling example – Part 1 of 3

12

REFERENCES
[1] F. Steimann. “On the representation of roles in object-oriented and

conceptual modeling”. Data & Knowledge Engineering, 35:1 (2000) 83-106
[2] M. Baldoni, G. Boella, and L. van der Torre. “Modelling the

interaction between objects: roles as affordances”. In J. Lang, F. Lin, and J.
Wang, editors, Knowledge Science, Engineering and Management: First

International Conference, KSEM, volume 4092 of LNCS, pages 42-54,
Guilin City, China, August 5-8 2006. Springer.

[3] D. Norman. “The Design of Everyday Things”. Basic Books, New
York (2002)

[4] M. Baldoni, G. Boella, and L. van der Torre. “Interaction between
Objects in powerjava.” Journal of Object Technology, Special Issue OOPS
Track at SAC 2006, 6(2), 2007.

[5] M. Baldoni, G. Boella, and L. van der Torre. “Relationships Define
Roles, Objects Offer Them.” Roles07 workshop at ECOOP, pages 4-14.

[6] M. Baldoni, G. Boella, and L. van der Torre. “Relationships meet their
roles in object oriented programming.” Procs. of the 2nd International
Symposium on Fundamentals of Software Engineering 2007 Theory and
Practice (FSEN ‘07).

[7] V. Genovese. “A Meta-model for Roles: Introducing Sessions.”
Roles07 workshop at ECOOP.

Eric Arnaudo is student at the Dipartimento of Informatica, Università di

Torino, Corso Svizzera 185, 10149, Torino, Italy.
Matteo Baldoni is Associated Professor at the Dipartimento of

Informatica, Università di Torino, Corso Svizzera 185, Torino, 10149, Italy.
E-mail: baldoni@di.unito.it.

Guido Boella is Associated Professor at the Dipartimento of Informatica,
Università di Torino, Corso Svizzera 185, 10149, Torino, Italy. E-mail:
guido@di.unito.it.

Valerio Genovese is student at the Dipartimento of Informatica, Università
di Torino, Corso Svizzera 185, 10149, Torino, Italy.

Roberto Grenna is PhD student at the Dipartimento of Informatica,
Università di Torino, Corso Svizzera 185, 10149, Torino, Italy E-mail:
grenna@di.unito.it.

 public U(AccountedPerson that)
 {
 int alreadyPresent = 0;
 try
 {
 if(((ObjectWithRoles)that).getRole(Printer.this, “U”) != null)
 alreadyPresent = 1;
 }
 catch (Exception e){}
 if (alreadyPresent == 1)
 this.that = (AccountedPerson)
((ObjectWithRoles)that).getRole(Printer.this, “U”);
 else
 this.that = that;
 ((ObjectWithRoles)this.that).setRoles(this.Printer, this);
 }
 public U(int i)
 {
 int alreadyPresent = 0;
 try
 {
 if(((ObjectWithRoles)that).getRole(Printer.this, “U”) != null)
 alreadyPresent = 1;
 }
 catch (Exception e){}
 if (alreadyPresent == 1)
 this.that = (AccountedPerson)
((ObjectWithRoles)that).getRole(Printer.this, “U”);
 else
 this.that = that;
 ((ObjectWithRoles)this.that).setRoles(this.Printer, this);
 }
 public int print(Job job)
 {
 if (this.that == null)
throw new RunTimeException(“Reference to that is null”);
 if (counter > MAX_PAGES_USER)
//throw new IllegalPrintException();
 {
 System.out.println("Too many pages printed!");
 return 0;
 }
 else
 {
 counter += job.getNumberPages();
 Printer.this.print(job, that.getLogin());
 return counter;
 }
 }

 public int getPrintedPages()
 {
 if (this.that == null)
throw new RunTimeException(“Reference to that is null”);
 return counter;
 }
}

Figure 11 – Our example’s code – Part 3 of 3

13

Abstract— This paper briefly describes the ELDATool, a

Statecharts-based visual tool for the rapid prototyping of Multi-
Agent Systems based on the Event-driven Lightweight Distilled
Statecharts-based Agents (ELDA) model. In particular, the
ELDATool, which is implemented in Java as an Eclipse plug-in,
supports an iterative process involving the following phases:
detailed design, automatic code generation and simulation. The
high-level design, which is the input to this iterative process, can
be obtained through currently available agent-oriented
methodologies such as PASSI and GAIA. In order to show the
main characteristics of the ELDATool, a simple case study is
presented.

Index Terms—Visual Tools, Multi-Agent Systems, Distilled
StateCharts, State-based Programming.

I. INTRODUCTION
gent oriented software engineering [1] aims at providing
methodologies and tools for the development of complex

and distributed software systems through the agent paradigm
in terms of Multi-Agent Systems (MASs).

Several agent-oriented methodologies (PASSI [2], GAIA
[3], SODA [4], INGENIAS [5], DSC-based [6, 7], etc.) have
been to date proposed for supporting the development life-
cycle of MASs. Few of them are also equipped with visual
tools capable of supporting all the phases of the development
life-cycle. The availability of such tools is widely considered
to be strategic for supporting a rapid prototyping of the MAS
under-development.

This paper introduces the ELDATool which aims at
supporting the DSC-based agent-oriented methodology
proposed in [6, 7, 8]. This methodology covers the modelling,
implementation and simulation phases of MAS based on the
ELDA (Event-driven Lightweight Distilled Statecharts-based

G. Fortino is with the Department of Electronics, Informatics and Systems

(DEIS), University of Calabria, Rende (CS), 87036 Italy. (corresponding
author; phone: +39.0984.494063; fax: +39.0984.494713; e-mail:
g.fortino@unical.it).

A. Garro is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: garro
@unical.it).

S. Mascillaro is with the Department of Electronics, Informatics and
Systems (DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:
samuele.mascillaro@deis.unical.it).

W. Russo is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: w.russo
@unical.it).

Agents) model.
According to the ELDA model [6, 9] a multi-agent system

is modelled at high-level as a set of different types of agents
and a set of interaction events among the agents. An ELDA
agent consists of a unique identifier, a data space, a dynamic
behaviour, a single thread of control, and a queue of the
received events. In particular, the dynamic behaviour of an
agent is specified through the Distilled Statecharts formalism
[6], derived from the well-known Statecharts [10]. Modelling
an agent is basically carried out by specifying its behaviour as
a hierarchical state machine compliant with the state-based
template of the FIPA agent [11] and by defining the events
which can be received and generated. While events are
implicitly received through the event queue, they are explicitly
emitted through the generate primitive. The received events
are called IN-events, whereas the generated events are called
OUT-events. In particular, events formalize three kinds of
interactions [9]: (i) internal, which are sent by the agent to
itself to proactively drive its activity; (ii) management, which
are used to interact with the agent management system for
requesting services and resources; (iii) coordination, which are
exploited to interact with local or remote agents/entities
through a given coordination space.

The ELDA model is implemented in the ELDA framework,
an object-oriented framework which provides the
programming abstractions to implement ELDA-based MAS.
Currently, the ELDA framework is implemented in Java.

The ELDATool incorporates the ELDA framework and
provides a graphical integrated development environment
based on Eclipse [12]. The ELDATool is exemplified through
a simple case study concerning with the modelling of a
contractor mobile agent within an agent-based e-Marketplace.

The rest of this paper is organized as follows. Section 2
enumerates the system requirements of the ELDATool.
Section 3 and section 4 respectively present the ELDATool
design and implementation. Section 5 describes the use of the
ELDATool through the simple case study developed. Finally
conclusions are drawn and on-going work anticipated.

II. SYSTEM REQUIREMENTS
ELDATool aims at supporting the MAS designer for the

rapid prototyping of MASs based on the ELDA model
according to the iterative process shown in Figure 1.

ELDATool: A Statecharts-based Tool for
Prototyping Multi-Agent Systems

Giancarlo Fortino, Alfredo Garro, Samuele Mascillaro and Wilma Russo

A

14

Figure1: Iterative process for prototyping ELDA-based MASs.

To support the Modelling phase, the tool offers the basic

functionality of visual modelling of the active state of the
agent behaviour through a DSC-based Hierarchical State
Machine. The active state is a composite state in which the
agent performs its main activity. In particular, the following
modelling features are supported:
- definition of the internal states of the active state;
- definition of the events, generated (or OUT-events) and

received (IN-events) by/from the ELDA agent, by
extending appositely the base events provided by the Java
implementation of the ELDA framework (or
ELDAFramework) or events previously defined by the
user;

- definition of the transitions between states which involves:
− the use of the IN-events previously defined for

labelling the transitions;
− (possibly) the definition and the use of the guards

associated to the transitions;
− (possibly) the definition and the use of the actions

associated to the transitions.
The obtained graphical modelling is serialized into XML-

like files.
To support the Coding phase, the tool offers the

functionality of automatic code generation by translating the
XML-like files produced after the Modelling phase into Java
code based on the ELDAFramework.

Finally, to support the Simulation phase, the tool is based
on the MASSIMO framework [13] and offers the following
functionalities:
- implementation of the simulator through the definition of

the network topology of the agent platform, the initial
location of the agents, the definition of the performance
parameters, etc;

- execution of the simulator for performing the simulation;
- gathering of the values of the parameters defined for the

performance measurements.
The ELDATool is implemented in Java as an Eclipse plug-

in to exploit several frameworks which fully support the
development of visual editors. Moreover, the high diffusion of
Eclipse in the research community makes the tool immediately
available to the Eclipse users and the learning process of the
tool is so quicker.

III. DESIGN
The architecture of the ELDATool is component-based;

each component is responsible of the specific aspects of the
Modelling, Coding and Simulation phases.

In particular, for each different modelling aspect the
following editors have been identified and designed:
- DSCEditor, for modelling the active state of an ELDA

agent;

- EventEditor, for defining the events;
- GuardEditor, for defining the guards;
- ActionEditor, for defining the actions;
- FunctionEditor, for defining the supporting functions.

Each editor is capable of handling (visually or not) the
elements of its reference meta-model and producing an
instance of this meta-model (or specific model) as output.

The CodeGenerator component uses the models produced
by the editors as input to offer the functionalities needed for
the code generation according to the classes constituting the
ELDAFramework.

The Simulator component uses the code produced by the
CodeGenerator component to support the Simulation phase.

Figure 2 shows the components, the dependence
relationships among them, and their contextualization with
respect to the process phases.

Figura 2: The ELDATool components

IV. ELDATOOL IMPLEMENTATION
Currently the ELDATool supports the first two phases of

the process: Modelling and Coding. The architectural
components described in section II are implemented in Java
by exploiting:
- the Eclipse platform [12], which is a widely-used Integrated

Development Environment (IDE) with extensible
architecture based on plug-ins, i.e. independent components
which can be easily installed and integrated in the IDE;

- the Graphical Editing Framework (GEF) [14] which allows
for the development of visual editors in Eclipse by offering
high support for the management of the user interactions;

- the Eclipse Modelling Framework (EMF) [15] which
supports the modelling phase of a structural model and the
automatic generation and manipulation of its Java
implementation.
The editor components (see section II) are implemented

according to the architectural pattern Model-View-Controller
(MVC) to support the user-interaction handling (View-
Controller) and the manipulation of the model in response to
the generated events (Model).

In particular, user-interaction handling is implemented by
extending the classes provided by GEF whereas the model
manipulation is carried out by the plug-ins automatically

DSCEdito

ActionEditoGuardEdito

EventEdito

FunctionEdito

CodeGenerato Simulator

Modelling Coding Simulation

15

generated by EMF. It is worth noting that EMF generates a
plug-in exposing the interfaces needed for the instantiation of
the implemented meta-model. Accordingly, each editor
component is constituted by an EMF-generated plug-in which
manages the model and a plug-in which handles the user
interaction.

In order to ease the deployment of the ELDATool the
number of its constituting plug-ins was minimized. In
particular, the plug-ins which manage the models are
separately implemented whereas the plug-ins handling the
user-interaction and supporting the code generation are
integrated in a unique plug-in, the ELDAEditor.

As a consequence, the following plug-ins are implemented:
- DSCModel, which contains the implementation of the DSC

meta-model;
- EventModel, which contains the implementation of the

Event meta-model;
- ActionGuardModel, which contains the implementation of

the Action and Guard meta-model;
- FunctionModel, which contains the implementation of the

Supporting Function meta-model;
- ELDAEditor, which contains all the editor and the code

generator.
It is worth noting that the models, obtained through

instantiating the related meta-models and by using the editor
made available by the ELDATool, are serialized into
independent XML-like files with different extensions (see
Table 1).

Table 1: Extensions of the XML-like files associated to the models

Model File Extension
Event event
Action action
Guard guard
Function function
Active State dsc

Figure 3 highlights and clarifies the dependence

relationships among the implemented plug-ins and the
GEF/EMF plug-in.

Figura 3: The ELDATool Plug-ins.

The ELDATool will be released as a set of plug-ins and a
jar named ELDAFramework.jar which contains the Java
implementation of the ELDA framework. It is worth noting
that to install the ELDATool it is only necessary to copy the
set of plug-ins and the ELDAFramework.jar into the plugins

folder of Eclipse and restart Eclipse. The software
requirements of the ELDATool are: Eclipse ver. 3.3, GEF ver.
3.3, EMF ver. 2.3.0 and JRE ver. 1.5.

V. A CASE STUDY
In this section the use of the ELDATool is shown by

illustrating the modelling of an ELDA agent named
Contractor Mobile Agent (CMA) which operates within an
agent-based e-Marketplace. After a discovery phase of the
vendors offering a specific product which was carried out by
another type of agent, the CMA has the goal of supporting the
phase of contracting with the vendors found.

Figure 4 shows the active state of the CMA behaviour and
Figure 5 reports its guards, actions, and supporting functions.

In particular, the CMA, received the identifier and the
location of a given vendor and the product to buy, migrates to
the vendor location (see action ac1) and starts the contracting
phase (see action ac2). After obtaining the offer, if the product
is immediately available (see guard productAvailable) the
CMA archives the offer and comes back to the starting
location (see action ac3); otherwise, the CMA waits for the
product availability until a timeout expiration (see action ac5).
After the timeout expiration, the CMA restarts the contracting
phase if the number of trials is greater 0 (see guard
NotAllTrialsDone); otherwise, the CMA archives the offer
and migrates to the starting location (see action ac3). Finally,
the CMA notifies the details of the contracting phase to its
owner (see action ac4).

Figure 4: The active state of the CMA

Guards Definitions
private boolean productAvailable(ELDAEvent e){
 OfferMsg offer=(OfferMsg) e;
 if (offer.getProductAvalaible())
 return true;
 return false;
}
private boolean productNotAvailable(ELDAEvent e){
 return !productAvailable(e);
}
private boolean NotAllTrialsDone(ELDAEvent e){
 return !AllTrialsDone(e);
}
private boolean AllTrialsDone(ELDAEvent e){
 if(trials==0)
 return true;
 return false;
}
Actions Definitions
private void ac1(ELDAEvent e){
 generate(new ELDAEventMoveRequest(self(), self(),
 VATarget.getCurrLocation()));
 generate(new Contract(self(), self()));
}
private void ac2(ELDAEvent e){
 PriceQueryMsg priceQuery= new PriceQueryMsg(self(), VATarget, null);
 generate(new ELDAEventMSGRequest(self(), VATarget, priceQuery));
}
private void ac3(ELDAEvent e){
 OfferMsg offer=(OfferMsg) e;
 storeVAOffer(offer);
 generate(new ELDAEventMoveRequest(self(), self(),

ELDAEditor <<Eclipse Plug-

DSCModel
<<Eclipse Plug-

EventModel
<<Eclipse Plug-

ActionGuardModel
<<Eclipse Plug-

FunctionModel
<<Eclipse Plug-

GEF <<Eclipse Plug-
EMF

<<Eclipse Plug-

DSCEditor ActionEdito GuardEditor

EventEdito CodeGeneratoFunctionEditor

16

 owner.getCurrLocation()));
 generate(new ReportParent(self(), self()));
}
private void ac4(ELDAEvent e){
 PPriceMsg pPrice=new PPriceMsg(self(), owner, VAOffer);
 generate(new ELDAEventMSGRequest(self(), owner, pPrice));
 generate(new ELDAEventQuitRequest(self()));
}
private void ac5(ELDAEvent e){
 if(timeout>0){
 timeout--;
 generate(new Tick(self(), self()));
 }
 else{
 timeout=100;
 generate(new Contract(self(), self()));
 }
}
private void ac6(ELDAEvent e){
 trials--;
 ac2(e) ;
}
Functions Definitions
private void storeVAOffer(OfferMsg offer){
 //omissis
}

Figura 5: Guards, actions and functions of the CMA behavior

To exemplify the use of the ELDATool the following
activities are briefly illustrated: (A) visual definition of the
active state, (B) definition of events, (C) definition of guards,
(D) definition of actions, and (E) definition of supporting
functions.

A. Definition of the active state
The result of this activity is the model of the active state of

the agent behaviour; the transitions defined among the states
are based on events, guards, and actions which are previously
defined. Moreover, during this activity, it is possible to define
local variables for each state so constituting a hierarchical data
space. Figure 6 shows a snapshot of the active state of the
CMA behaviour obtained through the DSCEditor.

Figure 6: Definition of states

B. Definition of events
The EventEditor allows for the definition of new events by

extending the events already offered by the ELDAFramework.
In particular, for each event, the event name, the event class of
the ELDAFramework to be extended, and (possibly) new
parameters can be defined. Figure 7 shows the event definition
dialog through which the event Tick is defined as extension of
the base event ELDAEventInternal.

Figure 7: Definition of an event

C. Definition of the guards
The definition of a guard involves the definition of its name

and the boolean expression associated to it (or guard body).
Within a guard body it is possible to use variables belonging
to the data space (e.g. the integer variable trials), guards
previously defined and supporting functions. Figure 8 shows
the definition of the guard named AllTrialsDone to be
associated to the transition between the TimeOut state and the
StoreAndMigrate state.

Figure 8: Definition of a guard

D. Definition of the actions
The definition of an action involves the definition of its

name and the instructions which costitute it. In an action, it is
possibile to use variables belonging to the data space, actions
previously defined, and supporting functions. Figure 9 shows
the definition of the action ac6 which uses the action ac2
previously defined.

17

Figure 9: Definition of an action

E. Definition of supporting functions
The definition of supporting functions which can be used

by actions and guards to improve design modularity, is
constituted by the specification of the function name, of the
type of the returned value, of the parameters and of the
function body. Figure 10 shows the dialog for the definition of
the supporting functions; in particular, the StoreVAOffer
function is defined which returns void and has only the
parameter offerMsg of the OfferMsg type.

Figure 10: Definition of a supporting function

F. Code generation
After defining the agent behavior, it is possible to generate

Java code through the CodeGenerator component. The code
generation activity creates a new project containing the
translation of specified models into Java code according to the
ELDAFramework.

Figure 11 shows both the project containing the models of
the whole MAS under-development (EMarketPlace) and the
project structure (EMarketPlace_Implementation) generated
only for the CMA which contains a package
(emarketplace.cma) with the CMAActiveState class and a
package (emarketplace.events) with event classes triggering

the CMA (Contract, OfferMsg, ReportParent, Tick).

Figure 11: Structure of the generated project

Figure 12: Active state of the CMA agent

Figure 12 shows the outline of the CMAActiveState which
highlights the hierarchical dataspace of the agent and the
location of guards, actions, and functions.

18

Figure 13 shows an excerpt of the CMA generated code
related to the Timeout state.

// TIMEOUTState Inner Class
public class TIMEOUTState extends SimpleState implements Serializable
{

 public TIMEOUTState (AState parent, ELDABehavior ebeh) {
 super(parent,ebeh);
 }

 public final int handler(ELDAEvent evt){
 if (evt instanceof Tick){
 ac5(evt);
 return 0;
 }
 else if (evt instanceof Contract && NotAllTrialsDone(evt)){
 ac6(evt);
 ((CompositeState) parent).setActiveState(
 ((CompositeState) parent).getState("QUERY"));
 changeState(((CompositeState) parent).getActiveState());
 return 0;
 }
 else if (evt instanceof Contract && AllTrialsDone(evt)){
 ac3(evt);
 ((CompositeState) parent).setActiveState(
 ((CompositeState) parent).getState("STOREANDMIGRATE"));
 changeState(((CompositeState) parent).getActiveState());
 return 0;
 }
 else return parent.handler(evt);
 }
 // Actions Definitions Section
 private void ac6 (ELDAEvent e){
 trials--;
 ac2(e);
 }
 // Guards Definitions Section
 private boolean NotAllTrialsDone (ELDAEvent e){
 return ! AllTrialsDone(e);
 }
 private boolean AllTrialsDone (ELDAEvent e) {
 if(trials==0)
 return true;
 return false;
 }
}

Figure 13: The code of the Timeout state.

VI. CONCLUSIONS AND FUTURE WORKS
This paper has presented the ELDATool by describing its

system requirements, design, implementation, and use through
a simple example. The ELDATool represents a research effort
aiming at supporting the rapid prototyping of MASs which is
contextualized in the active research area on agent-oriented
software engineering. In particular, the ELDATool gives
support to a DSC-based agent-oriented methodology
seamlessly covering the phases of the MAS development
lifecycle from modeling to implementation.

Visual modeling and programming, and automatic code
generation are very important features that any tool supporting
an agent-oriented methodology should have to ease the
designer tasks. The ELDATool fully provides such features
and, furthermore, being based on the Eclipse platform, can be
easily distributed and used by the community.

Currently, efforts are underway for (i) completing the
Simulation component so allowing validation and

performance evaluation of the MAS under-development; (ii)
designing and implementing new components for the
implementation and deployment of the prototyped MAS for a
target agent platform.

REFERENCES
[1] F. Zambonelli and A. Omicini, “Challenges and research directions in

agent-oriented software engineering”, Autonomous Agents and Multi-
Agent Systems, 9(3), pp. 253-283, Nov. 2004.

[2] M. Cossentino, “From Requirements to Code with the PASSI
Methodology,” In Agent-Oriented Methodologies, Eds. B. Henderson-
Sellers and P. Giorgini, Idea Group Inc., Hershey, PA, USA, 2005, pp.
79–106.

[3] F. Zambonelli, N. Jennings, and M. Wooldridge, "Developing
multiagent systems: The Gaia methodology," ACM Trans. Software Eng.
Meth., vol. 12, no. 3, pp.417-470, 2003.

[4] A. Molesini, A. Omicini, E. Denti, and A. Ricci, “SODA: A Roadmap to
Artefacts,” 6th International Workshop on Engineering Societies in the
Agents World VI, (ESAW 2005), Kusadasi, Aydin, Turkey, October
2005. LNAI 3963, Springer, 2006.

[5] J. Pavón, J. Gómez-Sanz, and R. Fuentes, “The INGENIAS
Methodology and Tools,” In Agent-Oriented Methodologies, Eds. B.
Henderson-Sellers and P. Giorgini, Idea Group Publishing, 2005, pp.
236-276.

[6] G. Fortino, W. Russo, and E. Zimeo, “A Statecharts-based Software
Development Process for Mobile Agents”, In Information and Software
Technology, 46(13), pp.907-921, Elsevier, Amsterdam, The Netherland,
2004.

[7] G. Fortino, A. Garro, and W. Russo, “An Integrated Approach for the
Development and Validation of Multi Agent Systems”, In Computer
Systems Science & Engineering, 20(4), pp. 94-107, CRL Publishing Ltd.,
Leicester (UK), Jul. 2005a.

[8] R. Caico, M. Cossentino, G. Fortino, A. Garro, W. Russo, and F.
Termine, "Simulation-driven Development of Multi-Agent Systems",
Proceedings of the EUROSIS Workshop on Multi-Agent Systems and
Simulation (MAS&S’06), Palermo, Italy, 2006, pp. 17-24.

[9] G. Fortino and W. Russo, "Multi-coordination of Mobile Agents: a
Model and a Component-based Architecture", Proceedings of ACM
Symposium on Applied Computing, Special Track on Coordination
Models, Languages and Applications, Santa Fe, New Mexico, USA,
Mar. 13-17, 2005.

[10] D. Harel and E. Gery, “Executable Object Modelling with Statecharts”,
IEEE Computer, 30(7), pp. 31-42, 1997.

[11] FIPA (Foundation for Intelligent Physical Agents). 2002. FIPA Agent
Management Support for Mobility Specification, Document FIPA
DC00087C (2002/05/10).

[12] Eclipse - an open development platform, documentation and software,
available at the World Wide Web: http://www.eclipse.org.

[13] G. Fortino, A. Garro, and Russo, W. (2005b) ‘A Discrete-Event
Simulation Framework for the Validation of Agent-based and Multi-
Agent Systems’, Proceedings of the Workshop on Objects and Agents
(WOA’05), Camerino, Italy, Nov 14-16.

[14] The Graphical Editing Framework (GEF), documentation and software,
available at the World Wide Web: http://www.eclipse.org/gef/.

[15] Eclipse Modeling Framework Project (EMF), documentation and
software, available at the World Wide Web:
http://www.eclipse.org/modeling/emf/.

19

The PRACTIONIST Development Tool
Fabio Centineo∗, Angelo Marguglio∗ Vito Morreale∗ Michele Puccio∗,

∗R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A.

I. THE PRACTIONISTSUITE

PRACTIONIST (PRACTIcal reasONIng sySTem) [1] is a
suite of tools including (see figure 1):(i) a methodology,
consisting of a UML-based modelling language (PAML) and
an iterative and incremental development process,(ii) the
PRACTIONIST runtime and framework (PRF), which defines
and supports the execution logic and provides the built-
in components according to such a logic to support the
development of BDI agents in Java (using JADE1) with a
Prolog belief base, and(iii) the PRACTIONIST Develop-
ment Tool (PDT), a design and development environment
which supports the methodology. The PRF also includes the
PAIT, to monitor the intentional components of each agent
and the PRACTIONIST Autonomic Manager (PAM) which
enables PRACTIONIST applications to support the self-chop
features2 (self-configuring, self-healing, self-optimizing and
self-protecting)

In this abstract we give an overview of the PDT, the
modelling environment that is a part of the PRACTIONIST
suite (figure 1), the metamodel it is built on, and a brief
introduction of the PDT visual editors.

II. T HE PRACTIONIST DEVELOPMENT TOOL

The PRACTIONIST suite provides developers with the
PRACTIONIST Development Tool, a tool to design and
develop multi-agent systems according to the PRACTIONIST
design methodology. Indeed, it supports such a methodology
from the requirements analysis to the code generation of agents
and artefacts (according to the A2A approach [2]), including a
set of visual editors for each phase of the methodology. As an
example, in figure 2 a snapshot of the Class editor is shown.

Some editors of the PDT are based on UML 2.0 meta-
model3, such as the class and use case editors, whereas
the others are based on the PRACTIONIST Agent Modeling
Language (PAML), which is a semi-formal UML-based visual
modeling language for specifying, representing and document-
ing multi-agent systems designed with PRACTIONIST.

As the PAML aims to the definition of PRACTIONIST
agents, its metamodel contains metaclasses to model inten-
tional components of such agents, such as beliefs, goals and
relations among them, plans and so forth.

The PDT has been developed by using several Eclipse4

plug-ins, such as: UML2, Eclipse Modelling Framework

1http://jade.tilab.com
2http://www-03.ibm.com/autonomic/library.html
3UML 2.0 Superstructure Specification: formal/05-07-04
4http://www.eclipse.org/

Development Process

UML
 i* notation

PAML

PRACTIONIST Methodology

Eclipse

PRACTIONIST Development Tool (PDT)

PRACTIONIST

Code Generator

PRACTIONIST Packages

Java

Prolog

(SWI, TuProlog)

PRACTIONIST Runtime & Framework

PAIT
 PAM

PRACTIONIST Modelling

Editors

Fig. 1. The PRACTIONIST suite.

(EMF), Graphical Editing Framework (GEF), Graphical Mod-
eling Framework (GMF) and other Eclipse extensibility fea-
tures. All the PDT editors share a common infrastructure, so
that new editors can be added in it without any impact on the
existing ones. Moreover, each editor inherits several features
described below by the above infrastructure.

As many well-known CASE tools, the PDT editors provide
all the features that support the development of complete and
consistent visual models. Some of them are provided by GMF,
such as thecut and copyandsave diagram as imagesupports,
the look and feelmanagement, the diagram validation and so
on, whereas the other ones have been built by generalizing
some of the GMF project features, such as:

• Unified model: all diagrams created inside a PRACTION-
IST project share the same model (i.e. an instance of the
meta-model), whereas each generic GMF diagram file has
usually its own model file. Sharing the same model file
means sharing the same command stack, allowing us to
execute cross-checks among elements and consequently
model more complex and greater systems as a whole;

• Drag and Dropsupport: a PRACTIONIST project has its
own model view, where the developed model is displayed
as a tree. From this view it is possible todrag and
drop the elements into diagrams, enabling us to use the
same elements in different diagrams as well. Thus, if an
element is modified in a diagram, it will be updated in
all the other diagrams.

20

Fig. 2. A snapshot of the PRACTIONIST Development Tool.

• Delete from diagramand delete from modelactions: in
a GMF diagram thedelete from modelaction is enabled
by default, so when an element is deleted in the diagram
it is also automatically deleted from the model. Such a
behaviour was modified in order to get thedelete from
view action as well, and thus have a more flexible model
management.

For the development of the PDT, the support provided
by the Eclipse environment has been fully exploited. As a
consequence:

• a PRACTIONIST project, which is a custom Eclipse Java
project, provides several sections where developers can
create their own diagrams and the source folder that will
contain the generated source code;

• the model view of a PRACTIONIST project is a custom
Eclipse view that displays the unified model underlying
the project;

• the PRACTIONIST Java code can be generated starting
from diagrams in a simple way.

As mentioned, the PDT provides PRACTIONIST develop-
ers with a rich set of visual modelling editors, as follows:

• i*-based [3] editors:
– Strategic Dependency (SD) editor: to describe the

dependency relationships among various actors in an
organizational context;

– Strategic Rational (SR) editor: to describe stake-
holder interests and concerns and how they might
be addressed by various configurations of systems
and environments;

• UML2.0 based editors:
– Use Case editor: to model use cases and system

funcionalities from the actor’s point of view;
– Class editor: to model the structure of a system or

of its parts for instance (see figure 2);

Fig. 3. A snapshot of the PDT Plan Body editor.

• PRACTIONIST agent editors:

– Agent editor: to model agents and specify their
components;

– Domain editor: to model facts about the world the
agent believes true, false or has no belief about;

– Goal editor: to model agent goals and the relation-
ships among them;

– Effector/Action - Perceptor/Perception editor: to
model the means agents interact with their environ-
ment;

– Plan editor: to model the internals PRACTIONIST
plans;

– Plan Body editor: to model the body of PRACTION-
IST plans (see figure 3).

Finally, the PDT represents a powerful visual modeling
environment that supports the representation of the concepts
underlying the BDI model as well as several features present
in well-known UML-based CASE tools. Moreover, it let us
reduce the development time of PRACTIONIST applications
thanks to the code generation of agents and artefacts. The
PDT aims at bridging the gap between the increasing need
of development of multi-agent systems and the availabilityof
tools for their design.

REFERENCES

[1] V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, M.Puccio, and
M. Cossentino, “Developing intentional systems with the practionist
framework,” in Proceedings of the 5th IEEE International Conference
on Industrial Informatics (INDIN07), July 2007.

[2] A. Ricci, M. Viroli, and A. Omicini, “Programming MAS with artifacts.”
in PROMAS, 2005, pp. 206–221.

[3] E. S. K. Yu, “Towards modelling and reasoning support for early-
phase requirements engineering,” pp. 226–235. [Online]. Available:
citeseer.ist.psu.edu/article/yu97towards.html

21

Abstract—This document briefly describes a framework

supporting the definition and implementation of virtual
environment inhabited by interacting situated agents defined
according to the Multilayered Multi-Agent Situated System
model. The framework supports the specification and
execution of visually rich 3D virtual environment endowed by
the presence of mobile agents acting and interacting inside it
according to a multi-agent model.

I. INTRODUCTION

HE design and realization of virtual environments
inhabited by social entities is a significant application of

the conjoint results of various research areas in computer
science and engineering. Virtual environments have been
exploited in several ways, and in particular:

- to support computer mediated forms of human
interaction, characterized by the introduction of
Embodied Conversational Agents facilitating
users’ interactions [9] or supplying awareness
information in a visually effective form [13];

- to realize operational laboratories for
participatory design, supporting the effective
visualization of various alternative design
choices to the involved stakeholders [6][9][8];

- to provide effective instruments for the
modeling, simulation and visualization of the
dynamics of entities situated in a representation
of an existing, planned or reconstructed
environment or situation [7][12];

- for sake of entertainment, in movies, computer
games or in online communities (see, e.g.,
Second Life1).

While all these applications are characterized by a strong

requirement for realistic and effective visualization tools
(and some of them require a thorough analysis of the system
usability, due to the necessary accessibility by non-
technically skilled users), they also call for expressive
models supporting the specification of behaviours for the
entities that inhabit these environments, as well as the
interaction among them and with the environment itself. The
fact that the overall performance of the system is essentially

aComplex Systems and Artificial Intelligence research center, University

of Milano-Bicocca, via Bicocca degli Arcimboldi 8, 20126 Milano,
{giuseppe.vizzari, giorgio.pizzi}@csai.disco.unimib.it

bDepartment of Computer Science, Institute of Mathematics and
Statistics, Universidade de São Paulo, fcs@ime.usp.br

1 http://secondlife.com

dependant on the single actions and interactions that are
carried out by entities inhabiting the modeled environment
leads to consider that the Multi-Agent Systems approach is
particularly suited to tackle the modeling issues that are
posed by this scenario. This idea is also corroborated by the
fact that most of the above introduced references actually
describe systems based on this approach, and by specific
experiences in applying MAS approaches to specific virtual
environments applications such as computer games [10].

In this vein, the main aim of this document is to show the
current advancement of a long term project that provides the
realization of a framework supporting the development of
MAS based simulations based on the Multilayered Multi-
Agent Situated System model [1] provided with an effective
form of 3D visualization. The main goal of the framework is
to support a smooth transition from the definition of an
MMASS based model of given situation to the realization of
simulation systems characterized by an effective 3D user
interface. One of the possible application areas of this kind
of system is related to the modeling and simulation of
crowds of pedestrians to support architectural design or
urban planning [2][3]. In order to have information flowing
appropriately from the formal model to design professionals
(e.g. architects and urban planners), the MMASS-based
simulator must be supported by adequate visualization and
animation tools. Such supporting tools are the core issue of
the present document. For sake of space, details of the
MMASS are omitted, as well as a discussion of the related
works; a more through discussion of these topics can be
found in an extended version of this document in this
volume [15].

Figure 1 – Overall architecture of the framework for
MMASS based virtual environments.

II. THE EXECUTION AND VISUALIZATION FRAMEWORK

The basic approach that was adopted for this project is to
integrate an existing MAS modeling and development
framework with an infrastructure supporting an effective
form of 3D visualization of the dynamics generated by the
model. In particular, to realize the second component we

A Framework for Execution and Visualization
of Situated Agents Based Virtual Environments

Giuseppe Vizzaria, Giorgio Pizzia, Flávio Soares Corrêa da Silvab

T

22

adopted Irrlicht2, an open-source 3D engine and usable in
C++ language. It is cross-platform, it can exploit OpenGL
or DirectX libraries for 3D visualization, and it provides a
performance level that we considered suitable for our
requirements. It provides a high level API that was adopted
for several projects related to 3D and 2D applications like
games or scientific visualizations. The MAS modeling and
development framework we adopted is a C++ porting and
relevant refactoring of the original MMASS framework [2],
aimed at adapting it to the different programming language
and also at optimizing some mechanisms such as commonly
adopted field diffusion algorithms. The overall framework
was developed and tested in the Windows XP operating
system, but it can be easily ported to MacOS X or Linux.

The overall architecture of the framework is shown in
Figure 1. The following subsections will discuss the basic
elements of this C++ version of the MMASS framework
(MMASS module in the figure) and the infrastructure
interfacing this module with the 3D visualization engine
(MMASS UI manager in the figure).

Figure 2 – Simplified class diagram of the part of the
framework devoted to the realization of MMASS
concepts and mechanisms.

A. Supporting and Executing MMASS Models

The MMASS framework adopted for this project is
essentially a library developed in C++ providing proper
classes to realize notions and mechanisms related to the
SCA and MMASS models. In particular, a simplified class
diagram of the MMASS framework is shown in Figure 2.
The lower part of the diagram is devoted to the
environment, and it is built around the BasicSite class. The
latter is essentially a graph node (i.e. it inherits from the
GraphNode class) that is characterized by the association
with a FieldManager. The latter provides the services
devoted to field management (diffusion, composition and
comparison, defined as abstract classes). An abstract space
is essentially an aggregation of sites, whose concretizations
define proper adjacency geometries (e.g. regular spaces
characterized by a Von Neumann adjacency or possibly
irregular graphs).

An abstract agent is necessarily situated in exactly one
site. Concrete agents defined for this specific framework are
active objects (that are used to define concrete points of
interest/reference to be adopted in a virtual environment)

2 http://irrlicht.sourceforge.net/

and pedestrians (that are basic agents capable of moving in
the environment). Actual pedestrians and mobile agents that
a developer wants to include to the virtual environment must
be defined as subclasses of Pedestrian, overriding the basic
behavioural methods and specifically the action method.

B. Integrating the Models with a Realtime 3D Engine

While the previous elements of the framework are
devoted to the management of the behaviours of
autonomous entities and of the environment in which they
are situated, another relevant part of the described
framework is devoted to the visualization of these dynamics.
More than entering in the details of how the visualization
library was employed in this specific context, we will now
focus on how the visualization modules were integrated
with the previously introduced MMASS framework in order
to obtain indications on the scene that must be effectively
visualized.

Figure 3 shows a simplified class diagram of the main
elements of the 3D Engine Library. The diagram also
includes the main classes that are effectively in charge of
inspecting the state of the MMASS environment and agents,
and of providing the relevant information to the
SceneManager that will translate it into a scene to be
visualized. The Project class act as a container of the 3D
models providing the graphical representation of the virtual
environment (Model3D objects), as well as the graph related
to the adopted discretization of this physical space (a Graph
object visually representing the previously discussed
physical layer). It also includes a set of Avatar objects, that
are three dimensional representations of Pedestrian objects
(introduced in the previous subsection).

Figure 3 – Simplified class diagram of the part of the
framework devoted to the management of the
visualization of the dynamics generated by the model.

The framework must be able to manage in a coordinated
way the execution of the model defined for the specific
virtual environment and the updating of its visualization. To
manage this coordinated execution of different modules and
procedures three main operative modes have been defined
and are supported by the framework. The first two are
characterized by the fact that agents are not provided with a

23

thread of control of their own. A notion of turn is defined
and agents are activated to execute one action per turn, in a
sequential way or in a conceptually parallel way (as for a
Cellular Automaton). In this case, respectively after each
agent action or after a whole turn the scene manager can
update the visualization. On the other hand, agents might be
associated with a thread of control of their own and no
particular fairness policy is enforced. The environment, and
more precisely the sites of the MMASS space, is in charge
of managing possible conflicts on the shared resource.
However, in order to support a fluid visualization of the
dynamics generated by the execution of the MAS, the
Pedestrian object before executing an action must
coordinate with the related Avatar: if the previous
movement was still not visualized, the action is temporarily
blocked until the visualization engine has updated the scene.
It must be noted that in all the introduced activation modes
the environment is in charge of a regulation function [5]
limiting agents’ autonomy for sake of managing the
consistency of the overall model or to manage a proper form
of visualization.

III. SAMPLE APPLICATIONS

The aim of this section is to present a sample application
to show how the framework supports the definition of
MMASS models and the realization of an effective three
dimensional visualization. The application was also chosen
to show the potential of the framework in terms of execution
of a large number of agents. Tests were carried out on a
notebook on which the Windows XP Professional operating
system was installed; the notebook was provided with an
Intel Pentium IV 2.4 GHz processor, with 320 MB RAM
and an ATI Raedon IGP graphic card with 128 MB (shared
system memory).

 The sample application is about the movement of agents
inside a virtual museum; the aim of the agents in this
scenario is to move outside the buildings to gather in
specific areas, as in case evacuation. In this case the
environment comprises around 2000 sites (a gross
discretization of the represented environment) with around
6000 arcs connecting them; 500 agents were randomly
positioned inside buildings, and they were provided with a
thread of control of their own. Both the environment and
agents were characterized by a 3D visual model, with
textures; some relevant screenshots of this sample
application are shown in Figure 4. Once again, the
analytical results of this simulation are not relevant, since
the agent models were extremely simple and they were not
calibrated against real data. The simulation was executed

Figure 4 – Four screenshots of the virtual museum
application, showing the structure of the environment -
(a) and (b) – a perspective view of the evacuation and
also a ‘bird’s eye’ view of the environment coupled with
three ‘first-person’ perspectives of agents - (c) and (d).

24

and visualized with a number of FPS constantly above 30.
We also executed a stress test on a different hardware

configuration, to verify the scalability of the framework; the
workstation was based on Windows XP Professional
operating system, with an Intel Pentium Core 2 Duo 2.4
GHz, 2 GB RAM and a NVIDIA Quadro FX 3450 graphic
card with 256 MB. The test environment was constituted by
11000 sites, connected by around 44000 arcs; 10000 agents,
sequentially activated, were positioned in this environment.
Their behaviour was simply to move towards the closest
source of an ‘exit’ field; agents reaching the source were
removed from the environment. The system was able to
execute and visualize the simulation with 22 FPS, when the
structure of the environment was hidden (reducing the
number of displayed triangles), and with 3 FPS when it was
visualized.

REFERENCES
[1] S. Bandini, S. Manzoni, C. Simone. Heterogeneous Agents Situated in

Heterogeneous Spaces. Applied Artificial Intelligence, 16(9-10):831–
852, 2002.

[2] S. Bandini, S. Manzoni, G. Vizzari. Situated Cellular Agents: a Model
to Simulate Crowding Dynamics. IEICE - Transactions on
Information and Systems: Special Section on Cellular Automata,
Vol.E87-D(3):669-676, 2004.

[3] S. Bandini, S. Manzoni, G. Vizzari. Multi Agent Approach to
Localization Problems: the Case of Multilayered Multi Agent Situated
System. Web Intelligence and Agent Systems, IOS Press, 2(3):155-
166, 2004.

[4] S. Bandini, S. Manzoni, G. Vizzari. Towards a platform for
Multilayered Multi Agent Situated System based simulations:
focusing on field diffusion. Applied Artificial Intelligence, Taylor &
Francis, 20(4-5):327-351, 2006.

[5] S. Bandini, G. Vizzari. Regulation Function of the Environment in
Agent-Based Simulation. Environments for Multi-Agent Systems III,
Third International Workshop, E4MAS 2006, vol. 4389 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 157-169, 2007.

[6] M. Batty, A. Hudson-Smith. Urban Simulacra: From Real to Virtual
Cities, Back and Beyond, Architectural Design, 75 (6):42-47, 2005.

[7] J. Dijkstra, H. P. J. Timmermans. Towards a multi-agent model for
visualizing simulated user behavior to support the assessment of
design performance. Automation in Construction 11:135-145,
Elsevier, 2002.

[8] J. Dijkstra, J. Van Leeuwen, H. J. P. Timmermans. Evaluating Design
Alternatives Using Conjoint Experiments in Virtual Reality.
Environment and Planning B 30(3):357–367, 2003.

[9] T. Ishida, Y. Nakajima, Y. Murakami, H. Nakanishi. Augmented
Experiment: Participatory Design with Multiagent Simulation. IJCAI
2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 1341-1346, 2007.

[10] M. Mamei, F. Zambonelli. Motion Coordination in the Quake 3 Arena
Environment: A Field-Based Approach. Environments for Multi-
Agent Systems, First International Workshop, E4MAS 2004, vol.
3374 of Lecture Notes in Computer Science, Springer-Verlag, pp.
264-278, 2005.

[11] H. Nakanishi, S. Nakazawa, T. Ishida, K. Takanashi, K. Isbister. Can
Software Agents Influence Human Relations? - Balance Theory in
Agent-mediated Communities. International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2003), ACM
press, pp. 717-724, 2003.

[12] P. Nugues, S. Dupuy, A. Egges: Information Extraction to Generate
Visual Simulations of Car Accidents from Written Descriptions. In:
Computational Science and Its Applications - ICCSA 2003, vol. 2667
of Lecture Notes in Computer Science, Springer-Verlag, pp. 31-40,
2003.

[13] F. Nunnari, C. Simone. Perceiving awareness information through 3D
representations. Proceedings of the working conference on Advanced
Visual Interfaces, AVI 2004, ACM Press, pp. 443-446, 2004.

[14] G. Papagiannakis, S. Schertenleib, B. O'Kennedy, M. Arevalo-Poizat,
N. Magnenat-Thalmann, A. J. Stoddart, D. Thalmann: Mixing virtual
and real scenes in the site of ancient Pompeii. Journal of Visualization
and Computer Animation 16(1):11-24, 2005.

[15] G. Vizzari, G. Pizzi, F. Soares Corrêa da Silva. A Framework for
Interacting Situated Agents in Virtual Environment, WOA 2007 (this
volume).

25

Conceptual Foundations of Interrogative Agents
Vincenzo Deufemia, Giuseppe Polese, Genoveffa Tortora, Mario Vacca

Dipartimento Matematica e Informatica
Università di Salerno

84084 Fisciano(SA), Italy
{deufemia, gpolese, tortora, mvacca}@unisa.it

Abstract—Reasoning by interrogation is one of the most
ancient and experimented ways of reasoning. Originated by the
Aristotelian elenchus, it has been used for many purposes, such
as the resolution of mathematical and daily problems [25], [26],
the discovery of new knowledge [19], [34], [36], the realization of
questioning/answering processes [23]. In this paper we present the
conceptual foundations of interrogative agents, a new model of
BDI architecture based on interrogative logic. This model allows
us to express the properties of agents in a natural way, and to
use heuristics for reasoning. Finally, in order to explicate the
whole approach and to highlight its main features we describe
the application of interrogative agents in the context of database
refactoring.

I. INTRODUCTION

In recent years many different agent-based architectures and
models have been proposed [39]. In this context, a well known
architecture is the so called Beliefs - Desires - Intentions (BDI,
for short), based on the concept of practical reasoning, i.e.,
the capability of resolving, through reflection, the problem
of what to do and how to do it. Informally, this architecture
is composed of four data structures: Beliefs representing the
information that the agent has about the world, Desires repre-
senting the tasks that the agent has to accomplish, Intentions
representing the sequence of actions to achieve the agent’s
desires, and Plans representing the procedural knowledge or
Know-how. An interpreter is responsible for managing these
structures.

In the last years, one of the most important issue faced by
the agent community is flexibility, i.e., the agents ability to act
in unknown situations or to face new situations. Franklin et al.
defined this feature as the agents ability to have non scripted
actions [13]. Many authors stressed the importance of flexibil-
ity. For instance, Barklund et al. took into account the problem
of agent’s flexibility observing that the reuse of an existing
database in a different context calls for the ability of bridging
the differences between the representation of input and the
internal one [3]. According to the same authors, agents should
be able to use different portions of knowledge depending on
users or question classifications. Furthermore, they maintained
the importance of using non-classical or non-deductive forms
of reasoning and proposed the enrichment of agents with meta-
knowledge. From the application point of view, Lin et al.
showed that web-agents need to manage incomplete and partial
information [24]. Therefore, the problem of modeling flexible
agents is more a general one, involving both the way agents
use knowledge and how they reason.

In this paper we face the problem of finding a BDI-like
architecture for flexible agents. To this end, it is important to
remark that the problem of flexibility has already been faced
in the artificial intelligence field, yielding several models of
intelligent systems [33], [34], [36]. These are based on prob-
lem solving and on interrogation as the underlying reasoning
mechanism. The latter is considered one of the most suitable
reasoning mechanisms in order to solve problems [25], [26].
Interrogation is one of the most ancient and experimented
methods of reasoning [17]. It originated by the Aristotelian
elenchus and it has been used for several purposes. This
method of interrogation contains questions other than affir-
mations. It starts the reasoning process with a question, trying
to find a plausible answer to it, after producing a sequence of
questions and affirmations.

This paper is a foundational work aimed at obtaining an
architecture that provides a higher degree of flexibility than
other existing ones. The proposed interrogative BDI archi-
tecture containing both questions and affirmations. Questions
correspond to stimuli (request to think) [25], [26], [36], and
thinking is always an interrogation of an information source
[18]. In this model desires are represented through unanswered
background questions, intentions are more urgent questions to
ask for, and beliefs contain affirmations as well as previously
answered questions. Finally, heuristics, like in the Polya con-
ception, are meta-knowledge questions to help transforming a
question into another one. A processing model of the agent
(usually called cycle in the autonomous agent literature) will
be represented by a logical game [17].

The paper is organized as follows: Section 2 discusses the
foundations of our proposal, and describes two models of rea-
soning by questioning. Section 3 introduces interrogative logic
as the formalism underlying the proposed model. In Section 4
we describe the architecture of interrogative agents, whereas in
Section 5 we describe the application of the proposed model
to the problem of database refactoring. Finally, conclusions
and further research are discussed in Section 6.

II. CONCEPTUAL FOUNDATIONS OF INTERROGATIVE
AGENTS

In the last decades several intelligent systems have been pre-
sented and many models based on the interrogation paradigm
have been developed [4], [19], [25], [29], [36]. According to
the analysis of Jung concerning systems for scientific inquiry
[19], it is possible to classify these models in two main

26

categories. The first one contains the models that are limited
to the linguistic and logical aspects of questions and answers
and to the relation question-answer (answerhood). The latter
contains the models that deal with the methodological aspects
of the question-answering process (Q/A process, for short)
and, therefore, whose aim is to build interrogative-dialogical
schemes. These models, named I-D models, are descendant
from the Greek dialogical scheme and are based on four
essential concepts: the dialogue is a game; the moves of the
players are: questioning, answering, and reasoning; the aim
of dialogic is to build well-organized sequences of questions;
dialogical reasoning is useful to discover new hypothesis,
theories, or general assumptions [19].

As observed by Jung “The dialogical scheme has some
unique features that are ideal for the logic of discovery”
[19]. The most important feature is that it can include non
inferential moves (heuristics) in a natural way, since this
kind of inferences are crucial in the context of discovery and
problem solving. Another important feature is that I-D models
are goal-oriented and the goal is expressed as a question to be
answered. One problem with dialogical models is that dialogic
is a content logic and, hence, domain-specific. In fact, the
criticisms to these models in the A.I. field are related to the
lack of an underlying formalism [21].

In the following we describe two main models of intelligent
systems which reason by questioning: the model of Schank
and the one of Polya. Both can be viewed as agents’ models,
and therefore they constitute a foundation for an interrogative
model of agents.

A. The Schank model of agent
The Schank group work [31]–[36] is a very large and long

lasting, influencing or leading to different branches, trends and
areas of research (see for example [1], [20], [22], [27]).

The Schank’s theory models an intelligent (human or ma-
chine) agent able to learn occurring events and to devise plans
for achieving goals. The agent is a problem solver one and its
main reasoning tools are questions and interrogation. In the
following, we show that the Schank’s theory can be seen as a
BDI model with an underlying interrogative reasoning.

1) The knowledge structures: There are different kinds of
structures depending on the representation level: the actions
are represented by conceptual dependencies [31], scripts and
scenes are devoted to represent more complex situations
[35], MOPs (Memory Organization Packets) and meta MOPs
organize the high level knowledge [32], [33].

The theory of conceptual dependency (CD theory, for short)
is a pictorial formalism developed for representing complex
events through elementary ones. A CD representation of an
event (also called conceptualization) is composed of objects
linked together by rules. As an example, the conceptualization

V ance⇔ PTRANS
o←− V ance Roo

//

oo USA

Israel

Diplomat _jt _ *4 V ance

means that the diplomat Vance goes from USA to Israel.
Scripts were introduced to model the daily life stereotyp-

ical situations, such as “eating in a restaurant” or “taking
a plane” [35]. Scripts are frame-like knowledge structures
and represent prototypical knowledge. They contain sequences
of scenes involving a set of objects (Props) and a set of
people (Roles). Scenes contain general actions aiming to reach
the same goal. Entry conditions enable to activate scripts,
whereas exit conditions give the status of Roles and Props
after the script has been executed (used). For example, a
script $DIPLOMATIC VISIT could involve state secretaries
and translators as Roles, and airplane and tables as Props. It
can contain the scenes ARRIVAL and STATE DINNER de-
scribing, respectively, what generally happens when diplomats
arrive at a foreign state and what are the typical actions and
states during a state dinner.

The model of Schank has also goals and plans [35],
which are script-like structures. Indeed, both scripts and their
successor MOPs can be considered as orderers of scenes and
can also be used as plans [33].

In conclusion, the Schank model contains all the elements
of a BDI architecture.

2) The tasks of Schank agents: Since the theory of Schank
was born in the area of natural language processing, the task
of the first Schank “agent” was understanding the occurring
events. The first paradigm used was “understanding as finding
a place in the memory” for the occurring events (e.g., see the
systems MARGIE [31], SAM [35], or FRUMP [8]).

This first Schank model was very simple. In fact, in the light
of theory of autonomous agents, the Schank understander was
scantly autonomous, it had little or none ability to react to
unknown stimuli, and it processed the same input always in
the same way (i.e., it did not change through its experiences).
To overcome these limitations, it was introduced the concept
of memory reorganization (a form of belief revision), which
enables the understander to learn by experience and, therefore,
to react in a more timely way to external stimuli [32], [33].
In [34], [36], nevertheless, it was recognized that a serious
drawback of the model were still the lack of flexibility, that is
the attitude to change both its knowledge and its behavior to
face the stimuli coming from the environment. The rigidity in
the behavior was due to the systematic use of scripted activities
(see Schank [36] for criticisms on script-based system). The
introduction of problem solving in the Schank model made
the systems more flexible since it enables to solve problems
using the previously solved problems and stored knowledge,
but also reasoning (i.e. applying both deduction and heuristics)
or communication (asking other information sources for), and,
hence, anomalous input or situations are treated like problems.
Thus, a problem solving system trying to solve a problem
will not stop the processing. In this way any activity becomes
the solution to a problem which may not have a standardized
solution.

3) The processing: The reasoning tools of the Schank the-
ory are based on questions. Indeed, understanding is realized
through the application of a structure of knowledge, which is a

27

process consisting in posing a set of questions on what could
occur. The flexibility is fulfilled substituing the ”filling the
slots” concept of understanding by the more complex process
of explanation, whose aim is to link anomalous inputs to
the existent knowledge. In particular, the main phases of the
explanation process [34], which embodies all the features of
the questioning process, can be compared to the cycle of agent
architectures:

a) Finding an anomaly
This process starts with the application of the base
questions, such as the scripts and the scenes of MOPs.
If any of these questions do not obtain an answer, or
the answers are different from the forecast ones, then an
anomaly has been found and the system needs additional
creative explanations.

b) Posing the explanation question – Finding the explanation
pattern
This process starts when an anomaly has been detected.
The explanation question (EQ, for short) tries to explain
the understanding failure by reformulating the question,
and, if there exists an answer, it will be used as a new
expectation.

c) Reorganizing the memory
If there exists an answer to an EQ, the system tries
to generalize and story it in memory. This is done by
reminding similar cases, and by attempting to find a
suitable generalization. Both reminding and generalizing
are accomplished through an interrogative process.

Thus, the reasoning starts with a question and generates
new ones as variations of existing questions, i.e., are obtained
from another one by transformation which “is a way of getting
an answerable question from an unanswerable one” [36], p.
287. Typical transformation mechanisms are specialization,
generalization, simplification, and every one enabling to get
an answer. Once an answer for the transformed question is
found, the tweaking process will try to adapt it to the starting
question.

Compared with the first approach based on the “question
as expectation” paradigm, here the questions have an active
role since they start elaboration processes and, hence, the
association question-answer is dynamic.

The following very famous example about the meeting
between Vance and Begin wives shows the working of the
interrogative reasoning proposed by Schank:

“Q1. Did your wife ever meet Mrs. Begin?
Q2. Where would they have met?

Q3. Under what circumstance do diplomats’ wives
meet?

Q4. Under what circumstance do diplomats
meet?
A4. On state visits to each other’s countries.At
international conferences.

A3. When they accompany their husbands on
these visits.
Q3a. When did Vance go to Israel?

Q3b. When did Begin go to the U.S.?
A3a/A3b. Various dates can now be retrieved from
memory.
Q3c. Did their wives accompany them on any of
these trips?
A3c. A trip where this happened is found.

Q2a. During what part of a trip would wives meet?
A2a. During a state dinner.

Final revised question: Was there a state dinner on may 24th,
1977, during the diplomatic visit that Vance made to Israel
with his wife?

Answer (A1): Probably on May 24, 1977, in Jerusalem at
the state dinner at which they were both present.” [35] pag.
286.

B. The Polya problem solving process

The model of problem solver proposed by Polya can also
be described in terms of a BDI architecture [25], [26].

A problem solver requires two kinds of knowledge: one
about abstract problems and the other about concrete (already
solved) problems. Actually, the first one is a meta knowledge
about the structure and the components of the problems.

The cycle, whose goal is to link the given problem to
the existing knowledge in a closer and closer way, can be
described by two lines going from the Mobilization of
knowledge to its connection to the problem (Organization)
[26]:

1) Mobilization → Recognizing → Regrouping →
Organization
Recognizing consists in examining the problem and
recognizing some familiar features, whereas regrouping
refers to a new way to see the existing elements after
having recognized them. For example, the drawing of
a bisector of the vertex angle in an isosceles triangle
enables the regrouping of its elements in two equal
triangles.

2) Mobilization → Remembering →
Supplementing → Organization
When a feature has been recognized, it can allow to
remember other problems with that feature or theorems
about it. This new knowledge enriches the problem
supplementing it by this new information.

The cycle is realized by questions. For instance, questions
like “What is the unknown?”, “What are the data?”, “What is
the condition?” can be useful for recognizing; the questions
“Do you know a related problem?” or “Do you know a theorem
that could be useful?” can help for remembering; “Could you
restate the problem?”, “Could you restate it still differently?
Go back to definitions.” aim to regroup (see [25] for a very
rich list of questions).

However Polya warns that “Do not, however, use the
checklist in a haphazard way, taking the questions at random,
and do not use it mechanically, going through the questions
in a fixed order. Instead, use this list of questions as an expert
workman use his tool chest.” [26].

28

III. THE INTERROGATIVE LOGIC

A serious problem with models that reason by questioning,
like the Schank’s one, is the lack of underlying formalisms.
In fact, it is well-known that the debate on the role of
mathematical logic in artificial intelligence has characterized
the developments of A.I. itself, producing currents of thought
and different positions [21]. After the recent developments, we
think that erotetic logic can constitute an adequate formalism
for the models based on interrogation.

Erotetic logic (from the Greek word erotema meaning ques-
tion) is the branch of logic studying the logic of questions and
answers. According to the received view [5], [37], the task of
erotetic logic is twofold: studying formal languages containing
both questions and answers, and studying the relations be-
tween question and answer (answerhood). Nevertheless, many
authors think that it is possible to reason (making inferences)
by using both questions and answers [15], [17], [37], [38],
yielding models close to the concept of Greek dialogic (the
logic of reasoning by interrogation), as they recognize the
importance of reasoning by questioning [19].

In this paper we abide by this conception of erotetic logic,
which we refer to as dialogic, in order to avoid confusion
with the received view. In particular, we think that the theory
of Hintikka can be exploited to derive the logic formalism of
our model [17].

Hintikka view of reasoning can be summerized as follows:
a line of reasoning is constituted by a sequence of sentences; a
new sentence in such a line is either obtained by deduction or
(in the case of a rational agent) by asking for an information
source (named oracle in the Hintikka terminology). Such
rational line of reasoning is an interrogative process, which
is performed by an inquirer [17].

The logic of Hintikka is modelled by a game played by
the inquirer against one or more oracles, and the semantics
used is the tableau method. Affirmations are on the left side
of the tableau, the questions on the right side. The inquirer
starts the moves, and the role of the oracles is to answer to
the inquirer’s questions. There are two kinds of moves: logical
inference moves and interrogative moves. The formers are the
typical deductive rules, and they are tableau-building rules (see
[17] for a complete list).

Rules for questioning serve to generate questions. A rule
for questioning is the following:
• If the presupposition of a question occurs on the left

side of a subtableau, the inquirer may address the cor-
responding question to the oracle. If the oracle answers,
the answer is added to the left side of the subtableau.

The system also has structural rules, which allow to manip-
ulate the tableau.

IV. INTERROGATIVE AGENTS

The proposed model abides by the tradition of I-D models
and is presented using some of the terminology by Jung [19].

Our ideal agent is Sherlock Holmes, whose behavior has
been widely studied by philosophers and logicians (see [11]

for a collection of essays). Sherlock Holmes is a problem
solver with a diversified knowledge1 and who is able to reason
analytically2. Any activity starts with a problem (question)
and it possibly ends with a plausible answer to that question.
In order to solve a problem, the agent activates a process of
problem solving which consists of linking the problem to the
existing knowledge. According to the analytic method [6], a
problem P is reduced to another problem that, if it is known
or built, solves P . This is made trying to answer by reasoning
or asking some other (also itself) for. Asking to itself means
to search its own memory for some information.

Therefore, the agent has two abilities, deducing and asking
for/answering (communicating). While deducing is a process
of argumentative bridge-building, communicating serves to ask
for other information sources. Also the task of an information
source (named oracle in the Hintikka’s terminology) is to
answer questions, but the strategy used to accomplish it does
not matter. Hence, an oracle can represent a mathematician
using reasoning heuristics, an experimental physicist answer-
ing a question on the ground of experimental data, or it can
implement vision recognition modules in computer systems.

A. The model

Formally, an interrogative agent is a quadruple

IA = (I,K,L,RG)

where
I is an interpreter;
K is a set of Information sources. Three special sources of

information are the Problem source P , the Environment source
E, and the Goal source G;
L is the interrogative logic of the agent. It has a language

constituted by two disjoint sets: Q (the set of possible ques-
tions) and A (the set of possible affirmations), and by rules
like those in [17];
RG is a set of rules (guidance rules).

The interpreter I has the goal to answer questions (called
principal questions or main problems) according to the guid-
ance rules RG. To this aim it applies deductive rules or asks
for another information source.

1“SHERLOCK HOLMES – his limits. 1. Knowledge of Literature. – Nil.
2. Philosophy. – Nil. 3. Astronomy. – Nil. 4. Politics. – Feeble. 5. Botany. –
Variable. Well up in belladonna, opium, and poisons generally. Knows nothing
of practical gardening. 6. Geology. – Practical, but limited. Tells at a glance
different soils from each other. After walks has shown me splashes upon his
trousers, and told me by their color and consistence in what part of London
he had received them. 7. Chemistry. – Profound. 8. Anatomy. – Accurate,
but unsystematic. 9. Sensational Literature. – Immense. He appears to know
every detail of every horror perpetrated in the century. 10. Plays the violin
well. 11. Is an expert singlestick player, boxer, and swordsman. 12. Has a
good practical knowledge of British law.” [10] pp. 13–14.

2“In solving a problem of this sort, the grand thing is to be able to reason
backwards. That is a very useful accomplishment, and a very easy one, but
people do not practice it much. In the every-day affairs of life it is more
useful to reason forwards, and so the other comes to be neglected. There are
fifty who can reason synthetically for one who can reason analytically.” [10]
pp. 115–116.

29

An information source is a couple (Ki, O Ki), where Ki is
the information store and O Ki, named oracle, is the manager
of the information in the store. The aim of an oracle is to
answer questions and to make questions to the interpreter,
by also using meta-knowledge or heuristics. In particular, an
oracle

- retrieves knowledge from the source and stores new
knowledge in it;

- generates questions starting from knowledge;
- revises the knowledge.

The Goal source contains information about the general
goals of the processing agent. Typical goals are plan co-
herency, contextual place, individual prediction, group pre-
diction, new facts, rule copying, truths [34]. Goals play an
important role in our model. In fact, the model is goal-oriented,
i.e., every problem the agent poses has to be filtered through
the goals of the agent itself. This principle has its roots in
the fact that many questions are very generic and become
operative only when a goal is applied.

O Goal is a kind of goal monitor [35], which selects the
appropriate goal, generates the problem to solve, and asks for
it to the interpreter (pro-activity). For instance, once selected
the goal ACHIEVE(p), the oracle will generate the problem
?∃S.(exit condition(S) = p) (that is “Is there a plan whose
exit condition is p?”), and will ask the interpreter for it. The
O Goal could also generate new goals by unsolved problems
or partially solved ones. This process can be summarized as
follows:
GOAL selection → PROBLEM generation →

Solution→ NEW GOAL

The Environment source E models the environment in
which the agent operates.

As said above, the set of guidance rules RG drives the
interpreter in the achievement of its goals. Therefore, the RG

rules define the general behavior of the interpreter specifying
the features of the game played by the interpreter.

The R G rules are:

1) the interpreter plays a game with O Goal;
It builds a two columns tableau. Questions are placed on
the right column (erotetic part of the tableau), whereas
affirmations are placed on the left (assertoric part of the
tableau).

2) the game starts with a question;
This question is called principal question.

3) interrogative, assertoric, and communicative moves can
be performed;
Interrogative and assertoric moves are those in L. A
communicative move consists in asking a question to an
oracle, receiving an answer from an oracle, being asked
a question by an oracle, answering back the oracle.

4) the first move is a communicative one: the interpreter
asks the O Goal for the principal problem (question) by
asking it for “What is the problem associated with P ”
or, more simply, in absence of environmental commands
“What is the problem?”.

5) the game ends either when a conclusive answer is found
(i.e., it is in the assertoric part of the tableau) [17] or
when it is not possible to find it. In the first case the I
wins, in the second the O Goal wins.

B. The architecture

Figure 1 shows an example of architecture for an interrog-
ative agent. It is composed of four sources of information:
Goals, DS-Knowledge, Environment, and Problems, each one
having associated an oracle, and an Interpreter.

The Problems source contains information about problems
and the O Problems is able to apply heuristics in order to
transform a problem into another one (reduction method). For
instance, the heuristic “generalization of individuals” could be
informally described as: if a problem P contains one or more
individuals a, search for a predicate F such that F (a) holds
and try to solve P ′ ≡ P (a← x)&F (x). In order to apply such
an heuristic, O Problems will ask the interpreter for a feature
F such that F (a) holds, by a question like “?K∃F.F (a)”. In
particular, let us consider the problem

?∃m.(meeting(m)&Involve(m,X, Y)&
wife(X,V ance)&wife(Y,Begin))

to be transformed by O Problems. By applying the previously
described rule, the oracle will ask the interpreter for the
existence of a common feature of Vance and Begin. The
interpreter, in turn, will ask this question to the O DS-
Knowledge which will answer that both Vance and Begin are
diplomats. The interpreter will give this information to the
O Problems which, finally, will answer the first question
∃m.(meeting(m)&Involve(m,X, Y)&
wife(X,Z)&wife(Y, T)&diplomat(Z)&diplomat(T))
The DS-Knowledge source contains information about a

specific domain. For instance, an agent able to solve the
previous problem (i.e., the existence of a meeting involving
the wives of Vance and Begin) should have knowledge about
meetings and diplomatic meetings. In this case, the O DS-
Knowledge has the task to search the knowledge base in order
to find information.

V. AN APPLICATION: THE DATABASE REFACTORING

In this section we describe the application of the proposed
model to the problem of database refactoring, which is intro-
duced in the following.

Software refactoring is intended as the restructuring of an
existing body of code, aiming to alter its internal structure
without changing its external behavior [14]. It consists of
a series of small behavior preserving transformations, which
altogether can produce a significant software structural change.
System modifications resulting in changes to the database
structure are also relatively frequent [30]. These changes are
particularly critical, since they affect not only the data, but
also the application programs relying on them [2].

The refactoring is a very special problem, as it requires
that the system coherently changes its own knowledge after a
change occurred. If we look at the schema as a knowledge
base, the refactoring becomes a process of changes in the

30

DS‐Knowledge

Goals

Environment

Interpreter

ORACLES
Environment

ORACLE
DS‐Knowledge

ORACLE

ProblemsGoal
ORACLE

Problem
ORACLE

Fig. 1. The architecture of the proposed agent model.

knowledge, and hence it can be interpreted as an epistemic
process. According to this view, it becomes natural to see
refactoring as an agent managed process aiming to operate
on the schema in order to perform the required changes, and
trying to preserve original properties in terms of knowledge
and queries [7].

The refactoring system can have many different goals, such
as the checking of the schema consistency, supporting database
administrators in the process of refactoring, or automatically
apply suitable consistency maintenance changes. These exam-
ples of database refactoring support can be accomplished by
three kinds of agents, each one characterized by some specific
goals and abilities. For instance, the first agent needs only of
deductive capabilities, the second one has a communicative
nature, whereas the latter needs to know how to use some
heuristics. According to the Schank classification [34], the goal
of an agent performing the refactoring is plan coherency, i.e.,
the agent asks itself for the possibility to perform a certain
change operation preserving coherency. Thus, the agent is
modeled as a problem solver capable to perform changes
which are triggered upon the detection of database schema
anomalies.

More formally, a refactoring interrogative agent is the
quadruple

R = (I, {Schema, Problems,G,E}, L,RG)

Let us consider a database system storing data about
employees of a company, and having a query for retrieving all
employees of the Computer Science department. The Schema
knowledge can be represented by

Attributes
A = {Employee ID,Name,Department ID, Salary,

Address}

Tables
T = {R(Employee ID,Name,Department ID, Salary,

Address)}

Functional dependencies
F = {f1 : Employee ID → Name;

f2 : Employee ID → Department ID;
f3 : Employee ID → Salary;
f4 : Employee ID → Address}

Queries
Q = {q(x, y, w, z) ≡ R(x, y, “CS”, w, z)}

Properties
P = {1)primary key(R,Employee ID)

2)∀r ∈ T ∃k ⊆ Attr(r) such that primary key(r, k)
3) key dep(r, k) ≡ ∀a ∈ (attr(r)− k)
(∃f ∈ F such that (LHS(f) = k ∧RHS(f) = {a})∧
(¬∃f such that (LHS(f) 6= k ∧RHS(f) = {a}))
4)∀r ∈ T (primary key(r, k)→ key dep(r, k))}

The properties in P state that every relation has a primary
key, and the attributes fully depend on the primary key only.
Schema also contains information about the ε operations. For
instance, the splitting of a table t into two tables t′ and t′′,
due to the introduction of a new functional dependency f and
to the subsequent normalization process, can be defined as
follows:
split table(t, t′, t′′, f)←
(A′ = A &
T ′ = (T − {t}) ∪ {t′, t′′} &
F ′ = F &
Q′ = {q′| var(q′) = var(q), body(q′) = ρ(body(q), t, t′&t′′)} &
attr(t′) = attr(t)−RHS(f) &
attr(t′′) = LHS(f) ∪RHS(f))

An agent for the refactoring has three main problems
to solve: ?Consistent(change-operation), ?Hold(p), and those
generated by the predicate Resolve(change-operation, p). The
answer to the former is yes when the set of properties P ′ ob-
tained by the application of the change-operation is consistent.
The answer to the second one is yes when proposition p holds.
Finally, the latter is true when proposition p holds after the
application of change-operation. All of these problems can be
expressed by epistemic logic using the K operator [17]. The K
operator is applied to a proposition p using the expression Kp,
whose meaning can be informally expressed by “it is known

31

that p”. As a consequence, Hold(p) is simply expressible
as Kp, Consistent(change-operation) as K(∀p ∈ ε(P)).p,
whereas Resolve(change-operation, p) is nothing else that Kp
applied after change-operation.

The Environment E is constituted by predicates modeling
the ε operations.

The agent way of working is as follows. When
E gives a command like split table(T, T ′, T ′′, f5 :
Department ID → Address) to the O Environment and
the latter, in turn, passes it to I , the interpreter has to
decide what to do. The interpreter asks the O Goal for the
principal problem (“What is the problem associated with
split table(T, T ′, T ′′, f5)?”).

Therefore, the O Goal answers

Consistent(split table(T, T ′, T ′′, f5))

and the principal problem is

?K(∀p ∈ P).p

At this point the game starts. The interpreter calls the
O DS-Knowledge in order to answer the question “?K(∀p ∈
ε(P)).p”. The answer will be communicated to the O Goal.
If the answer is negative, it is necessary to solve the problem
trying to apply some heuristic, and the O Goal will select
the new goal to be achieved fixing the incoherence and the
correspondent question:

?K∃ε′(∀p ∈ ε′(P)).p

A negative answer to this question means that it is not
possible to find an ε′ change operation directly, but that
alternative strategies have to be used. To this end, the O Goal
can apply the goal searching for the causes of incoherence
to which corresponds the question “Why is ¬p?” or the more
concrete “What makes ¬p?”.

In our concrete case the answer is

primary key(T ′′, Department ID) 6∈ P
The new goal is fixing the incoherence

?K∃ε′primary key(T ′′, Department ID) ∈ P
If the answer is negative, the O Problems can suggest to

generalize the question in

?K∃ε′p ∈ P

and
?K∃ε′x ∈ Y

this could require many refinement steps.
The answer is {add(x, Y)} and therefore {add(p, P)}.
As this answer is obtained by generalization, it is uncertain

(bracketed) and I can ask the environment for the possibility
to apply it.

In conclusion, the process we propose is a trial and error
one, during which the agent tries finding a solution to a given
problem by deducting and/or consulting other information
sources, possibly restating the problem. While doing so it is
driven by its own goals.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented interrogative agents, a new
model of agents that reason and communicate by using both
affirmations and questions. The conceptual foundations of the
model are manyfold. They can be found in the Greek dialog-
ical, as well as in recent developments of interrogation logic
(philosophy of science and logic), and in artificial intelligence
(cognitive science and problem solving).

It is important to highlight both analogies and differences
with respect to the classical BDI architecture. In fact, all of
the structures of the BDI model are also in our interrogative
model, and the functionalities of the BDI interpreter are
provided through the interpreter and the oracles. On the other
hand, the underlying logic of the proposed model is the logic
of interrogation. Thus,our model has both deductive reasoning
and heuristics.

The main advantage of the proposed approach is flexibility,
which has historically been a characteristic of interrogation
logic. However, several issues should further be investigated,
such as the development of a logic formalism (based, for
example, on the Hintikka formal logic [17]) to model the
presented architecture. Moreover, we will focus our future
works on the following aspects:

- the study of a logic of interrogation suitable for the
interrogative architectures;

- the design of an interrogative agent-oriented language;
- the development of software tools to support the devel-

opment of interrogative agent-based applications.
Finally, we plan to apply the proposed model in different

application fields, such as, database refactoring [7], active
video surveillance [9], e-learning of Euclidean plane geometry,
and automated FAQ systems.

REFERENCES

[1] A. Aamodt and E. Plaza, “Case-based reasoning: foundational issues,
methodological variations, and system approaches”, Artificial Intelligence
Communications, vol. 7, no. 1, pp. 39–52, 1994.

[2] S. W. Ambler and P. J. Sadalage, Refactoring Databases: Evolutionary
Database Design. Addison Wesley Professional, 2006.

[3] J. Barklund, S. Costantini, P. Dell’Acqua, and G.A. Lanzarone, “Metar-
easoning agents for query-answering systems”, in T. Andreasen, H.
Christiansen, and H. L. Larsen (Eds.), Flexible Query-Answering Systems,
pp. 103–122, Kluwer Academic Publishers, 1997.

[4] S. Bromberger, On What We Know We Don’t Know: Explanation, Theory,
Linguistics, and How Questions Shape Them. The University of Chicago
Press, 1992.

[5] N. D. Belnap, The Logic of Questions and Answers. Yale Univ. Press,
1976.

[6] C. Cellucci, Filosofia e Matematica. Laterza, 2002.
[7] S. K. Chang, V. Deufemia, G. Polese, and M. Vacca, “A logic framework

to support database refactoring”, to appear in Proc. of 18th International
Conference on Database and Expert Systems Applications (DEXA’07),
Regensburg, Germany, 2007.

[8] G. F. De Jong, “Skimming newspaper stories by computer”, in Proc. of
the 5th International Joint Conference on Artificial Intelligence (IJCAI
’77), Cambridge, MA, 1977.

[9] V. Deufemia, M. Giordano, G. Polese, and M. Vacca, “A conceptual
approach for active surveillance of indoor environments”, to appear in
Proc. of International Conference on Distributed Multimedia Systems
(DMS’07), San Francisco, USA, 2007.

[10] A. C. Doyle, Sherlock Holmes: The Complete Novels and Stories.
Bantam Classics, 2006.

32

[11] U. Eco and T. A. Sebeok (eds.), The Sign of Three: Peirce, Holmes,
Dupin, Indiana University Press, 1983.

[12] R. Fikes and N. Nilsson, “STRIPS: a new approach to the application of
theorem proving to problem solving”, Artificial Intelligence, vol. 2, pp.
189–208, 1971.

[13] S. Franklin and A. C. Graesser, “Is it an agent, or just a program?: A
taxonomy for autonomous agents”, in Proc. of ATAL’96, 1996, pp. 21–35.

[14] B. Du Bois, P. Van Gorp, A. Amsel, N. Van Eetvelde, H. Stenten,
S. Demeyer, and T. Mens, “A discussion of refactoring in research and
practice”, Technical report, no. 2004-03, University of Antwerp, Belgium,
2004.

[15] J. A. G. Groenendijk, “The logic of interrogation”, in Proc. of the Ninth
Conference on Semantic and Linguistic Theory, 1999.

[16] V. F. Hendricks, “Active agents”, Journal of Logic, Language and
Information, vol. 12, no. 4, pp. 469–495, 2003.

[17] J. Hintikka, I. Halonen, A. Mutanen, “Interrogative logic as a general
theory of reasoning”, in D. M. Gabbay, R. H. Johnson, H. J. Ohlbach,
and J. Woods (eds.), Handbook of the logic of argument and inference.
The turn towards the practical, North-Holland, Stud. Log. Pract. Reason.,
vol. 1, pp. 295–337, 2002.

[18] J. Hintikka, “L’épistémologie sans connaissance et sans croyance”,
Journée de la Philosophie á l’UNESCO, 2002.

[19] S. Jung, An Interrogative Approach to Scientific Inquiry. Peter Lang,
1996.

[20] J. L. Kolodner, “Reconstructive memory: A computer model”, Cognitive
Science, vol. 7, no. 4, pp. 281–328, 1983.

[21] R. A. Kowalski, “The limitation of logic”, in Proc. of ACM Conference
on Computer Science, 1986, pp. 7–13.

[22] W. G. Lehnert, N. G. Dyer, P. N. Johnson, C. J. Yang, and S. Harley,
“BORIS - An experiment in in-depth understanding of narratives”,
Artificial Intelligence, vol. 20, no. 1, pp. 15–62, 1982.

[23] W. G. Lehnert, The Process of Question Answering. Erlbaum Associates,
1978.

[24] S. de Lin and C. Knoblock, “SERGEANT: A framework for building
more flexible web agents by exploiting a search engine”, Journal of Web
Intelligence and Agent Systems, vol. 3, no. 1, pp. 1–15, 2005.

[25] G. Polya, How to Solve It. 2nd edition, Princeton University Press, 1957.
[26] G. Polya, Mathematical Discovery: On Understanding, Learning and

Teaching Problem Solving, Combined. Wiley Press, 1981.
[27] A. Ram, “A theory of questions and question asking”, The Journal of

the Learning Sciences, vol. 1, no. 2/3, pp. 273–318, 1991.
[28] A. S. Rao, M. P. Georgeff, “Modeling rational agents within a BDI-

architecture”, in Proc. of KR’91, 473–484, 1991.
[29] N. Rescher, Inquiry Dynamics. Transaction Publishers, 2000.
[30] J. F. Roddick, “A survey of schema versioning issues for database

systems”, Information and Software Technology, vol. 37, no. 7, pp. 383–
393, 1995.

[31] R. C. Schank, Conceptual Information Processing, North-Holland Pub-
lishing Co., 1975.

[32] R. C. Schank, “Language and memory”, Cognitive Science, vol. 4, no.
3, pp. 243–284, 1980.

[33] R. C. Schank, Dynamic Memory: A Theory of Reminding and Learning
in Computers and People. Cambridge University Press, New York, 1982.

[34] R. C. Schank, Explanation Patterns. Understanding Mechanically and
Creatively. Lawrence Erlbaum Associates, 1986.

[35] R. C. Schank and R. Abelson, Script Plans Goals and Understanding.
Lawrence Erlbaum Associates, 1977.

[36] R. C. Schank and P. Childers, The Creative Attitude: Learning to Ask
and Answer the Right Questions. Macmillan, New York, 1988.

[37] A. Wisniewski, The Posing of Questions. Logical Foundations of Erotetic
Inferences. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1995.

[38] A. Wisniewski, “Socratic proofs”, Journal of Philosophical Logic, vol.
33, n. 3, pp. 299–326, 2004.

[39] M. Wooldridge, “Agent-based computing”, Interoperable Communica-
tion Networks, vol. 1, no. 1, pp. 71–97, 1998.

33

Declarative representation of curricula models: an
LTL- and UML-based approach

Matteo Baldoni, Cristina Baroglio,
Giuseppe Berio, and Elisa Marengo

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)
{baldoni,baroglio,berio}@di.unito.it

elisa.mrng@gmail.com

Abstract—In this work, we present a constrained-based rep-
resentation for specifying the goals of “course design”, that
we call curricula model, and introduce a graphical language,
grounded into Linear Time Logic, to design curricula models
which include knowledge of proficiency levels. Based on this
representation, we show how model checking techniques can be
used to verify that the user’s learning goal is supplied by a
curriculum, that a curriculum is compliant to a curricula model,
and that competence gaps are avoided. This proposal represents
the most recent advancement of a work, carried on in the last
years, in which we are investigating the use of both agents and
web services for building and validating curricula. We also outline
future research directions.

I. INTRODUCTION AND MOTIVATIONS

As recently underlined by other authors, there is a strong
relationship between the development of peer-to-peer, (web)
service technologies and e-learning technologies [22]. The
more learning resources are freely available through the Web,
the more modern e-learning management systems (LMSs)
should be able to take advantage from this richness: LMSs
should offer the means for easily retrieving and assembling e-
learning resources so to satisfy specific users’ learning goals,
similarly to how (web) services are retrieved and composed
[17]. In [6], we have shown the possibility of automatically
composing SCORM [1] courseware by exploiting semantic
web technology and, in particular, LOM annotations. More
rcently [3], we have developed a reasoning service that has
been integrated in the Personal Reader framework, a service-
oriented learning platform. The reasoning service is basically
a planner, which can build curricula in a goal-driven way,
where the goal is a set of desired competences. The reasoner
is invoked in a service-oriented fashion to help a user and
build a curriculum. To this aim, the reasoner is fed with a set
of initial competences that the user has, the competences that
the user would like to acquire, and the URL of a repository
of descriptions of courses, given as RDF triples.

Besides building curricula, there are other interesting tasks
that can be performed. Some of these concern curricula which
are supplied directly by users. As in a composition of web
services it is necessary to verify that, at every point, all the
information necessary to the subsequent invocation will be
available, in a learning domain, it is important to verify that

all the competencies, i.e. the knowledge, necessary to fully
understand a learning resource are introduced or available
before that learning resource is accessed. The composition of
learning resources, a curriculum, does not have to show any
competence gap. Unfortunately, this verification, as stated in
[15], is usually performed manually by the learning designer,
with hardly any guidelines or support.

A recent proposal for automatizing the competence gap
verification is done in [22] where an analysis of pre- and
post-requisite annotations of the Learning Objects (LO), rep-
resenting the learning resources, is proposed. A logic based
validation engine can use these annotations in order to validate
the curriculum/LO composition. Melia and Pahl’s proposal is
inspired by the CocoA system [12], that allows to perform the
analysis and the consistency check of static web-based courses.
Competence gaps are checked by a prerequisite checker for
linear courses, simulating the process of teaching with an
overlay student model. Pre- and post-requisites are represented
as “concepts”.

Together with the verification of consistence gaps, there
are other kinds of verification. Brusilovsky and Vassileva [12]
sketch some of them. In our opinion, two are particularly im-
portant: (a) verifying that the curriculum allows to achieve the
users’ learning goals, i.e. that the user will acquire the desired
knowledge, and (b) verifying that the curriculum is compliant
against the course design goals. Manually or automatically
supplied curricula, developed to reach a learning goal, should
match the “design document”, a curricula model, specified
by the institution that offers the possibility of personalizing
curricula. Curricula models specify general rules for designing
sequences of learning resources (courses). We interpret them
as constraints, that are expressed in terms of concepts and, in
general, are not directly associated to learning resources, as
instead is done for pre-requisites. They constrain the process
of acquisition of concepts, independently from the resources.

The availability of languages for designing curricula models,
in a way that can automatically be processed by a reasoning
system (be it an agent or a service) is a fundamental milestone
in the development of checkers that perform the verifications
described above, so to supply the the user and, when present,
also the organization which supplies the courses, with a

34

complete set of tools to develop personalized, sound and
complete curricula.

In this paper we present a constraint-based representation
of curricula models. Constraints are expressed as formulas in
a temporal logic (LTL, linear temporal logic [16]) represented
by means of a simple graphical language that we call DCML
(Declarative Curricula Model Language). This logic allows
the verification of properties of interest for all the possible
executions of a model, which in our case corresponds to
the specific curriculum. Curricula are represented as activity
diagrams [2]. We translate an activity diagram, that represents
a curriculum, in a Promela program [21] and we check, by
means of the well-known SPIN Model Checker [21], that it
respect the model by verifying that the set of LTL formulas
are satisfied by the Promela program. Moreover, we check
that learning goals are achieved, and that the curriculum does
not contain competence gaps. This work also improves the
proposal of [9], where we did not consider the duration of
courses and the fact that they may (partially) overlap. This
leads to a different representation based on the concept of
milestones. As in [15], we distinguish between competency
and competence, where by the first term we denote a concept
(or skill) while by the second we denote a competency plus the
level of proficiency at which it is learnt or known or supplied.
So far, we do not yet tackle with “contexts”, as defined in
the competence model proposed in [15], which will be part of
future work.

This approach differs from previous work [7], where we
presented an adaptive tutoring system, that exploits reasoning
about actions and changes to plan and verify curricula. The
approach was based on abstract representations, capturing the
structure of a curriculum, and implemented by means of
prolog-like logic clauses. Such representations were applied a
procedure-driven form of planning, in order to build personal-
ized curricula. In this context, we proposed also some forms of
verification, of competence gaps, of learning goal achievement,
and of whether a curriculum, given by a user, is compliant to
the “course design” goals. The use of procedure clauses is,
however, limiting because they, besides having a prescriptive
nature, pose very strong constraints on the sequencing of
learning resources. In particular, clauses represent what is
“legal” and whatever sequence is not foreseen by the clauses is
“illegal”. However, in an open environment where resources
are extremely various, they are added/removed dynamically,
and their number is huge, this approach becomes unfeasible:
the clauses would be too complex, it would be impossible
to consider all the alternatives and the clauses should change
along time.

For this reason we considered as appropriate to take an-
other perspective and represent only those constraints which
are strictly necessary, in a way that is inspired by the so
called social approach proposed by Singh for multi-agent
and service-oriented communication protocols [23], [24]. In
this approach only the obligations are represented. In our
application context, obligations capture relations among the
times at which different competencies are to be acquired. The

advantage of this representation is that we do not have to
represent all that is legal but only those necessary conditions
that characterize a legal solution. To make an example, by
means of constraints we can request that a certain knowledge
is acquired before some other knowledge, without expressing
what else is to be done in between. If we used the clause-based
approach, instead, we should have described also what can
legally be contained between the two times at which the two
pieces of knowledge are acquired. Generally, the constraints-
based approach is more flexible and more suitable to an open
environment.

II. DCML: A DECLARATIVE CURRICULA MODEL
LANGUAGE

In this section we describe the Declarative Curricula Model
Language (DCML, for short), a graphical language to repre-
sent the specification of a curricula model (the course design
goals). The advantage of a graphical language is that drawing,
rather than writing, constraints facilitates the user, who needs
to represent curricula models, allowing a general overview of
the relations which exist between concepts. DCML is inspired
by DecSerFlow, the Declarative Service Flow Language to
specify, enact, and monitor web service flows by van der
Aalst and Pesic [26]. DCML, as well as DecSerFlow, is
grounded in Linear Temporal Logic [16] and allows a curricula
model to be described in an easy way maintaining at the
same time a rigorous and precise meaning given by the logic
representation. LTL includes temporal operators such as next-
time (©ϕ, the formula ϕ holds in the immediately following
state of the run), eventually (♦ϕ, ϕ is guaranteed to eventually
become true), always (¤ϕ, the formula ϕ remains invariably
true throughout a run), until (α U β, the formula α remains
true until β), see also [21, Chapter 6]. The set of LTL
formulas obtained for a curricula model are, then, used to
verify whether a curriculum will respect it [5]. The adoption
of a graphical language with a logical grounding allows
designers, who cannot be expected to feel comfortable with the
logical notation, to take advantage of automatic tools for the
verification of the various kinds of properties mentioned in the
introduction. As an example of curricula model, Fig. 1 shows
a curricula model expressed in DCML. Every box contains
at least one competence. Boxes/competences are related by
arrows, which represent (mainly) temporal constraints among
the times at which they are to be acquired. Altogether the
constraints describe a curricula model.

A. Competence, competency, and basic constraints

The terms competence and competency are used, in the
literature concerning professional curricula and e-learning, to
denote the “effective performance within a domain at some
level of proficiency” and “any form of knowledge, skill,
attitude, ability or learning objective that can be described in
a context of learning, education or training”. In the following,
we extend a previous proposal [5], [10] so as to include a
representation of the proficiency level at which a competency

35

Fig. 1. An example of curricula model in DCML.

is owned or supplied. To this aim, we associate to each compe-
tency a variable k, having the same name as the competency,
which can be assigned natural numbers as values. The value
of k denotes the proficiency level; zero means absence of
knowledge. Therefore, k encodes a competence, Fig. 2(a). On
competences, we can define three basic constraints.

The “level of competence” constraint, Fig. 2(c), imposes that
a certain competency k must be acquired at least at level l. It is
represented by the LTL formula ♦(k ≥ l). Similarly, a course
designer can impose that a competency must never appear in
a curriculum with a proficiency level higher than l. This is
possible by means of the “always less than level” constraint,
shown in Fig. 2(d). The LTL formula ¤(k < l) expresses this
fact (it is the negation of the previous one). As a special case,
when the level l is one (¤(k < 1)), the competency k must
never appear in a curriculum.

The third constraint, represented by a double box, see Fig. 2
(b), specifies that k must belong to the initial knowledge with,
at least, level l. In other words, the simple logic formula (k ≥
l) must hold in the initial state.

To specify relations among concepts, other elements are
needed. In particular, in DCML it is possible to represent
Disjunctive Normal Form (DNF) formulas as conjunctions and
disjunctions of concepts. For the sake of semplicity, in the next
section we present the various constraints that can be expressed
by DCML without using DNF, the interested reader can find
the extension in the appendix.

B. Positive and negative relations among competences

Besides the representation of competences and of con-
straints on competences, DCML allows to represent relations
among competences. For simplicity, in the following presenta-
tions we will always relate simple competences, it is, however,
of course possible to connect DNF formulas. We will denote
by (k, l) the fact that competence k is required to have at least
level l (i.e. k ≥ l) and by ¬(k, l) the fact that k is required to
be less than l.

Arrows ending with a little-ball, Fig. 2(f), express the
before temporal constraint between two competences, that
amount to require that (k1, l1) holds before (k2, l2). This

constraint can be used to express that to understand some
topic, some proficiency of another is required as precondition.
It is important to underline that if the antecedent never
becomes true, also the consequent must be invariably false;
this is expressed by the LTL formula ¬(k2, l2) U (k1, l1),
i.e. (k2 < l2) U (k1 ≥ l1). It is also possible to express
that a competence must be acquired immediate before some
other. This is represented by means of a triple line arrow that
ends with a little-ball, see Fig. 2(i). The constraint (k1, l1)
immediate before (k2, l2) imposes that (k1, l1) holds before
(k2, l2) and the latter either is true in the next state w.r.t. the
one in which (k1, l1) becomes true or k2 never reaches the
level l2. The difference w.r.t the before constraint is that it
imposes that the two competences are acquired in sequence.
The corresponding LTL formula is “(k1, l1) before (k2, l2)”
∧¤((k1, l1) ⊃ (©(k2, l2) ∨¤¬(k2, l2))).

Both of the two previous relations represent temporal
constraints between competences. The implication relation
(Fig. 2(e)) specifies, instead, that if a competency k1 holds
at least at the level l1, some other competency k2 must be
acquired sooner or later at least at the level l2. The main
characteristic of the implication, is that the acquisition of the
consequent is imposed by the truth value of the antecedent, but,
in case this one is true, it does not specify when the consequent
must be achieved (it could be before, after or in the same
state of the antecedent). This is expressed by the LTL formula
♦(k1, l1) ⊃ ♦(k2, l2). The immediate implication (Fig. 2(h)),
instead, specifies that the consequent must hold in the state
right after the one in which the antecedent is acquired. Note
that, this does not mean that it must be acquired in that state,
but only that it cannot be acquired after. This is expressed by
the LTL implication formula in conjunction with the constraint
that whenever k1 ≥ l1 holds, k2 ≥ l2 holds in the next state:
♦(k1, l1) ⊃ ♦(k2, l2) ∧¤((k1, l1) ⊃ ©(k2, l2)).

The last two kinds of temporal constraint are succession
(Fig. 2(g)) and immediate succession (Fig. 2(j)). The succes-
sion relation specifies that if (k1, l1) is acquired, afterwards
(k2, l2) is also achieved; otherwise, the level of k2 is not
important. This is a difference w.r.t. the before constraint
where, when the antecedent is never acquired, the consequent

36

Fig. 2. Competences (a) and basic constraints (b), (c), and (d). Relations among competences: (e) implication, (f) before, (g) succession, (h) immediate
implication, (i) immediate before, (j) immediate succession, (k) not implication, (l) not immediate before.

must be invariably false. Indeed, the succession specifies a
condition of the kind if k1 ≥ l1 then k2 ≥ l2, while
before represents a constraint without any conditional premise.
Instead, the fact that the consequent must be acquired after
the antecedent is what differentiates implication from succes-
sion. Succession constraint is expressed by the LTL formula
♦(k1, l1) ⊃ (♦(k2, l2) ∧ (¬(k2, l2) U (k1, l1))). In the same
way, the immediate succession imposes that the consequent
either is acquired in the same state as the antecedent or
in the state immediately after (not before nor later). The
immediate succession LTL formula is “(k1, l1) succession
(k2, l2)” ∧¤((k1, l1) ⊃ ©(k2, l2)).

After the “positive relations” among competences, let us
now introduce the graphical notations for “negative rela-
tions”. The graphical representation is very intuitive: two
vertical lines break the arrow that represents the constraint,
see Fig. 2(k)-(l). (k1, l1) not before (k2, l2) specifies that k1

cannot be acquired up to level l1 before or in the same state
when (k2, l2) is acquired. The corresponding LTL formula
is ¬(k1, l1) U ((k2, l2) ∧ ¬(k1, l1)). Notice that this is not
obtained by simply negating the before relation but it is
weaker; the negation of before would impose the acquisition
of the concepts specified as consequents (in fact, the formula
would contain a strong until instead of a weak until), the not
before does not. The not immediate before is translated exactly
in the same way as the not before. Indeed, it is a special
case because our domain is monotonic, that is a competency
acquired at a certain level cannot be forgotten.

(k1, l1) not implies (k2, l2) expresses that if (k1, l1) is
acquired k2 cannot be acquired at level l2; as an LTL formula:
♦(k1, l1) ⊃ ¤¬(k2, l2). Again, we choose to use a weaker
formula than the natural negation of the implication relation
because the simple negation of formulas would impose the
presence of certain concepts. (k1, l1) not immediate implies
(k2, l2) imposes that when (k1, l1) holds in a state, k2 ≥ l2
must be false in the immediately subsequent state. Afterwards,
the proficiency level of k2 does not matter. The correspond-
ing LTL formula is ♦(k1, l1) ⊃ (¤¬(k2, l2) ∨ ♦((k1, l1) ∧
©¬(k2, l2))), that is weaker than the “classical negation” of
the immediate implies.

The last relations are not succession, and not immedi-

ate succession. The first imposes that a certain competence
cannot be acquired after another, (either it was acquired
before, or it will never be acquired). As LTL formula, it is
♦(k1, l1) ⊃ (¤¬(k2, l2)∨ “(k1, l1) not before (k2, l2)”). The
second imposes that if a competence is acquired in a certain
state, in the state that follows, another competence must be
false, that is ♦(k1, l1) ⊃ (¤¬(k2, l2)∨ “(k1, l1) not before
(k2, l2)” ∨♦((k1, l1) ∧©¬(k2, l2))).

In Fig. 1, some examples of constraints are represented.
Conjunctions and disjunctions are represented by connecting
different competences (boxes) with and/or circles. For in-
stance, Object programming in Java is required at least at
level 4 or Object programming is required at least at level 2,
before the competence Java Programming can be acquired (at
least at level 5).

Another example is the implication that occurs, for instance,
between Database, at least at level 2, and Database, at least
at level 4. This relation means that Database at level 2 is not
sufficient and, when it is acquired, sooner or later the student
must increase its knowledge at least at level 4.

The competence (Database,4) is also connected with an not
immediate succession constraint to the competence (Applica-
tion on Oracle DB,4). This constraint can be interpreted as
the intention to let the student assimilate the knowledges on
Database before applying them on a real case.

Note that this example is divided into two different areas,
one concerning programming competences and one about
databases. There are no connection between competences of
the two parts. Anyway all the constraints must be checked on
the curriculum.

III. REPRESENTING CURRICULA AS ACTIVITY DIAGRAMS

Let us now consider specific curricula. In the line of [7], [4],
[5], we represent curricula as sequences of courses/resources,
taking the abstraction of courses as simple actions. Any action
can be executed given that a set of preconditions holds; by
executing it, a set of post-conditions, the effects, will become
true. Specifically, courses are seen as actions for acquiring
some concepts (effects) given that the student owns some
competences (preconditions). So, a curriculum is seen as a
sequence of actions that causes transitions from the initial set

37

Fig. 3. Activity diagram representing a curriculum with mandatory and additional, student chosen, courses. Swimlanes represent the sequencings of courses.
Vertical divisions capture the different milestones (trimesters).

of competences (possibly empty) of a user up to a final state
that will contain also the acquired competences. We assume
that concepts can only be added to states and competence
level can only grow by executing the actions of attending
courses (or more in general reading a learning material). The
intuition behind this assumption is that new course do not
erase the concepts acquired previously, thus knowledge grows
incrementally.

Generally speaking, a curriculum may be represented with
one or several sequences of courses to be attended, in alter-
native or as obligations. As a consequence, it seems very
natural representing a curriculum by, for instance, a UML
activity diagram [2]. The diagram represents essentially the
“student personal process” to achieve the final degree. Apart its
standard meaning and visualisation, a UML activity diagram
may contain actions with pre- and post- conditions, combined
in complex paths and possibly aggregated. Actions or activ-
ities (if further decomposed) correspond to courses or other
elements, used to fundamentally build any curriculum in an
organisation. Activity diagrams are rich enough to represent
alternative, intermediate statuses and conditional paths.

However, we found very useful two principles when rep-
resenting a curriculum: To carefully distinguish courses with
distinct duration (in time); To carefully distinguish manda-
tory courses and additional optional courses. Modelling a
curriculum with these two principles in mind introduces (i)
a decomposition level and (ii) partitions among courses, being
these courses from mandatory or from additional partitions.

Actvity diagrams are well suited for representing curricula
under the two principle reported above. Fig. 3 reports an

example with additional courses and distinguishes courses
with distinct duration. The horizontal partition (swimlanes in
UML) is corresponding to mandatory and additional courses
(additional courses are for “database specialists” in this case).
Vertical partitions provide information about actions and activ-
ities with distinct duration. In this case, we have used as time
references the usual distinction implemented in Italian univer-
sities, in years and trimesters. The beginning/ending points of
the trimesters correspond to a set of milestones; this temporal
organization will be used to identify those states, at which the
verification will be applied. In previous work, instead, courses
were atemporal and each state was tied to the simulation
of a single course. The introduction of durations allows a
more realistic representation of the curricula and, especially,
of the dependencies between competences. Therefore, we can
easily see that the course “Logics” is delivered during the
first trimester, while the course “Java I” is delivered in the
first six months, being this java course part of an aggregated
set of courses corresponding to the activity named “Computer
Programming I”. In the horizontal bottom swimlane, we are
representing the fact that it is a student’s choice to advance in
the first year two courses of databases, once made the choice
between “Database architecture” and “Database applications”.
The swimlanes representing additional courses can be used to
represented once-time choice of the student. For instance, once
the student has decided to become “database specialist”, he has
to complete the process represented in the swimlane. However,
with additional swimlanes, we can also represent less stringent
choices. In this case, however, there are typically no arrows

38

between courses and there is no final node. It should also be
noted that processes representing a curriculum are only views
combining activities and actions (i.e. the real taught courses).
Intuitively, a course like “Network I” in a curriculum for sys-
tem specialists is to be followed by “Network II”; however, the
same is not required in a curriculum for “database specialists”.
This is very compatible with UML activity diagrams where it
is possible to use reuse, in distinct contexts, activities and
actions defined once.

More complex cases require special attention because hier-
archical decomposition of the time-based partition does not
apply directly. For instance, the case of where one two-
trimester course overlaps in time with another two-trimester
course. In this case, hierarchical time-based partition cannot
be applied but it should be observed that the basic activity
diagram is sufficient also in this case because it allows to rep-
resent the two courses in parallel. Indeed, due to overlapping,
we cannot expect one to supply competences that are pre-
requisites for the other. Again, with reference to our example,
in Fig. 3, the course “Databases” spans over the second and
the third trimester, partially overlapping with the “Computer
Programming 1” activity (spanning over the first and second
trimester) and partly overlapping with “Operating Systems”,
in the third trimester.

UML 2.1.1 is extremely powerful for making partitions.
Indeed, partitions apply to activities, and contain several edges
and actions. This means that each activity can be indepen-
dently partitioned in the diagram. However, the size of the
visualised partitions does not make sense in UML (as well).
Therefore, time overlapping can be shown by regulating the
size and the relative position of the several visualised parti-
tions; however, the “timed semantics” remains underspecified
and may be approached in the classical way by introducing
time-dependent constraints on activity edges (or, on top of the
interpretation of the UML superstructure specification that
often does not provide a sufficient level of detail constraints
attached to the partitions themselves).

IV. VERIFYING CURRICULA BY MEANS OF SPIN MODEL
CHECKER

In this section we discuss how to validate a curriculum. As
explained, three kinds of verifications have to be performed:
(1) verifying that a curriculum does not have competence gaps,
(2) verifying that a curriculum supplies the user’s learning
goals, and (3) verifying that a curriculum satisfies the course
design goals, i.e. the constraints imposed by the curricula
model. To do this, we use model checking techniques [14].

By means of a model checker, it is possible to generate and
analyze all the possible states of a program exhaustively to
verify whether no execution path satisfies a certain property,
usually expressed by a temporal logic, such as LTL. When a
model checker refuses the negation of a property, it produces
a counterexample that shows the violation. SPIN, by G. J.
Holzmann [21], is the most representative tool of this kind.
Our idea is to translate the activity diagram, that represents a
set of curricula, in a Promela (the language used by SPIN)

program, and, then to verify whether it satisfies the LTL
formulas that represents the curricula model.

In the literature, we can find some proposals to translate
UML activity diagrams into Promela programs, such as [18],
[19]. These proposals have a different purpose than ours and
they cannot directly be used to perform the translation that
we need to perform the verifications we list above, however,
it is possible to follow them as guidelines to perform our
translation. Generally, their aim is debugging UML designs, by
helping UML designers to write sound diagrams. The transla-
tion proposed in the following, instead, aims to simulate, by a
Promela program the acquisition of competencies by attending
courses contained into the curricula represented by an activity
diagram.

Given a curriculum as an activity diagram, we represent all
the competences involved by its courses as integer variables.
In the beginning, only those variables that represent the initial
knowledge owned by the student are set to a value greater
than zero. Courses are represented as actions that can modify
the value of such variables. Since our application domain is
monotonic, the value of a variable can only grow.

The Promela program corresponds to a process, that con-
tains the translation of the UML activity diagram and simu-
lates the way competences are acquired, for all the curricula
represented by the activity diagram, updating the set of the
achieved competences at every step. Steps corrispond to the
various milestones into which the curriculum is organized.
For instance, in Fig. 3 we identify the initial state, a second
state corresponding to the end of the first trimester, another
corresponding to the end of the second trimester, and a final
state, corresponding to the end of the curriculum.

proctype CurriculumVerification() {
milestone_1();
milestone_2();
milestone_3();
LearningGoal();

}

If the simulation of all its possible executions ends, then, there
is no competence gap.

Each course is represented by its preconditions and its
effects. For example, the course “Databases” is as follows:

inline preconditions_course_databases() {
assert(logical_reasoning >= 4);

}
inline effects_course_databases() {
SetCompetenceState(database, 2);
SetCompetenceState(relational_algebra, 4);
SetCompetenceState(ER_language, 4);

}

assert verifies the truth value of its condition, which in our case
is the precondition to the course. If violated, SPIN interrupts its
execution and reports about it. SetCompetenceState increases
the level of the passed competence if its current level is lower
than the second parameter. If all the curricula represented by
the translated activity diagram have no competence gaps, no
assertion violation will be detected. Otherwise, a counterexam-
ple will be returned that corresponds to an effective sequence
of courses leading to the violation, giving a precise feedback

39

to the student/teacher/course designer of the submitted set of
curricula.

Generally speaking, a milestone implements the act of
adding to the state all the competencies that have been
acquired within itself, plus the act of checking the applicability
of the subsequent courses (those that will lead to the next
milestone). Since each curriculum contains both mandatory
and additional courses, the latter depending on a student’s
choice, every milestone verifies, by default, the mandatory
courses and simulates the different alternatives concerning
additional courses, which the student might has chosen. This is
done by means of the introduction of a variable that is used to
discriminate among the alternative paths. Decision and merge
nodes can be used to represent such altenatives.

inline milestone() {
atomic {

preconditions_course_java_programming_II();
if
:: (path == 1) ->

preconditions_course_logic();
:: (path == 2) ->

precondition_course_physics();
:: else -> skip;
fi;
effects_course_java_programming_II();
if
:: (path == 1) ->

effects_course_logic();
:: (path == 2) ->

effects_course_physics();
:: else -> skip;
fi;

}
}

The test of the preconditions and the update of the state are
performed as an atomic operation.

The last instruction of the process CurriculumVerification,
which is applied only if all the curricula can be executed to
their end, is LearningGoal. LearningGoal performs the check
of the user’s learning goal. This just corresponds to a test
on the knowledge in the ending state. For example, a student
interested in web and databases could have the goal:

inline LearningGoal()
{ assert(advanced_java_programming>=5
&& N_tier_architectures >= 4
&& relational_algebra>=2
&& ER_language>=2); }

To check if the curriculum complies to a curricula model, we
check if every possibly sequence of execution of the Promela
program satisfies the LTL formulas, now transformed into
never claims directly by SPIN. The assertion verification is
not computationally expensive. The automata generated from
the Promela program encoding the first three years of courses
at our University is still tractable. Also the verification of the
temporal constraints is not hard if we check the constraints
one at the time.

V. CONCLUSIONS

In this paper we have introduced a graphical language to
describe curricula models as temporal constraints posed on the
acquisition of competences (supplied by courses), therefore,

taking into account both the concepts supplied/required and
the proficiency level. We have also shown how model checking
techniques can be used to verify that a curriculum complies
to a curricula model, and also that a curriculum both allows
the achievement of the user’s learning goals and that it has
no competence gaps. This use of model checking is inspired
by [26], where LTL formulas are used to describe and verify
the properties of a composition of Web Services. Another
recent work, though in a different setting, that inspired this
proposal is [25], where medical guidelines, represented by
means of the GLARE graphical language, are translated in
a Promela program, whose properties are verified by using
SPIN. Similarly to [25], the use of SPIN, gives an automa-
based semantics to a curriculum (the automaton generated
by SPIN from the Promela program) and gives a declarative,
formal, representation of curricula models (the set of temporal
constraints) in terms of a LTL theory that enables other forms
of reasoning. In fact, as for all logical theories, we can use
an inference engine to derive other theorems or to discovery
inconsistencies in the theory itself.

The presented proposal is an evolution of earlier works [8],
[4], [7], where we applied semantic annotations to learning
objects, with the aim of building compositions of new learning
objects, based on the user’s learning goals and exploiting
planning techniques. That proposal was based on a different
approach that relied on the experience of the authors in the
use of techniques for reasoning about actions and changes
which, however, suffers of the limitations discussed in the
introduction. We are currently working on the automatic
translation from a textual representation of DCML curricula
models into the corresponding set of LTL formulas and
from a textual representation of an activity diagram, that
describes a curriculum (comprehensive of the description of
all courses involved with their preconditions and effects), into
the corresponding Promela program. We are also going to
realize a graphical tool to define curricula models by means of
DCML. We think to use the Eclipse framework, by IBM, to
do this. In [3], we discuss the integration into the Personal
Reader Framework [20] of a web service that implements
an earlier version of the techniques explained here, which
does not include proficiency levels. Last but not least, if in
a University framework the notion of competence that we
have used is sufficient to represent and reason about curricula,
in business organizations this notion usually requires more
complex models. As future work, we mean to integrate the
proposed approach with the CRAI competence model [13] and
with competence management information systems [11].

Acknowledgements.

The authors would like to thank Viviana Patti for the helpful
discussions. This research has partially been funded by the
European Commission and by the Swiss Federal Office for
Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net),
and it has also been supported by MIUR PRIN 2005 “Specifi-
cation and verification of agent interaction protocols” national

40

project.

REFERENCES

[1] ADL Technical Team. SCORM XML controlling document -
SCORM CAM version 1.3 navigation XML XSD version 1.0, 2004.
http://www.adlnet.org/.

[2] Unified Modeling Language: Superstructure, version 2.1.1. OMG,
February 2007.

[3] M. Baldoni, C. Baroglio, I. Brunkhorst, E. Marengo, and V. Patti.
Curriculum Sequencing and Validation: Integration in a Service-Oriented
Architecture. In Proc. of EC-TEL’07, LNCS, 2007. Springer.

[4] M. Baldoni, C. Baroglio, and N. Henze. Personalization for the Semantic
Web. In Reasoning Web, LNCS 3564 Tutorials, pp. 173–212. Springer-
Verlag, 2005.

[5] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and L. Torasso. Verifying
the compliance of personalized curricula to curricula models in the
semantic web. In Proc. of Int.l Workshop SWP’06, at ESWC’06, pp.
53–62, 2006.

[6] M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about
learning object metadata for adapting SCORM courseware. In Proc.
EAW’04, 2004.

[7] M. Baldoni, C. Baroglio, and V. Patti. Web-based adaptive tutoring: an
approach based on logic agents and reasoning about actions. Artificial
Intelligence Review, 22(1):3–39, 2004.

[8] M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about
learning object metadata for adapting SCORM courseware. In Proc.
of Int.l Workshop EAW’04, at AH 2004, pp. 4–13, Eindhoven, The
Netherlands, August 2004.

[9] M. Baldoni, C. Baroglio, and E. Marengo. Curricula model checking.
In Proc. of AIIA’07. To appear.

[10] M. Baldoni and E. Marengo. Curricula model checking: declarative
representation and verification of properties. In Proc. of EC-TEL’07,
LNCS, 2007. Springer.

[11] G. Berio and M. Harzallah. Knowledge Management for Competence
Management. J. of Universal Knowledge Management, 1:21–28, 2005.

[12] P. Brusilovsky and J. Vassileva. Course sequencing techniques for large-
scale web-based education. Int. J. Cont. Engineering Education and
Lifelong learning, 13(1/2):75–94, 2003.

[13] M. Harzallah and F. Vernadat. IT-based Competency Modeling and
Management: from theory to practice in enterprise engineering and
operations. Computers in industry, 48:157–179, 2002.

[14] O. E. M. Clarke and D. Peled. Model checking. MIT Press, 2001.
[15] J. L. De Coi, E. Herder, A. Koesling, C. Lofi, D. Olmedilla, O. Papa-

petrou, and W. Sibershi. A model for competence gap analysis. In Proc.
of WEBIST 2007.

[16] E. A. Emerson. Temporal and model logic. In Handbook of Theoretical
Computer Science, volume B, pages 997–1072. Elsevier, 1990.

[17] R. Farrell, S. D. Liburd, and J. C. Thomas. Dynamic assebly of learning
objects. In Proc. of WWW 2004, New York, USA, May 2004.

[18] M. del Mar Gallardo, P. Merino, and E. Pimentel. Debugging UML
Designs with Model Checking. Journal of Object Technology, 1(2):101–
117, July-August 2002.

[19] N. Guelfi and A. Mammar. A Formal Semantics of Timed Activity
Diagrams and its PROMELA Translation. In Proc. of APSEC’05, pp.
283–290. 2005.

[20] N. Henze and D. Krause. Personalized access to web services in the
semantic web. In The 3rd Int.l Workshop SWUI, at ISWC 2006, 2006.

[21] G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.
[22] M. Melia and C. Pahl. Automatic Validation of Learning Object

Compositions. In Proc. of IT&T’2005: Doctoral Symposium, Carlow,
Ireland, 2006.

[23] M. P. Singh. Agent communication languages: Rethinking the principles.
IEEE Computer, 31(12):40–47, 1998.

[24] M. P. Singh. A social semantics for agent communication languages.
In In Issues in Agent Communication, number 1916 in LNCS, pages
31–45. Springer, 2000.

[25] P. Terenziani, L. Giordano, A. Bottrighi, S. Montani, and L. Donzella.
SPIN Model Checking for the Verification of Clinical Guidelines. In
Proc. of ECAI 2006 Workshop on AI techniques in healthcare, Riva del
Garda, August 2006.

[26] W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly
Declarative Service Flow Language. In Proc. of WS-FM’06, LNCS,
2006. Springer.

APPENDIX

Let k be a competence, we denote by (k, l) the con-
straint k ≥ l and by ¬(k, l) the constraint k < l. A
conjuctive competence formula cf is a conjuction of atomic
competence constraints cf = (k1, l1) ∧ · · · ∧ (kn, ln). A
conjunction can also be interpreted as the set of constraints
cf = {(k1, l1), . . . , (kn, ln)}. We can extend the definition of
negation, level of competence, always less than level, and next
to a conjunctive competence formula as follow:
• negation(cf) =

∧
(ki,l1)∈cf ¬(ki, li);

• existence(cf) =
∧

(ki,li)∈cf ♦(ki, li);
• absence(cf) =

∧
(ki,li)∈cf ¤¬(ki, li);

• possibility(cf) =
∧

(ki,li)∈cf (♦(ki, li) ∨¤¬(ki, li)).
• next(cf) =

∧
(ki,li)∈cf©(ki, li).

A disjunctive normal competence formulae dnf is a disjunc-
tion of conjunctive competence formulas, dnf = cf1 ∨ · · · ∨
cfn. Again, we also denote a disjunctive normal competence
formula as a set of conjuctive competence formulas dnf =
{cf1, . . . , cfn}. Therefore, a disjunctive normal competence
formula is a set of sets of atomic competences.

The positive relations presented in Section II-B can be
generalised to a DNF formula as follows:
• dnf1 before dnf2:

∨
cfi∈dnf1,cfj∈dnf2

negation(cfj) U cfi;
• dnf1 immediate before dnf2:

∨
cfi∈dnf1,cfj∈dnf2

cfi before cfj ∧¤(cfi ⊃ (next(cfj) ∨ absence(cfj)));
• dnf1 implies dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃
existence(cfj);

• dnf1 immediate implies dnf2:
∨
cfi∈dnf1,cfj∈dnf2

cfi implies cfj ∧¤(cfi ⊃ next(cfj));
• dnf1 succession dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ (existence(cfj) ∧ cfi before cfj);
• dnf1 immediate succession dnf2:

∨
cfi∈dnf1,cfj∈dnf2

cfi succession cfj ∧¤(cfi ⊃ next(cfj)).
The negative relations presented in Section II-B can be

generalised to a DNF formula as follows:
• dnf1 not before dnf2:

∨
cfi∈dnf1,cfj∈dnf2

negation(cfi) U (cfj ∧ negation(cfi));
• dnf1 not immediate before dnf2:

∨
cfi∈dnf1,cfj∈dnf2

negation(cfi) U (cfj ∧ negation(cfi));
• dnf1 not implies dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ absence(cfj);
• dnf1 not immediate implies dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ (absence(cfj) ∨ ♦(cfi ∧
next(negation(cfj))));

• dnf1 not succession dnf2:
∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ (absence(cfj) ∨ cfi not before cfj);
• dnf1 immediate succession dnf2:

∨
cfi∈dnf1,cfj∈dnf2

existence(cfi) ⊃ (absence(cfj) ∨ cfi not before cfj ∨
♦(cfi ∧ next(negation(cfj)))).

41

Semantic Resource Management in MAS
Nicola Cannata, Flavio Corradini, Francesca Piersigilli, Emanuela Merelli and Leonardo Vito

Dipartimento di Matematica e Informatica
Università di Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy

Email: name.surename@unicam.it

Abstract—In highly dynamic environments like academy and
industry it is becoming essential the need of efficient systems for
resources organization and discovery. In this paper we describe
a semantic resources manager, called Resourceome. This system
allows both to discover and organize resources for agents’ goals
achievement. The ontological descriptions of resources and of
domains allow to contextualize a resource instance in its domain
through a concern relation. The proposed model supports
the navigation from domain to resource concepts and vice
versa. Resourceome represents our proposal for describing the
particular vision of the world perceived by multi-agent systems.

I. INTRODUCTION

The wide use of distributed systems led to the design and
implementation of middlewares. Corba, RMI, Web Services,
and FIPA are the most important standard specifications,
which gave rise to successful middlewares in both business
and academic environment. Even if actual middlewares allow
developers of distributed applications to overcome the inter-
connection and integration troubles, it still remains present
the need to have suitable support to organize and discover
resources to fully support the systems interoperability. For
resources we mean web services, persons, tools, databases,
files and others available either on the web or locally. Con-
cerning pharmaceutical industry and bioinformatics research
we are witnessing a growing number of published resources,
if properly organized could be the basic knowledge of artificial
systems in life science [1].

In any distributed system, likewise an agents community,
the organization of the resources plays a very important role.
In fact, it is often difficult for a software agent to look for
the right resource in an unexplored open environment [2].
Agents generally do neither know what kind of resources are
available, nor if a certain resource is still existing in their
environments; even playing a specific role. An organization
of contextualized resources in their domains can help their
discovery (in particular at run-time) by a resource manager.
This could also replaced a resource with another one when
the original one is not available or when an equivalent or
better one is found. The dynamic and distributed scenario is
the natural environment for multi-agent systems (MAS). In
such context, where the aggregation of new communities of
agents is possible, the semantic discovery of resources would
be very useful.

To this end, we propose a model for a semantic resources
manager, called Resourceome. System that allows both to
discover and organize resources contextualized in their do-
mains. Resources are described by suitable ontology whose

instance resources are related to their domain concepts by a
specific relation, that in the proposed model, is called concern.
The proposed model supports the navigation from domain to
resource concepts and vice versa.

Resourceome model differs from existing models, as
OWL-S and WSDL-S, in two main features: 1) Resourceome
allows the description of any kind of resources, e.g. web
service and ; 2) it allows to add new resources and to
contextualize them on appropriate domains.

Resourceome with its model, thus, represents our proposal
for describing the particular vision of the world perceived by
multi-agent systems.

The rest of this papers is organized as follows. Section II
introduces the concept of Resourceome. In Section III the
Resourceome management system is described. Section IV
shows how the Resourceome can help software agents to
discover resources. A case study of resources discovery with
Resourceome is presented in Section V.

II. WHAT IS A RESOURCEOME?

In this section we describe the basic model of Resourceome.
The basic idea behind Resourceome is that of a formal,
machine understandable description of resources through two
ontologies: the domain ontology and the resources ontology
[3].

The main purpose of the resources ontology is to organize
the concepts, properties and relationships through which a
resource can be classified. Whereas the domain ontology
organizes the topics the users are interested in. We can
foresee general purpose resourceomes to organize resources
in industry, computer science, bioinformatics or something
else. For example, industrial topics could be represented by
concepts like electricity, energetic saving, electronics and staff
management. The domain ontology defines the resources con-
text, allowing humans and software agents to easily understand
what a resource is about.

Thus, a resource context is also given in terms of concepts of
the domain: in our representation resources are linked to the
concepts of the domain ontology through a specific relation
called concern. Figure 1 describes the Resourceome model
in terms of concepts (ovals) and is-a relationships (arrows)
between concepts, and concern relationships between ontolo-
gies (dark arrows). Resourceome can manage any ontology
provided there exists at least one concern relation. In the
sequel of the paper, for sake of simplicity, we have only used,
as examples, ontologies with is-a relation.

42

Fig. 1. The Resourceome model

To define the concern relation we aimed to use OWL-
Full, but actually it doesn’t exist a reasoning software able
to support complete reasoning for every feature of OWL Full.
Consequently, we used OWL-DL, even if its expressiveness
was not sufficient - OWL-DL can be used only under certain
restrictions, for example, a class cannot be in relation with
an instance of class-. To overcome the OWL-DL restrictions
we have introduced an hidden instance for any ontological
concept.

A domain could eventually be specified through more than
one ontology, e.g. for interdisciplinary domains. Furthermore
and more concretely, resources are univocally defined through
their metadata and in particular through their URIs [4], that
can be LSIDs [5], DOIs [6], URLs, and so on.

A. An example of Resources Ontology

The notion of resource is fundamental in current networked
information systems. The term is used often, specifically in
relation to World Wide Web and Semantic Web activity, e.g.
in standards such as RDF [7]. This term masks an exceptional
amount of ambiguity. Although a stated definition of a resource
in the URI RFC [4] exists, it is in many respects vague: “A
resource can be anything that has identity. Familiar examples
include an electronic document, an image, a service (e.g.,
“today’s weather report for Los Angeles”), and a collection of
other resources. Not all resources are network “retrievable”;
e.g., human beings and books in a library can also be con-
sidered resources [...] a resource can remain constant even
when its content, the entities to which it currently corresponds,
changes over time, provided that the conceptual mapping is not
changed in the process. [...]”. In an industrial scenario, the
types of related resources depend on the production domain,
even though we can affirm that there are some resources
common to every sphere. Just to give an idea, Figure 2 shows
some concepts that can represent a fragment of knowledge
in an industrial scenario. In particular, warehouseman, firm
employee, person agent, software agent, human agent are
concepts defined by the following relationships:

• a Warehouseman is-a Firm Employee
• a Firm Employee is-a Person
• a Software Agent is-a Agent
• a Human Agent is-a Agent
Also a service agent [8] can be considered a resource, in

fact, in our proposal - as it is described in the sequel - a

Fig. 2. A fragment of an industrial Resources Ontology

service agent has the possibility to register itself as a resource
in the Resourceome of the running platform by reporting its
particular features and concerning one or more domain topics.

In addition, we can establish more explicit relations between
resources like: uses, describes, is author of, is executed by,
and so forth. And concepts can have many attributes such as
name, description, URI, etc.. These relations and attributes
allow software agents to obtain information and knowledge
about a certain resource, so that they can choose between
apparently equivalent resources.

We have developed some examples of resources ontology,
however being Resourceome a customizable system, resource
ontologies can be built at will.

B. Resources instances

Instances of resources can be considered as an instances
ontology. Although this component extends the resources
ontology, it is more appealing to see it as an independent data
set. In the present prototype, it is composed of distributed
OWL-DL [9] files referring to a specific resources ontology
and concerning a particular domain ontology. The instances
files refer to both the resource and domain ontologies by
importing them through the definition of their namespaces.
Individuals can have limited life span, or can be irregularly
available. Therefore there is the problem of how to manage no
more or temporary not reachable resources. As we will deep
in Section III, this task is performed by a pool of specific
software agents that periodically check for resources and their
status. When a not reachable anymore resource is discovered,
it is marked in a different way, in order to allow the user
to be aware of it. The ontologies grow receiving concepts,
relationships and instances in two manners: they can be added
manually by users or automatically by the software agents.

Resources could be available through the web or could
represent local resources in a remote machine.

43

III. AGENTS MAKE “ALIVE” THE RESOURCEOME

The management of the Resourceome is performed by a
multi-agent system whose organization allows to carry out also
the interactions with the final users.

Software agents are autonomous computational entities op-
erating in an open dynamic environment [10]. Agents gen-
erally interact with each other, also collaborating to achieve
common goals. Agents can be seen as a design metaphor for
constructing complex systems around autonomous, commu-
nicating entities [11]. In this context the multi-agent system
allows to consider the Resourceome like a living organism that
is composed of a static component formally described (i.e.
the ontology) and a set of proactive components that maintain
updated the ontology (i.e. the multi-agent system). In order
to achieve this goal, we introduce the following specialized
agents:

• Query/Answer agent: its role is that of taking any user
query, and translate it in SPARQL [12]- the language
recommended by the W3C and adopted in this solution
-. After having queried the ontologies, the results are
translated back in the user language.

• Spider agent: its role is that of surfing Internet to find
new resources (and also new concepts) concerning a
particular domain of interest. The research is based on
some parameters such as URLs and keywords. The out-
puts provided by the Spider Agent are new instances of
resources and eventually new concepts and relations to
add to the Resourceome.

• Parser agent: its role is that of parsing a flat file prepared
to include a set of resources in the Resourceome. The
file, e.g. an XML file, is created by users to index the
proper user resources (more details are provided in the
Section III-A).

• Text mining agent: its role is that of automatically “anno-
tate” the resources described in a text document. It looks
for relations between a certain text document and a set of
given concepts and resources by following these steps:

1) it tries to find the best fitting concept belonging
to a resources ontology for classifying the resource
described by the document;

2) it tries to find the best fitting topics belonging to
a domain ontology for providing semantics to the
resource described by the document;

3) it tries to enrich the semantics of the described
resources adding their relationships with other re-
sources. In particular if the resource to be annotated
is an article then an instance of the relationship cites
can be created for every other literature resource
cited in the text.

• Matcher agent: it concerns the matching between the new
knowledge eventually found by the spider or parser agent,
and the actual Resourceome content.

• Session agent: it is the sessions responsible. In fact,
more than one session can be opened by users to access
the Resourceome, or by the agents that manage the

Resourceome, for read/write operations.
• Monitor agent: it tracks the resources signaling if a

resource is currently reachable or not. When no longer
available after a reasonable observation time, it can be
considered definitively unreachable. The use of URN
(like LSID and DOI) instead of URL and the resources
monitoring, partially solves the “404 not found” prob-
lem [13].

We are aware that many of the proposed agents’ roles
are still open issues. Nevertheless, we developed those basic
features already proposed in literature.

A. How to “feed” Resourceome with new resources

Excluding the monitor and query/answer agents, all the oth-
ers collaborate, by interacting with each other, to automatically
add knowledge to the Resourceome. We aim to formalize, in
the next future, the communication protocol by using a MAS
methodology.

The instances of the resources ontology could be enriched
by the spider agent “walking” across the Internet. It should try
to individuate the metadata describing interesting resources,
adding this information to the current instances “ontology”.
The task just described is rather complicated. It is performed
by a pool of software agents entrusted - by spider agents -
to continuously effect searches on Internet, and look for new
available interesting resources. The basic knowledge of the
spider agent consists on a set of URLs - that acts as the
spider starting points - and a list of keywords - concepts of
the domain and resources ontologies -.
When a spider finds a new resource to be added, its metadata
are converted in OWL-DL, if specified in a different language.
Then the matcher agent imports them into the ontology files.
The metadata are connected to the suitable concepts, if they
are available.
If the right concepts to identify the resource and/or its do-
main are not yet provided, they are automatically added by
the matcher agent supported by the new resource metadata.
The metadata and a vocabulary with the use of a similarity
algorithms, help the matcher to reach its goal. When the
Resourceome does not contain adequate concepts to describe
the new resource, new ones can be added from the remote
ontology. Also relationships and properties are imported, if
possible.

We have also implemented another kind of search based on
a particular flat file that Resourceome users should prepare and
publish. This file contains the metadata of the users’ resources,
which must be indexed by the Resourceome. In this case the
work carried on by the Parser Agent is indispensable. The flat
file should be built in a standard format in order to let the
parser identify the elements of the resource description.

IV. THE RESOURCEOME ROLE IN A MAS

Considering multi-agent systems as virtual extension of
the human reality, the agent society, at least partially, should
replicate some of its specific aspects [14]. A software agent
is basically characterized by the goals it must achieve, by the

44

roles it can play in its existence, by its attitudes and by the
contexts in which it lives. A context defines also the conditions
by which an agent plays a role and has some goals [15]. A
context can change during an amount of time and it is very
important that an agent has the ability of understanding its
context and how it evolves.

The Resourceome allows agents to understand part of the
environmental context. In particular the use of the resources,
which of course characterize the context. When an agent
realizes to be in a certain context, where it can use some re-
sources, it can decide to acquire a new role. The Resourceome
logically represents a knowledge-base accepted by the agents
community which shares it. It represents also a system that
allows every agent to share its knowledge, in order to enrich
the intellectual capital of the organization.

There are some objects, such as resources, that have features
dependent from observers. In Searle [16] every institutional
fact is defined by constitutive rules, like X counts as Y in
context C. We think that the Resourceome is able to provide
this kind of characterization. In fact a resource identifies a
certain entity, i.e a resource instance for a precise context
of use bind to a specific domain. When it is communally
recognized that a resource X identifies Y in a context C, the
resource X assumes a particular status. The status indicates
the functionality that the resource X can play in the context
C.

Thanks to this characterization also agents (which in turn
represent resources) can be contextualized and semantically
discovered through the combination of the Resourceome and
of the Directory Facilitator.

A. The broker role of the Resourceome

The Resourceome can be considered a data structure repre-
senting formally part of shared knowledge among an agents
community. The pool of agents for the Resourceome manage-
ment, described in Section III, can be seen as an organization
whose members have been created to hold specific roles and
to interact with each other by respecting the organization laws.
Indeed not all agents must necessarily have the ability to
directly navigate the ontologies of the Resourceome to gain
knowledge about context resources. Any agent can be helped
by specialized agents which are the promoters of its requests
execution. These agents specialized to query the Resourceome
give to the Resourceome system the role of resource broker.

In such a view, the system can find one or more kinds of re-
sources concerning a particular domain, or alternatively, from
a given domain concept it retrieves all resources concerning
it. It follows a list of some search examples supported by the
actual prototype implementation:

• based on a list of resources ontology concepts, select
all resources having a “concerns” relation with a given
domain ontology concept;

• taking as starting point a domain concept, search all
resources concerning that concept;

• search all resources having a relation with a particular
resource.

The presence of relations between resources allows the
broker agents to dig deeper into a resource knowledge and
possibly to infer on it and deduce new knowledge. Knowledge
that can improve the description of the resource itself for
further search.
Every resource, besides being characterized by its hierarchy
and relations with other resources, can be described also
by some properties, such as name, description, location and
others. For example, a resource such as a web service, can be
characterized by the WSDL service descriptor, or the OWL-
S file and by a relation like “stub with”. The “stub with”
relation can in addition specify that the service stub needs the
“WSDL2Java”, which is a web service resource instance.

Besides query functionality the system allows to add new
resources in order to enrich the knowledge base behind Re-
sourceome.

B. The zooming-in zooming-out in the Resourceome

A MAS is generally formed by an agents community
operating in one or more distributed platforms. In a distributed
environment resources discovery is a very important. To such
purpose, maintaining a unique centralize Resourceome acting
as resources provider, would be very an impracticable solution
as the community growths. On the other hand, a distinct
Resourceome for each place, managing only local resources
should be reductive, while aligning them would result ex-
tremely redundant.

Thanks to the ontologies distribution, we can consider the
domain as organized in a top-down model. The resources
discovery can be done through several “zoom-in” or “zoom-
out” in the different domain ontologies as shown in Figure 3.
In the top level of the domain hierarchy can be found one
or more upper ontologies concerning very generalized con-
cepts [17]. Zooming-in the domain ontologies, we can navigate
the ontologies through the platforms and have a more and
more specialized view of our interest domain. These ontologies
are in local platforms. The zoom-in is implemented through a
part-of relations, connecting several domain ontologies. The
resources discovery can be executed starting from a general
view at a more specific view. In this way it will be possible
to discover the needed resources concerning a particular topic
of the domain.

V. CASE STUDY

The production process of a manufacturing company is
usually performed by executing a set of distinct activities,
sequential or not. Performing an activity often requires the use
of resources. As a case study we have chosen a simply supply
chain to build and test electrical domestic appliances (see
Figure 5). The supply chain consists of federated enterprises:
several suppliers, a production plant, a distribution center and
a technical service center. Each enterprise is characterized by
a specific role and carries out a set of specific tasks in the
virtual organization. Usually, tasks need specific resources like
files describing particular tests, components for controlling the
machine status during the production process, databases for

45

Vertical view

UPPER
DOMAIN

ONTOLOGY

Aerial view

UPPER
DOMAIN

ONTOLOGY

zoom in zoom out

Fig. 3. Domain ontology view

Production PlantPRE-TESTING

INCOMING
INSPECTION

FUNCTIONAL
TESTING

CSQ

FINAL
CHECK

TRANSPORT
DAMAGES

Delivery

FAULTS

Assistance
post-sale

COMPONENT
CHECK

Supplier A

COMPONENT
CHECK

Supplier B

Hermes

Hermes

Hermes Hermes

FarMAS

Fig. 4. Case study: the MAS supply chain [18]

managing stores, providers of machines components, software
agents to assist the orders management and so forth.

In this context, these and other resources are distributed in
the production branches and described by Resourceome (see
Figure 2).

In our previous work we have defined a society of au-
tonomous agents created to support the traceability of compo-
nents information in a federated enterprises environment [18].
A simple supply chain described in Figure 4 for the production
of electrical appliances such as washing machines, refrigera-
tors or dishwashers whose componentsÕ traceability is defined
in terms of a kind of workflow extended for quality control.

During the testing phase, it could happen that a test shows a
malfunction of a particular component of a washing machine,
elsewhere assembled. If the same component is not available,
it is necessary to find a similar one. Discovering a similar
component in the federated enterprises is not an easy task if the
semantic description of the component (for us a resource) is
not available. In the hypothesis that Resourceome provides the
domain ontology for dry washing and the resource ontology
for the component of a washing machine, the discovering of a
new component could be performed by the cooperation of the
enterprise employee, the warehouse agent, the query/answer
agents and the store agent.

If the failure occurs frequently, besides blocking the pro-
duction, this circumstance will cause also inconsistency in
the databases distributed in the federation. Also this problem
is easily predictable and solvable by a semantic resource
management system .

VI. CONCLUSION

Multi-agent systems can be understood as complex entities
where a multitude of agents interact, within a structured
environment aiming at some global purpose. The Resourceome
system is used to discover the resources necessary for the
agents goals achievement. In fact, agents organizations often
need heterogeneous resources, such as files, persons, web ser-
vices or agents providing some services (service agents), not
of easy to discover. An agent could be blocked because of its

46

Fig. 5. Case study: the Resourceomic MAS in a supply chain

inability of retrieving a resource or of resource unavailability.
The use of a semantic system for resources organization avoids
this kind of problem providing analogous resources, replacing
the ones searched by the agent, but not available at that mo-
ment. So the resources contextualization in a precise domain
inside a multi-agent system, represents a very important aspect
for the characterization of the environment and its evolutions.
In this paper we presented the Resourceome both as semantic
system for resources management and contextualization, and
as resource broker. The use of ontologies organized as do-
main, resources and instances ontologies, besides resources
discovery, also allows to express roles and conventions of
the organization representing the multi-agent system. Since a
service agent is itself a resource, the Resourceome can give
semantics to Directory Facilitators.

ACKNOWLEDGMENT

The authors would like to thank the Loccioni Group and
the Italian Investment Funds for Basic Research (MIUR-
FIRB) project, Laboratory of Interdisciplinary Technologies
in Bioinformatics (LITBIO) for supporting this work.

REFERENCES

[1] E. M. N. Cannata and R. B. Altman, “Time to organize the bioinfor-
matics resourceome,” PLoS Comput Biol., vol. 1, no. 7:e76, 2005.

[2] M. Klusch and K. Sycara, “Brokering and matchmaking for coordination
of agent societies: A survey,” in Coordination of Internet Agents:
Models, Technologies, and Applications, A. Omicini, F. Zambonelli,
M. Klusch, and R. Tolksdorf, Eds. Springer-Verlag, Mar. 2001, ch. 8,
pp. 197–224.

[3] N. Cannata, F. Corradini, S. Gabrielli, L. Leoni, E. Merelli, F. Piersigilli,
and L. Vito, “Intuitive and machine-understandable representation of
the bioinformatics domain and of related resources with resourceomes,”
in NETTB: A Semantic Web for Bioinformatics: Goals, Tools, Systems,
Applications, June 2007.

[4] T. B.-L. et al., “Rfc 2396 - uniform resource identifiers (uri): Generic
syntax,” 1998, www.faqs.org/rfcs/rfc2396.html.

[5] T. Clark, S. Martin, and T. Liefeld, “Globally distributed object iden-
tification for biological knowledgebases.” Briefings in Bioinformatics,
vol. 5, no. 1, pp. 59–70, 2004.

[6] “The digital object identifier system,” http://doi.org.
[7] L. O. and S. R. R., “Resource description framework (rdf): Model and

syntax specification,” 1999, www.w3.org/TR/REC-rdf-syntax.
[8] www.fipa.org/specs/fipa00001/SC00001L.pdf.
[9] “OWL web ontology language guide,”

www.w3.org/TR/owl-guide/.
[10] M. J. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and

practice,” The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–
152, 1995.

[11] N. R. Jennings, “An agent-based approach for building complex software
systems.” Commun. ACM, vol. 44, no. 4, pp. 35–41, 2001.

[12] “Sparql query language for rdf,” www.w3.org/TR/rdf-sparql-query/,
2007.

[13] J. D. Wren, “404 not found: the stability and persistence of urls
published in medline.” Bioinformatics, vol. 20, no. 5, pp. 668–672, 2004.

[14] M. V. M. Colombetti, N. Fornara, “Linguaggio e realtà sociale nei
sistemi di agenti artificiali,” Networks, no. 1, pp. 48–67, 2003.

[15] K. P. Sycara, J. A. Giampapa, B. K. Langley, and M. Paolucci, “The
RETSINA MAS, a case study.” in SELMAS, 2002, pp. 232–250.

[16] J. R. Searle, The construction of social reality, simon & schuster ed.,
1995.

[17] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider,
“Sweetening ontologies with DOLCE.” in EKAW, 2002, pp. 166–181.

[18] D. Bonura, F. Corradini, E. Merelli, and G. Romiti, “Farmas: a MAS
for extended quality workflow,” in 2nd IEEE International Workshop on
Theory and Practice of Open Computational Systems. IEEE Computer
Society Press, 2004.

47

News Retrieval through a MultiAgent System
Andrea Addis, Giuliano Armano, Francesco Mascia, and Eloisa Vargiu

University of Cagliari
Piazza d’Armi

I-09123, Cagliari, Italy
Email: {addis,armano,f.mascia,vargiu}@diee.unica.it

Abstract— The continuous growth of information sources on
the web, together with the corresponding volume of daily-
updated contents, makes the problem of finding news and
articles a challenging task. This paper presents a multiagent
system aimed at creating press reviews from online newspapers
by progressively filtering information that flows from sources
to the end user, so that only relevant articles are retained.
Once extracted, newspaper articles are classified according to a
hierarchical text categorization approach. Moreover, an optional
feedback provided by the user is exploited to improve the overall
performances. The system is built upon a generic multiagent
architecture that supports the implementation of personalized,
adaptive and cooperative multiagent systems devised to retrieve,
filter and reorganize information in a web-based environment.

I. I NTRODUCTION

The World Wide Web offers a growing amount of infor-
mation and data coming from different and heterogeneous
sources. As a consequence, it becomes more and more difficult
for Internet users to select contents according to their interests,
especially if contents are frequently updated (e.g., news,
newspaper articles, reuters, RSS (Really Simple Syndication)
feeds, and blogs). Supporting users in handling the enormous
and widespread amount of web information is becoming a
primary issue. To this end, several online services have been
proposed (for instance Google News1 and PRESSToday2).
Unfortunately, they allow users to choose their interests among
macro-areas (e.g.economics, politics, and sport), which is
often inadequate to express what the user is really interested in.
Moreover, existing systems typically do not provide a feedback
mechanism able to allow the user to specify non-relevant items
–with the goal of progressively adapting the system to her /
his actual interests.

In this paper, we propose a multiagent system devised to
handle the task of generating press reviews. To this end,
the system (i) extracts articles from online newspapers, (ii)
classifies them using hierarchical text categorization, and
(iii) provides suitable feedback mechanisms to the end user.
The motivation for adopting a multiagent system lies in the
fact that a centralized classification system might be quickly
overwhelmed by a large and dynamic document stream, such
as daily-updated online news [18]. Furthermore, Internet is
intrinsically a distributed system and offers the opportunity
to take advantage of distributed computing paradigms and
distributed knowledge resources.

1http://news.google.com/
2http://www.presstoday.com/

The remainder of the paper is organized as follows: Section
II recalls some relevant related work. Section III describes
the proposed multiagent system. In Section IV the underlying
motivation in adopting a multiagetn system are briefly pointed
out. Section V illustrates the experiments that has been per-
formed during the training phase. Section VI shows the main
functionalities of the system. Section VII draws conclusions
and points to future work.

II. RELATED WORK

This section is two-tiered, being aimed at recalling and
summarizing relevant topics on multiagent systems used in
information retrieval and on hierarchical text categorization.

A. MultiAgent Systems for Information Retrieval

In the literature, several centralized agents architectures
aimed at performing information retrieval tasks have been
proposed. Among others, let us recall NewT [38], Letizia [29],
WebWatcher [4], and SoftBots [16].

NewT [38] has been designed as a society of information-
filtering interface agents, which learn user preferences and act
on their behalf. To filter information agents use a keyword-
based filtering algorithm, whereas the adopted adaptive tech-
niques are relevance feedback and genetic algorithms. Letizia
[29] is an intelligent user interface agent able to assist a
user while browsing the Web. The search for information
results as a cooperative venture between the user and the
software agent: both browse the same search space of linked
web documents, looking for interesting ones. WebWatcher [4]
is an information search agent that follows web hyperlinks
according to user interests, returning a list of links deemed
interesting to the user. In contrast to systems for assisted
browsing or information retrieval, SoftBots [16] accept high-
level user goals and dynamically synthesize the appropriate
sequence of Internet commands according to a suitable ad-
hoc language.

Despite the fact that a centralized approach could have
some advantages, in information retrieval tasks it may en-
compass several problems, in particular how to scale up
the architectures to large numbers of users, how to provide
high availability in case of constant demand of the involved
services, as well as how to provide high trustability in case
of sensitive information, such as personal data. To this end, in
the literature, suitable multiagent systems devoted to perform
information retrieval tasks have been proposed. For the sake of

48

brevity, let us recall here CEMAS [8], IR agents [24], and the
cooperative multiagent system for web information retrieval
proposed in [37].

In CEMAS (Concept Exchanging Multi-Agent System) the
basic idea is to have specialized agents for each main task, the
main tasks being: (i) exchanging concepts and links, (ii) rep-
resenting the user, (iii) searching for new relevant documents
matching existing concepts, and (iv) agent coordination. IR
agents implement an XML-based multiagents model for infor-
mation retrieval. The corresponding framework is composedof
three kinds of agents: (i) managing agents, aimed at extracting
the semantics of information and at performing the actual
tasks imposed by coordinator agents, (ii) interface agents,
devised to interact with the users, and (iii) search agents,aimed
at discovering the information on the web. Finally, in [37]
the underlying idea is to adopt intelligent agents that mimic
everyday-life activities of information seekers. To this end,
agents are also able to profile the user in order to anticipate
and achieve her/his preferred goals.

B. Hierarchical Text Categorization

Research interest in text categorization has been growing
in machine learning, information retrieval, computational lin-
guistics, and other fields. This reflects the importance of text
categorization as an application area of machine learning,also
facilitated by the availability of several document collections
[28], [43] to which domain experts have assigned categories
from a predefined (flat) set. These collections are in fact a
benchmark that allow researchers to test their approaches while
comparing the corresponding results.

Hierarchical text categorization deals with problems where
categories are organized in form of a hierarchy. Many informa-
tion sources are organized as hierarchies, e.g. web reposito-
ries, digital libraries, patent libraries, email folders,product
catalogs. In particular, several web repositories encompass
an underlying taxonomy, such as DMOZ3 and the Google
directory 4. Taxonomies are also very useful in the field of
news categorization, such as the one provided by the Inter-
national Press Telecommunications Council5 and the RCV-
taxonomy (proposed by Lewis [27] to perform hierarchical text
categorization on the Reuters standard document collection).

Until the mid-1990s researchers mostly ignored the hierar-
chical structure of categories that occur in several domains.
In 1997, Koller and Sahami [22] carried out the first proper
study of a hierarchical text categorization problem on the
Reuters-22173 collection. First, a small hierarchical subset of
Reuters-22173 has been generated by identifying labels that
subsume other labels. Then, experiments have been performed
by comparing a Naive Bayes classifier with two limited-
dependency Bayes net classifiers –both on flat and hierarchical
models. Documents were classified into the hierarchy by first
filtering them through the single best-matching first-levelclass
and then sending them to the appropriate second level. This

3http://www.dmoz.org/
4http://www.google.com/dirhp?hl=eng
5http://www.iptc.org/

approach showed that hierarchical models perform well when
a small number of features per class is used. No advantages
were found using the hierarchical model for large numbers
of features. After this work several approaches to hierarchical
text categorization have been proposed (see for instance [10],
[30], [42], [14], [40], [34], [9]).

III. T HE PROPOSEDMULTI AGENT SYSTEM FORNEWS

RETRIEVAL

Generally speaking, a system devoted to perform informa-
tion retrieval tasks might encompass three main steps: (i) ex-
tract the required information from web sources, (ii) categorize
items according to a given taxonomy, and (iii) provide suitable
feedback mechanisms. The proposed multiagent system is
organized in three layers, each aimed at performing one of
the above information-retrieval steps, as sketched in Figure 1.

Fig. 1. A functional view of the proposed multiagent system

49

A. Information Extraction

The information extraction activity is essential to retrieve
documents provided by heterogeneous and distributed sources,
such as web sites, digital archives, and web services.

In the literature, several tools have been proposed to better
address the issue of generating wrappers for web data extrac-
tion [25]. Such tools are based on distinct techniques, such
as declarative languages [19], [12], HTML structure analysis
[13], [35], natural language processing [17], [39], machine
learning [20], [23], data modeling [1], [7], and ontologies[15].

To perform information extraction, we use several wrapper
agents, each associated with a specific information source.In
particular, three wrappers able to deal with the RSS format
have been implemented so far. These wrappers are devoted to
process the news feed provided by the Reuters portal6, The
Times 7, and The New York Times8. Other wrappers, able
to embed the Reuters document collection used to train the
system and to embed the adopted taxonomy have also been
implemented.

Once extracted, all the information is suitably encoded to
facilitate the text categorization task. To this end, all non-
informative words such as prepositions, conjunctions, pro-
nouns and very common verbs are removed using a stop-
word list. After that, a standard stemming algorithm [33]
removes the most common morphological and inflectional
suffixes. Then, for each category of the taxonomy, feature
selection, based on the information-gain heuristics [26],has
been adopted to reduce the dimensionality of the feature space.

B. Hierarchical Text Categorization

A main issue in news categorization is how to deal, for each
category, with an unbalance between relevant and non-relevant
items. In particular, one may expect that most documents are
non relevant to the user, the ratio between negative (e.g., non-
relevant) and positive (e.g., relevant) examples being high
(typical orders of magnitude are102 - 103). Unfortunately,
this aspect has a very negative impact on the precision of a
text-categorization system. With the aim of coping with this
phenomenon, we adopted a solution that exploits the abilityof
a pipeline of classifiers to progressively filter out non relevant
information.

To better illustrate the underlying mechanism, let us con-
sider the adopted taxonomy, i.e., the RCV1-taxonomy (Figure
2 reports part of the branch corresponding to theeconomics
topic). Each node of the taxonomy represents a classifier
entrusted with recognizing all corresponding relevant inputs.
Any given input traverses the taxonomy as a “token”, starting
from the root (in the example in Figure, ECAT). If the current
classifier recognizes the token as relevant, it passes it on to all
its children (if any). The typical result consists of activating
one or more pipelines of classifiers within the taxonomy.
As an example, let us consider Figure 3 that illustrates the

6http://www.reuters.com
7http://www.the-times.co.uk/
8http://www.nytimes.com/

pipeline activated by an input document, which encompasses
the categories economics (ECAT), government finance (E21),
and expenditure/revenue (E211). This means thatall involved
classifiers recognize the input as relevant.

Fig. 2. A portion of the RCV1-taxonomy.

Fig. 3. An example of pipeline (highlighted in bold).

Each item in the taxonomy is implemented by an agent that
embeds the corresponding classifier, in the current implemen-
tation the underlying classification technique beingk-NN [44]
–in its “weighted” variant [11]. The motivation for adopting
this particular technique stems from the fact that it does not
require specific training and is very robust with respect to
noisy data.

C. User’s Feedback

So far, a simple solution based on thek-NN technology has
been implemented and experimented to deal with the problem

50

of supporting the user’s feedback. When a non-relevant article
is evidenced by the user, it is immediately embedded in the
training set of ak-NN classifier that implements the user
feedback. A suitable check performed on this training set after
inserting the negative example allows to trigger a procedure
entrusted with keeping the number of negative and positive
examples balanced. In particular, when the ratio between
negative and positive examples exceeds a given threshold (by
default set to 1.1), some examples are randomly extracted from
the set of “true” positive examples and embedded in the above
training set.

IV. U NDERLYING MOTIVATION IN ADOPTING A MAS

An information retrieval system must take into account
several issues, the most relevant being: (i) how to deal with
different information sources and to integrate new information
sources without re-writing significant parts of it, (ii) how
to suitably encode data in order to put into evidence the
informative content useful to discriminate among categories,
(iii) how to control the unbalance between relevant and non
relevant articles (the latter being usually much more numerous
than the former), (iv) how to allow the user to specify her /
his preferences, and (v) how to exploit the user’s feedback to
improve the overall performance of the system.

The above problems are typically strongly interdependent in
state-of-the-art systems. To better concentrate on these aspects
separately, we adopted a layered multiagent architecture,able
to promote the decoupling among all aspects deemed rele-
vant. In particular, the proposed system has been built upon
PACMAS (Personalized Adaptive and Cooperative MultiAgent
System), a generic multiagent architecture aimed at retrieving,
filtering, and reorganizing information according to the users’
interests [2]. The adoption of PACMAS is motivated by the
willing of better concentrating on the above aspects separately,
as it is in fact a layered architecture capable of promoting the
decoupling among all relevant aspects of a complex task aimed
at performing information retrieval. The PACMAS generic
architecture has been implemented on to of the well known
JADE [6] agent-based infrastructure. PACMAS encompasses
four main levels:

- information level, aimed at wrapping information sources.
The ability of the system to deal with new information
sources affects only this level (i.e., a corresponding
adapter or wrapper agent must be devised and imple-
mented for each new kind of information source to be
processed);

- filter level, devoted to suitably encode the text content
according to an information-gain heuristics. Agents be-
longing to this architectural level encode (and embed) the
text content of an article into a vector of words, which in
turn is used to discriminate among existing categories;

- task level, devoted to identify relevant articles depending
on the user interests. Agents belonging to this architec-
tural level are aimed at performing two-tiered action: first
the input is classified in accordance with the existing tax-
onomy, then the intended category (defined by composing

existing categories withand, or, and not operators) is
used to decide whether it interests the user or not. The for-
mer action embeds suitable policies aimed at controlling
the negative impact of the unbalance between relevant
and non-relevant articles, whereas the latter allows the
user to explicitly specify her / his preferences about the
set of relevant vs. non-relevant articles;

- user interface level, agents belonging to this level are
aimed at performing the last check in order to decide
whether the given input is of interest for the user and
–optionally– at providing a feedback by the user, which
can be exploited to improve the overall ability of discrim-
inating relevant from non relevant inputs.

Finally, let us put into evidence that the adoption of a
multiagent system allows to distribute the computation among
several nodes. More the number of involved classifiers grows,
more the distribution becomes an important issue to be taken
into account. To this end, let us note that the adopted RCV1
taxonomy is composed of 103 classes and each node of the
taxonomy represents a classifier entrusted with recognizing all
corresponding relevant inputs.

V. TRAINING THE SYSTEM

The system has been trained using RCV1-v2, the standard
document collection proposed in [27], which is organized in
four hierarchical groups: CCAT (Corporate/Industrial), ECAT
(Economics), GCAT (Government/Social), and MCAT (Mar-
kets).

Before studying the progressive filtering technique, several
experiments devoted to set the system parameters have been
performed. In particular, experimentally we found that the
optimal number of features is 200, and that the number of
nearest neighbors to be taken into account by thewk-NN (e.g.,
the value ofk) is in the range 7..11.

To assess the capabilities of the proposed progressive filter-
ing technique, suitable pipelines composed of three classifiers
9 have been considered. First, each node of the pipeline is
trained with a balanced data set by using 200 features (TFIDF)
selected according to the information gain method. Then, for
each node of the taxonomy, a learning set of 500 articles, with
a balanced set of positive and negative examples, has been
selected to train a classifier based on thewk-NN technology.

A complete discussion on the progressive filtering technique
being out of the scope of this paper (see [3] for a detailed
discussion), let us briefly summarize our experimental results.

As for testing, several randomly selected sets of 1000
documents have been generated –characterized by a different
ratio between relevant and non-relevant inputs. In particular,
the ratio between positive and negative examples has been
set to 1:2, 1:10, 1:20, and 1:100 (50%, 10%, 5%, and 1%),
say TS50, TS10, TS5, and TS1, respectively. To study the
impact of progressively filtering information with pipelines
of wk-NN classifiers (denoted as PIPE), we tested with the

9We considered pipelines of only three classifiers due to the limited depth
of the adopted RCV1-taxonomy.

51

TABLE I

M ICRO- AND MACRO-AVERAGING.

pos f
µ

1
WKNN fM

1
WKNN f

µ

1
SVM1 fM

1
SVM1 f

µ

1
SVM2 fM

1
SVM2 f

µ

1
Pipe fM

1
Pipe

50 0,883 0,883 0.831 0.832 0,898 0,897 0.905 0.905
10 0,646 0,647 0.507 0.521 0,719 0,722 0.721 0.720
5 0,513 0,514 0.412 0.428 0,535 0,543 0.683 0.682
1 0,165 0,169 0.169 0.190 0,344 0,349 0.412 0.431

above test sets some relevant pipelines, each concerning three
nodes of the taxonomy (k = 3). Results have been compared
with those obtained by running the same tests on stand-
alone classifiers based on the following technologies:wk-NN
(denoted as WKNN),10 linear SVM (denoted as SVM1), and
RBF-SVM (denoted as SVM2).

Table I summarizes the experimental results illustrating the
micro- and macro-averaging ofF1 obtained by moving the
acceptation threshold of the classifier(s) under investigation
over the range[0, 1]. A concise recall of the corresponding
definitions follows (the interested reader may consult the
corresponding literature, e.g. [36]).

As for micro- and macro-averaging, they are aimed at
obtaining estimates of precision (P) and recall (R) relative to
the whole category set. In particular, micro-averaging evaluates
the overallP and R by globally summing over all individual
decisions. In symbols:

Pµ =
TP

TP + FP
(1)

Rµ =
TP

TP + FN
=

∑m

i=1
TPi∑m

i=1
(TPi + FNi)

(2)

where the “µ” superscript stands for microaveraging. On the
other hand, macro-averaging first evaluatesP andR “locally”
for each category, and then “globally” by averaging over the
results of the different categories. In symbols:

PM =

∑
i=1

mPi

m
(3)

RM =

∑
i=1

mPi

m
(4)

where the “M” superscript stands for macroaveraging.
As for F1 [41], it is obtained from a more general definition

by imposing thatP andR have the same degree of importance.
In symbols:

F1 =
2PR

P + R
(5)

Table I highlights that, in all selected samples, the solution
based on multiple classifiers has reported better results than
those obtained with flat models. Summarizing, experimental
results show that in presence of unbalanced inputs, a pipeline
of three classifiers is able to counteract an unbalance of up to
100 non relevant articles vs. one relevant article.

10The technique based onwk-NN has been used with both the hierarchical
classification (PIPE) and the flat model (WKNN).

VI. T HE CURRENT PROTOTYPE OF THESYSTEM

Figure 4 illustrates the current user interface of the system.
Through it, the user can set (i) the source from which news
will be extracted, and (ii) the topics s/he is interested in.As
for the newspaper headlines, the user can choose among the
Reuters portal, The Times, and The New York Times. As for
the topics of interest, the user can select one or more categories
in accordance with the given RCV1 taxonomy.

Fig. 4. The current user interface of the system.

The search for relevant news is activated by clicking on the
press reviewbutton. First, information agents able to handle
the selected newspaper headlines extract the news. Then, all
agents that embody a classifiers trained on the selected topics
are involved to perform text categorization. Finally, the system
supplies the user with the selected news through suitable
interface agents (see Figure 5).

Let us recall that the user can provide a feedback to the
system by selecting all non-relevant news (i.e false positives).
This feedback is important to let the system adapting itselfto
the actual interests of the corresponding user.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, a multiagent system devised to generate press
reviews has been presented. The system encompasses three
main tasks: (i) extracting articles from online newspapers, (ii)
classifying them using hierarchical text categorization,and (iii)
providing suitable feedback mechanisms.

52

Fig. 5. An example of results provided by the system.

As for the future work, more sophisticated strategies to pro-
vide personalization are currently under investigation. More-
over, we are implementing a new release of the system
with improved text categorization functionalities by adopting
Support Vector Machines.

ACKNOWLEDGMENTS

This work has been supported by the Italian Ministry of
Education, under the project “DART - Distributed Architecture
for Semantic Search and Personalized Content Retrieval”.

REFERENCES

[1] B. Adelberg, “NoDoSEa tool for semi-automatically extracting structured
and semistructured data from text documents”, inProceedings of the
1998 ACM SIGMOD international Conference on Management of Data
(Seattle, Washington, United States, June 01 - 04, 1998). A.Tiwary and
M. Franklin, Eds. SIGMOD ’98. ACM Press, New York, NY, 1998, pp.
283-294.

[2] G. Armano, G. Cherchi, A. Manconi, and E. Vargiu, “PACMAS:A Per-
sonalized, Adaptive, and Cooperative MultiAgent System Architecture”,
in Workshop dagli Oggetti agli Agenti, Simulazione e Analisi Formale di
Sistemi Complessi (WOA 2005), 2005, pp. 54–60.

[3] G. Armano, F. Mascia, and E. Vargiu, “Using Taxonomic DomainKnowl-
edge in Text Categorization Tasks”,International Journal of Intelligent
Control and Systems, special issue on Distributed Intelligent Systems,
2007, in press.

[4] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell, “Webwatcher: A
learning apprentice for the world wide web”, inAAAI Spring Symposium
on Information Gathering, 1995, pp. 6–12.

[5] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry,
A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill,
L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M.
Ringwald, G. M. Rubin, and G. Sherlock, “Gene Ontology: Toolfor the
Unification of Biology”, Nature Genetics, 25(1), 2000, pp. 25–29.

[6] F.L. Bellifemine, G. Caire, and D. Greenwood,Developing Multi-Agent
Systems with JADE (Wiley Series in Agent Technology), John Wiley and
Sons, 2007.

[7] B. Ribeiro-Neto, A.H. Laender, and A.S. da Silva, “Extracting semi-
structured data through examples”, inProceedings of the Eighth interna-
tional Conference on information and Knowledge Management(Kansas
City, Missouri, United States, November 02 - 06, 1999), S. Gauch, Ed.
CIKM ’99. ACM Press, New York, NY, 1999, pp. 94–101.

[8] M. Bleyer, “Multi-Agent Systems for Information Retrieval on the World
Wide Web”, Diploma Thesis, University of Ulm, Germany, 1998.

[9] L. Cai, and T. Hofmann, “Hierarchical Document Categorization with
Support Vector Machines”, inProceedings of the ACM Conference on
Information and Knowledge Management, 2004, pp. 78–87.

[10] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan, “Using Taxon-
omy, Discriminants, and Signatures for Navigating in Text Databases”,
in Proceedings of the 23rd international Conference on Very Large Data
Bases(August 25 - 29, 1997), M. Jarke, M. J. Carey, K. R. Dittrich,
F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld, Eds. Very Large
Data Bases, Morgan Kaufmann Publishers, San Francisco, CA, 1997, pp.
446–455.

[11] W. Cost, S. Salzberg, “A weighted Nearest Neighbor Algorithm for
Learning with Symbolic Features”,Machine Learning, Vol. 10, 1993,
pp. 57–78.

[12] V. Crescenzi and G. Mecca, “Grammars Have Exceptions”,Information
Systems, Vol. 23 (8), 1998, pp. 539–565.

[13] V. Crescenzi, G. Mecca, and P. Merialdo, “Roadrunner, Towards Auto-
matic Data Extraction from Large Web Sites”, inProceedings of the 27th
International Conference on Very Large Data Bases, 2001, pp. 109–118.

[14] S. Dumais, and H. Chen, “Hierarchical Classification of Web Content”,
in Proceedings of the ACM International Conference on Research and
Development in Information Retrieval (SIGIR), 2000, pp. 256–263.

[15] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, Y. K.Ng,
D. Quass, and R. D. Smith, “Conceptual-Model-Based Data Extraction
from Multiple-Record Web Pages”, inData Knowledge Engineering, Vol.
31(3), 1999, pp. 227–251.

[16] O. Etzioni and D. Weld, “Intelligent agents on the internet: fact, fiction
and forecast”,IEEE Expert, Vol. 10 (4), 1995, pp. 44–49.

[17] D. Freitag, “Machine Learning for Information Extraction in Informal
Domains”, Ph.D. dissertation, Carnegie Mellon University,1998.

[18] Y. Fu, W. Ke, and J. Mostafa, “Automated text classification using a
multi-agent framework”, Proceedings of JCDL, 2005, pp. 157–158.

[19] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig,
and V. Vassalos, “Template-Based Wrappers in the TSIMMIS system”,
in Proceedings of the 1997 ACM SIGMOD international Conference on
Management of Data(Tucson, Arizona, United States, May 11 - 15,
1997), J. M. Peckman, S. Ram, and M. Franklin, Eds. SIGMOD ’97.
ACM Press, New York, NY, 1997, pp. 532–535.

[20] C. N. Hsu and M. T. Dung, “Generating Finite-State Transducers for
Semi-Structured Data Extraction from the Web”,Information Systems,
Vol. 23(8), 1998, pp. 521–538.

[21] B.L. Humphreys, D.A. Lindberg, H.M. Schoolman, and G.O. Barnett,
“The Unified Medical Language System: an informatics researchcollab-
oration”, Journal of the American Medical Informatics Association, 5(1)
(Jan-Feb 1998), 1998, pp. 1–11.

[22] D. Koller, and M. Sahami, “Hierarchically Classifying Documents Using
Very Few Words”, inProceedings of the International Conference on
Machine Learning (ICML), 1997, pp. 170–178.

[23] N. Kushmerick, “Wrapper Induction: Efficiency and Expressiveness”,
Artificial Intelligence, Vol. 118 (1-2), 2000, pp. 15–68.

[24] W. Jirapanthong and T. Sunetnanta, “An XML-Based Multi-Agents
Model for Information Retrieval on WWW”, inProceedings of the 4th
National Computer Science and Engineering Conference (NCSEC2000),
Bangkok, Thailand, 2000.

[25] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and Juliana S.
Teixeira, “A Brief Survey of Web Data Extraction Tools”,SIGMOD Rec.,
Vol. 31 (2), 2002, pp. 84–93.

[26] D. D. Lewis. “An evaluation of phrasal and clustered representations
on a text categorization task”, inProceedings of SIGIR-92, 15th ACM
International Conference on Research and Development in Information
Retrieval, (Kobenhavn, DK, 1992), 1992, pp. 37–50.

[27] D.D. Lewis, Y. Yand, T. Rose, F. Li, “Rcv1: A New Benchmark
Collection for Text Categorization Research”, inJournal of Machine
Learning Research, Vol. 5(Dec.2004), 2004, pp. 361–397.

[28] D.D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka, “Training
Algorithms for Linear Text Classifiers”, inProceedings of the 19th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, (Zurich, Switzerland, August 18 - 22, 1996). SIGIR
’96. ACM Press, New York, NY, 1996, pp. 298–306.

[29] H. Lieberman. “Letizia: An agent that assists web browsing”, in C.S.
Mellish, editor,Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-95), Montreal, Quebec, Canada,
1995. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA, 1995,
pp. 924–929.

[30] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng, “Improving Text
Classification by Shrinkage in a Hierarchy of Classes”, inProceedings
of the International Conference on Machine Learning (ICML), 1998, pp.
359–367.

53

[31] S. Nelson, M. Schopen, A. Savage, J. Schulman, N. Arluk, “The
MESH translation maintenance system: Structure, interface design, and
implementation”, in Fieschi, M.e.a., ed.,Proceedings of the 11th World
Congress on Medical Informatics, IOS Press, 2004, pp. 67–69.

[32] H.T. Ng, W.B. Goh and K.L. Low, “Feature Selection, Perceptron Learn-
ing, and a Usability Case Study for text Categorization”, inProceedings
of the 20th annual international ACM SIGIR conference on Research and
development in information retrieval, July 27-31, Philadelphia, 1997, pp.
67–73.

[33] M. Porter, “An Algorithm for Suffix Stripping”,Program, Vol. 14(3),
1980, pp. 130-137.

[34] M. Ruiz, and P. Srinivasan, “Hierarchical Text Categorization Using
Neural Networks”,Information Retrieval, 5, 2002, 87–118.

[35] A. Sahuguet and F. Azavant, “Building Intelligent Web Applications
Using Lightweight Wrappers”,Data Knowledge Engineering, Vol. 36(3),
2001, pp. 283–316.

[36] F. Sebastiani, “Machine learning in automated text categorization”,ACM
Computing Surveys, 34(1) (Mar. 2002), 2002, pp. 1–47.

[37] K. Shaban, O. Basir, M. Kamel, “Team Consensus in Web Multi-agents
Information Retrieval System”, World Automation Congress, Vol. 17,
2004, pp. 68–73.

[38] B. Sheth and P. Maes, “Evolving agents for personalizedinformation
filtering”, In I. Press, editor,9th Conference on Artificial Intelligence for
Applications (CAIA-93), 2003, pp. 345–352.

[39] S. Soderland, “Learning Information Extraction Rules for Semi-
Structured and Free Text”,Machine Learning, Vol. 34(1-3), 1999, pp.
233–272

[40] A. Sun, and E.P. Lim, “Hierarchical Text Classification and Evaluation”,
in Proceedings of the IEEE International Conference on Data Mining
(ICDM), 2001, pp. 521–528.

[41] C. van Rijsbergen,Information Retrieval, Butterworths, London, 1979.
[42] K. Wang, S. Zhou, and S.C. Liew, “Building hierarchicalclassifiers

using class proximity”, in M.P. Atkinson, M.E. Orlowska, P. Valduriez,
S.B. Zdonik, and M.L. Brodie, eds,Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB’99), Morgan Kaufmann,
1999, pp. 363–374.

[43] Y. Yang, “An Evaluation of Statistical Approaches to Text Categoriza-
tion”, in Information Retrieval, Vol. 1(1-2), 1999, pp. 69–90.

[44] Y. Yang and X. Liu, “A re-examination of text categorization methods”,
in Proceedings of the 22nd Annual international ACM SIGIR Conference
on Research and Development in information Retrieval, (Berkeley, Cal-
ifornia, United States, August 15 - 19, 1999). SIGIR ’99. ACMPress,
New York, NY, 1999, pp. 42–49.

54

A Comparison of Upper Ontologies
Viviana Mascardi, Valentina Cordì

DISI, Università degli Studi di Genova,
Via Dodecaneso 35, 16146, Genova, Italy

E-mail: {cordi,mascardi}@disi.unige.it

Paolo Rosso
DSIC, Universidad Politécnica de Valencia,
Camino de Vera s/n, 46022, Valencia Spain

E-mail: prosso@dsic.upv.es

Abstract—Upper Ontologies are quickly becoming a key tech-
nology for integrating heterogeneous knowledge coming from
different sources. In fact, they may be exploited as a “lingua
franca” by intelligent software agents in all those scenarios where
it is impossible (or there is no will) for an agent to disclose its own
entire ontology to other agent, despite the need to communicate
with it. This paper represents the very preliminary step towards
the exploitation of Upper Ontologies as bridges for allowing
intelligent software agents to align heterogeneous ontologies in an
automatic way, where we analyse the most up-to-date state-of-the-
art. In this paper we analyse 7 Upper Ontologies, namely BFO,
Cyc, DOLCE, GFO, PROTON, Sowa’s ontology, and SUMO,
according to a set of standard software engineering criteria, and
we synthesise our analysis in form of a comparative table. A
summary of some existing comparisons drawn among subsets of
the 7 Upper Ontologies that we deal with in this document, is
also provided.

I. INTRODUCTION

The increasing pressing need that human and software
agents have to retrieve and exchange knowledge in a precise
and efficient way, have caused ontologies, web services, and
the combination of both, i.e., semantic web services, to be
more and more exploited for sharing knowledge within and
outside the boundaries of companies and other organisations.
Intelligent software agents are recognised by both researchers
and practitioners from the industry as one of the most suitable
means for mediating among the heterogeneity of applications
working within open, distributed, concurrent systems, and for
this reason they find application in many commercial projects.

However, there are still many unsolved issues for devel-
oping and deploying multi-agent systems (MASs) in open,
distributed, concurrent scenarios. One of them is how to find
mappings between concepts belonging to different ontologies
(in technical word, finding an alignment between these differ-
ent ontologies) in an automatic way. We are considering the
adoption of “Upper Ontologies” as bridges for making this
alignment possible.

Upper ontologies are quickly becoming a key technology
for integrating heterogeneous knowledge coming from differ-
ent sources. In fact, they may be used by different parties
involved in a knowledge integration and exchange process as
a reference, common model of the reality. In particular, they
may be exploited as a “lingua franca” by intelligent software
agents in all those scenarios where it is impossible (or there
is no will) for an agent to disclose its own entire ontology to
other agent, despite the need to communicate with it.

The definition of upper ontology (also named top-level
ontology, or foundation ontology) given by Wikipedia [22]
is “an attempt to create an ontology which describes very
general concepts that are the same across all domains. The
aim is to have a large number on ontologies accessible under
this upper ontology”.

This paper represents the very preliminary step towards
the exploitation of Upper Ontologies as bridges for allowing
intelligent software agents to align heterogeneous ontologies
in an automatic way, where we analyse the most up-to-date
state-of-the-art. In fact, in this paper we have described 7 upper
ontologies along different criteria that include dimension, im-
plementation language(s), modularity, developed applications,
alignment with the WordNet lexical resource, and licensing.
We have chosen these criteria for three reasons:

• They are software engineering criteria useful for the
developer of a knowledge-based system that has to choose
the most suitable Upper Ontology for his/her needs,
among a set of existing ones. Since all of us have a
computer science background, these criteria are more
familiar to us than philosophical ones.

• They take into account some of the evaluation questions
proposed by the IEEE Standard Upper Ontology Working
Group (http://suo.ieee.org/SUO/Evaluations/),
and they also extend the criteria considered in an existing
comparison among SUMO, Cyc, and DOLCE [18], thus
allowing us to “reuse”, and to be consistent with, the
results already obtained there.

• They are not (easily) scientifically falsifiable.

The choice of the 7 upper ontologies we have described,
namely BFO, Cyc, DOLCE, GFO, PROTON, Sowa’s ontology,
and SUMO, is based on how much, to the best of our
knowledge, they are visible and used inside the research
community. For example, we have discussed all the Upper
Ontologies referenced by Wikipedia, apart from WordNet that
we consider a lexical resource rather than an Upper Ontology,
and from the Global Justice XML Data Model and National
Information Exchange Model, that addresses the specific ap-
plication domain of justice and public safety. We have reported
alignments between the Upper Ontologies and WordNet, when
existing. To the 5 Upper Ontologies considered by Wikipedia,
we have added PROTON and Sowa’s ontology. We have
also cited three attempts to merge existing Upper Ontologies,
namely COSMO, MSO, and OntoMap, although we have not

55

described them in detail since the first two ones are still work
in progress, and the last one is over since four years.

The methodology followed to draw this paper consisted in
checking the existing literature, producing a first draft of the
comparison based on the retrieved literature, submitting it to
the attention of the developers of all the 7 upper ontologies
under comparison, and integrating the obtained answers and
suggestions into the current version of the paper. Due to time
constraints, we were not able to experiment with the upper
ontologies by our own. This “on the field” experimentation is
part of our near future work.

The paper is organised in the following way: Section II
provides a description of the 7 upper ontologies, and Section
III surveys some existing, partial comparisons drawn in the
past years among subsets of the Upper Ontologies that we
describe in Section II, and provides a synthesis of the results
of our comparison among them.

II. DESCRIPTION

a) Basic Formal Ontology (BFO):

• Status of this description. Validated by H. Stenzhorn,
research associate and doctoral student at the IFOMIS and
the University Hospital Freiburg - Medical Informatics
Department, and one of BFO’s developers.

• Home page. http://www.ifomis.org/bfo.
• Developers. B. Smith, P. Grenon, H. Stenzhorn, A. Spear

(IFOMIS, Saarland University).
• Description. BFO consists in two sub-ontologies: SNAP

– a series of snapshot ontologies (Oti), indexed by times
– and SPAN – a single videoscopic ontology (Ov). An
Oti is an inventory of all entities existing at a time, while
an Ov is an inventory of all processes unfolding through
time. Both types of ontology serve as basis for a series
of sub-ontologies, each of which can be conceived as a
window on a certain portion of reality at a given level of
granularity.

• History. The theory behind BFO has been developed and
formulated by Smith and Grenon in a series of publica-
tions starting in 1998. Its current implementation in OWL
has been developed by Stenzhorn with contributions from
Spear.

• Dimensions. BFO contains 1 top connecting class (“En-
tity”), 18 SNAP classes, and 17 SPAN classes for a
total of 36 classes which are, in version 1.0 of the
implementation, connected via the is_a relation. The
forthcoming version of BFO will incorporate relations
between classes too.

• Implementation language(s). OWL [21].
• Modularity. BFO is divided into the SNAP and SPAN

modules.
• Applications. BFO has been applied to the biomedical

domain [8] and it is currently used in building an ontology
for clinic-genomic trials on cancer (http://www.acgt-eu.
org).

• Alignment with WordNet. Not supported.

• Licensing. BFO is freely available; its OWL implemen-
tation may be downloaded from http://www.ifomis.org/bfo/
1.0.

b) Cyc:

• Status of this description. Validated by L. Lefkowitz,
executive director for business solutions at Cycorp.

• Home page. http://www.cyc.com/.
• Developers. Cycorp.
• Description. The Cyc Knowledge Base (KB) is a for-

malised representation of facts, rules of thumb, and
heuristics for reasoning about the objects and events of
everyday life. The KB consists of terms and assertions
which relate those terms. These assertions include both
simple ground assertions and rules. The Cyc KB is
divided into thousands of “microtheories” focused on
a particular domain of knowledge, a particular level of
detail, a particular interval in time, etc.

• History. The Cyc project was founded in 1984 by D.
Leant as a lead project in the Microelectronics and Com-
puter Technology Corporation (MCC). In 1994, Cycorp
was founded to further develop, commercialize, and apply
the Cyc technology. Cycorp offers a no-cost license to its
semantic technologies development toolkit to the research
community (ResearchCyc). Additionally, it has placed the
core Cyc ontology (OpenCyc) into the public domain.

• Dimensions. The Cyc KB (including Cyc’s microtheo-
ries) contains more than 300,000 concepts and nearly
3,000,000 assertions (facts and rules), using more than
15,000 relations.

• Implementation language(s). Cyc is represented in
the CycL formal language (http://www.cyc.com/cycdoc/ref/
cycl-syntax.html). The latest release of Cyc includes an
Ontology Exporter that allows to export specified portions
of Cyc to OWL files.

• Modularity. The “microtheory” approach supports mod-
ularity.

• Applications. Cyc has been used in the domains of
natural language processing, in particular for the tasks
of word sense disambiguation [4] and question answering
[5], of network risk assessment [19], and of representation
of terrorism-related knowledge [6].

• Alignment with WordNet. The last release of Cyc (as
well as of OpenCyc and ResearchCyc) includes links be-
tween Cyc concepts and about 12,000 WordNet synsets.

• Licensing. Cyc is a commercial product, but Cycorp
also released OpenCyc (http://www.opencyc.org/), the open
source version of the Cyc technology, and ResearchCyc
(http://research.cyc.com/), namely the Full Cyc ontology,
but with a research-only license.

c) DOLCE (a Descriptive Ontology for Linguistic and
Cognitive Engineering):

• Status of this description. Not validated by the ontology
developer(s).

• Home page. http://www.loa-cnr.it/DOLCE.html.

56

• Developers. Researchers from the Laboratory for Applied
Ontology, headed by N. Guarino.

• Description. DOLCE is the first module of the Won-
derWeb Foundational Ontologies Library. DOLCE has a
clear cognitive bias, in the sense that it aims at capturing
the ontological categories underlying natural language
and human commonsense. According to DOLCE, differ-
ent entities can be co-located in the same space-time.
DOLCE is described by its authors as an “ontology
of particulars”, which the authors explain as meaning
an ontology of instances, rather than an ontology of
universals or properties. The taxonomy of the most basic
categories of particulars assumed in DOLCE includes,
for example, abstract quality, abstract region, agentive
physical object, amount of matter, non-agentive physical
object, physical quality, physical region, process, tempo-
ral quality, temporal region.

• History. DOLCE has been developed as part of Wonder-
Web, a project funded as a shared-cost RTD under the
European Commission information society technologies
(IST) programme. WonderWeb started in 2002 and ended
in 2004. Although the project has already ended, DOLCE
is actively maintained and used.

• Dimensions. Around one hundred of terms, and a similar
number of axioms.

• Implementation language(s). First Order Logic, KIF [1],
OWL.

• Modularity. The intended use of DOLCE is within a
modular library of foundational ontologies, but it is not
currently divided into modules.

• Applications. According to the “DOLCE around the
world” web page (http://www.loa-cnr.it/dolcevar.html), there
are many projects that use DOLCE, including the LOIS
Project – an international research project on multilingual
information retrieval from legal databases –, SmartWeb
– a centre of excellence in research on intelligent
computing technologies and their application to web-
based systems and services –, Language Technology for
eLearning – a project funded by the EC, and using
multilingual language technology tools and semantic web
techniques for improving the retrieval of learning material
–, AsIsKnown – a semantic-based knowledge flow system
for the European home textiles industry, also funded by
the EC –, and the Projects of the Laboratory for Applied
Ontology.

• Alignment with WordNet. The OntoWordNet Project
aims at aligning the top-level of WordNet to DOLCE,
in order to obtain an “ontologically sweetened” lexical
resource, meant to be conceptually more rigorous, cog-
nitively transparent, and efficiently exploitable in several
applications. The beta version (v0.72) of the OWL align-
ment of WordNet 1.6 Noun Synsets to the DOLCE-Lite-
Plus ontology library consists of an alignment between
DOLCE-Lite-Plus and about 100 Wordnet sysnsets, and
can be downloaded from http://www.loa-cnr.it/ontologies/
OWN/OWN.owl.

• Licensing. The OWL version of DOLCE can be freely
downloaded from http://www.loa-cnr.it/ontologies/DLP3971.
zip.
d) GFO (General Formal Ontology):

• Status of this description. Validated by F. Loebe, PhD
student at the University of Leipzig under the supervision
of H. Herre and M. Löffler, members of the scientific
board of Onto-Med.

• Home page. http://www.onto-med.de/ontologies/gfo.html.
• Developers. The Onto-Med Research Group (http://www.

onto-med.de/).
• Description. GFO includes elaborations of categories like

objects, processes, time and space, properties, relations,
roles, functions, facts, and situations. Work is in progress
on an integration with the notion of levels of reality
in order to more appropriately capture entities in the
material, mental, and social areas.

• History. Work on GFO has started in 1999 in the context
of the GOL project (General Ontological Language).
Meanwhile, several directions of research have been
recognised and divided the initial project, such that GFO
is now one component of a larger framework. Work on
GFO remains in progress, because the development of
top-level ontologies is a long-term research effort.

• Dimensions. The OWL version of GFO consists of 79
classes, 97 subclass-relations, and 67 properties.

• Implementation language(s). The FOL axiomatization
of GFO and a KIF implementation of it are forthcoming.
An OWL-DL version also exists.

• Modularity. GFO exhibits a three-layered meta-
ontological architecture consisting of an abstract top
level, an abstract core level, and a basic level. The
foundational ontology GFO is structured into several
ontological modules including a module for functions and
a module for roles.

• Applications. One of the aims of the group Onto-Med
is the application of the GFO in the field of biomedical
science. GFO has been used to represent knowledge about
biological functions in the Gene Ontology, the Celltype
Ontology, and the Chemical Entities of Biological Interest
(ChEBI) Ontology [2], and GFO-Bio (http://onto.eva.mpg.
de/gfo-bio.html) is based on GFO and is a core ontology
for biology. Another area of application is the ontological
foundation of conceptual modelling. First examples of
applying GFO to UML are demonstrated in [9].

• Alignment with WordNet. Not supported.
• Licensing. The OWL version of GFO is released un-

der the modified BSD Licence (http://www.opensource.org/
licenses/bsd-license.php) and can be
downloaded from http://www.onto-med.de/ontologies/gfo.
owl.
e) PROTON (PROTo ONtology):

• Status of this description. Validated by A. Kiryakov,
head of Ontotext Lab, member of the board.

• Home page. http://proton.semanticweb.org/

57

• Developers. Ontotext Lab, Sirma (http://www.ontotext.
com/).

• Description. PROTON (PROTo ONtology) is a basic
upper-level ontology providing coverage of the general
concepts necessary for a wide range of tasks, including
semantic annotation, indexing, and retrieval of docu-
ments. The design principles can be summarized as
follows (i) domain-independence; (ii) light-weight logical
definitions; (iii) alignment with popular standards; (iv)
good coverage of named entities and concrete domains
(i.e. people, organizations, locations, numbers, dates, ad-
dresses).

• History. PROTON has been developed in the scope of
SEKT, a project co-funded by the EU 6th Framework pro-
gramme. SEKT started the 1st of January, 2004 and will
conclude at the end of 2006. PROTON is a development
of the KIMO ontology, which had been created and used
in the scope of the KIM platform for semantic annota-
tion, indexing, and retrieval (http://www.ontotext.com/kim/).
Currently, KIMO does not exist anymore; it is replaced
by PROTON, KIMLO (http://www.ontotext.com/kim/2005/
04/kimlo#) and KIMSO (http://www.ontotext.com/kim/2005/
04/kimso#).

• Dimensions. PROTON contains about 300 classes and
100 properties.

• Implementation language(s) A fragment of OWL Lite.
• Modularity. PROTON is organized in three levels includ-

ing four modules.
The System module ontology module occupies the first,
basic layer. It defines several notions and concepts of
a technical nature that are substantial for the operation
of any ontology-based software, such as semantic an-
notation and knowledge access tools. The Top ontol-
ogy module occupies the second layer and includes ba-
sic philosophically-reasoned distinctions between entity
types, such as Object, Happening, Abstract. Further up-
level, PROTON extends into its third layer, where either
of two independent ontologies, which defines much more
specific classes, can be used: PROTON Upper module or
PROTON KM (Knowledge Management) module. Exam-
ples of concepts belonging to these modules are Moun-
tain, as a specific type of Location, and ResourceCollec-
tion as a sub-class of InformationResource.

• Applications. As witnessed by a large number of pub-
lications (http://www.ontotext.com/publications/), PROTON
has been used in different domains and for different
purposes, including semantic annotation within the KIM
platform, and knowledge management systems in legal
and telecommunications domain [3]. It has also been used
as a basis for a domain ontologies in media research and
analysis (project MediaCampaign) and research intelli-
gence (project IST World), and a basis for Business Data
Ontology for Semantic Web Services [13].

• Alignment with WordNet. Not supported.
• Licensing. The four modules that compose PRO-

TON are freely accessible via Web: System module

(http://proton.semanticweb.org/2005/04/protons); Top module
(http://proton.semanticweb.org/2005/04/protont); Upper mod-
ule (http://proton.semanticweb.org/2005/04/protonu); Knowl-
edge Management module (http://proton.semanticweb.org/
2005/04/protonkm).
f) Sowa’s Ontology:

• Status of this description. Not validated by the ontology
developer(s).

• Home page. http://www.jfsowa.com/ontology/.
• Developers. J. F. Sowa.
• Description. Sowa’s ontology is based on [20]. The basic

categories and distinctions have been derived from a
variety of sources in logic, linguistics, philosophy, and
artificial intelligence. To keep the system open-ended,
Sowa’s ontology is not based on a fixed hierarchy of
categories, but on a framework of distinctions, from
which the hierarchy is generated automatically. For any
particular application, the categories are not defined by
drawing lines on a chart, but by selecting an appropriate
set of distinctions. These categories include Object, Pro-
cess, Schema, Script, Juncture, Participation, Description,
History, Structure, Situation, Reason, and Purpose. Each
of these categories may be either Physical or Abstract
(and in both cases, it can be either Continuant or Occur-
rent), and it may also be either Independent, Relative, or
Mediating. For example, Process is Physical, Occurrent
and Independent.

• History. Sowa’s ontology dates back to 1999. The two
major influences on it are the semiotics of C. Sanders
Peirce and the categories of existence of A. North White-
head.

• Dimensions. The KIF encoding of Sowa’s ontology con-
tains about 30 classes, 5 relationships among classes, and
among classes and instances (has, instance-of, subclass-
of, temp-part-of, spatial-part-of), about 30 axioms.

• Implementation language(s). Sowa’s ontology uses a
first-order modal language, i.e., a first-order language
with the modal operators “nec” and “poss”. A version
written in KIF also exists.

• Modularity. Sowa’s ontology is not explicitly divided
into modules, although each of the top level categories
can be intended as a module by its own, connected to the
other ones by means of relations.

• Applications. Sowa’s ontology inspired many existing
implemented upper ontologies, and thus its exploitation in
the development of “second-generation” upper ontologies
may be seen as one, and probably the most relevant, of
its practical applications.

• Alignment with WordNet. Not supported.
• Licensing. The KIF encoding of Sowa’s upper ontology

can be freely downloaded from http://suo.ieee.org/SUO/
ontologies/Sowa.txt.
g) SUMO (Suggested Upper Merged Ontology):

• Status of this description. Validated by A. Pease, current
Technical Editor of SUMO.

58

• Home page. http://www.ontologyportal.org/.
• Developers. The SUMO starter document was created at

Teknowledge by I. Niles and A. Pease, with a contribution
by C. Menzel.

• Description. SUMO and its domain ontologies [14] form
one of the largest formal public ontology in existence
today. They are being used for research and applications
in search, linguistics and reasoning. SUMO is extended
with many domain ontologies and a complete set of links
to WordNet, and is freely available.

• History. SUMO was first released in December 2000.
It was created at Teknowledge Corporation and it was
proposed as a starter document for the Standard Upper
Ontology Working Group (http://suo.ieee.org/), an IEEE-
sanctioned working group of collaborators from the
fields of engineering, philosophy, and information sci-
ence. SUMO was created by merging publicly available
ontological content into a single, comprehensive, and
cohesive structure. This content included the ontologies
available on the Ontolingua server (http://www.ksl.stanford.
edu/software/ontolingua/), Sowa’s upper level ontology, and
various mereotopological theories, among other sources.

• Dimensions. SUMO contains about 1000 terms and 4000
axioms; if we consider also the terms and axioms of its
domain ontologies, however, it reaches the dimension of
20,000 terms and 60,000 axioms.

• Implementation language(s). The first-order logic lan-
guage SUO-KIF (http://suo.ieee.org/SUO/KIF/suo-kif.html),
OWL.

• Modularity. SUMO consists of SUMO itself (the offi-
cial latest version on the IEEE web site can be down-
loaded from http://suo.ieee.org/SUO/SUMO/SUMO_173.kif),
the MId-Level Ontology (MILO), and ontologies of Com-
munications, Countries and Regions, Distributed Comput-
ing, Economy, Finance, Engineering Components, Ge-
ography, Government, Military, North American Indus-
trial Classification System, People, Physical Elements,
Transnational Issues, Transportation, Viruses, World Air-
ports. Additional ontologies of terrorism are available on
request.

• Applications. The applications of SUMO are docu-
mented by the almost one hundred published papers
describing its use (http://www.ontologyportal.org/Pubs.html).
The largest user community is in linguistics, but other
classes of applications include “pure” representation, and
reasoning. Applications range from academic to govern-
ment, to industrial ones.

• Alignment with WordNet. SUMO has been mapped
to all of Wordnet v2.1 by hand. The mappings can
be downloaded from http://sigmakee.cvs.source-

forge.net/sigmakee/KBs/WordNetMappings/.
• Licensing. SUMO is free and owned by the IEEE.

Its SUO-KIF implementation can be downloaded from
http://sigmakee.cvs.sourceforge.net/*check-

out*/sigmakee/KBs/Merge.kif, while the OWL
implementation can be downloaded from http:

//www.ontologyportal.org/translations/SUMO.owl.txt.
The ontologies that extend SUMO are available under
GNU General Public License.
h) Merging Upper Level Ontologies.: Three

attempts to merge some of the upper level
ontologies, thus leading to an “upper-upper level
ontology”, are COSMO (COmmon Semantic MOdel,
http://colab.cim3.net/cgi-bin/wiki.pl?CosmoWG/-

TopLevel), MSO (Multi-Source Ontology, http:
//www.webkb.org/doc/MSO.html), and the OntoMap Project
[11].

COSMO results from the efforts of the COSMO working
group (COSMO-WG) and its parent group, the Ontology
and Taxonomy Coordinating Working Group (ONTACWG).
COSMO is viewed as consisting of a lattice of ontologies
which will serve as a set of basic logically-specified concepts
(classes, relations, functions, instances) with which the mean-
ings of all terms and concepts in domain ontologies can be
specified. The use of a common set of defining concepts will
permit accurate interoperability of knowledge-based systems
using the logical relations of their ontologies as the basis
for reasoning in the system. Currently, COSMO integrates
concepts from the OpenCyc and SUMO ontologies, with some
classes from DOLCE and BFO. The work on COSMO is in
progress.

MSO is the Multi-Source Ontology of WebKB-2, a knowl-
edge server that permits Web users to browse and update
private knowledge bases on their machines, or alternatively,
a large shared knowledge base on the server machine. The
ontology of the shared knowledge base is currently an inte-
gration of various top-level ontologies and a lexical ontology
derived from an extension and correction of the noun-related
part of WordNet 1.7. The semantics of some categories from
WordNet has been modified in order to fix inconsistencies,
while the semantics of categories from other sources (e.g.
Sowa, DOLCE) has been kept. Also the work regarding the
MSO is still in progress. In particular, the integration of the
SUMO is still far from being complete. This integration links
the SUMO categories to the existing categories of the MSO,
adds some structure when needed, adds equivalent categories
the names of which are better suited for knowledge representa-
tion conventions that are “common” in the communities using
graph-based or frame-based notations, and finally translates the
axioms from KIF to more intuitive notations that permit people
to more easily understand the meanings of the categories and
their relationships.

Finally, OntoMap was a project with the goal to facilitate the
access, understanding, and reuse of such resources. A semantic
framework on conceptual level was implemented that was
small and easy enough to be learned on-the-fly. Technically,
OntoMap was implemented as a web-site providing access to
several upper-level ontologies and manual mapping between
them. OntoMap was similar in spirit to COSMO and MSO, but
only the very top concepts of each of the Upper Ontologies
considered there were aligned. Unfortunately, OntoMap was
over 4 years ago, and no maintenance was guaranteed to it. The

59

web-portal which was allowing online browsing is no longer
available, but the stand-alone viewer may be downloaded from
http://www.ontotext.com/projects/OntoMapViewer/install.htm.

III. COMPARISON

Some partial comparisons exist among subsets of the Upper
Ontologies that we have considered in Section II. In the next
paragraphs, we have summarised them in the most faithful
way. The interested reader should go to the source, always
cited, in order to have a complete picture of the conclusions
reached by the comparisons’ authors. The last paragraph,
instead, provides a synthesis of the description we have given
in Section II.

i) Pease’s comparison of DOLCE and SUMO.: In [15]
and [16], Pease draws a comparison between DOLCE and
SUMO. His conclusions are that DOLCE has a similar purpose
and business process to SUMO in that it is a free research
project for use in both natural language tasks and inference.
DOLCE has been carefully crafted with respect to strong
principles. DOLCE is an “ontology of particulars”; it does
have universals (classes and properties), but the claim is that
they are only employed in the service of describing particulars.
In contrast, SUMO could be described as an ontology of both
particulars and universals. It has a hierarchy of properties as
well as classes. This is a very important feature for practical
knowledge engineering, as it allows common features like
transitivity to be applied to a set of properties, with an
axiom that is written once and inherited by those properties,
rather than having to be rewritten, specific to each property.
Other differences include DOLCE’s use of a set of meta-
properties as a guiding methodology, as opposed to SUMO’s
use and formal definition of such meta-properties directly in
the ontology itself. With respect to SUMO, DOLCE does not
include such items as a hierarchy of process types, physical
objects, organisms, units and measures, and event roles.

j) Onto-Med’s comparison of GFO, DOLCE, and Sowa’s
ontology.: In [10], informal mappings from GFO to DOLCE
and from GFO to Sowa’s ontology, and viceversa, are spec-
ified. The authors of the comparison observe that all of
Sowa’s categories except for three can be reinterpreted in GFO.
However, mapping in the opposite direction seems to be more
problematic. For many of GFO categories, the corresponding
notions in Sowa’s ontology has not been found. Neither a
space-time model nor a property model is included in Sowa’s
ontology, and the construction method of GFO is not as strictly
combinatorial as is Sowa’s ontology. In DOLCE, levels of
reality are not introduced explicitly, while in GFO the authors
explicitly distinguish three levels of reality. Universals are
excluded from DOLCE, which supports neither the distinctions
provided in GFO concerning sets and items, nor concerning
the typology of categories. A time or a space model is
not built directly into DOLCE. Instead, the representation of
various models of space and time is permitted, which can be
introduced by means of qualities and their associated “qualia”
(the latter are similar to GFO’s quality values). In the GFO,
spatial location is modelled in terms of spatial regions and

relations, like occupation and location; temporal location is
based on time regions and projection relations. In addition,
presently the GFO provides a model for time and space. The
DOLCE distinction between endurant and perdurant is based
on the behavior of entities in time. Endurants are entities that
can change in time, are wholly present at any time of their
existence, and have no temporal parts but their parts are time-
indexed, and participate in perdurants. GFO distinguishes be-
tween persistence through time and being wholly present at a
time-boundary. This has produced two GFO categories instead
of endurant alone: persistants and presentials. GFO persistant
refers to the idea of persistence through time as attributed to
DOLCE’s endurant, although persistants are not considered in
GFO as individuals but as universals1. GFO presentials can
be generally interpreted as DOLCE endurants, but without
temporal extension. Intuitively, DOLCE notion of perdurant
corresponds to GFO notion of occurrent. Moreover, it seems
that the GFO notions of process, state and change can be
interpreted in DOLCE as stative, state and event, respectively.
Finally, the GFO categories that concern properties and their
values correspond rather well to DOLCE qualities, qualia and
quality spaces.

k) MITRE’s comparison of SUMO, Upper Cyc, and
DOLCE.: In [18], Semy, Pulvermacher and Obrst compare
SUMO, Upper Cyc, and DOLCE according to the existence
of an open license, modularity and evidence of use. We have
adopted these criteria inside our analysis, which thus subsumes
Semy, Pulvermacher and Obrst’s one.

l) Grenon’s comparison of DOLCE and BFO.: Grenon
made a careful comparison between DOLCE and BFO [7].
The conclusion is that both ontologies contain a category of
endurants and perdurants and an eternalist stance, and that the
theory of parthood and the theory of dependence are similar
in the two ontologies. Despite these similarities, there are also
many differences, including:

• DOLCE is methodologically fundamentally conceptualist
while BFO is methodologically fundamentally realist;

• DOLCE seems to be oriented toward commonsense, and
BFO’s naïve realism is in the same spirit. However,
DOLCE distinguishes between abstract and concrete en-
tities, and it includes agents and intentionality. BFO is
deliberately not committed to these distinctions. In par-
ticular, the physical / non-physical endurants distinction
in DOLCE is absent in BFO.

• As already mentioned, DOLCE is intended as an ontology
of particulars. BFO is intended to be an ontology of both
universals and particulars.

• In DOLCE, qualities are abstract entities which may not
be found in space or time, and do not have parts. For
BFO, the proxies of DOLCE’s qualities (“tropes”) are
located in space and exist at a time in the very same way
that the entities in which they inhere.

1The forthcoming release of GFO, expected by early 2007, will include
some refinements of the notion of persistence which will make this statement
no longer valid.

60

Another source of information about the similarities and
differences between DOLCE and BFO is [12], where Masolo,
Borgo, Gangemi, Guarino, and Oltramari of the Laboratory
For Applied Ontology (LOA) compare DOLCE and BFO
(besides the OCHRE object-centered ontology, [17], that we
did not consider in our analysis) by representing the assertion
“A statute of clay exists for a period of time going from t1 to
t2. Between t2 and t3, the statue is crashed and so ceases to
exists although the clay is still there.” in both of them.

m) Other existing sources of comparison.: Evaluations of
three Candidate Common Upper Ontologies, including SUMO
and MSO, can be found at http://suo.ieee.org/SUO/Evaluations/.
The criteria considered there include maturity, robustness,
potential for broad acceptance, language flexibility, owner-
ship/cost, and domain friendliness. These evaluations are not
comparative: each Upper Ontology is evaluated (usually, by
its creator) according to the above metrics.

n) Our comparison.: The description of the 7 Upper
Ontologies given in Section II is synthesised here in Tables I
and II.

IV. CONCLUSIONS

This paper represents a preliminary step towards the ex-
ploitation of upper ontologies as the means for allowing
intelligent software agents to integrate heterogeneous sources
of information, respecting privacy issues that are more and
more commong in many scenarios, such as virtual enterprises
and e-commerce. In fact, this paper provides an original and
unpublished analysis of the state-of-the-art in the field of upper
ontologies. This analysis is a necessary activity before starting
to think how upper ontologies may be actually exploited as a
bridge among two or more ontologies to be integrated. If the
original ontologies cannot be disclosed for privacy issues, each
agent involved in the application and responsible for accessing
and integrating one ontology, may “align” (i.e. find a mapping
between concepts) its own, private ontology, with the upper
ontology, and refer to the latter one in all its communicative
acts. At the time of writing, the design of an algorithm for
aligning ontologies using upper ontologies as a bridge is under
way. As soon as we will be able to implement and test it,
we will obtain results that will give us an important help
in understanding under which conditions the exploitation of
upper ontologies is feasible, and which upper ontologies are
better for being used as a bridge in the alignment process. Our
current and future work is entirely aimed at completing the
design and implementation of the algorithm and systematically
describing our experimental results.

ACKNOWLEDGMENTS

We want to acknowledge all the researchers that helped in
drawing this comparison with their constructive comments and
useful advices. In particular, many thanks go to J. Euzenat, A.
Kiryakov, L. Lefkowitz, F. Loebe, A. Pease, J. Schoening, P.
Shvaiko, and H. Stenzhorn.

We also acknowledge the research projects TIN2006-15265-
C06-04 and “Iniziativa Software” CINI-FINMECCANICA
that partially funded this work.

REFERENCES

[1] American National Standard. KIF Knowledge Inter-
change Format – draft proposed American National Stan-
dard (dpANS) NCITS.T2/98-004, 1998.

[2] P. Burek, R. Hoehndorf, F. Loebe, J. Visagie, H. Herre,
and J. Kelso. A top-level ontology of functions and its
application in the open biomedical ontologies. In ISMB
(Supplement of Bioinformatics), volume 22, pages 66–73,
2006.

[3] N. Casellas, M. Blázquez, A. Kiryakov, P. Casanovas,
M. Poblet, and R. Benjamins. OPJK into PROTON:
Legal domain ontology integration into an upper-level
ontology. In R. Meersman and et al., editors, Proceed-
ings of the 3rd International Workshop on Regulatory
Ontologies (WORM 2005), volume 3762 of Lecture Notes
in Computer Science, pages 846–855. Springer, 2005.

[4] J. Curtis, D. Baxter, and J. Cabral. On the application
of the Cyc ontology to word sense disambiguation. In
Proceedings of the 19th International Florida Artificial
Intelligence Research Society Conference, pages 652–
657, 2006.

[5] J. Curtis, G. Matthews, and D. Baxter. On the effec-
tive use of Cyc in a question answering system. In
Proceedings of the IJCAI Workshop on Knowledge and
Reasoning for Answering Questions (KRAQ’05), 2005.

[6] C. Deaton, B. Shepard, C. Klein, C. Mayans, B. Sum-
mers, A. Brusseau, and M. Witbrock. The comprehensive
terrorism knowledge base in Cyc. In Proceedings of the
2005 International Conference on Intelligence Analysis,
2005.

[7] P. Grenon. BFO in a nutshell: A bi-categorial axiomati-
zation of BFO and comparison with DOLCE. Technical
Report 06/2003, IFOMIS, University of Leipzig, 2003.

[8] P. Grenon, B. Smith, and L. Goldberg. Biodynamic
ontology: Applying BFO in the biomedical domain. In
D. M. Pisanelli, editor, Ontologies in Medicine, volume
102 of Studies in Health Technology and Informatics,
pages 20–38. IOS Press, 2004.

[9] G. Guizzardi, H. Herre, and G. Wagner. On the general
ontological foundations of conceptual modeling. In
S. Spaccapietra, S. T. March, and Y. Kambayashi, editors,
Proceedings of the 21st International Conference on
Conceptual Modeling (ER 2002), volume 2503 of Lecture
Notes in Computer Science, pages 65–78. Springer, 2002.

[10] H. Herre, B. Heller, P. Burek, R. Hoehndorf, F. Loebe,
and H. Michalek. General formal ontology (GFO) –
part I: Basic principles. Technical Report 8, Onto-Med,
University of Leipzig, 2006.

[11] A. Kiryakov, K. Ivanov Simov, and M. Dimitrov. On-
toMap: portal for upper-level ontologies. In Proceedings
of the 2nd International Conference on Formal Ontology
in Information Systems (FOIS 2001), pages 47–58. ACM,
2001.

[12] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and
A. Oltramari. Ontology library (final). IST Project 2001-

61

33052 WonderWeb Deliverable D18, 2003.
[13] G. Nagypál and J. Lemcke. A business data ontology.

Data, Information and Process Integration with Semantic
Web Services Project, FP6 Ű 507483, Deliverable D3.3,
2005.

[14] I. Niles and A. Pease. Towards a standard upper on-
tology. In C. Welty and B. Smith, editors, Proceedings
of the 2nd International Conference on Formal Ontology
in Information Systems (FOIS-2001), pages 2–9. ACM
Press, 2001.

[15] A. Pease. Formal representation of concepts: The Sug-
gested Upper Merged Ontology and its use in linguistics.
In A. C. Schalley and D. Zaefferer, editors, Ontolin-
guistics. How Ontological Status Shapes the Linguistic
Coding of Concepts. Mouton de Gruyter, 2006.

[16] A. Pease and C. Fellbaum. Formal ontology as inter-
lingua: The SUMO and WordNet linking project and
GlobalWordNet. To appear.

[17] L. Schneider. How to build a foundational ontology: The
object-centered high-level reference ontology OCHRE.
In A. Günter, R. Kruse, and B. Neumann, editors,
Proceedings of the 26th Annual German Conference on
AI, KI 2003: Advances in Artificial Intelligence, volume
2821 of Lecture Notes in Computer Science, pages 120–
134. Springer, 2003.

[18] S. K. Semy, M. K. Pulvermacher, and L. J. Obrst. Toward
the use of an upper ontology for U.S. government and
U.S. military domains: An evaluation. Technical Report
MTR 04B0000063, The MITRE Corporation, 2004.

[19] B. Shepard, C. Matuszek, C. B. Fraser, W. Wechten-
hiser, D. Crabbe, Z. Güngördü, J. Jantos, T. Hughes,
L. Lefkowitz, M. J. Witbrock, D. B. Lenat, and E. Larson.
A knowledge-based approach to network security: Ap-
plying Cyc in the domain of network risk assessment. In
M. M. Veloso and S. Kambhampati, editors, Proceedings
of the 20th National Conference on Artificial Intelligence
and the 17th Innovative Applications of Artificial Intelli-
gence Conference, pages 1563–1568. AAAI Press AAAI
Press / The MIT Press, 2005.

[20] J. F. Sowa. In Knowledge Representation: Logical,
Philosophical, and Computational Foundations. Brooks
Cole Publishing, 1999.

[21] W3C. OWL Web Ontology Language Overview – W3C
Recommendation 10 February 2004 , 2004.

[22] Wikipedia. Upper ontology – wikipedia, the free ency-
clopedia, 2006. [Online; accessed 15-December-2006].

62

Home page Developers Dimensions Language(s)

BFO http://www.
ifomis.org/bfo

Smith, Grenon,
Stenzhorn, Spear
(IFOMIS)

36 classes related via the
is_a relation OWL

Cyc http://www.cyc.
com/ Cycorp

About 300,000 concepts,
3,000,000 assertions (facts
and rules), 15,000 rela-
tions (these numbers in-
clude microtheories)

CycL, OWL

DOLCE
http://www.
loa-cnr.it/
DOLCE.html

Guarino and other
researchers of the
LOA

About 100 concepts and
100 axioms

First Order
Logic, KIF,
OWL

GFO

http://www.
onto-med.de/
ontologies/gfo.
html

The Onto-Med Re-
search Group

79 classes, 97 subclass-
relations, 67 properties

First Order
Logic and
KIF (forth-
coming);
OWL

PROTON http://proton.
semanticweb.org/

Ontotext Lab,
Sirma

300 concepts and 100
properties OWL Lite

Sowa’s
http://www.
jfsowa.com/
ontology/

Sowa 30 classes, 5 relationships,
30 axioms

First Order
Modal
Language,
KIF

SUMO
http://www.
ontologyportal.
org/

Niles, Pease, and
Menzel

20,000 terms and 60,000
axioms (including domain
ontologies)

SUO-KIF,
OWL

Table I
COMPARISON, PART I

63

Modularity Applications Alignment with
WordNet Licensing

BFO
SNAP
and SPAN
modules

Mainly in the biomedical do-
main Not supported Freely available

Cyc “Microtheory”
modules

Natural language processing,
network risk assessment, ter-
rorism management

Cyc is mapped
to about 12,000
WordNet synsets

Commercial
product;
ResearchCyc
and OpenCyc
are instead
freely available
(ResearchCyc for
research purposes
only)

DOLCE Not divided
into modules

Multilingual information re-
trieval, web-based systems
and services, e-learning

DOLCE-Lite-Plus
has been aligned
with about 100
Wordnet sysnsets

Freely available

GFO

Abstract
top level,
abstract core
level, basic
level

Mainly in the biomedical do-
main Not supported

Released under the
modified BSD Li-
cence

PROTON
Three levels
including
four modules

Semantic annotation within
the KIM platform, knowl-
edge management systems
in legal and telecommunica-
tions domain, media research
and analysis, research intelli-
gence, Business Data Ontol-
ogy for Semantic Web Ser-
vices.

Not supported Freely available

Sowa’s Not divided
into modules

No documented applications
have been developed, but
Sowa’s ontology inspired the
creation of many imple-
mented Upper Ontologies

Not supported Freely available

SUMO

Divided
into SUMO
itself, MILO,
and domain
ontologies

Linguistics, representation,
reasoning

SUMO has been
mapped to all of
Wordnet v2.1 by
hand

Freely available

Table II
COMPARISON, PART II

64

Abstract—In this paper we present a multi-agent search

technique to face the NP-hard single machine total weighted
tardiness scheduling problem in presence of sequence-dependent
setup times. The search technique is called Discrete Particle
Swarm Optimization (DPSO): differently from previous
approaches the proposed DPSO uses a discrete model both for
particle position and velocity and a coherent sequence metric.
We tested the proposed DPSO over a benchmark available
online. The results obtained show the competitiveness of our
DPSO, which is able to outperform the best known results for the
benchmark, and the effectiveness of the DPSO swarm
intelligence mechanisms.

Index Terms—Particle Swarm Optimization, Swarm
Intelligence, Scheduling

I. INTRODUCTION
In this paper we propose a new DPSO approach to face the

single machine total weighted tardiness scheduling with
sequence-dependent setup times (STWTSDS) problem.
Scheduling with performance criteria involving due dates,
such as (weighted) total tardiness or total earliness and
tardiness (E-T), and that takes into account sequence-
dependent setups, is a reference problem in many real
industrial contexts. Meeting due dates is in fact recognized as
the most important objective in surveys on manufacturing
practise, e.g., in [1]. The objective of minimizing the total
weighted tardiness has been the subject of a very large amount
of literature on scheduling even if sequence-dependent setups
have not been so frequently considered. Setups usually
correspond to preparing the production resources (e.g., the
machines) for the execution of the next job, and when the
duration of such operations depends on the type of last
completed job, the setups are called sequence-dependent. The
presence of sequence-dependent setups greatly increases the
problem difficulty, since it prevents the application of
dominance conditions used for simpler tardiness problems [2].
The choice of the STWTSDS problem as reference application
for the proposed DPSO approach has then two main
motivations: first the fact that the solution of single machine
problems is often required even in more complex
environments [3], and second the absence, to the best authors’
knowledge, of any other DPSO approach in literature for the

STWTSDS problem. Regarding the latter point, note that the
approach in [4] seems to be the only previous DPSO
application to the single machine total weighted tardiness
(STWT) problem.

The rest of the paper is organized as follows. Section 2
introduces a formal problem definition and provides a general
review of the relevant literature for it. Section 3 illustrates the
basic aspects of the PSO algorithm, analysing in particular the
DPSO approaches previously proposed in the literature.
Section 4 then describes the proposed DPSO approach,
discussing how it can be applied to the STWTSDS problem
and highlighting the new features introduced. Section 5
presents the experimental campaign performed, which is
mainly based on the benchmark set generated by Cicirello in
[5] and available on the web. Finally, Section 6 draws some
conclusions.

II. THE STWTSDS PROBLEM
The STWTSDS problem corresponds to the scheduling of n

independent jobs on a single machine. All the jobs are
released simultaneously, i.e., they are ready at time zero, the
machine is continuously available and it can process only one
job at a time. For each job j=1,..., n, the following quantities
are given: a processing time pj, a due date dj and a weight wj.
A sequence-dependent setup time sij must be waited before
starting the processing of job j if it is immediately sequenced
after job i. The tardiness of a job j is defined as Tj=max(0, Cj-
dj), being Cj the job j completion time. The scheduling
objective is the minimization of the total weighted tardiness

expressed as ∑ =

n

j jjTw
1

. This problem, denoted as

1/sij/∑wjTj, is strongly NP-hard since it is a special case of the
1//∑wjTj that has been proven to be strongly NP-hard in [6].
In the literature both exact algorithms and heuristic algorithms
have been proposed for the STWTSDS problem or for a
slightly different version disregarding the job weights.
However, since only instances of small dimensions can be
solved by exact approaches, recent research efforts have been
focused on the design of heuristics. The apparent tardiness
cost with setups (ATCS) heuristic [7] is currently the best
constructive approach for the STWTSDS problem.
Constructive heuristics require a small computational effort,
but they are generally outperformed by improvement

A Swarm Intelligence Method Applied to
Manufacturing Scheduling

Davide Anghinolfi, Antonio Boccalatte, Alberto Grosso, Massimo Paolucci, Andrea Passadore,
Christian Vecchiola, DIST – Department of Communications Computer and System Sciences,

University of Genova

65

approaches, based on local search algorithms, and
metaheuristics, which on the other hand are much more
computational time demanding. The effectiveness of such
approaches has been largely demonstrated: for example, Potts
and van Wassenhove [8] show as simple pair-wise interchange
methods outperform dispatching rules for the STWT problem,
as well as more recently constructive heuristics appear
dominated by a memetic algorithm in [9] or by a hybrid
metaheuristic in [10] where a similar parallel machine case is
considered. The effectiveness of stochastic search procedures
for the STWTSDS is shown in [11], where the authors
compare a value-biased stochastic sampling (VBSS), a VBSS
with hill-climbing (VBSS-HC) and a simulated annealing
(SA), to limited discrepancy search (LDS) and heuristic-
biased stochastic sampling (HBSS) on a 120 benchmark
problem instances for the STWTSDS problem defined by
Cicirello [5]. The literature about applications of
metaheuristics to scheduling is quite extended. In [12] an ant
colony optimization (ACO) algorithm for the STWTSDS is
proposed, which is able to improve about 86% of the best
known results for the Cicirello’s benchmark previously found
by stochastic search procedures in [11]. Recently the
Cicirello’s best known results have been further independently
improved in [13] by means of a GA approach, in [14] with
three SA, GA and tabu search (TS) algorithms, and in [15]
using an ACO approach; in particular, the new set of best
known results established by Lin and Ying [14], which
improved more than 71% of the previous best known
solutions, was lastly updated by the ACO by Anghinolfi and
Paolucci [15] that was able to improve 72.5% of the Lin and
Ying solutions.

III. OVERVIEW OF THE BASIC PSO ALGORITHM AND ITS
DISCRETE VARIANT

Particle Swarm Optimization (PSO) algorithm is a recent
metaheuristic approach motivated by the observation of the
social behaviour of composed organisms, such as bird
flocking and fish schooling, and it tries to exploit the concept
that the knowledge to drive the search for optimum is
amplified by social interaction. PSO executes a population-
based search procedure in which the exploring agents, called
particles, adjust their positions during time (the particles fly)
according not only to their own experience, but also to the
experience of other particles: in particular, a particle may
modify its position with a velocity that in general includes a
component moving the particle towards the best position so
far achieved by the particle itself to take into account its
personal experience, and a component moving the particle
towards the best solution so far achieved by any among a set
of neighbouring particles (local neighbourhood) or by any of
the exploring particles (global neighbourhood). PSO is based
on the Swarm Intelligence (SI) concept [16]. This is a
particular agent-based modelling technique which mostly
relies on the cooperation among large number of simple
agents in order to model an autonomous self-organizing
system for solving optimization problems. The agents are able
to exchange information in order to share experiences, and the

performance of the overall multi-agent system (the swarm)
emerges from the collection of the simple agents’ interactions
and actions. PSO has been originally developed for
continuous nonlinear optimization ([17]; [18]). The basic
algorithm for a global optimization problem, corresponding to
the minimization of a real objective function f(x), uses a
population (swarm) of m particles. Each particle i of the
swarm is associated with a position in the continuous n-
dimensional search space, xi=(xi1,…, xin) and with the
correspondent objective value f(xi) (fitness). For each particle
i, the best previous position, i.e. the one where the particle
found the lowest objective value (personal best), and the last
particle position change (velocity) are recorded and
represented respectively as pi=(pi1,…, pin) and vi=(vi1,…, vin).
The position associated with the current smallest function
value is denoted as g=(g1,…, gn) (global best). Denoting with

k
ix and k

iv respectively the position and velocity of particle i at
iteration k of the PSO algorithm, the following equations are
used to iteratively modify the particles’ velocities and
positions:

)()(2211
1 k

i
k
ii

k
i

k
i xgrcxprcvwv −⋅+−⋅+⋅=+ (1)

11 ++ += k
i

k
i

k
i vxx (2)

where w is the inertia parameter that weights the previous
particle’s velocity; c1 and c2, respectively called cognitive and
social parameter, multiplied by two random numbers r1 and r2
uniformly distributed in [0, 1], are used to weight the velocity
towards the particle’s personal best,)(k

ii xp − , and the

velocity towards the global best solution,)(k
ixg − , found so

far by the whole swarm. The new particle position is
determined in (2) by adding to the particle’s current position
the new velocity computed in (1). The PSO parameters that
must be fixed are the inertia w, the cognitive and social
parameters c1 and c2, and finally the dimension of the swarm
m.

In recent years several studies applying the PSO approach
to discrete combinatorial optimization problems appeared in
the literature; however, to the best authors’ knowledge, none
of them faced the STWTSDS problem. PSO has been applied
to combinatorial optimization problems, as travelling
salesman problem (TSP) [19], vehicle routing problem [20],
and scheduling problems ([4]; [12]; [21]; [22]; [23]; [24]).
DPSO approaches differ both for the way they associate a
particle position with a discrete solution and for the velocity
model used; in particular, we could classify DPSO approaches
in the literature according to three kinds of solution-particle
mapping, i.e., binary, real-valued and permutation-based, and
three kinds of velocity model used, i.e., real-valued, stochastic
or based on a list of moves. The first DPSO algorithm
proposed in [25] is characterized by a binary solution
representation and a stochastic velocity model since it
associates the particles with n-dimensional binary variables
and the velocity with the probability for each binary
dimension to take value one. A variation of this DPSO to face
flow shop scheduling problems is defined in [26]. A different
model is used in [4] to develop a PSO algorithm for the
STWT problem and in [27] for the total flowtime

66

minimization in permutation flow shop problems: using a
technique similar to the random key representation [28], real
values are associated with the particle dimensions to represent
the job place in the scheduling sequence and the smallest
position value (SPV) rule is exploited to transform the particle
positions into job permutations. Permutation-based solution-
particle mappings are used in [29] for the n-queens problem
together with a stochastic velocity model, representing the
probability of swapping items between two permutation
places, and a mutation operator, consisting of a random swap
executed whenever a particle coincides with the local (global)
best one.

The velocity models used in all the DPSO approaches
above mentioned are either stochastic or real-valued. To the
best authors’ knowledge the unique example of velocity
model based on a list of moves can be found in the DPSO
approach for the TSP in [30]. The reason why this kind of
model has not been investigated in the scheduling literature
may be explained by the main difficulty of defining new
appropriate sum and multiplication operators for equations (1)
and (2) to make them work in a discrete solution space.
Nevertheless, in the following section we propose a new
DPSO approach to single machine scheduling based on both a
permutation solution-particle representation and on a list-of-
moves velocity model.

IV. THE PROPOSED DPSO APPROACH
To pursuit our purpose we will need to redefine all the

arithmetical operators involved in equations (1) and (2). This
redefinition will lead in general to build unfeasible sequences
(pseudo-sequences) that will be fixed and converted in
feasible sequences with a procedure called sequence
completion procedure.

Let us first introduce some notation. In general, a solution
x to the problem of scheduling n independent jobs on a single
machine is associated with a sequence σ=([1],...,[n]). In
addition we denote with φσ:{1,..., n}→{1,..., n}, the mapping
between the places in a sequence σ and the indices of the
sequenced jobs; for example, if job j is sequenced in the h-th
place of σ we have j= φσ(h). In the proposed DPSO we
consider a set of m particles; each particle i is associated with
a sequence σi, i.e., a schedule xi, and it has a fitness given by
the cost value Z(xi). Thus, the space explored by the flying
particles is the one of the sequences. In the following we
introduce a metric for such a space, called sequence metric,
that is, a set of operators to compute velocities and to update
particles’ positions consistently.

A. The particle velocity and the sequence metric operators

Given a pair of particles p and q, we define the distance
between them as the difference between the associated
sequences (position difference), i.e., σq-σp, which corresponds
to a list of moves that we call pseudo-insertion (PI) moves.
We denote a PI move as (j, d), where d is the integer
displacement that must be applied to job j to direct the particle
p toward q. Roughly speaking, assuming for example that
j=φσ(h), a positive displacement d corresponds to a towards-
right move that extracts job j from its current place h and

reinserts it in place min(h+d, n) in the sequence, so generating
a new sequence σ’ such that j=φσ’(min(h+d, n)), and a
corresponding solution x’; analogously, a negative
displacement -d corresponds to a towards-left extraction and
reinsertion move that generates a new sequence such that
j=φσ’(max(h-d, 0)). The difference between the positions of
two particles p and q defines a velocity v, which consequently
is a set of PI moves; then, applying the PI moves in v to p we
can move this particle to the position of particle q. The
following example would simply illustrate this concept. Let
the number of jobs n=4 and the sequences corresponding to
the positions of two particles p and q respectively σp=(1,2,3,4)
and σq=(2,3,1,4); then, the velocity associated with the
difference between the two positions is
v=σq-σp={(1,2),(2,-1),(3,-1)}; here the PI move (1, 2) denotes
that job 1 must be delayed (moved towards-right) of 2 places
in the sequence to direct particle p towards q. Note that a
velocity can include at most a single PI move for a given job.
The reason why we denote as “pseudo-insertion” such kind of
moves is that, as detailed in the following, in general the rule
used to apply the PI moves in a velocity to a sequence may
fail to produce a feasible sequence, but it may produce a so-
called pseudo-sequence, and we need to introduce a final
sequence completion procedure to correctly implement
equation (2) in the sequence metric.
The position-velocity sum operator applies one PI move
composing the velocity at a time, first to the initial sequence
and then to the pseudo-sequences successively obtained,
hereafter denoted by π.

B. The sequence completion procedure

In general, the pseudo-sequences produced do not
correspond to feasible sequences since some sequence places
may be left empty whereas some others may contain a list of
jobs. If, for example, we apply the move (1,2) to σp=(1,2,3,4),
we obtain the pseudo-sequence π=(-,2,[3,1],4), where “- “
denotes that no job is assigned to the first place of π, whereas
[3,1] represents the ordered set of jobs assigned to the third
place of π. Let us denote with π(h) the ordered set of items in
the h-th place of the pseudo-sequence π; with pull(s) the
function that extracts the first element from an ordered set s,
and with push(i, s) the function that inserts the element i at the
bottom of the set s. Then, in order to convert a pseudo-
sequence into a feasible sequence, the sequence completion
procedure manages π(h) as a first-in-first-out (FIFO) list, as
reported in Fig. 1.

As an example, the behaviour of such a procedure for a
pseudo-sequence π=([1,3],-,-,[4,2]) is shown in Fig. 2.

67

Input: π a pseudo-sequence
Output: σ a feasible sequence
for each h=1,...,n
{
 if |π(h)|=1 skip;
 else if |π(h)|=0
 {
 repeat
 k=h+1;
 while k<n and |π(k)|=0
 π(h)=pull(π(k));
 }
 else if |π(h)|>1
 {
 while |π(h)|>1
 push(pull(π(h), π(h+1));
 }
}
σ=π;

Fig. 1: The sequence completion procedure.

Fig. 2: An example of sequence completion procedure execution.

The procedure considers one place at a time of π starting
from the first one on the left; since an ordered set of jobs is
encountered in place h=1, then the first job is extracted and
reinserted in the first following empty position (h=2), thus, the
pseudo-sequence is updated as (3,1,-,[4,2]); then place h=2 is
skipped because it contains just one job. In h=3 an empty
place is encountered, so the procedure extracts a job from the
next not empty place, here place 4 containing the FIFO list
[4,2], and reinserts it there; after this step the final feasible
sequence (3,1,4,2) is obtained.
It is easy to verify that the iterated application of the extract-
reinsert operator in (3) to compute σp+v in the case of the first
example where σp=(1,2,3,4), σq=(2,3,1,4), and
v={(1,2),(2,-1),(3,-1)} directly gives the target sequence σq
since π0=(1,2,3,4), π1=(-,2,[3,1],4), π2=(2,-,[3,1],4) and finally
π3=(2,3,1,4).

A velocity v can be summed to another velocity v’
producing a new velocity w. This is a different sum operator
(velocity sum) that generates the resulting velocity as the
union of the moves in v and v’. Any job can appear only once
in the set of pseudo-moves defining a velocity; therefore, if v
and v’ include respectively (j, d) and (j, d’), then the resulting

sum w must include the pseudo-insertion move (j, d+d’). Note
that if d+d’=0 the move is removed from the list.

Finally, a velocity v can be multiplied by a real positive
constant c (constant-velocity multiplication) generating a new
velocity w=c·v. We devised the following constant-velocity
multiplication rule according to which the constant c modifies
the displacement values of the pseudo-moves included in
v={(j1,d1),...,(js,ds)}; in particular, this rule produces a velocity
w={(j1, c·d1),...,(js, c·ds)}.

C. The overall DPSO algorithm

The very high level structure of the developed DPSO
algorithm is given in Fig. 3. In the following we will describe
each step in the detail.

Initialization;
While <termination condition not met>
{
 For each particle p belonging to P
 {
 Update particle velocity;
 Update particle position;
 Compute particle fitness;
 }
 Intensification phase;
 Update best references;
}

Fig. 3: The overall D-PSO algorithm.

Initialization. An initial sequence 0

iσ , i=1,..., m, (i.e., an

initial solution 0
ix) is assigned to each of the m particles. In

particular, we use three different constructive heuristics, the
earliest due date (EDD), the shortest processing time (SPT),
and the apparent tardiness cost with setups (ATCS) to
generate three different starting sequences. Then, a set of 0

iv ,
i=1,...,m initial velocities is randomly generated and
associated with the particles. Finally, the initial position for
each particle i is produced first randomly selecting one among
the first three starting sequences and then summing the
correspondent initial velocity 0

iv .

Velocity and position update. At iteration k, each particle i
first computes the following components: the inertial velocity
(iv), the directed to personal best velocity (pv), and the
directed to global best velocity (gv), according to the
following equations:
 1−⋅= k

i
k
i vwiv (3)

)(1
11

−−⋅= k
ii

k
i prcpv σ (4)

)(1
22

−−⋅= k
i

k
i grcgv σ (5)

where r1 and r2 are independent random numbers extracted
from U[0,1].

Then the particle velocity at iteration k is updated with a
procedure that separately sums to the current particle position

1 3 4 2
1 2 3 4

1 3 4 2

pull

1 3 4 2

pull

68

each velocity component one at a time (in the iv, pv, gv order),
thus moving the particle through a set of intermediate
sequences. For example, denoting with is the intermediate
sequences, we must execute three sums, k

i
k
i ivis += −1

1 σ ,
k
ipvisis += 12 and k

i
k
i gvis += 2σ in order to update the

position of a particle.
Finally, the schedule k

ix associated with the updated

particle position k
iσ is determined by a straightforward

timetable procedure, and the fitness)(k
ixZ is computed. Note

that if the velocity for a particle becomes null then it is
reinitialized by a random restart.

Intensification phase. After all the particles have updated their
position and computed their fitness at an iteration k, an
intensification phase is performed consisting of a local search
(LS) exploration that starts from the best solution found by the
particles in the current iteration. We adopt a stochastic LS (S-
LS) algorithm similar to the one in [4], which in turn is based
on a variant of the variable neighbourhood search (VNS) [31].

The S-LS algorithm performs a random neighbourhood
exploration allowing an alternation of random insert and swap
moves with a maximum number of random restarts bounded
by n/5; thus the overall complexity of the LS algorithm is
O(n3). After the intensification phase, the solution obtained by
the S-LS algorithm is substituted to the starting k

ix * for the
particle i*, whose position and fitness are updated accordingly.

Update of the best references. After the completion of the
intensification phase, the global and the personal best position
for the particles may be updated.

V. EXPERIMENTAL ANALYSIS OF THE ALGORITHM
We coded the DPSO algorithm in C++ and implemented it

on a Pentium IV, 2.8 GHz, 512 Mb PC. We extensively tested
the behaviour of the proposed DPSO through an experimental
campaign mainly based on the benchmark due to Cicirello [5],
which is available on the web at
http://www.cs.drexel.edu/~cicirello/benchmarks.html.
This benchmark is made of a set of 120 STWTSDS problem
instances with 60 jobs. We compared our DPSO algorithm
with the following three sets of best reference solutions for the
considered benchmark: (a) a set including the overall
aggregated best known results, denoted with OBK, mostly
composed by the solutions yielded by the SA, GA and TS
algorithms in [14] with the addition of few best solutions from
the ant colony optimization (ACO) algorithm in [12], and
taking also into account the best solutions from the GA in
[13]; (b) the set of best results obtained by the ACO algorithm
in [12], denoted with ACO-LJ; (c) the most recent set of the
best results produced by the authors with an ACO approach
denoted with ACO-AP [15].

During all the experimental campaign, we set the number
of particles m=120 and we adopted the same termination
criterion used in [14] fixing the maximum number of fitness
function evaluation = 20,000,000. After a preliminary

experiment campaign we also fixed c1=1.5, c2=2.0 and w=1.0.
Please note that these parameters seemed to be not much
sensitive, as also other configurations gave results statistically
not different. We executed 10 runs for each instance and then
we computed the best results, summarized in Table 1. This
table reports the average percentage deviations (Avg dev), the
related 95% confidence (Conf), the percentage number of
improved (Impr sol) and identical (Ident sol) solutions found
by DPSO with respect to the three sets of reference solutions.
Table 1 clearly shows that the best DPSO solutions
outperform on the average the OBK and the ACO-LJ ones,
while they are substantially equivalent to the ones in ACO-AP
approach.

 Avg dev Conf Impr sol Ident sol
OBK -2.80 1.72 70.83 18.33

ACO-LJ -4.60 1.91 65.00 13.33
ACO-AP -0.24 1.42 31.67 26.67

Table 1: The best results of the DPSO with respect to three solution sets (%)

The dominance of DPSO in the first two comparisons, also
witnessed by the 95% confidence results, was also confirmed
by statistically significance tests.

At the website http://www.discovery.dist.unige.it/
DPSO_best.html the complete best results for each instance
can be found with every objective function value and
sequence of jobs.

A. The evaluation of the importance of the swarm intelligence
mechanisms

In order to finally verify the effectiveness of using swarm
intelligence mechanisms in exploring the solution space, we
developed a modified version of our DPSO, denoted as
Random Particle Search (RPS), removing from the algorithm
every memory and particle interaction mechanism. The RPS,
starting from the set of solutions initially associated with the
m particles, executes at each iteration a random position
update for each particle and an intensification step with the S-
LS for the particle position correspondent to the best solution
found in the iteration. Differently from the DPSO, the RPS
updates the particle positions computing a random velocity as
follows: for each particle dimension, i.e., job j in the sequence
of the associated solution, a pseudo-insertion move (j, d) is
determined by stochastically generating the job displacement
d from a normal distribution N(µ, σ2), with mean µ=0 and
standard deviation σ fixed as algorithm parameter. The
developed RPS can be viewed as a sort of multiple iterated
local search method that uses the velocity concept from DPSO
in order to perturb the current solutions, but that does not
include any “swarm” interaction mechanism as well as PSO
memory structures (personal or global best). We tested three
RPS configurations characterized by a different value for the
parameter σ, fixing σ � {4, 6, 18}, executing 10 runs for each
configuration on the Cicirello’s benchmark, then computing
for each instance the best average result over the three RPS
configurations. Then we compared the RPS results with the
average DPSO solutions finding that the RPS produced an

69

average percentage deviation from the DPSO of 12.15%, with
a 95% confidence of 9.45%. From such results RPS appears
dominated by the DPSO and this fact clearly confirms the
fundamental role of the DPSO swarm intelligence
mechanisms.

VI. CONCLUSIONS
In this paper we describe a new DPSO algorithm that we

used to face the NP-hard STWTSDS problem. To our best
knowledge, this should be the first application of a discrete
PSO metaheuristic to this class of scheduling problem.
Differently from previous approaches in the literature where
PSO has been applied to scheduling problems, our DPSO
adopts a discrete model both for particles and velocities,
respectively corresponding to job sequences and list of so-
called pseudo-insertion moves.

The experimental tests performed on the Cicirello’s
benchmark demonstrate the competitiveness of the proposed
DPSO; in particular, we can highlight the ability of the DPSO
of generating excellent average results, as well as its very
limited dependency from the parameter values, which makes
the algorithm tuning not critical. Finally, we showed the
effectiveness of this swarm intelligence method, since turning
off interaction and memory mechanisms of agents the
performance of the algorithm deteriorates significantly.

REFERENCES
[1] Wisner, J., & Siferd, S. (1995). A Survey of U.S. Manufacturing

Practices in Make-to-Order Machine Shops. Production and Inventory
Management Journal , 36, 1-7.

[2] Rubin, P., & Ragatz, G. (1995). Scheduling in a sequence dependent
setup environment with genetic search. Computers & Operations
Research , 22, 85–99.

[3] Pinedo, M. (1995). Scheduling: Theory, Algorithms, and Systems.
Englewood Cliffs, NJ: Prentice Hall.

[4] Tasgetiren, M., Sevkli, M., Liang, Y., & Gencyilmaz, G. (2004). Particle
swarm optimization algorithm for single machine total weighted
tardiness problem. Proceedings of the IEEE congress on evolutionary
computation, vol.2, p. 1412–1419. Portland.

[5] Cicirello, V. (2003). Weighted tardiness scheduling with sequence-
dependent setups: a benchmark library. Carnegie Mellon University,
USA, Technical Report of Intelligent Coordination and Logistics
Laboratory, Robotics Institute.

[6] Lawler, E. (1997). A ‘pseudopolynomial’ algorithm for sequencing jobs
to minimize total tardiness. Annals of Discrete Mathematics , 1, p. 331–
342.

[7] Lee, Y., Bhaskaran, K., & Pinedo, M. (1997). A heuristic to minimize
the total weighted tardiness with sequence-dependent setups. IIE
Transaction , 29, 45-52.

[8] Potts, C., & van Wassenhove, L. (1991). Single machine tardiness
sequencing heuristics. IIE Transactions , 23, 346–354.

[9] França, P., Mendes, A., & Moscato, P. (2001). A memetic algorithm for
the total tardiness single machine scheduling problem. European Journal
of Operational Research (132), 224-242.

[10] Anghinolfi, D., & Paolucci, M. (2007). Parallel machine total tardiness
scheduling with a new hybrid metaheuristic approach. Computers &
Operations Research (34), 3471-3490.

[11] Cicirello, V., & Smith, S. (2005). Enhancing stochastic search
performance by value-based randomization of heuristics. Journal of
Heuristics (11), 5–34.

[12] Liao, C., & Juan, H. (2007). An ant colony optimization for single-
machine tardiness scheduling with sequence-dependent setups.
Computers & Operations Research (34), 1899-1909.

[13] Cicirello, V. (2006). Non-Wrapping Order Crossover: An Order
Preserving Crossover Operator that Respects Absolute Position.

Proceeding of GECCO’06 Conference, (p. 1125-1131). Seattle,
Washington, USA.

[14] Lin, S., & Ying, K. (2006). Solving single-machine total weighted
tardiness problems with sequence-dependent setup times by meta-
heuristics. The International Journal of Advanced Manufacturing
Technology .

[15] Anghinolfi, D., & Paolucci, M. (2007). A new ant colony optimization
approach for the single machine total weighted tardiness scheduling
problem. accepted for publication on International Journal of Operations
Research .

[16] Kennedy, J., & Eberhart, R. (2001). Swarm Intelligence. San Francisco:
Morgan Kaufmann Publishers.

[17] Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization.
Proceeding of the 1995 IEEE International Conference on Neural
Network (p. 1942-1948). IEEE Press.

[18] Abraham, A., Guo, H., & Liu, H. (2006). Swarm Intelligence:
Foundations, Perspectives and Applications. Swarm Intelligence in Data
Mining, Studies in Computational Intelligence (series) .

[19] Pang, W., Wang, K., Zhou, C., & Dong, L.-J. (2004). Fuzzy discrete
particle swarm optimization for solving traveling salesman problem.
Proceedings of the 4th International Conference on Computer and
Information Technology (p. 796 – 800). IEEE CS Press.

[20] Chen, A., Yang, G., & Wu, Z. (2006). Hybrid discrete particle swarm
optimization algorithm for capacitated vehicle routing problem. Journal
of Zhejiang Univ. SCIENCE A (7), 607-614.

[21] Lian, Z., Gu, X., & Jiao, B. (2006). A similar particle swarm
optimization algorithm for permutation flowshop scheduling to minimize
makespan. Applied Mathematics and Computation (175), 773-785.

[22] Lian, Z., Gu, X., & Jiao, B. (2006). A similar particle swarm
optimization algorithm for job-shop scheduling to minimize makespan.
Applied Mathematics and Computation (183), 1008-1017.

[23] Allahverdi, A., & Al-Anzi, F. (2006). A PSO and a Tabu search
heuristics for the assembly scheduling problem of the two-stage
distributed database application. Computers & Operations Research
(33), 1056–1080.

[24] Parsopoulos, K., & Vrahatis, M. (2006). Studying the Performance of
Unified Particle Swarm Optimization on the Single Machine Total
Weighted Tardiness Problem. Lecture Notes in Artificial Intelligence
(4304), 760-769.

[25] Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the
particle swarm algorithm. Proceedings of the International Conference
on Systems, Man, and Cybernetics. vol. 5, p. 4104–4108. IEEE Press.

[26] Liao, C.-J., Tseng, C.-T., & Luarn, P. (2007). A discrete version of
particle swarm optimization for flowshop scheduling problems.
Computers & Operations Research (34), 3099-3111.

[27] Tasgetiren, M., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A
particle swarm optimization algorithm for makespan and total flowtime
minimization in the permutation flowshop sequencing problem.
European Journal of Operational Research (177), 1930-1947.

[28] Bean, J. (1994). Genetic algorithm and random keys for sequencing and
optimization. ORSA Journal on Computing (6), 154-160.

[29] Hu, X., Eberhart, R., & Shi, Y. (2003). Swarm intelligence for
permutation optimization: a case study of n-queens problem.
Proceedings of the 2003 IEEE Conference on Swarm Intelligence
Symposium (SIS '03) (p. 243-246). IEEE Press.

[30] Clerc, M. (2004). Discrete Particle Swarm Optimization. Onwubolu GC,
Babu BV (Eds), New Optimization Techniques in Engineering , 219-
240.

[31] Mladenovic, N., & Hansen, P. (1997). Variable Neighbourhood Search.
Computers & Operations Research (24), 1097-1100.

70

Abstract—This paper describes Herald, an agent based toolkit

for dispatching and processing items in a distributed
environment. Herald is suitable for scenarios where the process
could be modeled as a tree: starting from the root node the
collection of items is distributed along the nodes where they can
be processed, forwarded to other nodes, and duplicated if
necessary. Herald assigns a specific software agent to each node
of the tree which participates into the dispatching process
according to the knowledge base of the multi-agent system.
Herald works as a general infrastructure for simulating, testing
and executing dispatching algorithms that can be easily
integrated into the system by changing the decision making
process of the agents composing the architecture. A prototypal
implementation, based on the AgentService programming
framework, is then presented as a proof of its applicability in
industrial scenarios.

Index Terms—Agent Oriented Software Engineering, Agent-
based coordination, software agents for logistics.

I. INTRODUCTION
The problem of distributing items on a somehow

hierarchical structure is common to many different application
contexts, for example logistics [1], routing [2], and scheduling
[3]. In all the previously cited contexts a collection of
elements (packets, orders, or simply items) has to be
dispatched according to a certain strategy. Moreover, the
distribution takes place on a structure exposing a sort of
hierarchical organization: routing algorithms generally operate
on graphs while in the case of scheduling orders are allocated
to production area and then assigned to specific machines. The
nature of items and the use of dispatching strategies, normally
being aware of the structure, are what specializes the problem
in each context. For these reasons, providing a general
solution to the dispatching problem is limiting: it would not be
possible to consider the specific issues of each scenario for
effectively optimizing the dispatching process. A better idea
could be providing a general framework for creating a
dispatching system that is easily customizable for each
specific context. In order to provide such a flexible structure
the use of the agent-oriented technology could be an

interesting approach. Multi-agent systems are flexible and
dynamic software systems [4]. Software agents natively adopt
high-level interaction patterns [5] and this is a relevant aspect
for application interoperability and component coordination.
By using software agent we can either provide the general
structure of the dispatching or leave room for the
specializations.

In this paper we will present Herald a toolkit for
dispatching items in a distributed environment: the system is
composed by a collection of agents, which manages the
dispatching process, and a collection of additional components
used to integrate the multi-agent system with the existing
software. The main idea behind Herald is not to provide a
ready to used product but a toolkit which is customizable to
different scenarios with little effort. Herald provides a
collection of agents implementing the dispatching
infrastructure and describes a methodology to customize the
toolkit for the different application contexts. The strength of
Herald resides in exploiting the flexibility of agents for
implementing the hierarchical dispatching infrastructure
according to the structure required by the real application
scenario. The multi-agent system, developed with the
AgentService programming framework [6], is the core
component of Herald along with a base class library defining
the common data structures defined by these agents.
Developers have to provide an application-based version of
items, the elements to be dispatched, and custom dispatching
strategies if required by the application scenario. Developers
can also integrate external components for driving the
dispatching activities since the systems allows callbacks at
each stage of the process.

This paper is organized as follows: in Section II we will
introduce the key elements of agent-based dispatching; in
Section III we will present a selected collection of the most
representative work in the field; Section IV describes in detail
the architecture of Herald while in Section V we will present a
practical application of the toolkit by describing the prototype
developed in collaboration with Siemens A&D for a real
scheduling scenario. Conclusions and final remarks follow.

II. AGENT-BASED DISPATCHING
The relatively large number of solutions based on multi-

agent systems, demonstrates the usefulness of an agent based

An Agent Based Solution for Dispatching Items
in a Distributed Environment

Christian Vecchiola, Alberto Grosso, Andrea Passadore, Davide Anghinolfi, Antonio Boccalatte,
Massimo Paolucci, DIST – Department of Communications Computer and System Sciences, University

of Genova

71

infrastructure for the development of distributed and
hierarchical applications managing logistic, routing and
dispatching issues.

Since the operative management of resources is a critical
aspect of the business activity of an enterprise, there exist
several industrial solutions, involving multi-agent systems too.
On the other hand, the research activity in this sector is lively
and ready to exploit every new approach. The aim is to
provide systems with an intrinsic intelligence, then denoting a
particular adaptiveness to the environment changes and
unexpected events. Multi-agent systems seem to satisfy these
requirements. The typical socio-technical functions that we
find in an enterprise can be easily modeled by means of a
software agent playing a management role. For this reason an
agent denotes a natural predisposition to collaborate with
peers in order to achieve a common goal, through cooperation
protocols. It could have skills and behaviours that can
implement different solving strategies [7]. As we will see in
the following, multi-agent systems represent a basis on which
different and original solutions can be implemented.

A. Industrial solutions
In the panorama of industrial solutions regarding the

management of resources, two strengthened products are on
the market: Magenta and LS/ATN (Living System Adaptive
Transportation Network).

Magenta [8] is a MAS framework for the development of
ad hoc applications focused on the design, planning,
scheduling, and management of enterprise resources. Typical
examples of Magenta applications are the supply chain
management, enterprise resource planning, transportation
logistics, crew scheduling and knowledge management.
Magenta integrates three crucial technologies: multi-agent
systems, semantic web and J2EE. One of the main features of
Magenta is the strong support for modeling the relevant
entities of the enterprise through an ontology representation.
Ontologies can be modified and updated online, during the
execution of the application.

LS/ATN [9] is a comprehensive solution for optimization
and dispatching of full and part truck loads including tracking
and real-time event handling. It is produced by Whitestein
Technologies Inc. and it is oriented to the European logistics
companies. LS/ATN is based on the LS/TS (Living System
Technology Suite) agent development framework. The
implementation of the agent-based solution takes into account
the geographically dispersed nature of transportation. For this
reason agents represent the geographical regions and they
exchange objects representing the cargo loads. The
transportation operations are allocated to the different
dispatching regions which are managed by an agent region
manager; a broker agent named agent distributor deals with
incoming transportation requests. The optimization process
involves two steps: a first local optimization within the region
(it involves the broker agent and the agent region manager)
and the global optimization through the collaboration of
different agent region manager.

B. Research solutions
Different proposals involve the agent technology, in order

to implement original solutions: from the imitation of social
insects to genetic algorithms. A more pragmatic approach is
the identification of relevant entities involved in the
dispatching process (machines, raw materials, tools,
management units, etc.), establishing a direct correspondence
among these entities and software agents. The significant
observation is that every approach can be implemented by a
multi-agent platform.

There is an immediate similarity between agents and ants:
the power of an ant colony is not the single individual but the
cooperation of every insect. In the solution presented in [10]
the agents-ants collaborate in order to provide a heuristic
scheduling solution in a parallel machine environment. The
proposed solution is applied in a complex context regarding a
manufacturing company.

Another solution [11] to the dispatching problem involves
genetic algorithms and an agent community particularly
reactive and adaptive to the environment changes. The agents
do not have a predefined set of rules or instruction to reach
their goal. In particular, an agent is defined by the knowledge
about the environment condition (i.e. processing resources and
the status of other agents), the agent status (position, process
plan status, completed and remaining operations), and a tuning
vector (to weight the decision rules). There are two types of
agent: the part agent able to select the machine which will
process the part and the workstation agent, which select the
part to process on the basis of different parameters as:
processing time, deadlines, and setup times. These agents
adapt their actions to the plant status using a multi-criteria
decision-making algorithm that encompasses multiple
weighted dispatching rules, in particular using fuzzy set
concepts to implement a trade-of among different decision
rules. The performance of each agent is evaluated by a
performance indicator. Cyclically, every agent is replaced by
another one with different tuning parameters. The “natural
selection” detects the best agent; this approach leads up to two
considerations: in case of stationary conditions of the plant,
the dynamic optimization acts as an online strategy that
improves the whole MAS performance. In case of unexpected
perturbations (e.g. a machine failure), the genetic adaptation
allows searching of more effective agents for the new
operating context.

A more conventional solution [12] follows the usual
methodology to create agents representing the main entities
involved in the dispatching of resources. A set of highly
specialized agents is provided in order to adapt the system to
the perturbations and disturbances. A system editing agent
(SEA) is in charge of the composition of the whole system, as
the agent instantiation and the centralized database filling. It is
an interface between the human user and the multi-agent
platform. The manufacturing management agent (MMA) is
associated to a production area, receives orders (composed by
a set of operations), instantiates a job order agent (JOA)
monitoring its activity. The JOA is able to evaluate the

72

feasibility of an order and communicates with the production
area. A logistic management agent (LMA) holds the logistic
data of a production area, while the logistic agent (LA) helps
the JOA and the agents associated to the machines (machine
agent, MA), tools (tool agent, TA), and jigs (jig agent, JA) to
evaluate the feasibility of an order or operation.

All the proposed solutions show how a hierarchical
structure of cooperative agents is helpful in the resolution of
dispatching problems. The variety of agents which belong to
the tree hierarchy suggests that a toolkit for the
implementation of a custom project is an interesting approach.
All the analyzed solutions propose specific algorithms for
driving agents’ behaviors, i.e. swarm intelligence and genetic
algorithms; on the other hand, the aim of the toolkit proposed
in this paper is to provide an high level infrastructure for
developing distributed systems where different kinds of
algorithms can be applied.

III. THE HERALD TOOLKIT
In the Middle Age the term herald was used to identify

those people which acted like factotums at the king’s court.
Among the other tasks, heralds were in charge of dispatching
messages, managing negotiations, and accomplishing
missions. As the ancient herald, the Herald toolkit is aimed to
resolve logistic and decision problems.

A. Introduction
Herald is a toolkit that implements agent based software

systems and aims to act as a generic distribution network.
Herald proposes an approach which is independent from the
specific nature either of the items dispatched or of the problem
domain. Hence, it proposes a general infrastructure that needs
to be further customized in order to be effectively applied to
real-life scenarios. The core features of Herald are its agent
based architecture and the protocol adopted to dispatch and
assign items to the processing units. External software
components customizing the dispatching infrastructure are
integrated into the system and their activities mainly cover the
collection of the items to dispatch, the selection of the
dispatching policies, and the management of results. The
external components are also responsible of activating the
multi-agent system and controlling the dispatching process if
needed. In this section we will discuss the architecture of the
system and the details of the protocol proposed by Herald.

B. Architecture
The core of Herald is based on a protocol execution engine

constituted by a collection of software agents which create the
dispatching process by interoperating with external software
modules driving the protocol. Figure 1 gives an overview of
the organization of the components constituting an
implementation of Herald.

The architecture proposed by Herald is based on the
assumption that the dispatching process takes place within a
hierarchical structure that can be easily represented by a tree:
the process originates from one root node and at each node

items are distributed among the child nodes. Such a structure
is re-created within the multi-agent system by three different
types of agents representing the different roles which nodes
have in the dispatching process. Additional agents take care of
the interaction with external world. The multi-agent system is
implemented with the AgentService programming framework
which provides advanced features for the creation of multi-
agent systems and their integration with non-agent based
software.

Fig. 1 – View of the System

1) Multi-agent System
The dispatching process is mostly performed by the

collection of agents which constitute the multi-agent system
designed in Herald. Herald proposes two different kinds of
software agents: logical agents and physical agents. Physical
agents represent physical entities existing in the hierarchy of
the real structure, while logical agents are mostly related with
the elaboration of the input and the output data of the whole
process.

There are three different types of physical agents – also
called entity agents – they are:

 EA Root (Entity Agent Root): commonly, there is

only one agent of this type since it abstracts the
root of the tree. This agent receives the whole
collection of items and distributes them among its
child nodes. It can also perform additional
operations specific to the role of the root in the real
scenario.

 EA Node (Entity Agent Node): these agents
represent all the intermediate levels of the
hierarchy and dispatch items among to their
children nodes.

 EA Leaf (Entity Agent Leaf): they represent the
leaf of the tree structure. These agents process the
items and send up to the hierarchy the data
collected during their activity on the items.

Tree structure having more than one intermediate level are

modeled by introducing the required number of EA Node
agents representing each node in these levels.

During the dispatching process items can be manipulated at
each level: items can be aggregated, duplicated, or split. The
nature of these operations strictly depends on the application
context and Herald gives the opportunity to external software

73

components to control the dispatching process.
The multi-agent system is completed by two logical agents

that are the Item Manager Agent and the Output Data Agent:

 Item Manager (IM) Agent: the IM Agent collects
the items that have to be processed and distributed
along the hierarchy. As happens, for the EA Root
it can pre-elaborate the collection of items but its
main role is to represent the access point to the
dispatching process by the external software;

 Output Data Agent (ODA): the ODA is activated
at the end of the dispatching process; it receives
the mapping between the items and the EA Leaf
agents composing the system. Additional
information, specific to the application context,
can decorate this mapping.

All the agents defined in the system mostly manipulate

items (split, duplicate, or change properties): these are abstract
entities that can be further customized with additional
properties.

2) AgentService
Even though the practical implementation of Herald does

not strictly require a specific agent programming framework,
its canonical model adopts the AgentService framework for
which we have developed all the required class libraries and
software agents. AgentService [6] is an agent programming
framework built on top of the Common Language
Infrastructure [13], whose .NET Framework is the most
popular implementation. The framework provides the
programmers with the following features:

 definition of autonomous, independent, and

persistent agents;
 concurrent execution of agents and their multi-

behavior activity;
 persistent shared data structures within a single

agent;
 transactional agent communication based on

message exchange;
 access to the FIPA service components (AMS, DF,

MTS).

One of the key features of AgentService is its agent model
that is not particularly tied to specific agent architectures, but
is flexible enough to implement different ones. Within
AgentService, an agent is constituted by a set of knowledge
objects and a set of behaviour objects. Knowledge objects
define the agents’ knowledge base while behaviour objects
define the activities that an agent can perform and the services
it offers to the others. Knowledge objects are shared among
the different behaviours that are scheduled in a concurrent
manner. The definition of a new type of agent leads to the
definition of a template which specifies the behaviour and
knowledge objects that characterize it. It also leads to the
definition of these behaviour and knowledge types.

AgentService supports mobile agents [15] and provides
programming tools for managing ontologies and interaction
protocols [16]. AgentService also allows an easy integration
of multi-agent systems with external applications by using
agent avatars: agent avatars are application stubs that are seen
as software agents inside multi-agent system. By using avatars
external software modules can interact with agents and access
platform services as if they were like real agents.

3) External Software Components
External software components connect the multi-agent

system with the external world and the problem domain.
These components have the following responsibilities:

 they provide the collection of items to the MAS;
 they activate the system;
 they control the execution of the protocol;
 they elaborate results.

These components manage all the customization aspects of

the system: they create the items, they add the required
additional properties, and they provide the custom dispatching
policies when needed. Within a default installation of Herald
external software components constitute the software
environment into which the multi-agent system is created and
executed. By using an agent avatar they interoperate with the
MAS, drive the dispatching protocol, and get the results.

C. Dispatching Protocol
Herald uses a flexible dispatching structure in which the

decisions concerning the distribution of items can be taken in
cooperation with external software entities providing either
the complete set of allocations or just simple indications.

Fig. 2 – Protocol execution step

This gives a high degree of flexibility since it allows

74

developers to modify the course of actions with the highest
level of detail and it makes Herald suitable for many different
scenarios. The only requirement of Herald is the hierarchical
structure of the distribution process which strongly
characterizes the architecture of Herald.

As previously said in section III.B.3 the process is activated
by an external software component which has to create the
collection of agents described in section III.B.1. Once the
multi-agent system is activated by the external software
components the following steps apply:

1. the external software component creates/retrieves the

collection of items that have to be dispatched and send
them to Item Manager agent along with additional
ordering criteria and an objective function that has to
be minimized or maximized;

2. the Item Manager pre-elaborates the items, sorts them
according to the suggested criteria and communicates
to the EA Root the collections of sorted items;

3. the EA Root creates a unique dispatching identifier
that will be tagged to the collection of items while they
flow through the child nodes. If necessary, the EA
Root performs additional operations on the items (i.e.
aggregation of items) before sending them to child
nodes. The EA Root asks to the external software
module for a dispatching strategy of the collections of
items: if the external software component gives
suggestions (i.e. by providing a mapping from items to
child nodes or by explicitly giving a partition
algorithm to apply) these suggestions are applied
otherwise the default partitioning is applied. Then the
items are sent to the child nodes according to the
partition previously performed;

4. each EA Node which does not receive an empty list of
items executes the dispatching. As happened for the
EA Root the EA Node can, if required, manipulate
items by aggregating or splitting them according to the
requirements of the possible final targets (the subset of
EA Leaf agents that can be reached from this node) of
the items;

5. the EA Node asks to the external software component
indications about the partition of items by sending the
request along with some context information (i.e.: the
identifier of the node and the collections of items). If
there are any suggestions they are applied otherwise
the default distribution takes place. The items are then
sent to child nodes;

6. steps 4 and 5 are repeated for each level of the tree
until leaf nodes are reached;

7. each EA Leaf that receives a collection of items
elaborates them and eventually computes some key
performance indexes as suggested by the external
software component and its contribute for the
objective function;

8. each EA Leaf sends a feedback – composed by the key
performance indexes and the value of the objective

function – to the parent EA Node and the list of
assigned items along with additional information to the
ODA;

9. each EA Node aggregates the feedbacks received from
the child nodes and compute the value of the objective
function for the node, then sends back to the parent
node the data;

10. the EA Root aggregates the feedback received by the
child nodes, computes the final value of the objective
function and, according to these data, decides if the
current partition of the items is acceptable, by
eventually asking to the external component. In case of
successful partition the EA Root broadcasts an
acknowledge message to all the entity agents and the
ODA by specifying the dispatching identifier. If the
partition is not acceptable the entire process starts
again from step 3 by using different criteria;

11. the entity agents – and the ODA – receiving an
acknowledge message keep track of the partition
related to the acknowledged dispatching identifier and
delete all the other partitions;

12. the external component is notified by the ODA the
successful termination of the dispatching process.

Figure 2 gives a graphical representation of the steps

described above. We can observe that the protocol simplifies
the introduction of on-line decisions. On-line decisions are
taken while the system is running and they can modify its
course of action. This is accomplished by letting the entity
agents interact with the external software components which
should maintain an updated view of the state of the problem
domain. Finally, keeping separate the general infrastructure of
the protocol and all those aspects customizing the algorithm
for a specific problem we are able to obtain a very flexible
structure. Such structure can be easily applied to different
scenarios and problem domains. In each customization what
really changes is the external software component driving the
protocol and what this module provides to the multi-agent
system which remains almost the same.

Another important aspect of this system is the ability of
executing multiple dispatching processes in parallel without
increasing the number of agents. Each Entity Agent
instantiates a behaviour for executing a new incoming
dispatching strategy: item partitions belonging to different
strategies are identified by different unique dispatching
identifiers. Thanks to the natural and effective multi-threading
management system of the AgentService framework the
execution of multiple dispatching processes comes with no
additional cost. The ability of executing dispatching processes
in parallel allows implementations of Herald to try more
different solutions for the same problem at the same time and
then select the best one.

D. Application Scenarios and Customization
There are many different domains in which there is the need

of using a dispatching policy for some kind of items. If we

75

have a network the routing of packets is a common application
of dispatching policies. Other examples involve logistics and
scheduling: in the case of logistics there is the need to select
the best route for a given item while in the case of scheduling
we have to process a collection of orders in a given time
constraint. The execution of orders eventually results in a set
of tasks that have to be assigned to a set of machines
according to a given algorithm. These are only the most
evident domains in which the problem of dispatching items
has to be managed. Not all the possible instances of these
domains are eligible as case studies for Herald. In particular
those exposing a structure that is inherently a graph and that
cannot be reduced as a tree cannot be considered. Fortunately
there are many cases in which the original hierarchy is a tree
or can be reduced to a tree: these are the instances eligible for
Herald and now we will see what is required to customize
Herald for a practical application.

The first thing that needs to be customized is the item: in
order to fully represent the entities of the problem domain,
items need to be enriched with additional properties. The
Herald Toolkit provides a library defining all the data
structures required to apply the dispatching process: by sub-
classing the Item type developers can enrich the item class
with all the required properties. In order to fully exploit the
personalization applied to items all the data structures which
operate on item have to be specialized: in particular,
algorithms for distributing items and those evaluating the key
performance indexes have to take into account the value of
additional properties. Herald defines interfaces and delegates
for these objects and developers just have to adhere to these
type contracts while implementing the specialization. The last
component that needs to be implemented is the external
software module which drives the protocol and connects the
multi-agent system with the problem domain. The
implementation of this component is a common activity when
designing multi-agent systems with AgentService: developers
are normally required to create a batch which sets up the
multi-agent system and interact with it if necessary. The
implementation of a protocol driver for Herald does not take
any additional burden.

In the next section we will see a practical example of the
customization described here by describing a case study where
Herald as been effectively applied.

IV. CASE STUDY

A. The Problem Context
In order to test its feasibility we implemented a prototype of

Herald in the field of production scheduling as a result of
collaboration with Siemens Automation & Drive (A&D).
Siemens A&D is a leading firm in the field of MES
(Manufacturing Execution System) production and
scheduling. In order to satisfy the customers’ needs Siemens
A&D offers the SimaticIT Production Suite which is a suite of
cooperating applications which takes care of production
process by starting from the Enterprise Resource Planning

(ERP) and by reaching the machine level. The Production
Suite controls many different tasks: low level plant
monitoring, resources allocation, logistics, and scheduling. In
this context we developed a prototype based on Herald for
scheduling a collection of production orders into a production
plant. The Agent Based Detailed Production Scheduler, which
is the name of the prototype, relies on the AgentService
programming framework for the design and the
implementation of software agents constituting the
architecture defined by Herald.

B. The Multi-agent System
The structure of plant, which is defined by the S-95

standard [14], naturally resembles a hierarchical tree: the
standard defines a production site as a collection of areas
which are subsequently partitioned into production cells
constituted by units. Production units host production
machines which execute real production operations. Hence,
mapping such a hierarchy into a tree structure – having the
root node in the site and developing till the production units –
has been a natural and seamless task. In order to complete the
case study in the scope of this paper we will consider a
simplified example of this hierarchy that is the sub-tree
representing a production area. The hierarchy of the system is
mapped onto collection of three different entity agents: EA
Area, EA Cell, EA Unit. Moreover, a collection of specific
logical agents, namely the WOM (Work Order Manager) and
the OSA (Output Schedule Agent), are provided to retrieve
data and present results of the scheduling process.

The EA Area agent is a specialization of the EA Root agent
and basically dispatches the production orders to the EA Cell
agents, waits for the KPI indexes, and eventually sends the
acknowledge to terminate the process. The dispatching
strategy is selected by the external component. EA Cell agents
specialize the EA Node agent. EA Cell agents dispatch the
entry received by the EA Area to the EA Units according to
some dispatching strategy decided by the external component.
They wait for the KPI from the units and assemble them
before sending them to EA Area. EA Unit agents are EA Leaf
agents: they process the entries, execute the scheduling
algorithm, register the KPI, and send them back to EA Cell
agent.

The Work Order Manager agent is the specialization of the
IM agent. It receives the collection of orders to be scheduled
and sets up the multi-agent system constituting the production
area to which these orders have been dispatched. Finally, the
Output Schedule Agent specializes the ODA and has been
introduced to the system to organize and present the schedule
data collected from the units in a more convenient format: the
OSA uses these data and organizes them into a Gantt diagram.

C. The Protocol
Due to the requirements provided by Siemens A&D the

entire dispatching process must be controlled by the
Production Modeler (PM) which is the component of the
Production Suite actively controlling the physical plant. For

76

this reason the dispatching protocol is said to be PM driven:
the Production Modeler is the component which starts the
scheduling process and it is also the one which is constantly
queried by physical agents during the process. Finally, the
results collected by the OSA agent are returned back to the
PM which evaluates the performance indexes computed by the
multi-agent system and chooses the best schedule. For all
these reasons, the PM represents the external component
which is involved in the dispatching process as described in
Herald. Thanks to the flexible structure of Herald and
advanced features of AgentService the customization has been
simple and quick.

We decided to centralize the interaction with the PM by
using a specific software module implemented as an agent
avatar and that we called PM Gateway: the PM Gateway
represents the PM in the multi-agent systems and the other
agents interact with the PM by exchanging messages with this
agent. This design decision represents a slight variation of the
architecture proposed by Herald but it is mostly an
implementation issue which helped us while testing the system
off-line. The use of the PM Gateway allowed us to deploy the
multi-agent system by only changing the implementation of
the agent avatar and without modifying the code of the other
software agents.

V. CONCLUSIONS
In this paper we presented an agent-based toolkit for

implementing flexible dispatching infrastructures. Flexibility
is given by the adoption of agent technology as a core
component of Herald and by the high degree of customization
offered to end users who can drive the process at each stage.
Software agents are adopted to replicate the hierarchical
structure of the real life system where the dispatching process
takes place. Users just have to develop the software
interconnection layer between the multi-agent system and the
software legacy system requiring the support of Herald. The
features provided by the AgentService programming
framework make the interaction with multi-agent system an
easy task and allow developers to quickly customize the
model provided by Herald to their own problem context.

As noticed in the introduction, even though the model
proposed by Herald is based on a tree hierarchy for
dispatching the items it remains general enough to be
applicable to a wide range of scenarios. As a future
improvements we consider the adoption of a more flexible
holonic architecture. We developed a case study in the field of
production scheduling in collaboration with Siemens A&D
and the results have been interesting. The case study showed
also that the use of parallel dispatching strategies is valuable
since this features makes easier comparing the application of
different strategies side by side during their execution.

The Herald toolkit is actually developed in its core
components and it has been tested on a real case study, we are
now working on creating libraries of dispatching strategies
and on providing a graphical user interface for using Herald as
a standalone tool. In particular, in order to definitely improve
Herald usability, a “drag and drop” interface for graphically

model the hierarchical structure of the system and a tool for
monitoring the dispatching process at runtime have to be
implemented.

REFERENCES
[1] M. Walliser, M. Calisti, T. Hempfling, S. Brantschen, F. Klügl, A.

Bazzan, and S. Ossowski, “Agent-Based Approaches to Transport
Logistics, Applications of Agent Technology in Traffic and
Transportation, Birkhäuser Basel, pp. 1-15, March 30, 2006.

[2] I. Kassabalidis, A.K. Das, M.A. El-Sharkawi, R.J. Marks II, P.
Arabshahi, and A. Gray, “Intelligent routing and bandwidth allocation in
wireless networks”, Proc. NASA Earth Science Technology Conf.
College Park, MD, August 28-30, 2001.

[3] D. Ouelhadj, C. Hanach, and B. Bouzouia, “Multi-agent system for
dynamic scheduling and control in manufacturing cells”, Robotics and
Automation, 1998, Proceedings, 1998 IEEE International Conference on
V. 3, pp. 2128–2133, 1998.

[4] H. Nwana, “Software agents: An Overview”, Knowledge and
Engineering Review, November, Vol. 11, No 3, 1996.

[5] K. Sycara, and D. Zeng, “Coordination of Multiple Intelligent Software
Agents”, International Journal of Cooperative Information Systems Vol.
5, 1996.

[6] C. Vecchiola, A. Grosso, A.Gozzi, and A. Boccalatte, “AgentService”,
Proceedings of the 16th International Conference on Software
Engineering and Knowledge Engineering (SEKE04), Banff, Alberta
Canada, KSI Publisher, 2004.

[7] M. Wooldridge, “Intelligent Agents”, Multiagent Systems: A modern
Approach to Distributed Artificial Intelligence, Weiss, MIT Press, 1999.

[8] Magenta Technology, “Software Platform v2.1”, Magenta Technology
Whitepaper, [Online document] 2005, Available at HTTP:
www.magenta-technology.com/

[9] Whitestein Technologies, “LS/TS – Living Systems ® Technology
Suite”, [Online document], Available at HTTP:
http://www.whitestein.com/resources/products/whitestein_lsts_flyer.pdf

[10] C.A. Silva, J.M. Sousa, T.A. Runkler, and J.M. Sà da Costa, “A Multi-
Agent Dispatching Heuristic for Manufacturing Systems Using Ant
Colonies”, Proceedings of the European Network of Excellence on
Intelligent Technologies for Smart Adaptive Systems (EUNITE 2002),
2002.

[11] B. Maione, and D. Naso, “Evolutionary adaptation of dispatching agents
in heterarchical manufacturing systems”, International Journal of
Production Research, Vol. 39, N. 7, pp. 1481-1503(23), 2001.

[12] S. Heinrich, H. Durr, T. Hanel, and J. Lassig, “An Agent-based
Manufacturing Management System for Production and Logistics within
Cross-Company Regional and National Production Networks”,
International Journal of Advanced Robotic Systems, Vol. 2, N. 1, pp. 7-
14, 2005.

[13] Standard ISO/IEC 23271:2003: Common Language Infrastructure, ISO,
2003.

[14] ISA, S95—Enterprise-Control System Integration, Part 1: Models and
Terminology, Instrumentation, Systems and Automation Soc., 2000.
ISA, S95—Enterprise-Control System Integration, Part 2: Object Model
Attributes, Instrumentation, Systems and Automation Soc., 2001
[Online]. Available: http://www.isa.org.

[15] A. Boccalatte, A. Grosso, C. Vecchiola, “Implementing a Mobile Agent
Infrastructure on the .NET Framework”, 4th International Conference in
Central Europe on .NET Technologies, Plzen, 2006.

[16] A. Passadore, C. Vecchiola, A. Grosso, and A. Boccalatte, “Designing
agent interactions with Pericles”, ONTOSE 2007, Second International
Workshop on Ontology, Conceptualization and Epistemology for
Software and Systems Engineering, Milan, Italy, Giugno 2007.

77

Agents and Security
in a cultural assets transport scenario

Stefania Costantini, Arianna Tocchio, Panagiota Tsintza
Dipartimento di Informatica

Universit̀a degli Studi di L’Aquila
Via Vetoio, Loc. Coppito,L’Aquila - Italy

Email: {stefcost,tocchio,panagiota.tsintza}@di.univaq.it

Leonardo Mostarda
Department of Computing
Imperial College London,

London, UK SW7 2AZ
Email: lmostard@doc.ic.ac.uk

Abstract— Museums and exhibitions represent a relevant con-
tribution to the economy all over the world. In Italy, in the year
2006 the 400 national museums, monuments and archaeological
sites have been visited by 34.492.875 people with an average
entrance fee of 6,64 euro for person while in France 18.367.000
people decided to dedicate some time for visiting the national
museums. Considered the increasing relevance of the cultural
and economical level of museums, several works in Artificial
Intelligence (AI) have proposed new methodologies for supporting
the users during their visits. However, few research groups have
faced the problem of the cultural assets transport. This paper
pays attention to a particular aspect of the museum activities:
how to identify and to transport in a secure way the cultural
assets. In fact, a higher security in transport among museums
may increase the exchanges and, consequently, the cultural offer.
For reaching this goal we exploited the Galileo Satellite services
and the Intelligent Agents technology and we experimented the
system in a real scenario.

I. I NTRODUCTION

People often believes that transport of a cultural asset is
a simple process. Instead, the act of moving a work of art
from a place to another one requires attention, experience and
competence. In fact, the transport phase hides risks, delays,
anxieties and difficulties due to the unpredictability of the
events. The quest for perfection in this field is unavoidable, as
slight differences may determine a success or a failure. Every
day, several companies in the world try to reach the goal of
moving cultural assets while reducing as much as possible
the risks. This process often involves an accurate packaging
phase, an escort service from the origin to the destination and
an insurance policy, as criminal actions are always possible.

A relevant role in the prevention of the criminal activities
could be assigned to the Galileo satellite, a “big brother”
capable not only of precisely identifying the position of a
cultural asset but also of following it during the journey. The
context in which technology can increase security involves
both the packaging and the transport monitoring phase. In
the packaging phase, particular devices and sensors are put in
the cultural assets packs. In the transport phase, these devices
receive the Galileo satellite signal and allow one to track the
cultural assets movements.

In previous work, we have combined the Galileo infrastruc-
ture with the common security mechanisms to build the Geo
Time Authentication system (GTA) [9]. The GTA provides

the following services: (i) cultural asset identification and
authentication; (ii) integrity of cultural assets information; (iii)
secure transport of cultural assets. Secure transport is achieved
by means of the GTA monitoring component. This component
is wrapped in each cultural asset package and is connected to
several sensors (i.e., temperature, humidity and light sensors).
At run time, the GTA monitoring component controls the
sensor data variation to detect package opening. It also checks
the mutual position among packages to detect possible thefts
and uses the Galileo signal to check the correct transport
routing.

However, in real experiments [10] that we have performed
we have noticed that the GTA monitoring component can rise
false alarms. These are consequence of unexpected environ-
mental conditions (e.g., quickly weather breaks, sudden track
breaking) that require some intelligent deductions missing in
the GTA implementation. In this paper, we present recent
developments aimed at enhancing the GTA system by means
of the deduction capabilities of intelligent agents. There are
good reasons for adopting agents in order to improve GTA
capabilities. Agents offer autonomy, reactivity, pro-activity,
social ability, very useful for all applications where some
degree of autonomy is needed. There are application contexts
that actually offer no alternative to autonomous software.
Agents provide a tool for structuring an application so as to
support the design metaphor in a direct way. In this sense, they
offer an appropriate support to the development of complex
systems.

Agents and multi-agent systems (MAS) have emerged as a
powerful technology for facing the complexity of a variety of
ICT scenarios. There are now several industrial applications
that demonstrate the advantage of using agents. However,
agent systems have yet to achieve widespread deployment in
operating environments, as technology has to move from pure
research to development. In our context, intelligent agents have
been used to discriminate between motivated and unmotivated
warnings signaled by the GTA in the transport scenario.
The improvement due to introducing agents is based on the
intelligent and cooperative analysis of particular events like,
for example, the change of the external temperature or a
grinding halt.

Consider a possible scenario for the first case. The truck is

78

������

�����
	

	��
�������	��

	���
��������	���
	������
�
���� �	��

 !"#"�$

	��
����
%��	��

	��
����
��������	��
�����&
�� ��&�

	��

'���
�
���
��

 (�)�*�#+#)!��
,*$-.)�* /�0�

123421
546
789:4

Fig. 1. The identification of a cultural asset

going from Rome to Naples. It contains several packs, each
one controlled by the GTA, an Intelligent Agent and some
sensors. At a certain moment, a pile-up blocks the traffic
along the highway. We are in July, the external temperature
is high and the sensor in a pack measures a temperature
degree beyond the prefixed threshold. The GTA, after giving
the alert, waits for the MAS evaluation. The Agents in the
MAS compare their information about the temperature and,
through a reasoning process (by evaluating the information
about the season, the position of the truck, the kind of freezing
plant and so on) try to deduce if the alert is motivated. In
fact, if the temperature is high in all packs as well as in an
external device, there are good motivations for supposing that
no person opened one or more pack but, rather, that either
the external temperature influenced the internal one of the
packs or the freezing plant in the truck is malfunctioning.
Consequently, a message is sent to the route supervisor about
the false alarm and the temperature threshold is incremented.
An unmotivated alert has been avoided. We are aware that in
real applications in a first stage the agents behavior must be
monitored for avoiding that actual alerts could be underrated:
however, after an initial verification phase, the agent can be
trained to efficiently support traditional techniques in security
scenarios.

This paper is organized as follows. Section II shortly
describes the main characteristics of the GTA component.
Section III presents the MAS structure, paying a particular
attention to the environment role, while Section IV explores
the Agents activities in the monitoring scenario. Section V
relates about some aspects of the MAS implementation while
Section VI introduces the main motivations for this choice.
Finally, Sections VII and VIII conclude the paper.

II. T HE GEO TIME AUTHENTICATION SYSTEM AT A

GLANCE

The Geo Time Authentication (GTA) [9] is a prototype
system that provides authenticity and integrity of cultural
assets information. It has been conceived in the context of the
CUSPIS project [10] and, afterwards, it has been generalized
to the context of assets and goods where relevant problems
of counterfeiting and thefts exist. To prevent these crimes, the
GTA system provides the following services: (i) identifica-
tion; (ii) authentication; (iii) access control; (iv) integrity; (v)
privacy and confidentiality; (vi) non repudiation; (vii) secure
transport of assets. As we are going to see in the rest of

this section, each service is based on traditional cryptography
mechanisms enhanced with the satellite information (i.e.,
latitude, longitude and time).

The GTA identification service (see Figure 1) permits to
uniquely identify a cultural asset. To this aim, each museum
is equipped with aGTA identification component. This com-
ponent takes as input the Galileo signal and a key store that
contains the museum private key. The component output is a
so-called “GD” (GTA Data) for each asset.

A GD contains the following information: (i) the Galileo
time (GT); (ii) the Galileo geographical coordinates (GP);
(iii) the Galileo Signature (GS); (iv) the Areas List (AL); (v)
the GTA certificate (GC); (vi) the GTA signature (GTS). The
Galileo geographical coordinates (GP) are the longitude and
the latitude of the geographical area where the cultural asset
identification takes place.

The Galileo time (GT) refers to the time when the identifi-
cation is performed. The concatenation of both GP and GT is
referred to as Galileo Identifier (GAID) and is used to uniquely
identify the cultural assets. In fact, each museum is assigned
its own identification area and thus, at any time, exactly one
GD can be produced. The Areas List (AL) refers to the list of
geographical areas where the cultural asset will be exposed.
The GTA certificate (GC) contains the identity of the museum
that has generated the GD. Finally, the GTA signature (GTS)
is the signature of all fields for ensuring GD integrity.

The GTA authentication service guarantees the authenticity
of a GD. This ensures that the cultural assets authenticated in
the museum are the ones indicated on the GD and that the GD
was indeed generated in the origin indicated on it. In particular,
GD authentication prevents an attacker from masquerading
as a legitimate museum. In this way, introducing counterfeit
objects in the market becomes more difficult. For instance, in
the CUSPIS case study that we have worked out, the GTA has
been used to guarantee that an ancient sculpture was indeed
catalogued by the Greek museum in Athens.

The GTA access control service is the GTA ability to limit
and control the access to the GTA Data (GD) information.
To this aim, each entity must be authenticated, so that access
rights can be tailored to the individual case. The GTA integrity
service ensures that a GD is received as sent, i.e, no duplica-
tion, reuse, destruction can be performed. The GTA privacy
and confidentially services guarantee that GD information is
provided only to authorized people. The GTA non repudiation
service prevents a producer to deny a generated GD. The GTA
secure transport of assets ensures that assets are not stolen
or substituted during the transport phase. In particular, this
service is performed by monitoring that (i) the transport is
routed along the correct path; (ii) the variation of temperature,
humidity and light inside the cultural assets package does not
exceed a threshold (i.e., packages are not opened); (iii) mutual
position among packages do not change over the time (i.e.,
packages are not stolen).

However, the GTA transport security measures can be too
strict and sometimes can rise false alarms that need to be
handled by the security system manager. For instance, if the

79

environmental conditions quickly change (e.g., the weather
quickly breaks, the track is inside a tunnel) then the thresholds
can be subject to a considerable variation. A track braking can
cause all packages to change their mutual positions and an
alarm is raised. To address such unexpected situations, in this
paper we enhance the GTA monitoring system through the
deduction capabilities of intelligent agents. We have experi-
mented the cooperation between the GTA and the intelligent
agents in order to build a more flexible transport monitoring
system that is able to recognize false alarms in the transport
of cultural assets.

III. E NVIRONMENT AND MAS STRUCTURE

After explaining the main characteristics and the role of the
GTA, in this section we formalize the infrastructure of the
MAS environment by means of the approach of Viroli et al.
([25]). We examine the role of agents and environment in the
monitoring scenario. The above-mentioned paper proposes to
analyze the roles and the features of a MAS environment by
decomposing it into basic bricks calledenvironment abstrac-
tions. Each agent perceives the existence of such abstractions
and interacts with them in order to achieve individual or social
goals. Figure 2 provides an overview of the infrastructure of
the MAS application.

At the bottom level, the physical support specifies the
hardware components of the system whose data the MAS
is interested in. In particular, we mention the ABUs (Asset
Board Unit) which are satellite signal receivers contained
in the packs, the Galileo infrastructure, the sensors used to
capture the changes in the environmental transport conditions
(variation of the temperature or of the light intensity, . . .) and
the generic communication infrastructure. Each ABU receives
the Galileo signal and transmits the pack’s position to the
MAS.

The execution platform includes the operating systems, the
virtual machine and other middlewares. The interpreter of the
DALICA MAS agents has been written in Sicstus Prolog
[22] while other functionalities have been implemented in
Java. Jasper [22] allowed us to interface the prolog language
with the Java one. The execution platform also includes the
Agent/Environment communication middlewares: the Linda
Tuple Space [22] and the Event-based communication sup-
port. Each information coming from external sources (ABUs,
sensors,...) is transformed into an event and put in the Tuple
Space to be received by the agents. When the agents needs to
communicate with the external world, its messages are trans-
formed into events through the Jasper interface and delivered
to the corresponding devices.

Components external to the MAS communicate by means
of an event-based mechanism. Figure 3 synthesizes the com-
munication infrastructure. Messages coming from the MAS
and addressed to the external components are received by the
Output Agent and, via the Jasper Interface and the Server RMI,
are sent to the Messaging Component. The Messaging Compo-
nent implements a plug-in architecture for supporting run-time
registration of both server and client components. After the

registration process, each client interacts with the messaging
component and receives an ID that will be used to send and
receive events. In other words, after the registration process,
each client can build and send to the messaging component
an event containing its ID and the server component ID. It is
worth noticing that a basic event does not provide meaningful
information since it only contains routing information (i.e.,
the receiver and the sender IDs). Therefore, a basic event
can be (if needed) specialized into a new one that contains
an additional field. This field can be used for instance by
a hardware component in order to send detected data to a
server component. The MAS component uses it for receiving
environmental data and for replaying to external components
such as as VCC, GTA and so on.

At the top layer, we find the MAS application. The Applica-
tion Agents area contains the three kinds of agents composing
the MAS:
Control Device Agent: The role of this agent is to monitor the
condition of the assigned pack, by checking both the position
through the Galileo satellite signal and the sensors conditions.
Transport Device Agent: This agent has the role of coordinat-
ing several Control Device agents. It is capable of integrating
the warnings coming form the Control Device Agents. It
attempts to deduce what is happening and to evaluate the alert
degree. The role of this agent will be explained at more length
in the next sections.
Output Agent: Manages communications between the MAS
and the external infrastructures such as VCC (Virtual Control
Center), Sensor interface, GTA and so on.

Finally, the Application Environment contains the Sensors
Interface that allows Control Device agents to get information
about the temperature, humidity or light in the packs; the
GTA component and the VCC components. The former one
receives the results of the MAS deduction process while the
latter one manages the communication between the MAS and
the security control center where human operators monitor the
transport conditions.

IV. M ONITORING THE CULTURAL ASSETS TRANSPORT

In the transport scenario, Control Device Agents are used
for checking several transport parameters and have the respon-
sibility of informing the authorities in case of tampering or
theft. In the following, we describe all phases involved in the
transport of cultural assets (see Figure 4) by emphasizing the
agents roles.

In the transport planning phase, the owner of the cultural
assets, the renter (i.e., the entity who wishes to take the
cultural assets) and third-part entities (i.e., those who vouches
for the content and the routing of transport) cooperate to
produce different certificates. In this paper, we focus on the
authorization and the transport certificates since they are used
by the MAS.

Each package of the transport is equipped with an autho-
rization certificate that contains the list of all cultural assets
inserted into the package. This certificate is used to check the
presence of the cultural assets inside the package.

80

JASPER InterfaceJAVA API

��� � �
� � �
� � �
� � �

Output Agent

Application EnvironmentApplication Agents

Tuples Space
Event−based communication

mechanism
Perception

Action

Host, Communication infrastructure
ABUs / Galileo satellite receiver

Network

MAS Application

Execution platform

Physical Layer

Computing devices Sensors

JVM Sicstus Prolog AnyOS

Control Device

Agent

Agent

VCC

RFIDs

Transport Device

Sensor interface GTA component

� �� �

Fig. 2. MAS Environment Application Layers

Event Based Communication MechanismOutput
Agent

TUPLES SPACE

DALICA MAS
SERVER RMI

Other System Components

Jasper Interface

...

MESSAGING COMPONENT

Fig. 3. Communication Infrastructure

��

������

���	
��

�
��	

��� ����

����

����������

��������

�����

����������

��������
������

������
!����"�#����

���������

��#����

���#��$�����

%�&

#����"�#�����

'()*)+,

����� -.

��������� � ������ ����� ��#/����� �����

0�1���2 �����

��#�����������

����

345

678

9:;

<��=	�
=�

Fig. 4. The CUSPIS system

Each transport has exactly one transport certificate that
contains the correct routing. The routing is defined in terms
of a list of couples{(As, TAs), (A1, TA1) . . . (Ai, TAi) . . .
(An, TAn) (Ad, TAd

) } whereAs is the starting transport area
andTAs the related date (i.e., day and hour),Ai an area that
the transport has to pass andTAi the related date;(Ad, TAd

)
is the destination area and its date. It is worth noticing that
for specific assets transport other certificates (e.g., insurance
certificates) can be added and are signed by a certain number
of entities.

In the packaging phase, the above entities in cooperation

with the responsible of transport (RT) and the packaging
expert (PE) supervise the packaging of assets. Each package
is filled with: (i) a set of assets, each of them identified
by an RFID tag, which is an object that can be attached
to or incorporated into a product, animal, or person for the
purpose of identification using radiowaves; (ii) a Control
Device (ABU); (iii) a sensor of humidity; (iv) a sensor of light;
(v) a sensor of temperature. The ABU unit contains the autho-
rization and the transport certificate. Moreover, it hosts both
the GTA monitoring component and the control agent. While
the GTA monitoring component provides security by means

81

of traditional mechanisms (i.e., cryptography, certificates and
detection algorithm) the control agent enhances security issues
through intelligent deductions.

During the journey, each Control Device Agent, which is
capable of acting in a proactive way, performs the following
activities: (i) correct routing checking; (ii) cultural assets
verification; (iii) sensor data checking; (iv) package position
verification.

The Correct routing checking is performed by the Control
Device Agent by using both the Galileo signal and the trans-
port certificate. In particular, the agent uses the Galileo satellite
to check that each area is passed at the right time. The cultural
assets verification is an activity in which the control agent
loads all cultural assets IDs contained in the authorization
certificate and checks their presence inside the package. It
is worth noticing that this activity is performed repeatedly
over time. Both correct routing checking and cultural assets
verification are simultaneously performed also by the GTA
monitoring component. Therefore, the agents contribution is a
redundant check that enhances the system fault tolerance.

The sensor data checking verifies the variation of the
sensor data over time. This variation must not exceed a given
threshold that, as we are going to see in the following, is
dynamically adapted by means of the agents cooperation. This
check ensures that a package is neither opened nor kept in a
dangerous environment. In this case, the agent contribution is
indeed needed since temperature checking must involve some
intelligent reasoning. For instance, temperature may change
for environmental reasons so that the GTA may raise a false
alarm. If the temperature of the environment changes for all
packs because of a natural process and overcomes the thresh-
old, the agents in the ABUs can activate a communication
process and reach the conclusion that no package has been
tampered because each of them signals the same temperature.

The package position verification ensures that all packages
are in the correct position. In this process the agents exploit
their cooperation capabilities. In fact, from time to time each
Control Device Agent sends a message to the other ones asking
their position. Then, it computes the distance and verifies that
the positions do not vary over time. In fact, a variation of
the package mutual position can imply a package theft. In
this case, the agent reasoning is indeed needed to enhance
the whole system effectiveness. In fact, due e. g. to a quick
break, the packages mutual position can change. In this case,
the agent contribution can detect and avoid GTA false alarms.

When a Control Device Agent detects some anomaly, it
sends a warning message to the Transport Device Agent whose
role is to cross the information with those coming by the
other entities and to verify the seriousness of the warning.
Elaborated the degree alert, the Transport Device Agent sends
a message to the VCC terminal. Moreover, each Control
Device Agent maintains a direct communication channel with
the GTA component. In fact, if the GTA identifies a suspicious
situation, it contacts the agent in order to trigger a checking
process of the package status.

V. THE APPROACH IN MORE DETAIL

Control Device, Transport Device and Output Agents have
been implemented in the DALI language. DALI has a Sicstus
Prolog interpreter, while the other components, like the GTA,
have been implemented in Java. The interface between the
two languages has been provided by the Jasper Sicstus Prolog
library. In the rest of this section, we illustrate the main fea-
tures of the DALI language and explain how DALI reactivity
and pro-activity has been used for implementing the agents
behavior.

A. The DALI language in a nutshell

DALI [5] [6] [24] [7] [8] is an Active Logic Programming
language designed in the line of [16] for executable specifica-
tion of logical agents. DALI is a prolog-like logic program-
ming language with a prolog-like declarative and procedural
semantics [17]. In order to introduce reactive and proactive
capabilities, the basic logic language has been syntactically,
semantically and procedurally enhanced by introducing several
kinds of events, managed by suitablereactive rules. All the
events and actions are time-stamped, so as to record when they
occurred. These features are summarized very shortly below.

An external eventis a particular stimulus perceived by the
agent from the environment. We define the set of external
events perceived by the agent from timet1 to time tn as a set
E = {e1 : t1, ..., en : tn} whereE ⊆ S and S is the set of
environment states. Theei’s are atoms indicated with postfix
E in order to be distinguished from both plain atoms and other
DALI events. External events allow an agent to react through
a particular kind of rules, reactive rules, aimed at interacting
with the external environment. When an event comes into the
agent from its external world, the agent can perceive it and
decide to react. The reaction is defined by a reactive rule which
has in its head that external event. The special token:>, used
instead of: −, indicates that reactive rules performs forward
reasoning.

A reactive rule has the form:
ExtEventE :> Body or
ExtEvent1E , ..., ExtEventnE :> Body
where Body has the usual (logic programming) syntax and
intended meaning except that it may contain the DALI event
and action atoms.

The internal eventconcept allows a DALI agent to be
proactive independently of the environment by reacting to its
own conclusion (notice that this feature can be considered as
a form of introspection). More precisely: An internal event is
syntactically indicated by postfixI and implies the definition
of two rules. The first one contains the conditions (knowledge,
past events, procedures, etc.) that must be true so that the
reaction (in the second rule) may happen:
IntEvent : −Conditions
IntEventI :> Body

Internal events are automatically attempted with a default
frequency customizable by means of user directives in the
initialization file that can tune also other parameters such as
how many times an agent must react to the internal event

82

(forever, once, twice,. . .) and when (forever, when triggering
conditions occur, . . .); how long the event must be attempted
(until some time, until some terminating conditions, forever).

Actions are the agent’s way of affecting the environment,
possibly in reaction to either an external or internal event.
An action in DALI can also be a message sent by an agent
to another one. An action atom is syntactically indicated by
postfix A. Clearly, when an atom corresponding to an action
occurs in the inference process, the action is supposed to be
actually performed by suitable “actuators” that connect the
agent with its environment. In DALI, actions may or may not
have preconditions: in the former case, actions are defined
by actions rules, in the latter case they are just action atoms.
An action rule is a plain rule, but in order to emphasize that
it is related to an action, we have introduced the new token
:<. External and internal events that have happened (i.e., that
have been reacted to) and actions that have been performed
are recorded as past events, that represent the agent’s memory,
and the basis of its “experience”.

B. Reactivity and proactivity in DALICA MAS

In this section, we present a snapshot of the Control Device
Agent, paying a particular attention to some reactive and
proactive capabilities of the agent implemented in DALI. The
signal of the Galileo satellite is received by the agent by means
of a DALI reactive rule:
posE(Lat, Lng, T ime, Date, Integrity,) :>
def position(Lat, Lng, T ime, Date, Integrity).
def position(, , , , Integrity) : −
Integrity = 0, no correct signalA.
def position(Lat, Lng, T ime, Date, Integrity) : −
Integrity = 1, positionA(Lat, Lng, T ime, Date, 1).
def position(Lat, Lng, T ime, Date, Integrity) : −
Integrity = 2, positionA(Lat, Lng, T ime, Date, 2).

where Lat and Lng are, respectively, the latitude and the
longitude of the pack position, while Time and Date have
the obvious meaning. This reactive rule “filters” the Galileo
signal according to its integrity value. Only if the integrity is
different from 0, the signal is accepted and, by means of the
action positionA(Lat, Lng, T ime, Date,), enables related
pro-active rules for the needed inferential activities. In fact, the
action positionA(Lat, Lng, T ime, Date,) is transformed
into the past eventpositionP (Lat, Lng, T ime, Date,). This
transformation, managed by the DALI interpreter, records the
past event into the agent’s memory. Then, the past event can
trigger proactive inference as a condition of an internal event.

Proactive and reactive capabilities are adopted by the Con-
trol Device Agent for monitoring the cultural assets transport.
We propose a snapshot of the DALI code that controls and
manages the temperature threshold.

The internal eventmonitor temperature checks wether
the temperature of the cultural assets in the pack is greater
than the prefixed thresholdthreshold temp(Y). If so, then
the Control Device Agent sends a message to the other Control

Devices Agents (cda’s) in order to know if the increase of the
temperature is general or has happened only in its pack.
monitor temperature(X) : −sensor data(X),
clause(threshold temp(Y),), X > Y.
monitor temperatureI(X) :> clause(agent(A),),
messageA(cda, send message(give temperature(X,A), A)).

The content of the message requires that only those agents
that detect in their packs a temperature greater than the
threshold will reply. In particular, they will send the external
eventvalue temp highE(Ag) where Ag is the name of the
sender agent. After receiving this external event, the agent
sends a message to the Transport Device Agent (tda) in order
to check its sensors values. In fact, if the increase of the
temperature is justified by a natural motivation as, for example,
the sun or the stop in a gallery, an alert is not in order.
value temp highE(Ag) :> clause(agent(A),),
messageA(tda, send message(give temp(A), A)).

If the temperatureX communicated by the Transport Device
Agent via the external eventvalue temp tda(X) is under
the threshold but some parameters are evaluated negatively,
then the Control Device Agent sends an alert message to
all authorities who are in charge of the transport process.
The reasoning module(X, Y, R) is the responsible of the
environmental parameters evaluation process. It takes as input
the temperatures and other available parameters for evaluating
if the temperature change is motivated. If the responseR is
negative, then the change is not motivated and an alert is sent.
In this case, the increase of the temperature in the pack does
not correspond to that of the external environment. If instead
the external temperature overcomes the threshold (like for the
packs), then there is no clear evidence of risk. However, the
agent informs the responsible of the transport (tr) about the
higher temperature and asks for the explicit authorization to
increase the related threshold.
value temp tdaE(X) :> once(evaluate(X)).
evaluate(X) : −clause(threshold temp(Y),),
X < Y, reasoning module(X, Y, no),
clause(agent(A),),messageA(authorities,
send message(alert temperature(A), A)).
evaluate(X) : −clause(threshold temp(Y),),
X >= Y, reasoning module(X, Y, yes),
clause(agent(A),),messageA(tr,
send message(alert temperature(A), A)), messageA(tr,
send message(new temperature threshold(X,A), A)).

The monitoring of the packs distances is based on the
ABUs positions. When packs are charged into the truck, the
initial distance among packs is recorded. For preventing a
thief to shift a pack unobserved, agents in the ABUs start,
at the beginning of the journey, a cooperative activity with the
objective of checking the relative distances among their packs.
If the monitoring activity of an agent detects that a distance
has been modified, it starts an interaction phase involving
all agents in the ABUs. The distances among the packs are
verified, the difference between the right distance and the
new one is computed for each couple of packs and a specific

83

algorithm evaluates wether the movement has been collective.
If the global movement is coherent, then the Transport Device
Agent sends an information message to the VCC and resets
the packs distances; else, it sends an alert message. For lack
of space, we just propose an example of the proactive Control
Device Agent behavior. The following internal event allows
the agent within a pack to check the distance among it and
the other Agents.
monitor dist(Lat1, Lng1, Date, Ag1) : −messageP (Ag,
send message(my position(Lat1, Lng1, , Date,), Ag1)).
monitor distI(Lat1, Lng1, Date, Ag1) :>
positionP (Lat, Lng, ,Date,), clause(agent(Ag),),
clause(default distance(Ag, Ag1, D),),
verify distance(Lat, Lng, Lat1, Lng1, D).

whereverify distance(Lat, Lng, Lat1, Lng1, D) computes
the distance between the Galileo coordinates(Lat, Lng) and
(Lat1, Lng1) and compares it with the default distanceD.
Every time the agent receives a position from another one, the
internal event is triggered and the check is performed.

VI. M OTIVATION : WHY DALI LOGICAL AGENTS

Nowadays, many kinds of applications need some degree
of autonomy. There are application contexts that actually
offer no alternative to autonomous software. Agents provide
a tool for structuring an application in a way that supports its
design metaphor in a direct way. In this sense, they offer an
appropriate support to the development of complex systems.

Platforms for building autonomous software require dedi-
cated basic concepts and languages. At the level of individual
agents, representational elements such as observations, actions,
beliefs and goals are required. Reactivity is the ability of an
agent to perceive its external environment and take appropriate
measures in response to perception. Proactivity is the ability
of an agent to take initiatives based on its own evaluation of
relevant conditions. Going further on the line of autonomous
software, new applications need “intelligence”, in the sense of
the ability to exhibit, compose and adapt behaviors, and being
able to learn the appropriate way of performing a task rather
than being instructed in advance.

A multi-agent system (MAS) is a collection of software
agents that work in conjunction to each other. They may
cooperate or they may compete, or they may adopt a behavior
that combines cooperation and competition. In order to form a
MAS, agents must have communication abilities together with
an internal mechanism for deciding when social interactions
are appropriate, both in terms of generating requests and of
judging incoming requests.

Among the potential applications, distributed monitor-
ing/control systems (DCMS’s for short) appear to be a nat-
ural application for agents, by virtue of controllers being
in principle autonomous entities. This kind of application
implies measuring a system, so as to verify whether specific
measurable values are within a pre-defined range, and acting
on the system so as to keep specific observable values within
the range characterizing an acceptable behavior of the system

itself. Measuring a system implies selecting the correct checks
to perform at each stage. Controlling the system implies being
able to either modify or restore its operational parameters as
behavior requires. Agents can replace a human operator in
this kind of task. If the controlled system is composed of
several parts, single agents can control the various parts, and
can cooperate so as to enforce the system overall behavior.

The DALICA system can be seen as a distributed monitor-
ing system. The “objects” of the agents monitoring activity
are the packs containing cultural assets. DALICA in fact has
been designed as a cultural assets DCMS based on the Galileo
platform. An agent-based solution has been chosen for the
following reasons. Each pack has to be supervised individually
in autonomous way, reacting to every stimulus but also to
every relevant exogenous state change: these changes must be
detected and appropriate measures must be taken.

Typical events that may happen in a DCMS such as the
DALICA system are highly asynchronous. The reactive nature
of agents allow asynchronous events to be coped with in a
natural way. Moreover, proactivity allows system parameters
to be observed and tuned whenever necessary, thus potentially
preventing the occurrence of critical situations. The distributed
nature of this DCMS implies the need for each component
to possibly communicate the events occurred to other com-
ponents. Then, agents supervising single components form
a MAS with the overall objective of coordinating activities
also in case of critical situations. Agents communicate to the
others that some potentially unwanted change has occurred,
and the MAS cooperatively establish which are the necessary
actions to be undertaken. However, no agent is allowed to
directly force other agents to behave in a certain way. This
improves the system reliability also in presence of software
malfunctioning.

An Object-Oriented solution has not been applied as in the
DALICA scenario it appeared less suitable and more difficult
to implement. In fact, in the Object-Oriented paradigm mes-
sage exchange means methods invocation, i.e., synchronous
procedure call, which means that autonomy and privacy of
components are hard to reach, especially whenever “public”
methods are allowed.

In the particular DCMS that we have considered, some
kind of “intelligence” is needed so as to interact with the
environment in a flexible customizable evolving way, rather
than through predefined rigid unalterable patterns. In our DALI
implementation, computational logic has taken a relevant role
in this sense, as a good tool for building intelligent agents.
The DALI logic language in fact, due to the traditional “fast
prototyping” character of logic languages in general, to the
new efficient implementation and to the new concepts that it
embodies, has proven to be suitable for implementing such an
advanced application.

Moreover, in a complex distributed environment, rule-based
logical languages allow behaviors to be defined by means of
independent sets of rules. These behaviors will be triggered
in any order by what happens in the environment, without
a complex control structure that should foresee all cases or

84

combination of cases.
Logic languages in general are evolving from static to

“active”, and are being enriched with new capabilities based
on the “agency” metaphor. In fact, the application presented
in this paper practically demonstrates that logic agent-oriented
language may provide an affordable way of introducing the
engineering of intelligent behaviors into software engineering
and development practice. In addition, the clear semantics of
such languages allows formal properties of an implemented
system to be proved, which is relevant in critical application
domains.

VII. R ELATED WORK

To the best of our knowledge, no other systems exist capable
of monitoring the transport of cultural assets by exploiting the
Galileo satellite signal and agents technology. However, agents
have been adopted for monitoring activities in several contexts.

The work of Bunch et al. in [4] is centered on a par-
ticular experimentation scenario: the monitoring of chemical
processes by means of software agents. In particular, the
KARMEN multi-agent system monitors specific combinations
of process conditions of interest to individual plan operators,
supervisors and other personnel and notifies them through
modes that the individuals select in accordance with corporate
policy and personal preferences. The monitoring of Medical
Protocols by means of agents is described in the work of
Alsinet et al. in [1]. Specialized domain agents assist and
supervise the execution of medical protocols in hospital envi-
ronments. As in the DALICA system, in this sensible context
authors have introduced privacy, integrity and authentication
methods for guaranteeing a secure process of information
exchange among agents.

Finally, we mention the works by Muller [18] and Ramasub-
ramanian et al. [21]. In the former, Intelligent Agents improve
network operations by identifying, for example, the overall
load of network traffic, what times of the day certain appli-
cations load the network, which servers may be over-utilized
and so on. Instead, the latter integrates intelligent agents in
an Intrusion Detection System. The critical context where
agents are put at work (a Corporate Bank, Chennai, India)
proves their reliability in facing complex and critical tasks. In
order to reduce the points of failures which are unavoidable in
centralized security systems, the authors designed a dynamic
distributed system in which the security management task is
distributed across the network by using intelligent agents.

If we concentrate our attention on the available systems
capable of exploiting the satellite signal for monitoring ac-
tivities, an interesting tool is Track-King [12]. It supervises
the temperature of the goods during the transport phase. In
particular, the system provides continuous verification that
the refrigerator equipment is operating at the right set point.
The satellite system has a wide coverage and allows remote
intervention if necessary. Track-King does not use intelligent
agents for reasoning activities. Other systems exploit the GPS
signal for tracking purposes, among which are those proposed

by several companies ([13], [14], [15]) for protecting the cars
from thefts.

In general, they advice the car owner when the vehicle is
moving or when it goes out the prefixed route. The reaction
often involves the car halt by means of particular mechanic
devices or the sending of an alert text message to the cell
phone of the owner. These systems imply reactive capabilities
only and no proactivity or learning methods are applied.
Moreover, the car monitoring process does not require the
adoption of cooperation strategies because each monitoring
system in a car works independently of others.

Finally, several works in literature have proposed systems
for supporting the users during their visits to museums
([19],[20],[2],[11]). We cite in particular the KORE system
[3] where agents have been adopted for reasoning about the
visitors profiles. The architecture of KORE is based on a
distributed system composed of some servers, installed in
the various areas of museums, which host specialized agents.
The KORE system practically demonstrates that intelligent
agents can have a relevant role in capturing the user profile
by observing the visitor behavior. They possess the capability
to be autonomous and to remain active while the visitor
completes her/his visit; they can percept through the sensors
all choices performed by the user and, consequently, activate
a reasoning process.

In summary however, to the best of uor knowledge the GTA
and the DALICA system jointly applied to a cultural assets
transport scenario constitute a novelty in the field of AI.

VIII. C ONCLUDING REMARKS

In this paper, we have presented the DALICA MAS archi-
tecture applied in a transport monitoring scenario. Considering
the risks involved in the cultural assets transport, we think that
the GTA and the DALICA MAS can be profitably exploited
in this context, thus making the whole process more secure.
As discussed in the previous section, the role of the agents
in monitoring activities is increasingly effective in time. Their
reasoning capabilities are relevant in all those cases where it is
necessary to discriminate the events and to correctly interpret
the reality. In the future, we will enhance DALICA system by
introducing new features for reasoning on a wider range of
environmental factors. We also intend to improve the learning
capabilities of agents both in general and in this scenario.

REFERENCES

[1] Alsinet, T., Bjar, R., Fernanadez, C., and Many, F.A Multi-agent system
architecture for monitoring medical protocols, In Proc. of the Fourth
international Conference on Autonomous Agents (Barcelona, Spain,
June 03 - 07, 2000). AGENTS ’00. ACM Press, New York, NY, 499-505.
URL=http://doi.acm.org/10.1145/336595.337580

[2] Amigoni, F., Della Torre, S., and Schiaffonati, V.,Yet Another Version
of Minerva: The Isola Comacina Virtual Museum, In Proc. of the First
European Workshop on Intelligent Technologies for Cultural Heritage
Exploitation, at The 17th European Conference on Artificial Intelligence,
1-5, 2006.

[3] Bombara, M., Cal, D., and Santoro, C.,Kore: A multi-agent system to
assist museum visitors, Proc. of the Workshop on Objects and Agents
(WOA2003), URL=http://citeseer.ist.psu.edu/708002.html, 2003

85

[4] Bunch, L., Breedy, M., Bradshaw, J. M., Carvalho, M., Suri, N.,
Uszok, A., Hansen, J., Pechoucek, M., and Marik, V.Software agents
for process monitoring and notification, In Proc. of the 2004 ACM
Symposium on Applied Computing (Nicosia, Cyprus, March 14 -
17, 2004). SAC ’04. ACM Press, New York, NY, 94-100. URL=
http://doi.acm.org/10.1145/967900.967921.

[5] Costantini, S., and Tocchio, A.A logic programming language for multi-
agent systems, In Logics in Artificial Intelligence, Proc. of the 8th Europ.
Conf., JELIA 2002, LNAI 2424, Springer-Verlag, Berlin, 2002.

[6] Costantini, S., and Tocchio, A.The DALI logic programming agent-
oriented language, In Logics in Artificial Intelligence, Proc. of the 9th
European Conference, Jelia 2004,LNAI 3229, Springer-Verlag, Berlin,
2004.

[7] Costantini, S., Tocchio, A., and Verticchio, A.,A Game-Theoretic
Operational Semantics for the DALI Communication Architecture, In
Proc. of WOA04, Turin, Italy, December 2004, ISBN 88-371-1533-
4,2004.

[8] Costantini, S., and Tocchio, A.About declarative semantics of logic-
based agent languages, In Post-Proc. of DALT 2005, LNAI 3229,
Springer-Verlag, Berlin, 2006.

[9] Costantini, S., Inverardi, P., Mostarda, L., and Tocchio, A.A Geo
Time Authentication SystemIn IFIPTM 2007, Joint iTrust and PST
Conferences on Privacy, Trust Management and Security, in print.

[10] CUSPIS PROJECT WEB SITE URL=http://www.cuspis-
project.info/demonstrations.htm

[11] Damiano, R., Galia, C., and Lombardo, V.,Virtual tours across different
media in DramaTour project, In Proc. of the First European Workshop
on Intelligent Technologies for Cultural Heritage Exploitation, at The
17th European Conference on Artificial Intelligence, 2006

[12] Fick, T. Remote monitoring: a logistical solution for profit-
ing in a changing world, In Food Safety, GDS Publishing
URL=http://www.gdspublishing.com/icpdf/usfs/thki.pdf.

[13] GPS car monitoring system.SAT track GPS Vehicle Tracking System,
URL=http://www.pcmobile.ca/PC-CDN-Inside.pdf.

[14] GPS car monitoring system. LoJack - GPS Vehicle Tracking,
URL=http://www.lojack.com/gps-vehicle-tracking.html.

[15] GPS car monitoring system.Millennium - Advanced Internet Based GPS
Vehicle Tracking, URL=http://www.vehicle-tracking-gps.com.

[16] Kowalski, A. How to be Artificially Intelligent - the Logical Way,
Draft, revised February 2004, Available on line, URL=http://www-
lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html, 2006.

[17] Lloyd, J. W. Foundations of Logic Programming (Second, Extended
Edition), Springer-Verlag, Berlin, 1987.

[18] Muller, N. J. Improving Network Operations With Intelligent Agents,
Int. J. Netw. Manag. 7(3) (Jul.1997), 116-126.URL = http :
//dx.doi.org/10.1002/(SICI)1099 − 1190(199705/06)7 : 3 <
116 :: AID −NEM239 > 3.0.CO; 2−Q

[19] Park, D., Nam, T., Shi, C., Golub, G.H., and Van Loan, C.F.,Designing
an immersive tour experience system for cultural tour sites, In CHI
’06 Extended Abstracts on Human Factors in Computing SystemsACM
Press, 2006.

[20] Pilato, G., Augello, A., Santangelo, A., Gentile, A. and Gaglio, S.,
An Intelligent Multimodal Site-guide for the Parco Archeologico della
Valle dei Templi in Agrigento, In Proc. of First European Workshop on
Intelligent Technologies for Cultural Heritage Exploitation, at The 17th
European Conference on Artificial Intelligence, 2006.

[21] Ramasubramanian, P., and Kannan, A. Intelligent Multi-agent
Based Database Hybrid Intrusion Prevention System, In ADBIS, 2004,
URL=http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-
9743&volume=3255&spage=393, DBLP:conf/adbis/2004, DBLP,
URL=http://dblp.uni-trier.de.

[22] SICSTUS PROLOG HOME PAGEURL=http://www.sics.se/isl/sicstuswww/site
/index.html.

[23] Stallings, W. Cryptography and network security: Principles and
Practice, Prentice Hall, 2006.

[24] Tocchio, A., Multi-Agent sistems in computational logic, Ph.D. Thesis,
Dipartimento di Informatica, Universitá degli Studi di L’Aquila, 2005.

[25] Viroli, M., Holvoet, T., Ricci, A., and Schelfthout, K., and Zambonelli,
F., Environments in multiagent systems, The Knowledge Engineering
Review, 20(2), 2005.

86

Abstract—In this paper we present the European project

named E-Support, aimed to the maintenance companies which

work on the field, away from the central headquarters. The main

goal of E-Support is to help the field engineers and technicians to

access the knowledge base of the company. They will connect to

remote servers by using mobile devices in order to get

information about vendors, customers, plants, parts and

download technical documents. The whole system will be

implemented by a multi-agent platform running agents on mobile

devices and server agents that provide the services. A particular

emphasis will be placed on the contribution of D’Appolonia

regarding the document retrieval system.

Index Terms—Enterprise, multi-agent, document, indexing,

clustering, ontology.

I. INTRODUCTION

-SUPPORT is a collective European project which involves

RTD (Research and Technology Development)

companies, SMEs (Small and Medium Enterprises), and

associations of maintenance companies. The project is

addressed to these maintenance companies which send small

teams of engineers and technicians at the customer’s, in order

to fix, upgrade or simply manage a plant. Often the personnel

which works away from the headquarters needs information in

real-time regarding the customers, vendors, parts to replace

and any type of data useful during the everyday work activity.

The aim of E-Support is to provide these data on the field,

directly on the plant, connecting a mobile device to the remote

server containing all the information owned by the company

and the information offered by the associations (as regulations,

norms, standards, etc.) that reunite maintenance companies. E-

Support enables technicians to use every type of mobile

device: mobile phones, smart phones, PDAs (Personal Digital

Assistant), and notebooks. It is a task of the remote system to

display on the mobile device screen only the information that

the device is able to visualize. The entire system runs over a

multi-agent platform. Considering the need to run remote

agents representing the mobile devices, we chose the well-

known multi-agent system (MAS) JADE [1], with the

extension for mobile devices named LEAP [2].
A field service engineer (FSE) which wants to access the

enterprise knowledge base, connects his mobile device to the

available network infrastructure (GPRS, UMTS, Wi-Fi, Wi-

Max) and contacts (through his mobile agent) a remote agent

running on the server platform. This remote agent (called

interface agent) processes the query and forwards the related

tasks to the agents in charge of the databases management and

the documents collection. The interface agent then collects the

results of these tasks, generates an html page considering the

display capabilities of the mobile device, and sends it to the

FSE.

The role of D’Appolonia in E-Support is to manage the

documents collection providing advanced tools able to classify

them by using clustering techniques over the usual indexing of

the documents corpus.

In the following sections are illustrated the E-Support

project ensemble (section II), the MAS solution (section III),

and the documents retrieval system (section IV), highlighting

the contribution of the agents in the project success.

II. THE E-SUPPORT PROJECT

A. Project context

The first task of the project was the analysis of a market

study addressed to 65 European maintenance companies from

Romania, Italy, Holland, Spain, and Slovakia. Most of the

maintenance companies have less than 20 workers (35.5%) or

21 to 100 workers (38.7%). The survey shows that the 47.6%

of the companies covers different maintenance sectors. The

23.8% operates in the chemical sector, the 22.2% in the

construction field, the 15.9% in automotive, the 15.9% in the

alimentary field. Few companies work in the ICT sector

(4.8%). The 89.8% handles technical data in electronic format:

especially by using office tools, cad, and CMMS

(Computerized Maintenance Management System). No one

seems to use databases.

The communication devices used by technicians are mainly

cell phones (83% of companies), notebooks (55.4%), smart

phones (15.4%), PDAs (10.8%) and tablet PCs (3.1%).

The interviewed companies assert that, by using the

existing tools, the detected difficulties concern the trouble to

find accurate (55.4%) and complete (33.8%) information, to

file the info on paper (32.3%), the lack of immediate responses

from the manufacturers (30.8%), to get updated information

(24.6%), and the waste of money (24.6%) and time (20.0%).

Considering the emerging context, the maintenance

companies which fill out the questionnaire, judge the E-

Support project useful (30.6%) or quite useful (56.9%).

On the basis of these results, the E-Support tool is

conceived as to limit the costs incurred by the SMEs, to easily

find significant information and especially to reach the field

A Multi-Agent Platform Supporting

Maintenance Companies on the Field

Andrea Passadore, Giorgio Pezzuto, D’Appolonia S.p.A. Via San Nazaro 19, 16145 Genova, Italy

E

87

service engineers on the field. For these reasons, the E-Support

system is designed as a service provider managed by

maintenance associations and distributed to the subscribing

SMEs. Figure 1 shows the high level architecture of the

system. Four major challenges are recognized, in order to

provide a useful tool:

• The document retrieval system (named FSE-

Assistant) for the management of documents and the

easy discovery of them.

• The knowledge sharing and learning (FSE-Master)

for the management of databases and the training of

the workers.

• Wireless mobile client infrastructure: it regards the

network infrastructure, the security, and the

compression of transmitted data.

• The multi-agent platform which hosts the whole

service, mobile devices included.

B. Document retrieval system

The aim of the document retrieval system is to allow

technicians on the field to find information contained in textual

documents, datasheets, cad files and pictures. This large

amount of electronic documents is hosted in a file server

staying at the provider server farm. The tool the E-Support

project wants to delivery is not a mere search engine, able to

index textual documents and to systematically return a list of

files containing a word: the tool is also able to order the

documents into clusters [3] namely categories (and sub-

categories) which contain documents belonging the same

topic. These topics are automatically selected by advanced

clustering algorithms. An interesting objective is the indexing

of non-textual documents. In this case is useful to manually

label these files with tags. The implementation of the

document retrieval system is deeply discussed in section III.

C. Knowledge sharing and learning

The goal is to develop an intelligent open knowledge

sharing and learning system able to provide a technical

training to FSEs who work on site. The FSE-Master

comprehends intelligent user-profiles and personalization

capabilities, in a user-friendly web-based context. The learning

audience benefits from a modular step-by-step approach,

following several training processes: learning, practicing,

testing, and assessing. According to the E-Support essence, the

field service “students” can access to the “classroom”, when

and where they need, through their mobile devices. The e-

learning tool is enriched with the possibility to share a

personal knowledge with other colleagues, offering own

experiences in helping them to solve a problem.

D. Wireless mobile client infrastructure

 The main problem in reaching the workers on the field is

the network infrastructure. For this reason the E-Support

system must be versatile, offering different media to connect a

mobile device to the central server. Considering the low costs

level of the E-Support product, oriented towards the SMEs, the

mobile device is able to manage different standards, choosing

among those that are available on site. The E-Support tool

must tolerate several bandwidths and rate profiles, self-

adapting the throughput to the current context. Several

wireless technologies have been evaluated considering their

speed, price, compatibility with the devices, and coverage. The

E-Support project took into account existing and incoming

standards [4] as: Wi-Fi, Wi-Max, UMTS, GPRS, and Edge.

The main considerations regard the coverage and the speed.

Wi-Fi is quite widespread in offices, factories and production

areas and it has an adequate bandwidth. UMTS and GPRS

cover every populated area of Europe but they denote a low

bandwidth. The Wi-Max technology represents the best

solution, but, at now, is not commercialized and not at all

diffused. Considering these points for the E-Support system,

the main wireless medium is the Wi-Fi where possible,

switching to GSM standards otherwise. The Wi-Max will be

monitored in order to introduce it in the system as soon as

possible.

Fig. 1: the whole E-Support service.

Other issues related to the communication layer are the

security of transactions and the compression of transmitted

data [5]: S-HTTP and DES (Data Encryption Standard) ensure

safe communications and the ZIP method to compress the

exchanged files.

The connection switching and security functionalities are

hidden to the end-user who can use the E-Support device

without caring the communication status.

E. Multi-agent architecture

The motivations that encourage us to adopt a multi-agent

platform concern especially:

• The dynamicity of the system, considering the mobile

88

devices, the different data sources, the needed

intelligence and pro-activity of the requested software

components.

• The scalability of the system, which has to be adapted

to different scenarios, with enterprises having different

sizes and requirements.

• The naturally distributed environment.

To implement the E-Support multi-agent society, the JADE

platform has been chosen, due to its good reputation, stability,

and mainly the possibility to distribute agents and agent

containers over a network of mobile devices, by using the

JADE LEAP extension. Another consideration is the fact that

other E-Support components are written in Java and therefore

they are easily mixable with the multi-agent platform.

The multi-agent platform is deeply investigated in the next

section.

III. THE MULTI-AGENT PLATFORM

A. Introduction

In order to design a multi-agent system which accomplishes

the main requirements of E-Support, some considerations are

reported:

• The connection among mobile devices and the core

platform is wireless.

• The connection could be slow, considering the use of

different wireless technologies (GPRS, UMTS, Wi Fi,

and Wi-Max).

• The connection could be affected by line losses.

• Some mobile devices could have strict restrictions to

display downloaded files and information and to

execute weighty programs.

• The access to centralized information is concurrent.

• The platform must be scalable and adaptable to

different kind of companies, also by using pre-existent

tools and databases.

• Different programmer teams will work on the system.

Agent roles help the teams to integrate their modules.

Ontologies modeling agent interactions are a tool that

improves the integration of these service modules.

For these reasons, the architecture of the system takes into

account that every hard computation is in charge of the server

side, letting the mobile device free (especially if it is a PDA or

any other device with limited resources). The mobile device

hosts only one agent, able to connect to the remote platform,

sends queries to the system, receives the results and browses

them. This agent, called front-end agent, represents the end-

user, namely the technician on the field who wants to exploit

the functionalities of the E-Support platform.

The front-end agent is able to interact with back-end agents

hosted on the server side. Back-end agents provide

differentiated services to manage databases, the indexing

engine, the clustering engine, and the authentication service.

These agents can be cloned and the multi-agent system server

can be split into different computers, in order to increase

performances or to adapt to extended companies with

particular requirements. The JADE cloning function and the

agent containers are useful tools, in this sense.

The front-end agent does not interact directly with the

back-end agents, but leans on the interface agent, which offers

an interface of the server side services. It is a sort of mediator

which collects the queries coming from the end user and

reroute them to the back-end agents. Details about the

interface agent and other agents are shown in the next

paragraphs.

B. Front-end agent

A front-end agent is merely a browser which displays

results sent by the interface agent which is talking with the

agent. Every heavy computation is on the back of core agents

and especially on the back of an interface agent.

When a user wants to connect to the E-Support platform

through a mobile device, the corresponding front-end agent

contacts the Directory Facilitator (DF, the yellow pages

service, embedded in JADE) of the platform to discover the

name of a free interface agent. The DF responds and the front-

end agent opens a conversation with the suggested interface

agent. Then, the user must authenticate himself, sending to the

interface agent his username and password. Automatically, the

front-end agent communicates the mobile device type too, in

order to send, in response to the incoming queries, only the

displayable information.

The user is now able to query the system. Every

communication is in charge of the interface agent, which

routes requests to the core agents. Every front-end agent has

different behaviours, differentiated by user privileges. The

intention is to consider every mobile device at disposal of each

technician on the field, regardless of his rank. Every agent has

a complete set of behaviours, raised only if the current user has

the required rights.

Regarding the front-end agent, JADE LEAP allows

programmers to split the related agent container to a front-end,

hosted on the mobile device and a back-end hosted on the

server, in order to move the infrastructure of the agent

container on the server side, avoiding an overload of the

mobile device.

C. Interface agent

The main task of an interface agent is the mediation among

front-end agents and core agents. The aim of interface agents

is to book core agents just the time necessary to serve out the

query, without waste of time due to slow connections and line

losses. The interface agent collects the queries of the front-end

agent and redirects them to the core agents, then it gets the

query result and releases the core agent; achieved the

information, the interface agent composes a presentation using

html tags, considering only those records that can be displayed

by the mobile device. The information about the type of the

mobile device involved in the communication can be retrieved,

asking the authentication agent.

Every interface agent has more behaviours, every one

specialized to interact with a core agent. Depending on the

89

company size and the number of field technicians, the interface

agent can be configured to serve only one front-end agent at a

time or to serve a strict number of front-end agents at the same

time.

D. Authentication agent

It manages user’s credentials and maintains his status (i.e.

if he is online and his mobile device type). The information

about the agent status is useful to compose a presentation page

taking into account the display capabilities of the mobile

device. For this reason, the interface agent contacts the

authentication agent to get these data, at the moment of the

composition of an html page.

E. Database agents

They manage the knowledge base of the company. The

database agents interrogate the database using SQL queries.

Implementing different behaviours, it is possible to manage

different types of database, considering the pre-existent tools

at the company’s disposal (e.g. Oracle, SQL Server…). The

database contains information about customers, vendors,

suppliers, parts, components and data supporting e-learning

tools.

F. Text indexing agents

They index large amount of documents (doc, pdf, txt, html,

etc.) reading selected folders and downloading updated

versions of manuals from suggested web sites.

These agents (one or more, depending on the company size

and possible specializations) write the indexing results to a

centralized index, managed by a specialized agent, with the

main task to coordinate the concurrent access to the

centralized index. We distinguish among agents that read text

documents hosted in a file server and that read web pages.

G. Clustering agent

The clustering agent processes the index created by

indexing agents, in order to execute the query sent by remote

users (via the interface agent). It analyzes the index and returns

a list of clusters, also considering an ontology of relevant

terms concerning a certain domain. The returned list of

clusters and documents is raw and must be processed by the

interface agent, to erase unreadable files (considering the

mobile device type) and to present the result in human

readable template adaptable to different kind of displays. More

details about clustering agent and its services are reported in

section IV.

H. Web agent

The web agent is in charge to manage interactions between

the platform and the customer, who can get information about

the status of the maintenance process or submit a new fix

request.

The agent submits queries to the interface agent, as a

normal end-user. The customer can also interact with the

maintenance company through usual channels, as the telephone

or email. In this case is the human operator to insert o to

communicate data about a fix action.

I. Other agents

The previous agents are the most significant ones, but we

can consider the introduction of other agents in order to

manage integration with existent CMS (Content Management

System) and other management tools. These agents denote

behaviours which allow conversion among the E-Support

internal knowledge representation and third-parts knowledge

bases. They are easy to introduce in the MAS, if we consider

them as a sort of “special” end users interacting with the

interface agents and then the core agents.

J. Related works

Due to the complex nature of the whole E-Support project,

it is difficult to find and describe similar works that involve

every aspect of this project. Relating the document retrieval

system and multi-agent technology, several proposals are

described in literature. The management of electronic

documents is in turn, a complex problem that involves issues

as scalability, high dimensionality, content meaning, etc.

The split of the entire complex problem into circumscribed

aspects is a common approach and the multi-agent system

technology is a valid help to solve and manage these contexts.

A solution aimed to multimedia documents is proposed in

[13] where the main goal is to efficiently accesses a scene of a

video without a brute force approach (by using forward and

rewind functions). As an example is reported the recording of

a conference event; the system, based on specialized agents,

will be able to select a scene given a query like (“give me the

scene where T presents its paper). The provided solution is to

define agents specialized to process single media (video,

audio, text) and other agents able to locate a face in a frame, to

identify the selected face, and to check if the person is

speaking. An agent is able to analyse the audio in order to

extract intelligible words (or, more easily, to analyse a text

describing a scene provided by a human operator). The

orchestration of these agents allows the system to perceive the

goal.

Another solution aimed to the indexing of document in a

team of users (both end-users and owners of documents) is

described in [14]. An agent runs on every team member PC; it

is able to maintain an updated index of data stored in the PC

and to reply to the queries given by the team member. This

agent contacts its counterparts running on the other members’

PCs, in order to support a parallel document search.

Considering the architecture of the team network, the agent

running on a PC interacts with peers synchronously where

possible, asynchronously (via mail) where firewalls or other

systems inhibit the direct communication.

In [15] is illustrated a prototype which is quite similar with

the E-Support document retrieval system. The system offers

facilities to index and share information both in local

repositories and in the WWW. Every user can organize the

retrieved information in hierarchical categories (a sort of static

cluster) with the help of a personal agent which is able to

interact with other personal agents in order to share local data

among end-users. Other agent roles are defined: the

matchmaker agents help personal agent to find the peers that

manage significant information for a particular end-user query.

90

Group agents are particular personal agents that manage

common repositories, not directly linkable to a specific end-

user. Finally the knowledge agent (that is under development)

has the main feature to manage knowledge bases related to

particular domains in order to improve the results of end-user

queries.

Regarding the clustering techniques involving multi-agent

systems, a proposed solution [9] split the clustering process,

usually centralized, in a distributed environment, where

clustering agents manage local repositories and learn from the

results of cooperative peers.

Another proposed system involves swarm intelligence and

in particular the self-organization behaviour of ants applied to

large amount of documents.

K. A demonstrative scenario

In order to explicate the main functions of these agents, a

simple interaction of a remote user is reported (figure 3).

A technician on the field must access to the company

knowledge base to search information about a hot-water

heater to repair.

Fig. 2: an example of agent interactions.

He is on the field, namely in the boiler room, so he can

connect to the Wi-Fi LAN of the office. Through Internet, the

front-end agent contacts the remote server and asks the DF in

order to find a free interface agent (see in figure 2 the agent

interactions for a search query). Established the channel

between front-end agent and interface agent, the end-user must

authenticate himself. The front-end agent sends username,

password and mobile device type to the interface agent which

reroutes the information to the authentication agent. Once the

user is logged, he can send queries to the remote system. As an

example he wants to find all the documents containing the

word “heater”. He types the word “heater” and its front-end

agent sends the query to the interface agent.

The interface agent forwards the query to the clustering

agent. Ignoring for the moment the detailed functioning of the

information retrieval system, the clustering agent reads the

index of documents owned by a particular indexing agent and

then returns a hierarchical list of categories containing all the

documents belonging to knowledge base of the company, in

which is contained the word “heater”. The categories represent

different topics regarding a heater, depending on the

occurrence of most significant words in every document. If the

mobile device used by the user does not support a type of

document (for example ps files), the interface agent prunes

from the clustering list all the ps files. Therefore, the cluster

list is converted by the interface agent in an html page, ready

to be sent to the front-end agent.

Fig. 3: the remote connection of a worker.

The technician is now able to navigate the clusters, in order

to select the most relevant documents and download them.

Read the documents, for example technical manuals, the

user decides that the heater must be repaired, replacing a

particular component. In this case, the technician can

interrogate the central database to discover the closest supplier

of this component, its price, and relative instructions. As usual,

the front-end agent contacts the interface agent, which reroutes

the queries to the apposite database and composes the html

page containing the results.

91

IV. DOCUMENT RETRIEVAL SYSTEM

A. Introduction

The contribution of D’Appolonia in the E-Support project

concerns the document retrieval system. As mentioned in the

previous sections, this system is able to receive the queries of

the user, in order to find documents and every other useful file

for the everyday work activity. The goal is to provide a smart

system which allows the indexing of the entire document

corpus of the company and the automatic clustering of

documents on the basis of the searched word. E-support wants

to ease the work of technicians and engineers on the field and

this essence is also applied to the document retrieval system.

The use of clustering techniques represents a first automatic

partition of documents in the most relevant topics concerning a

particular maintenance field. The solution is reported in the

next paragraphs.

B. Clustering techniques

The document clustering is an unsupervised learning

technique that furnishes a hierarchy of document which

facilitates the browsing of a collection of documents.

Documents belonging the same cluster have a high degree of

similarity. In general, during the clustering generation process,

a document is represented by a vector that contains the most

significant words of the selected document. A pre processing

process could be useful to remove stop words, forbidden

words, etc. Some clustering techniques allows the

extrapolation of the most significant words considering the

entire document set, in order to focus a set of expressions with

a significant discriminating power. Meaningful elements to

classify a clustering algorithm are the following:

• High dimensionality: usually, in a document there are

thousands or tens of thousands relevant terms. Each

term represents a dimension of the document. Natural

clusters are not selected in the full dimensional space,

but in subspaces formed by a set of correlated

dimensions. The identification of these subspaces is

often difficult.

• Scalability: the algorithms must work fine with both

limited and large sets of documents.

• Accuracy: documents belonging the same cluster

must be similar. External evaluation methods for the

accuracy measure are developed [10].

• Meaningful cluster description: every cluster must be

described with a significant label which helps the user

to browse the cluster hierarchy.

• Prior domain knowledge: several algorithms can be

tuned with input parameters. Oftentimes, the user is

unable to set up these parameters. In this case the

algorithms should not sensitively decrease the

performances.

Clustering algorithms can be classified into main

categories:

• Hierarchical clustering methods: they can have a

bottom-up approach, i.e. they generate a set of

clusters and then they merge the most similar clusters;

the top-down approach, on the other hand, divides

every cluster in sub-clusters, until an end condition is

reached.[11]

• Partitional clustering methods: they consist in the k-

means methods and variants. Every document is

associated to the closest centroid (considering the

similarity), starting from a set of k random centroids.

The algorithm selects a centroid to split and repeats

the process, until the number of k cluster is reached.

[11]

• Frequent item-set based methods: the idea is that

many frequent items (namely terms) should be shared

within a cluster and different cluster should have

more or less different frequent items. The result is not

a hierarchical clustering; in order to introduce this

feature, the notion of item-set is created. [12]

C. Architecture

The figure 4 shows the proposed architecture of the system.

The whole system is based on the collection of textual

documents and other type of files (as pictures, cad files,

datasheets, etc.). These documents can be tagged, in order to

add useful information to the single file. This is helpful for

textual documents, in order to add detailed information about

the nature of the document; this option becomes necessary in

case of non-textual documents. These tags are defined in

specific ontologies: one for the description of document types

and one containing the relevant entities of a particular

maintenance sector (for example computer maintenance,

electrical, heating, building, etc.). The administrator of the

system or a skilled employee can create an instance of a

particular concept and then attach it to the selected document.

Fig. 4: the document retrieval system architecture.

The textual documents are indexed by the Apache Lucene

indexing engine. An indexing agent continuously reads the

document corpus and updates the generated index. Another

similar agent supervises a group of selected web sites and the

result of the web indexing is merged with the main one.

The clustering engine taps into the Lucene index and the

set of tags in order to provide a more efficient clustering. For

the E-Support we select the Carrot² clustering engine, which

implements the most advanced clustering algorithms.

92

Authenticated users exploit the functionalities of Carrot² and

administrators are able to tune the parameters of Carrot² and

configure the whole system.

D. The document corpus

The work of a maintenance technician is not only based on

the hint of textual documents. Maintenance companies provide

precise requirements regarding the sharing of pictures of plants

and parts, with attached comments containing the experiences

of the colleagues. These companies consider helpful the

indexing of cad files containing the technical schema of the

plants, datasheet with details of the components, and maps of

buildings, compounds and cities.

E. Tags and ontologies

An ontology containing the different types of documents is

going to be developed. The aim of this ontology is to provide a

complete catalogue of the possible documents owned by a

maintenance enterprise. For example, the document ontology

contains the textualDocument class, with properties hasTitle,

hasTopics, and hasComment. The textual document class is

specialized in different subclasses, e.g. the book class with

properties hasTitle, hasTopics, hasComment (all inherited

from the textual document class), hasISBN, hasEditor; the

webpage class with properties hasTitle, hasTopics,

hasComment, hasURL etc. Another class (disjoint from the

textualDocument class) could be the picture class, with a

property for the technician comments, the location, the date

etc.

Regarding the maintenance ontologies, a generic

maintenance ontology will be delivered and different domain

specific ontologies will be built on the basic one. The survey

involving European maintenance companies shows that these

companies cover different maintenance sectors and often the

same enterprise manages several fields. Therefore, specific

ontologies are the solution in order to deeply customize the

functioning of the document retrieval system, especially

increasing the performances of the clustering engine.

For example, if the company does maintenance in the

computer field, an ontology based on Information Technology

will be built. The ontology will contain the most relevant

entities of the computer discourse domain. The components of

a PC will be described. As an example a class describing a

chip of RAM, handles properties like hasManufacturer,

hasCapacity, hasDimension etc.

Both the ontologies are used to catalog a document. For

instance, we have a web page containing specific information

about RAM chips and then the human operator can add a

series of tags describing the page: a tag that instances the

concept of the web page, one or more tags instantiating the

concept RAM, and so on. The ontologies are developed by

using the Protégé ontology editor [13] and the OWL language

[14].

F. The indexing engine

To furnish a valid tool for the document clustering, the

whole system must be based on a robust indexing engine, able

to index efficiently a large amount of files, customizable, open

source and possibly written in Java. The Apache Lucene

project corresponds perfectly to these requirements. Lucene

offers good performances in terms of RAM and CPU usage

and disk space occupation. It allows the definition of

customized file parsers in order to read every type of file. The

complete API of Lucene allows the implementation of an agent

able to manage the indexing process and the management of

the resulting index. The indexing engine provides functions to

merge different indexes, to build an index in incremental mode

or batch mode; it allows the simultaneous searching and

updating and the research through several fields as the title, the

author, the content, etc.

G. The clustering engine

It is the core of the document retrieval system. The selected

tool is the Carrot² clustering engine. It is a Java open source

software that automatically organizes the search results into

thematic categories. At now Carrot² supports 5 algorithms:

Fuzzy Ants [15], HAOG-STC, Lingo [16], Rough K-Means

[17], STC [18]. The clustering engine can exploit different

indexing engines both online as Google, MSN, Yahoo, and

offline as Lucene.

Fig. 5: the clusters generated by Lingo3G compared with the Carrot² ones.

There exists a commercial version of Carrot², named

Lingo3G, which provides improved features and

performances. It is able to get hierarchical clusters, to filter or

boost suggested cluster names, supports the definition of

synonyms and multilingual clustering. The APIs of the free

version and the commercial one are quite similar, then, in the

E-Support project, we intends to provide both the services and

allow the companies to chose the level of accuracy they need

buying the license of the commercial version or using the open

source one. In parallel with the Carrot²/Lingo3G clustering we

execute a sort of clustering based on the existing tags. The

clustering based on tags is more accurate, because it derives

from a human classification. Even if the automatic clustering is

less accurate and smart, the results of the tests we did are

encouraging. The results of the two clustering processes are

merged, obviously highlighting the ones coming from the tag

clustering.

93

Another interesting feature connected to the clustering is

the extension of the thematic classification to the terms

belonging to the maintenance ontology which are related to the

current searched keyword (only if the keyword belongs to the

ontology) through usual ontological relations as: is subclass of,

is a part of, same as etc.

Fig. 6: sub-clusters for the "Java" cluster (Lingo3G).

All these features are managed by the clustering agent

which runs different behaviours that implement the

aforementioned methodologies of clustering.

Some testing results are shown in figures 5 and 6: the

clustering engine prototype ran on an index containing about

800 indexed documents (pdf and doc file). The system returns

a collection of clusters for the keyword “message”. Figure 5

reports a comparison between the Lingo3G results and the

Carrot² ones. Figure 6 reports a detail regarding a sub-cluster

generated for the “Java” cluster. Considering these results, the

Lingo3G engine returns a high number of significant clusters.

The cluster labels appear more accurate and sub-clusters are

on topic with the parent cluster.

H. The user functionalities

As emerges from the requirements analysis, the user (regarding

the document retrieval system) is able to access the knowledge

base of the company represented by the collection of

documents and other files, through different ways:

• Simple search: the user enters a keyword and the

system returns a set of clusters (figure 7).

• Conceptual search: the user instantiates a concept

coming from the document or the maintenance

ontology. The system returns another set of clusters

based on the instance of the concept.

• Directories: they are a sort of static clusters: typical

topics related to the specific maintenance sector. They

are set a priori.

• Documents chronology: the list of recent documents

read by the user.

• New and updated documents: a list of the new

documents and a report of the updated ones.

I. The administrator features

Regarding the document retrieval system, the administrator

manages the entire documents corpus. He can add, update and

modify documents, and he can manage the tags linked to every

file. A particular function of the administrator is the possibility

to create user profiles. A user’s profile describes a particular

category of end users. In a maintenance enterprise the workers

are specialized in a maintenance sector, therefore for each

worker profile, the administrator can select a particular

maintenance ontology, a particular set of documents

directories, a certain list of preferred cluster labels, and a

customized Lingo3G/Carrot² setup. The administrator can link

every user to a profile in order to improve the performances of

the document retrieval system.

Fig. 7: a demo for the simple search function.

V. CONCLUSIONS

The E-Support project is currently under development. At

now, the European partners are going to validate the final

architecture proposal and the implementation of the system

will start as soon as possible. Regarding the document retrieval

system, both the relative agents and the architecture seems to

be consolidated.

Concerning the performances of the clustering engine, we are

stressing the two versions: Carrot² and Lingo3G. Obviously

the two tools are not a magic box and the results are less

efficient than the human classification. Nevertheless the results

are encouraging and fairly positive: the test tools we have

developed works on thousands of technical documents and

scientific papers and they have become an utility for the

everyday activity. We think that through an opportune

calibration, and with the help of ontologies the developed tools

supporting the front-end agent, will make it a very smart agent:

a useful partner for each technician on the field.

REFERENCES

[1] F. Bellifemine, G. Caire, D. Greenwood, “Developing Multi-agent

Systems with JADE”, Wiley, 2007.

[2] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, M. Schlichte,

“Porting Distributed Agent-Middleware to Small Mobile Devices”, In

Proceedings of the Workshop on Ubiquitous Agents on embedded,

wearable, and mobile devices, Bologna, 2002.

[3] S. Landau, M. Leese, “Cluster Analysis”, Oxford University Press US,

2001.

[4] A. Tanenbaum, “Computer Networks”, Prentice Hall, 2002.

[5] D. Salomon, “Data Privacy and Security: Encryption and Information

Hiding”, Springer-Verlag, New York 2003.

94

[6] F. Dubois, B Mérialdo, “A framework for multi-agent multimedia

indexing”, In Proceedings of workshop on intelligent multimedia

information indexing, August 1995 - Montreal, Canada.

[7] C. N. Linn, “A multi-agent system for cooperative document indexing

and queryingin distributed networked environments”, In Proceedings of

International Workshops on Parallel Processing, 1999.

[8] J. Chen, S. Wolfe, S. Wragg, “A distributed multi-agent system for

collaborative information management and sharing”, In Proceedings of

the ninth international conference on Information and knowledge

management, McLean, Virginia, United States, 2000.

[9] K. Hammouda and M. Kamel, “Collaborative Document Clustering”, In

Proceedings of Conference on Data Mining (SDM06), pp. 453-463,

Bethesda, Maryland, April 2006.

[10] C. J. van Rijsbergen, “Information Retrieval” Butterworth Ltd., second

edition, London, 1979.

[11] L. Kaufman, P. J. Rousseeuw, “Finding Groups in Data: An

Introduction to Cluster Analysis”, New York: John Wiley & Sons, 1990.

[12] K. Wang., C. Xu, B. Liu, Clustering transactions using large items. In

Proceedings of International Conference on Information and

Knowledge Management, CIKM’99, Kansas City, Missouri, United

States, 483–490, 1990.

[13] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubezy,

H. Eriksson, N. F. Noy, S. W. Tu, “The Evolution of Protégé: An

Environment for Knowledge-Based Systems Development”, 2002.

[14] D. L. McGuinness and F. van Harmelen, “OWL Web Ontology

Language Overview”, Feb. 2004, [Online document], Available at

HTTP: http://www.w3.org/TR/owl-features/

[15] S. Schockaert, M. de Cock, C. Cornelis, E. E. Kerre, “Efficient

Clustering with Fuzzy Ants”, In Proceedings of Ant Colony

Optimization and Swarm Intelligence (ANTS 2004), pages 342-349,

2004.

[16] S. Osinski, D. Weiss, “A Concept-Driven Algorithm for Clustering

Search Results”, IEEE Intelligent Systems, 3 (vol. 20), 2005, pp. 48-54.

[17] C.L.Ngo, H.D.Nguyen, A Tolerance Rough Set Approach to Clustering

Web Search Results, in Proceedings of the 8th European Conference on

Principles and Practice of Knowledge Discovery in Databases (PKDD

2004), Italy, September 2004.

[18] J. Stefanowski, D. Weiss, “Carrot and Language Properties in Web

Search Results Clustering”, In Proceedings of the First International

Atlantic Web Intelligence Conference, Madrid, Spain, 2003, pp. 240-

249.

95

Abstract—This paper presents a framework supporting the

definition and implementation of virtual environment
inhabited by interacting situated agents defined according to
the Multilayered Multi-Agent Situated System model. The
framework supports the specification and execution of visually
rich 3D virtual environment endowed by the presence of
mobile agents acting and interacting inside it according to a
multi-agent model. The paper briefly describes the related
works and possible application scenarios for the framework,
then it introduces the multi-agent model underlying the
framework and its basic architecture. Sample applications are
also described so as to show the potential of the framework in
executing models comprising several hundreds of agents
producing an effective visualization of the generated dynamics.

Index Terms— multi-agent systems, virtual environments,
simulation, 3D visualization

I. INTRODUCTION

HE design and realization of virtual environments
inhabited by social entities is a significant application of

the conjoint results of various research areas in computer
science and engineering. Virtual environments have been
exploited in several ways, and in particular:

- to support computer mediated forms of human
interaction, characterized by the introduction of
Embodied Conversational Agents facilitating
users’ interactions [18] or supplying awareness
information in a visually effective form [20];

- to realize operational laboratories for
participatory design, supporting the effective
visualization of various alternative design
choices to the involved stakeholders
[8][13][11];

- to provide effective instruments for the
modeling, simulation and visualization of the
dynamics of entities situated in a representation
of an existing, planned or reconstructed
environment or situation [10][19];

- for sake of entertainment, in movies, computer
games or in online communities (see, e.g.,
Second Life1).

While all these applications are characterized by a strong

aComplex Systems and Artificial Intelligence research center, University

of Milano-Bicocca, via Bicocca degli Arcimboldi 8, 20126 Milano,
{giuseppe.vizzari, giorgio.pizzi}@csai.disco.unimib.it

bDepartment of Computer Science, Institute of Mathematics and
Statistics, Universidade de São Paulo, fcs@ime.usp.br

1 http://secondlife.com

requirement for realistic and effective visualization tools
(and some of them require a thorough analysis of the system
usability, due to the necessary accessibility by non-
technically skilled users), they also call for expressive
models supporting the specification of behaviours for the
entities that inhabit these environments, as well as the
interaction among them and with the environment itself. The
fact that the overall performance of the system is essentially
dependant on the single actions and interactions that are
carried out by entities inhabiting the modeled environment
leads to consider that the Multi-Agent Systems [12]
approach is particularly suited to tackle the modeling issues
that are posed by this scenario. This idea is also
corroborated by the fact that most of the above introduced
references actually describe systems based on this approach,
and by specific experiences in applying MAS approaches to
specific virtual environments applications such as computer
games [16].

In this vein, the main aim of this paper is to show the
current advancement of a long term project that provides the
realization of a framework supporting the development of
MAS based simulations based on the Multilayered Multi-
Agent Situated System model provided with an effective
form of 3D visualization. The main goal of the framework is
to support a smooth transition from the definition of an
MMASS based model of given situation (in terms of
environment, relevant entities and their behaviours,
expressed as individual actions interactions) to the
realization of simulation systems characterized by an
effective 3D user interface. One of the possible application
areas of this kind of system is related to the modeling and
simulation of crowds of pedestrians to support architectural
design or urban planning [3][4]. In order to have
information flowing appropriately from the formal model to
design professionals (e.g. architects and urban planners), the
MMASS-based simulator must be supported by adequate
visualization and animation tools. Such supporting tools are
the core issue of the present paper.

The paper breaks down as follows: the following section
discusses related works in different application scenarios,
while section III briefly introduces the MMASS model and
its application to model pedestrians situated and moving in
representations of physical spaces. Section IV discusses the
architecture of the proposed framework, its main
components and the tools supporting developers adopting it.
Section V presents two sample applications aimed at
showing the potential of the framework in executing models
comprising several hundreds of agents producing an
effective visualization of the generated dynamics.
Conclusions and future developments end the paper.

A Framework for Interacting
Situated Agents in Virtual Environments

Giuseppe Vizzaria, Giorgio Pizzia, Flávio Soares Corrêa da Silvab

T

96

II. RELATED WORKS AND APPLICATION SCENARIOS

The realization of virtual environments inhabited by
autonomous entities and characterized by a realistic three-
dimensional form of visualization was the goal of several
projects, both commercial and academic, with different
aims, features and available documentation. A complete and
thorough description of the state of the art in this area,
besides being extremely difficult to realize, is out of the
scope of this paper; we will rather briefly report the survey
activity that was carried out before starting the project and
that motivated the effort related to the design and realization
of the framework.

The main aim of the research effort is to realize an
instrument that, on one hand, supports an effective form of
visualization of a virtual environment and, on the other,
allows the specification of the behaviours of the
autonomous entities that inhabit it in terms of an expressive
agent based model. To this purpose, we considered several
possible supporting instruments, both commercial and open
source, both providing a basic enabling technology and also
some projects providing a support to the phases of modeling
and definition of agents behaviours.

Some relevant representatives of the category of
commercial instruments that can support the design and
development of virtual environments are Quadstone
Paramics2 and Massive3. Paramics is a traffic micro-
simulation software, that is able to generate realistic 3D
visualizations of the simulated dynamics. Massive is instead
an application specifically devoted to the generation of
photorealistic animation of crowd-related visual effects (it
was adopted for several films – e.g. to generate the battles
of the Lord of the Ring – and commercials – e.g. to create
the audience in a stadium). These instruments are generally
extremely focused, very powerful, but their internal
mechanisms are not well documented. In general they
cannot be adapted to tackle application scenarios different
from those they were originally conceived for; therefore
they do not provide the degree of flexibility required by our
project.

Some open source efforts were also considered, and two
relevant representatives of the analyzed platforms are
Mason4 [15] and Breve5 [14]. Mason is a discrete-event
multi-agent simulation library, designed to be the
foundation for custom-purpose Java simulations. It also
includes an optional suite of visualization tools in 2D and
3D. However, this suite does not represent a proper support
to the realization of a virtual environment, but rather a
library for realizing simple 3D visualization of the simulated
system. Breve, on the other hand, is a software package
enabling the definition of 3D simulations of multi-agent
systems and artificial life. It adopts a specific ad-hoc
language (called “steve”) for the specification of agents’
behaviours. However, it is more focused on providing an
abstract and extremely simplified 3D environment for
specifying and testing multi-agent models and artificial life
models, rather than supporting the realization of a detailed

2 http://paramics-online.com/
3 http://www.massivesoftware.com/
4 http://cs.gmu.edu/~eclab/projects/mason/

virtual environment.
The analyzed system that was closest to meet our

requirements is Freewalk6, an application that was adopted
in some of the previously cited applications of virtual
environments. It adopts a scenario specification language,
called Q, that supports the specification of the environment
(that must be a VRML model) and the behaviours of agents
(through the notion of scenario). Freewalk, however, is not
an open-source project and the Q language is not very
focused on the interaction among the agents and the
environment (that can be conceived as an element having an
influence on their behaviour that goes beyond the fact that it
provides obstacles to their movement). These considerations
lead us to consider the possibility to adopt a basic enabling
infrastructure for an effective visualization of system
dynamics and an existing model - MMASS [1] - and
platform for the specification of situated MAS supporting
the definition of virtual environments. The MMASS model
is in fact characterized by the fact that agents’ environment
is a first class element of the model, and it deeply influences
agents’ perceptions and actions, supporting forms of
interactions that are particularly suited to represent the
movement of pedestrians in physical spaces [2].

III. MULTILAYERED MULTI -AGENT SITUATED SYSTEM

MODEL

This section will introduce the basic elements of the
MMASS model and its application to represent and manage
mechanisms of interaction between the environment and
active autonomous entities that are useful for the
specification of dynamic virtual environments. We will start
discussing the elements of a single layered model, a Situated
Cellular Agents model, then we will show how it can be
applied to represent physical environments and active
entities situated and moving in it. The last subsection will
discuss how a multilayered structure can be adopted to
enhance the model and support more autonomous forms of
agents’ behaviours.

A. Situated Cellular Agents

A system of Situated Cellular Agents can be denoted by
the three-tuple 〈Space,F,A〉 where Space is a single layered
environment where agents are situated, act autonomously
and interact by means of reaction or through the propagation
of fields belonging to the set F. Field based interaction is an
indirect interaction mechanism that provides a modification
of agents’ environment that can be perceived by agents
according to their context and state; a more thorough
description of field based interaction can be found in [17],
whereas the specific SCA field-based interaction model is
discussed in [6]. Agents belong to A, a finite set of agents,
each characterized by a type determining their state,
perceptive capabilities and behavioural specification. The
elements of this three tuple will now be formally described.

Space - The Space consists of a set P of sites arranged in
a network (i.e. an undirected graph of sites). Each site p∈P
can contain at most one agent and is defined by 〈ap,Fp,Pp〉

5 http://www.spiderland.org/
6 http://www.ai.soc.i.kyoto-u.ac.jp/freewalk/

97

where ap∈A∪{⊥} is the agent situated in p (ap=⊥ when no
agent is situated in p, in other words p is empty); Fp⊆F is
the set of fields active in p (Fp=∅ when no field is active in
p); and Pp⊂P is the set of sites adjacent to p. Edges
connecting sites represent a constraint to the movement of
agents situated in the environment and also on the diffusion
of fields, which only propagate through these connections.

Fields - A field fτ∈F that can be emitted by agents of
type τ is denoted by the four-tuple
〈Wτ,Diffusionτ,Compareτ,Composeτ〉 where:

• Wτ=S×N, where S⊆Στ, denotes the set of values that
the field can assume; given wτ∈Wτ, wτ=〈sτ,iτ〉, where s∈S
represents information brought by the field (i.e. the field
payload) and iτ∈N represents its intensity.

• Diffusionτ:P×Wτ×P→Wτ is the diffusion function for
field type τ; Diffusionτ(ps,wτ,pd) computes the value of a
field on a given destination site (pd) taking into account in
which site it was emitted (ps) and with which initial value
(wτ∈Wτ).

• Compareτ:Wτ×Wτ→{True,False} is the function that
compares field values. It is used by the perceptive system of
agents to evaluate if the value of a certain field type is such
that it can be perceived.

• Composeτ:(Wτ)
+→Wτ expresses how field values of

the same type have to be combined in order to obtain the
unique value of a field type at a given site.

Agent Types - The possibility to define different agent
types introduces heterogeneity, in other words the chance to
define different abilities and perceptive capabilities.
Defining T the set of types, it is appropriate to partition the
set of agents in disjoint subsets corresponding to different
types. The set of agents can thus be defined as
A=τ∈TAτ where Aτi

∩Aτj
=Ø for i≠j. An agent type τ is

defined by the three tuple 〈Στ,Perceptionτ,Actionτ〉 where:
• Στ defines the set of states that agents of type τ can

assume;
• Perceptionτ:Στ→[N×Wf1]...[N×Wf|F|

] is a function
associating to each agent state the vector of pairs
representing respectively a receptiveness coefficient
modulating the intensity of that kind of field and a
sensitivity threshold represented by a specific field value;
these functions represent the perceptive capabilities
specification for that type of agent and their usage will be
clarified in the description of agents and their behaviours.
Formally, this vector of pairs is defined as

() () ())(),(,...,)(),(,)(),(2211 stscstscstsc FF
ττττττ

where for each i (i=1...|F|), ci
τ(s) and tiτ(s) express

respectively a receptiveness coefficient to be applied to the
field value fi and the agent sensibility threshold to fi in the
given agent state s.

• Actionsτ denotes the set of actions that agents of type τ
can perform, and will be described in the following.

Agents and their Behaviours - An agent a∈A is defined
by the three–tuple 〈s,p,τ〉, where:

• s∈Στ denotes the agent state and can assume one of the
values specified by its type;

• p∈P is the site of the Space where the agent is situated;
• τ is the agent type, which provides the allowed states,

perceptive capabilities and behavioural specification for that
type of agents.

The first two elements were previously introduced, we
will now focus on Actionτ, which is made up of a set of
actions and an action selection strategy. Actions can be
selected from a set of primitives which include reaction
(synchronous interaction among adjacent agents), field
emission (asynchronous interaction among at–a–distance
agents through the field diffusion–perception–action
mechanism), trigger (change of agent state as a consequence
of a perceived event) and transport (agent movement across
the space). The two interaction mechanisms provided by the
SCA model (i.e. reaction and field–based interaction) are
also described by the diagram in Figure 1. Every primitive
will be now briefly described specifying preconditions and
effects. It must be noted that an action selection strategy is
invoked when the preconditions of more than one action are
verified; several possible strategies can be defined, but in
this context a non–deterministic choice among possible
action was adopted.

B

A

A

B

C

Figure 1 – A diagram showing the two interaction
mechanisms provided by the SCA model: two reacting
agents on the left, and a field emission on the right.

The behavior of Situated Cellular Agents is influenced by

agents situated on adjacent positions and, according to their
type and state agents are able to synchronously change their
states. Synchronous interaction (i.e. reaction) is a two–step
process. Reaction among a set of agents takes place through
the execution of a protocol introduced in order to
synchronize the set of autonomous agents. When an agent
wants to react with the set of its adjacent agents since their
types satisfy some required condition, it starts an agreement
process whose output is the subset of its adjacent agents that
have agreed to react. An agent agreement occurs when the
agent is not involved in other actions or reactions and when
its state is such that this specific reaction could take place.
The agreement process is followed by the synchronous
reaction of the set of agents that have agreed to it. Reaction
of an agent a situated in site p∈P can be specified as:

action:reaction(s,ap1,ap2,...,apn,s')
condition:state(s),position(p),agreed(ap1,ap2,...,apn)
effect:state(s')
where state(s) and agreed(ap1,ap2,...,apn) are verified

when the state of agent a is s and agents situated in sites
{ p1,p2,...,pn} ⊆Pp have previously agreed to undertake a
synchronous reaction. The effect of a reaction is the
synchronous change in state of the involved agents; in
particular, agent a changes its state into s'.

Other possible actions are related to the indirect
interaction mechanism, related to field emission and to the
perception–deliberation–action mechanism. Agent emission
can be defined as follows:

98

action:emit(s,f,p)
condition:state(s),position(p)
effect:added(f,p)
where state(s) and position(p) are verified when the agent

state is s and int position is p. The effect of the emit action is
a change in the active fields related to sites involved in the
diffusion, according to Diffusionf. One of the possible
effects of an agent perception of a certain field fi can be
defined as

action:trigger(s,fi,s')
condition:state(s),position(p),perceive(fi)
effect:state(s')
where perceive(fi) is verified when fi∈Fp and

Compareτ(c
i
τ⋅ifi,tiτ)=true (in other words, field intensity

modulated by a receptiveness coefficient exceeds the
sensitivity threshold for that field). The coefficients ci

τ and
tiτ are those determined by the perception function for that
type of agent in the state s. The effect of the trigger action is
a change in agent’s state according to the third parameter.

The last possible action for an agent causes a change in
its position and can be specified as follows:

action:transport(p,fi,q)
condition:position(p),empty(q),near(p,q),perceive(fi)
effect:position(q),empty(p)
where empty(q) and near(p,q) are verified when q∈Pp

and q=〈⊥,Fq,Pq〉 (q is adjacent to p and it does not contain
agents). The effect of a transport action is thus to change the
position of the related agent.

B. Modeling Crowds with SCAs

The basic idea underlying the application of the SCA
model to represent environments and entities situated and
moving in it is that this kind of movement can be generated
by means of attraction and repulsion effects (as also
suggested in [9]). These effects are generated by means of
fields that can be emitted by specific point of the
environment, and that can be perceived as
attractive/repulsive or that can even be simply ignored by
different types of moving entities in specific states. Also
pedestrians themselves are able to emit fields and thus, in
turn, they can generate attraction/repulsion effects, and what
is called an ‘active walker’ model.

A thorough discussion of this modeling approach is out of
the scope of this paper and it can be found in [2], we will
now just give some indications of the main steps that must
be followed to define a SCA model starting from an abstract
description of a given scenario.

Definition of the spatial infrastructure of the
environment – a SCA space can represent a discrete
abstraction of a physical environment, in which a site
corresponds to a portion of space that can be occupied by a
pedestrian. For instance, a corridor and the rooms having a
door on it could be discretized in 40cm2 cells characterized
by a Von Neumann adjacency.

Definition of points of interest/reference in the
environment – specific spots of the environment can
represent elements of interest, reference points or
constraints (e.g. gateways, doorways) influencing pedestrian
movements. These elements must be associated with
immobile agents (e.g. door jambs) able to emit fields

indicating the presence of the point of interest/reference to
pedestrians. For instance, considering a corridor the exits
should be associated to suitable fields able to guide agents
towards them, but also possible doorways leading to rooms
should be provided with agents emitting proper fields.

Definition of mobile entities of the environment
(pedestrians) – the different types of mobile entities, agents
representing pedestrians, can be now defined in terms of
attitudes towards the movement in the environment (sort of
states indicating how an agent interprets fields in choosing
where to move). For instance, in the corridor example,
agents in different states could be attracted by different exits
of the corridors and thus could be attracted by the related
field, ignoring fields generated by doors leading to internal
rooms. This attitude could change according to internal
decisions of the agent, or to an external event perceived by
it. Of course, different agent types can have different
attitudes; summarizing, different agent types can interpret
fields in a different way, and agents of the same type,
according to their state, can also react in different way to the
perception of the same kind of signal.

Figure 2 – A diagram illustrating a multilayered
environment specification: the bottom layer is a fine
grained discretization of Scala Square and the top layer
represents its points of interest.

C. From a Single Layer to Multiple Layers

The previously introduced representation of the
environment can be enhanced by introducing additional
representations, for instance representing a different
abstraction of the physical space related to the virtual
environment. In particular, the different points of
interest/reference might be represented on a graph whose
links represent proximity or direct reachability relations
among the related points, realizing a sort of abstract map of
the environment. This layer might be interfaced to the
previously introduced finer representation of the
environment (i.e. the physical layer), and it could be the

99

effective source of fields generated by infrastructural
elements, that are diffused to the physical layer by means of
interfaces. A sample diagram illustrating this approach to
the modeling of a physical environment is shown in Figure
2: the bottom layer is a fine grained discretization of Scala
Square and the top layer represents its points of interest, that
are associated with agents emitting a proper distinctive
presence field.
The abstract map could also be (at least partly) owned by an
agent, that could thus make decisions on what attitude
towards movement should be selected according to its own
goals and according to the current context by reasoning
on/about the map, instead of following a predefined script.
This kind of considerations do not only emphasize the
usefulness of a multiple layered representation of the
environment, but they also point out the possibility to
enhance the current agents (that are characterized by a
reactive architecture) by endowing them with proper forms
of deliberation, towards a hybrid agent architecture. A
complete definition of these deliberative elements of the
situated agents is object of current and future works.

Figure 3 – Simplified class diagram of the part of the
framework devoted to the realization of MMASS
concepts and mechanisms.

IV. THE EXECUTION AND VISUALIZATION FRAMEWORK

As discussed in section II, the basic approach that was
adopted for this project is to integrate an existing MAS
modeling and development framework with an
infrastructure supporting an effective form of 3D
visualization of the dynamics generated by the model. In
particular, to realize the second component we adopted
Irrlicht7, an open-source 3D engine and usable in C++
language. It is cross-platform and it provides a performance
level that we considered suitable for our requirements. It
provides a high level API that was adopted for several
projects related to 3D and 2D applications like games or
scientific visualizations. The MAS modeling and
development framework we adopted is a C++ porting and
relevant refactoring of the original MMASS framework [2],
aimed at adapting it to the different programming language
and also at optimizing some mechanisms such as commonly
adopted field diffusion algorithms. The following
subsections will discuss the basic elements of this C++
version of the MMASS framework and the infrastructure
interfacing this module with the 3D visualization engine.

7 http://irrlicht.sourceforge.net/

A. Supporting and Executing MMASS Models

The MMASS framework adopted for this project is
essentially a library developed in C++ providing proper
classes to realize notions and mechanisms related to the
SCA and MMASS models. In particular, a simplified class
diagram of the MMASS framework is shown in Figure 3.
The lower part of the diagram is devoted to the
environment, and it is built around the BasicSite class. The
latter is essentially a graph node (i.e. it inherits from the
GraphNode class) that is characterized by the association
with a FieldManager. The latter provides the services
devoted to field management (diffusion, composition and
comparison, defined as abstract classes). An abstract space
is essentially an aggregation of sites, whose concretizations
define proper adjacency geometries (e.g. regular spaces
characterized by a Von Neumann adjacency or possibly
irregular graphs).

An abstract agent is necessarily situated in exactly one
site. Concrete agents defined for this specific framework are
active objects (that are used to define concrete points of
interest/reference to be adopted in a virtual environment)
and pedestrians (that are basic agents capable of moving in
the environment). Actual pedestrians and mobile agents that
a developer wants to include to the virtual environment must
be defined as subclasses of Pedestrian, overriding the basic
behavioural methods and specifically the action method.

Figure 4 – Simplified class diagram of the part of the
framework devoted to the management of the
visualization of the dynamics generated by the model.

B. Integrating the Models with a Realtime 3D Engine

While the previous elements of the framework are
devoted to the management of the behaviours of
autonomous entities and of the environment in which they
are situated, another relevant part of the described
framework is devoted to the visualization of these dynamics.
More than entering in the details of how the visualization
library was employed in this specific context, we will now
focus on how the visualization modules were integrated
with the previously introduced MMASS framework in order
to obtain indications on the scene that must be effectively
visualized.

100

Figure 4 shows a simplified class diagram of the main
elements of the 3D Engine Library. The diagram also
includes the main classes that are effectively in charge of
inspecting the state of the MMASS environment and agents,
and of providing the relevant information to the
SceneManager that will translate it into a scene to be
visualized. The Project class act as a container of the 3D
models providing the graphical representation of the virtual
environment (Model3D objects), as well as the graph related
to the adopted discretization of this physical space (a Graph
object visually representing the previously discussed
physical layer). It also includes a set of Avatar objects, that
are three dimensional representations of Pedestrian objects
(introduced in the previous subsection).

The framework must be able to manage in a coordinated
way the execution of the model defined for the specific
virtual environment and the updating of its visualization. To
manage this coordinated execution of different modules and
procedures three main operative modes have been defined
and are supported by the framework. The first two are
characterized by the fact that agents are not provided with a
thread of control of their own. A notion of turn is defined
and agents are activated to execute one action per turn, in a

sequential way or in a conceptually parallel way (as for a
Cellular Automaton). In this case, respectively after each
agent action or after a whole turn the scene manager can
update the visualization. On the other hand, agents might be
associated with a thread of control of their own and no
particular fairness policy is enforced. The environment, and
more precisely the sites of the MMASS space, is in charge
of managing possible conflicts on the shared resource.
However, in order to support a fluid visualization of the
dynamics generated by the execution of the MAS, the
Pedestrian object before executing an action must
coordinate with the related Avatar: if the previous
movement was still not visualized, the action is temporarily
blocked until the visualization engine has updated the scene.
It must be noted that in all the introduced activation modes
the environment is in charge of a regulation function [7]
limiting agents’ autonomy for sake of managing the
consistency of the overall model or to manage a proper form
of visualization.

V. SAMPLE APPLICATIONS

The aim of this section is to present some sample
applications to show how the framework supports the
definition of MMASS models and the realization of an
effective three dimensional visualization. The applications
were also chosen to show the potential of the framework in
terms of execution of a large number of agents. Tests were

Figure 5 – Four screenshots of the first sample
application, showing the movement of very simple agents
from a starting room on the left, to an exit in the
rightmost room.

101

carried out on a notebook on which the Windows XP
Professional operating system was installed; the notebook
was provided with an Intel Pentium IV 2.4 GHz processor,
with 320 MB RAM and an ATI Raedon IGP graphic card
with 128 MB (shared system memory).

The first application is about the simulation of the
evacuation of a section of a building, comprising several
rooms connected by doors. In this specific scenario agents’
behaviours are very simple, and only provide the movement
towards specific exits. Agents reaching these exits are
simply eliminated from the scenario; some screenshots of
this example are shown in Figure 5. In this scenario the
environment comprises a graph of around 1000 sites,
connected by more than 3500 arcs; 150 agents are situated
in the scenario and they are activated according to
sequential activation strategy. The analytical results of the
simulation are not relevant in this context, also because the
agent models were not calibrated against real data; the
simulation was executed and visualized with a number of
frames per second (FPS) constantly above 60. The speed of
the simulation was in fact actually limited to achieve a

smooth form of visualization of the system dynamics.
 The second example is about the movement of agents

inside a virtual museum; the aim of the agents in this
scenario is to move outside the buildings to gather in
specific areas, as in case evacuation. In this case the
environment comprises around 2000 sites (a gross
discretization of the represented environment) with around
6000 arcs connecting them; 500 agents were randomly
positioned inside buildings, and they were provided with a
thread of control of their own. Both the environment and
agents were characterized by a 3D visual model, with
textures; some relevant screenshots of this sample
application are shown in Figure 6. Once again, the
analytical results of this simulation are not relevant, since
the agent models were extremely simple and they were not
calibrated against real data. The simulation was executed
and visualized with a number of FPS constantly above 30.

We also executed a stress test on a different hardware
configuration, to verify the scalability of the framework; the
workstation was based on Windows XP Professional
operating system, with an Intel Pentium Core 2 Duo 2.4
GHz, 2 GB RAM and a NVIDIA Quadro FX 3450 graphic
card with 256 MB. The test environment was constituted by
11000 sites, connected by around 44000 arcs; 10000 agents,
sequentially activated, were positioned in this environment.
Their behaviour was simply to move towards the closest
source of an ‘exit’ field; agents reaching the source were

Figure 6 – Four screenshots of the virtual museum
application, showing the structure of the environment -
(a) and (b) – a perspective view of the evacuation and
also a ‘bird’s eye’ view of the environment coupled with
three ‘first-person’ perspectives of agents – (c) and (d).

102

removed from the environment. The system was able to
execute and visualize the simulation with 22 FPS, when the
structure of the environment was hidden (reducing the
number of displayed triangles), and with 3 FPS when it was
visualized.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

The paper has presented a framework supporting the
definition and realization of virtual environment inhabited
by interacting situated agents modeled according to the
Multilayered Multi-Agent Situated System. The framework
supports the specification and execution of visually rich 3D
virtual environment characterized by the presence of
situated agents acting and interacting inside it. The paper
briefly introduced some relevant related works, then it
presented the multi-agent model underlying the framework
and its basic architecture (with specific reference to the
integration of computational support to the formal model
and the visualization components). Sample applications
were also described in order to show the potential of the
framework in executing models comprising several
hundreds of agents producing an effective visualization of
the generated dynamics.

Future works are aimed, on the one hand, at improving
the set of support instruments, both methodological and
computational, supporting for instance the definition of the
spatial structure of the virtual environment. Some support
instruments, such as a tools for a semi-automatic realization
of discrete abstractions of an existing 3D model (e.g. a 3D
Studio design of an architectural space) was already
realized, but it must still undergo a thorough testing phase.
Additional relevant future works are instead aimed at
providing a more expressive modeling framework, as briefly
discussed in Section III-C.

REFERENCES
[1] S. Bandini, S. Manzoni, C. Simone. Heterogeneous Agents Situated in

Heterogeneous Spaces. Applied Artificial Intelligence, 16(9-10):831–
852, 2002.

[2] S. Bandini, M. L. Federici, S. Manzoni, G. Vizzari. Towards a
methodology for SCA based crowd simulations. In: VI International
Workshop Engineering Societies in the Agents’ World, vol. 3963 of
Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 203–
220, 2006.

[3] S. Bandini, S. Manzoni, G. Vizzari. Situated Cellular Agents: a Model
to Simulate Crowding Dynamics. IEICE - Transactions on
Information and Systems: Special Section on Cellular Automata,
Vol.E87-D(3):669-676, 2004.

[4] S. Bandini, S. Manzoni, G. Vizzari. Multi Agent Approach to
Localization Problems: the Case of Multilayered Multi Agent Situated
System. Web Intelligence and Agent Systems, IOS Press, 2(3):155-
166, 2004.

[5] S. Bandini, S. Manzoni, G. Vizzari. Towards a platform for
Multilayered Multi Agent Situated System based simulations:
focusing on field diffusion. Applied Artificial Intelligence, Taylor &
Francis, 20(4-5):327-351, 2006.

[6] S. Bandini, G. Mauri, G. Vizzari. Supporting Action-At-A-Distance in
Situated Cellular Agents. Fundamenta Informaticae, 69(3):251-271,
2006.

[7] S. Bandini, G. Vizzari. Regulation Function of the Environment in
Agent-Based Simulation. Environments for Multi-Agent Systems III,
Third International Workshop, E4MAS 2006, vol. 4389 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 157-169, 2007.

[8] M. Batty, A. Hudson-Smith. Urban Simulacra: From Real to Virtual
Cities, Back and Beyond, Architectural Design, 75 (6):42-47, 2005.

[9] M. Batty. Agent-based pedestrian modeling. In Advanced Spatial
Analysis: The CASA Book of GIS, pp. 81-106, 2003.

[10] J. Dijkstra, H. P. J. Timmermans. Towards a multi-agent model for
visualizing simulated user behavior to support the assessment of
design performance. Automation in Construction 11:135-145,
Elsevier, 2002.

[11] J. Dijkstra, J. Van Leeuwen, H. J. P. Timmermans. Evaluating Design
Alternatives Using Conjoint Experiments in Virtual Reality.
Environment and Planning B 30(3):357–367, 2003.

[12] J. Ferber. Multi-Agent Systems. Addison-Wesley, 1999.
[13] T. Ishida, Y. Nakajima, Y. Murakami, H. Nakanishi. Augmented

Experiment: Participatory Design with Multiagent Simulation. IJCAI
2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 1341-1346, 2007.

[14] J. Klein. Breve: a 3D simulation environment for the simulation of
decentralized systems and artificial life. In Proceedings of Artificial
Life VIII, the 8th International Conference on the Simulation and
Synthesis of Living Systems. The MIT Press, pp. 329–334, 2002.
http://www.spiderland.org/breve/breve.pdf.

[15] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, G. Balan. MASON:
A Multi-Agent Simulation Environment. In Simulation 81(7) :517-
527, 2005.

[16] M. Mamei, F. Zambonelli. Motion Coordination in the Quake 3 Arena
Environment: A Field-Based Approach. Environments for Multi-
Agent Systems, First International Workshop, E4MAS 2004, vol.
3374 of Lecture Notes in Computer Science, Springer-Verlag, pp.
264-278, 2005.

[17] M. Mamei, F. Zambonelli. Field-Based Coordination for Pervasive
Multiagent Systems, Springer-Verlag, 2006.

[18] H. Nakanishi, S. Nakazawa, T. Ishida, K. Takanashi, K. Isbister. Can
Software Agents Influence Human Relations? - Balance Theory in
Agent-mediated Communities. International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2003), ACM
press, pp. 717-724, 2003.

[19] P. Nugues, S. Dupuy, A. Egges: Information Extraction to Generate
Visual Simulations of Car Accidents from Written Descriptions. In:
Computational Science and Its Applications - ICCSA 2003, vol. 2667
of Lecture Notes in Computer Science, Springer-Verlag, pp. 31-40,
2003.

[20] F. Nunnari, C. Simone. Perceiving awareness information through 3D
representations. Proceedings of the working conference on Advanced
Visual Interfaces, AVI 2004, ACM Press, pp. 443-446, 2004.

[21] G. Papagiannakis, S. Schertenleib, B. O'Kennedy, M. Arevalo-Poizat,
N. Magnenat-Thalmann, A. J. Stoddart, D. Thalmann: Mixing virtual
and real scenes in the site of ancient Pompeii. Journal of Visualization
and Computer Animation 16(1):11-24, 2005.

103

Expectations driven approach for Situated,
Goal-directed Agents

Michele Piunti
Institute of Cognitive Sciences
and Technologies, ISTC - CNR

Università degli studi di Bologna
DEIS - Bologna, Italy

Email: michele.piunti@istc.cnr.it

Cristiano Castelfranchi
Institute of Cognitive Sciences

and Technologies, ISTC
CNR - Roma, Italy

Email: cristiano.castelfranchi@istc.cnr.it

Rino Falcone
Institute of Cognitive Sciences

and Technologies, ISTC
CNR - Roma, Italy

Email: rino.falcone@istc.cnr.it

Abstract— Situated agents engaged in open systems continu-
ally face with external events requiring adequate services and
behavioral responses. In these conditions agents should be able
to improve their adaptivity over time, namely 1) to deal with
and anticipate relevant changes and critical situations, 2) to
temporally define relative priorities between goals varying their
importance over time and 3) to use informational feedback to
learn from experience and become better at achieving their goals.
This work provides an insight to model goal directed agents
with these adaptive and anticipatory abilities, based on context
awareness and growing experience at achieving their activities.
We propose an approach by which affective states are placed
as an integrated control mechanism in order to tight different
processes and computational modules underlying reasoning.

I. INTRODUCTION

A great variety of goal-directed models of agency, focused
at various level on representational, deliberative and action
selection mechanisms, have been developed over the last
two decades to design adaptive, autonomous and socially
interactive agents. We here refer to the goal-directed model
of agency, where agents are intended as autonomous, resource
bounded entities that attempt to arbitrate between several goals
interacting in dynamic, partially observable environments.
Typically goal-directed agents are engaged in deliberation to
select to which of the concurrent goals devote their resources.
Reflecting the original model proposed at the end of 80s
[1], traditional deliberative systems process their information
reacting in a procedural way: they choose in a repertoire the
action to execute according to filtering of conditions (matching
rules based on belief formulae, priority hierarchies etc.), whilst
the available plan library is handcrafted at design time. An
agent can change his environment through a given set of
actions and plan operators in order to reach a desired state of
affairs from the current state. According to the wide adopted
Belief Desire Intentions (BDI) model of agency [2], [3], an
action is performed when the agent has the intention to achieve
a given goal, and the beliefs indicating that the action helps
in achieving that goal. Whilst it is theoretically possibly to
specify an effective model of behavior in deterministic or
probabilistic environments, it is very troublesome to deal in
practice with real conditions where the agent has to face with
resource limitations (time, computation, memory), partial in-

formation (hidden state due to environments constraints, noise,
sensor weakness), time-varying goal importance, changing
probability distributions and non-stationary, non-probabilistic,
non deterministic environments. This negatively reflects upon
agent design process and requires the designer to fully under-
stand the dynamics and the complex cases that an agent may
face with, and then to implement solutions from scratch for
each critical situation may be encountered [4], [5].

The computational model presented here is an attempt
to bridge the existing gap between goal directed model of
agency and more situated models used in artificial life. Our
challenge is to endow deliberative agents with capabilities to
operate in open systems where dynamism, partial knowledge
and unpredictability of future events exact agents to quickly
anticipate decisions, facing with uncertainty and unexpected
events. As a general foundation for adaptiveness in artificial
entities [5], there is the need for a proactive adaptation of
the internal model over time, in order to exploit informational
feedbacks, to learn from experiences and become better at
achieving goals. To deal with adaptiveness and anticipation, we
refer on a cognitive models of expectations as causal precursor
of basic emotions [6], [7], as far as on recent convergent
studies that are pointing out the enhancement of adaptiveness
in introducing emotions in reasoning [8], [9], [10], [11].

On the basis of the formal definition of a series of affective
states, we provide a description of their functional role, assess-
ing a series of behavioral and mental changes that emotions
may induce within agent’s internal processes. Our approach is
intended at: 1) Exerting a top-down modulation of emotional
reasoning as a result of deliberative process and adaptive
responses to relevant events and 2) Integrating adaptiveness
in decision making along with expectations and their causal
relation with appraisal/evaluation of events.

The remind of this work is organized as follows: in section 2
we present a model for active and surprise driven perception
and belief update, in section 3 we describe an expectation
based approach for decisions affected by emotions, in section
4 we present a model for situated reasoning enabling appraisal
and coping strategies to unexpected events, section 5 shows as
a long term effect of metal states can be integrated in decisions,
in section 6 we conclude presenting some related works and

104

providing a final discussion.

II. FROM EXPECTATIONS AND ACTIVE PERCEPTION TO
SURPRISE

Among all the activities an agent may perform during his
tasks, we identify two main typologies:

1. Purposive behavior, supported by practical reasoning,
is aimed at achieving terminal goals through the use of
practical actions and plans. A goal directed agent should use
informational feedback to learn from experience and become
better at achieving goals.

2. Situated behavior, supporting coping strategies, is aimed
at recruiting resources when some unexpected event require
services. A situated agent should re-define relative priorities
between goals varying their importance over time.

Therefore we here identify two integrated levels of reason-
ing, involving cognitive, slow deliberative processes as well
as fast automatic and associative ones. Both levels integrate
various mechanisms required to manage expectations, used
either to assess alternatives and choices, and to direct cognitive
resources towards anticipated events. In more detail, we distin-
guish between high level, active expectations and background,
passive expectations.

At an high level we deal with explicit expectations mod-
ulating decisions and thus goal deliberation: we include in
the reasoning process a quantitative influence on the terms
given by the expected utilities used for arbitrating between
alternative courses of actions [9]. As we will show later, these
influences can be adjusted on the basis of affective appraisal
and experiences and allow agent to learn from experiences.

Besides, in order to enhance agent’s adaptiveness, we model
situated, background expectations to elicit a loss of control of
certain deliberative processes and to reconsider the course of
agent activities. Typically, these particular kind of reasoning
is not part of the specification of an agent in his purposive
behavior, rather can be let to emerge as a result of the
interactions in his environments. In [12], Lazarus indicated
this particular process as a reflexive re-assessment of the
internal state under context awareness, rather than an explicitly
deliberated process.

Each of the aforementioned activities should be supported
by an adequate perceptive process. Traditional agent archi-
tectures use simplified approaches for perception (i.e. based
on hard coded rules for controlling sensor apparatus) thus
resulting in monolithic and domain specific mechanisms. On
the contrary, many evidences pointed out the need for a
more abstract, pro-active and goal-driven model of perception
[13], [14]. Unfortunetely, active perception is computationally
expensive for resource bounded agents. According to the
principle of minimal rationality [4], perception filtering should
not overload agent processes with continuous belief revision.
This exacts a less demanding strategy of reasoning from
precepts. To this end, a lighter peripheral filtering can be used
only when relevant information comes, even while the agent
is not actively searching for it. The agent can thus ignore all
incoming inputs which are not relevant with respect to the

current task and only consider those information which are
relevant [15]. In so doing, we identify two different perceptive
strategies that an agent may adopt.

1. Purposive tests relate to active perception and used
for belief update and control of purposive behavior. They are
aimed at signalling discrepancies between what is perceived
and what is expected in terms of high level, active expectation
upon terminal goals achievement. In this case, the agent
actively observes the fulfillment of his purposive actions trying
to confirm the validity of related expectations.

2. Situated tests relate to background perception. In order
to gather information of the near contexts, situated agents need
the ability to deal with unexpected events, namely events that
are not directly and actively under the focus of attention, but
that can strongly influence its course.

Many emotions are in tight relation with perception and
expectations. For example, surprise is conceived as an ex-
pectation based phenomenon: it has been given in terms of
a felt signal which provokes an immediate reaction/response
of alert and arousal due to an inconsistency (discrepancy,
mismatch, non-assimilation, lack of integration) between an
incoming input and prior expectations [16], [17]. Surprise has
been related to many effects aimed at solving the inconsis-
tency and at preventing possible dangers. Surprise strongly
affects attentive processes [18], while [15] show operational
advantages of a expectation-driven perception filtering for
belief update. We here refer to a particular form of surprise,
due to an experienced mismatch between a perceived fact
and a scrutinized expectation. A specific kind of mismatch-
based surprise can be associated to each type of expectation
and to each kind of attentive processes. We here identify
two different kind of surprise: the former is based on syn-
chronous mismatches appraised upon action completion (i.e.
on goal achievement) the latter when passively expected events
occurs asynchronously during practical behavior (i.e. action
execution)1. Bringing perception and expectations at the same
level of representation, a computational system can detect
and quantitatively evaluate the mismatches [18], [17], [15].
In the next sections we deal with expectations and surprise-
related behavior influencing goal directed agents at different
levels of reasoning. On an higher level, expectations help
to take decisions between alternative courses of actions. As
for situated cognition, surprise based on passive expectations
can enhance context awareness and elicit responses to recruit
operative resources to respond in advance to changes.

III. EXPECTATIONS AND DECISION MAKING

Current BDI oriented implementations provide mechanisms
for deliberation (goal selection and intention filtering) but
don’t share common strategies for decision making. Our model
builds on top of a BDI engine an expectation-driven decision
making process, thus combining deliberative, logical aspects
of a BDI model with more quantitative, numerical aspects of

1Deeper forms of surprise rely on deducibility [18] plausibility [17] of the
incoming percept inferred on the basis of the prior knowledge.

105

decision theory. We identify slower forms of reasoning with
high level cognition, decisions between alternative courses of
actions used by agents to arbitrate goal selection. To allow
agents to take decisions based on the related expectations
we model a long term memory entertaining endogenous
anticipatory representations. Each (sub)goal is given along
with the representation of its activation formulae (typically
first-order belief formulae [19]) and a network of inhibition
links (indicating if a given goal has the priority on another
goal and under which conditions this priority is applicable
[20]). Filtering can be managed through a dynamic arbitration
network, providing disambiguation between the precondition
rules and the relative dependencies (inhibition links) between
the concurrent goals. A deliberation engine reacts to changes
in the belief base (i.e. internal events thrown by a belief
update) and uses the current internal state to filter out enabling
conditions for arbitrating the goal adoption.

As for the decision theoretic paradigm of ‘rationality’
[21], [22], an artificial agent may act in order to maximize
the expected utility, given multiplying utilities (desirability)
and probabilities (likelihood). In our model this strategy is
delivered at a meta-level reasoning, typically when the agent
has to select between alternatives to achieve mutually exclusive
sub-goals.

Fig. 1. Given a terminal goal, Expectation Driven Deliberation compares
Subjective Expected Utilities to choose the most promising course of actions

Imagine an agent being engaged in a foraging task. In
normal conditions, the terminal goal is to look for valuables
moving to a series of rooms towards some Location of Inter-
est(LOI). Expectation-driven deliberation allows the agent to
decide on which LOI to look for considering how the various
alternatives are ‘promising’ (Fig. 1). The scrutinized expecta-
tions are built upon two independent quantitative dimensions:
Belief strength, as a degree of subjective certainty placed in
terms of likelihood (the agent is more or less certain about
their content) and Goal value, a subjective importance strictly
dependent on desirability of the goal state and the related
motivating forces, but also on context conditions and mental
attitudes [6], [7]. Given this, Subjective Expected Utility (SEU)
can be placed as:

SEU(Gi) =
∑

ajεP lan(Gi)

U(OGi
)P (Oaj

|aj) (1)

where Gi is the ith goal to adopt between candidates, OGi

is its related outcome, U(OGi
) is the subjective utility of that

outcome, aj the jth action of the plan triggered by Gi and
P (Oaj

|aj) is the probability of that outcome, given that the
jth action of the plan will have the proper Oaj outcome.

Utilities are coupled to rewards obtained upon goal comple-
tion and quantitatively assessed in relation to past experiences.
U(OGi) is calculated according to the extent to which an
intention (i.e. a given sequence of actions) has fulfilled a
subjective desire OGi

2. This makes it possible to endow
expectations with their valence: expectations can be consid-
ered positive (or negative) according to their contribution (or
determent) to the ongoing intentions and mental states (e.g.
Goals, Beliefs).

Likelihood are subjectively assessed as predictions through
a forward model mechanism. In the actual implementation,
we are testing different mechanisms for unsupervised learning
to determine conditional probabilities of future events, given
a sufficiently wide open knowledge base (i.e. EM algorithms
for Bayesian networks [23]). Feedback of mismatches between
expectations and experienced outcomes are then used to adjust
either utilities and predictions. In so doing, even in the same
environment, different agents build different subjective models
based on their past experiences, thus resulting with different
epistemic and motivational states.

A. Emotions modulating high level expectations

Among the consequences of scrutinizing an expectation
there is the increment of epistemic activities, aimed at ac-
quiring information from environment to know whether the
expectation can be validated or disconfirmed [24], [25], [7].
As mentioned, this mechanism is at the basis of any mismatch-
based surprise. The idea behind the modulation of expectations
with emotions is that an agent can affect the desirability of
an outcome by introducing an additional motivation based on
an anticipatory feeling3: given an active expectation upon a
possible reward, agents can appraise their experiences com-
paring the expected utility and the effective achieved reward.
Six cases of mismatch are possible:

1) Positive increase (S+): the achieved reward is stronger
than the one expected. Can be related to excitement.

2) Negative increase (S−): the punishment is greater than
expected. Can be related to distress or strong disap-
pointment.

3) Positive reduction ($+): the agent achieve less reward
than the one expected. Can be related to disappoint-
ment.

4) Negative reduction ($−): less punishment than expected.
Can be related to relief.

5) No Surprise (NS): goal reward matches the expectation
and is exactly the one expected.

2In more details, for any given goal Gi, the agent stores achieved rewards
and calculates U(OGi

) by inferring the next value based on an average, or
on a linear projection.

3In the field of decision theory, a similar solution has been formally
proposed by Gmytrasiewicz and Lisetti [9], while Busemeyer et al. [26]
formalized how needs change over time under the pressure of external
stimulation and internal deprivation

106

6) Surprise due to ignorance (IS): the reward is not de-
ducible from prior knowledge due to lack of experiences.

Once appraised, agent can use these feelings to give more
or less preference to a certain alternative. The agent may
introduce an affective bias providing an intrinsic anticipatory
effect (the experienced surprise enhances the importance of a
certain goal, hence the agent believe to obtain more value from
its achievement). We define an Affective Expected Utilities
(AEU) in terms of:

AEU(Gi) =
∑

ajεP lan(Gi)

[Ab × U(OGi
)]× P (Oaj

|aj) (2)

where, respect to the SEU given in (1), Ab represents a qualita-
tive and a quantitative appraisal of the experienced mismatch.
It introduces an additional, quantitative reinforcement into
the deliberation process and further modulates the expected
utility in affective terms. The positive increase (S+) and
the negative reduction ($−) of the monitored signal give a
positive indication about the progression of the goal value.
Hence, when associated with a specific decision, they present
a positive feeling towards the related outcome. Contrarily, the
negative increase (S−) and the positive reduction ($+) cause
the agent to experience a negative feeling towards that choice,
thus inhibiting its value. This is implemented by reinforcing
the utility of a choice with an additional factor, in case of a
positive feeling, and diminishing it in the case of a negative
feeling. Ab is positive for positive feelings and negative for
negative ones:

Ab(Gi) =

 0.0 if Es(Gi) is in {NS, IS}
(γ+) ∗ Er(Gi) if Es(Gi) is a pos. feeling ∈{S+, $−}
(γ−) ∗ Er(Gi) if Es(Gi) is a neg. feeling ∈ {S−, $+}

where Es(Gi) comes from the last appraised mismatch on Gi’s
reward, Er(Gi) is the distance between expected reward and
sensed reward, γ+ and γ− are discount factors (with γ+ �
γ−).

IV. BACKGROUND EXPECTATIONS AND SITUATED
REASONING

A central claim of appraisal theory is that emotions are
associated with subjective judgments for the significance of
external events (e.g. was the event expected in terms of prior
beliefs? is the event congruent with adopted goals? is there
the power to alter the consequences of the event?). As shown
above, background appraisal allows particular contexts and
events to be recognized in order to activate background (tacit,
passive) expectations. Agent’s situated perception envisages
causal interpretation of situated events by filtering their fea-
tures into percepts. The events can then be compared with
agent goals and endogenously valued as positive (indicating
that some event establishes the preconditions for achieving
goals or create a new opportunity) or negative (some event
represent a threat or thwart agent current goals). The idea
behind the situated control is that clusters of different coping
responses can be arranged around how a situation is appraised.
Adopting the model of situated reasoning, coping strategies

elicited by different kind of surprise can be modeled as a
momentary interruption of deliberative and practical reasoning
processes, e.g. diverting attention to past episodes or focusing
sensors and effectors to a restricted area.

A. Mental States and affective control

Stored in an associative memory, noticeable events can be
exploited to infer local environment features and activate a
passive form of expectations. In so doing, an event that is
supposed to thwart an active goal is assessed as a potential
undesirable (negative) item, hence the agent reconsider his
intentions trying to adopt an alternative action to avoid a
threatful state. Otherwise, in case of a positive event, the agent
can reconsider his intention in order to exploit an opportunity,
or to maintain a desirable state. At any instant of time, agent’s
situated perception filters the world and store surprising events
adding items to a Situated Associative Memory (SAM). In this
case surprise is referred to passive expectations and arises
when the agent relieves a mismatch from an unexpected input
coming from the the situated perceptual component. For each
of these surprising events, the agent stores in the SAM a
perceptual report. Reports contain descriptions of a defined
set of situated properties: they have a symbolic representation
including time-stamp, positive or negative valence of the
originating event, location where the event has been detected
and other specialized fields4:

evItem { valence: enum value="pos/neg"
time-stamp: class="Time"
location: class="Location"
helps: class="Goal"
thwarts: class="Goal"

}

Once events are translated to their symbolic representa-
tion and stored in the SAM, they can be manipulated as
percepts. Items have a propositional content but a different
nature respect to the beliefs5. They are designed to provide
both episodic and semantic contents. The SAM is episodic
and allows the agent to cache a raw description of situated
events, thus enabling the reasoning process to exploit local
environment features. The percepts are exploited as a ‘fast’
source of information to adapt the behavior in the near future
and anticipate world changes. The presence of a time stamp
for each item ensures to relate each percept to a given time
and allow the content of the SAM to remain ordered at least for
a given field6. Besides, the memory is semantic and provides
a fast belief base to be handled to infer local environments
features. The intuition behind the mechanisms is provided
by the well known principle of spatial and temporal locality,

4In the case of the foraging scenario, also described in [27], we distin-
guished negative events as harmful collisions, fire threats, and positive events
as food objects, valuables and LOI discovering.

5Notice that situated percepts may hold to deceitful appearances [13]
including false positive or negative items.

6Given the items I1, I2 and I3, by selecting the time stamps we define
an ordered set upon SAM: 1) Either I1 4 I2 or I2 4 I1 (completeness); 2)
If I1 4 I2, then I2 ⊀ I1 (consistency); 3) If I1 4 I2 and I2 4 I3, then
I1 4 I3 (transitivity).

107

according to which one may assess that recently cached items
of a certain class are likely to be retrieved in the near future.
The amount of item locally present in the SAM can be used
as an indication to infer passive expectations about the local
context7.

Transition Function and Information Fusion. SAM’s
content is constantly monitored by an appraisal process in
order balance the presence of items and thus decide which
is the MS to adopt. Passing from one state another depends
on how the events are relieved and appraised in real time.
This process can be described through a push down automaton
[27], [9]. Generally the agent supervises the buffers (through
a background process) by balancing their registered contents:
prevalence of negative items leads to passive expectation of
undesirable states (i.e. contingencies, risks), hence to cautious
attitudes, while positive events lead to positive expectations
(i.e. opportunities) and excitation (Fig. 2). In more details, the
current state is inferred by the previous state and the perceived
input with a transition function MsTrans : MS × IN? −→
MS, where MS is the set of definite mental states and
IN? the input events stored in the (possibly empty) SAM.
MsTrans realize an information fusion within the symbolic
items. Notice that the presence of items of different nature
may elicit inconsistencies to be resolved (i.e. presence of
elements of different meaning as, for instance, interleaved
sequences of positive and negative events). To address this
problem MsTrans uses a set of rules for combining and
aggregating the items of the same type and circumvent the
inconsistencies on the basis of the temporal sequencing given
by the time stamps. As suggested by [29], the rules used to
govern the fusion can be composed of meta-level and domain
specific information. For instance, a simple rule of balancing
may assert to aggregate the items of a given typology, in order
to circumvent the set of lower cardinality and to take into
account only the information related to the bigger aggregate.
By balancing the presence of items of a given type, the
appraisal process suitably distinguishes between positive and
negative expectations. A similar approach was used in [27],
where two buffers are handled to store positive and negative
events and the current sate is let to emerge on the basis of the
comparison of buffers sizes (Fig. 2). To prevent the agent to
switch to an inconsistent state, the transition function is built
to take into account a certain grade of inertia, thus providing
more robustness against occasional events, false positive or
negative items (i.e. due to noise or sensor faults etc.).

B. Functional description

On the basis of a principle of Analogy, one may asses that
an agent can predict with reasonable accuracy what actions
and changes to perform in the near future based on his recent
experiences and on the appraisal of local events. In so doing,
responses and coping strategies given to a given set of related
events can be classified an re-used in analogous situations.

7A Similar approach was used by Schank [28], where expectations are
generated on the basis of the agent’s knowledge encoded in scripts and frames.

Hence, library of coping strategies, action alternatives and
resource allocation policies can be clustered within a discrete
set of frames used as control states. Effects of coping can

Fig. 2. Controller for Mental States: appraised positive (p) and negative (n)
events are fed to a transition function in order to shift from different mental
states.

be modeled in different temporal scale, from immediate and
short term reactions, to most persistent long term effects.
Given in functional terms, coping strategies includes emotional
responses to overturn (in the case of negative emotions) or
trigger (in the case of positive ones) control signals to be
signalled to the reasoning process. Part of the effect of these
signals are conative: mental states, as particular aggregates
of control strategies, are modeled to activate particular goals.
Besides, MSs are suitable control mechanisms for intention
reconsideration. They embed a particular kind of goal activa-
tion, bypassing the underlying deliberation processes normally
used for practical reasoning. For example, on the short term a
MS may attempt to resign the agent to a threat by signalling
to the deliberative engine to abandon a goal (thus a related
intention) that is becoming inconsistent with the actual belief
base or the actual environment state. On the contrary, positive
events may elicit goal activation to exploit new opportunities.
Furthermore, each MS adopt a context dependent configuration
of resources (i.e. vision, speed, perception rate, belief update).

Becoming aware of his context, the agent can dynamically
adapt his control frame in order to reduce performance payoffs
and avoid wasting resources for useless activities. Control
frames are characterized by the following tuple of dynamic
values: Cf = 〈En, r, Sr, s,Gs〉, En indicating the current
amount of energy, r the range of vision where sensors can
retrieve data, Sr the situated perception filtering rate, s the
instant speed and Gs the situated goal to be activated in
order to pro-actively respond to the events to cope8. Each
frame defines the roles that the related MSs play in situated
adaptation to contexts and environment dynamism.

Imagine, in the foraging task presented in section III, that
the environment presents some threats for agent activities (i.e.
the fires, adversary agents etc.). Once the agent has deliberated
the best expected location to explore, through the evaluation of

8We assume that agents spend energy according to a combination of the
previous resource costs (e.g. the higher the speed and perception-rate, the
higher the spent energy).

108

MS Moods γMS Resources
r Sr S

Default Exploitation 1.0 .33 .33 .33
Excitement Reinforcement 1.3 .275 .275 .45
Caution Prudence 0.5 .45 .45 .10
Boredom Exploitation 1.0 .33 .33 .33
Curiosity Exploration 1.0 .45 .10 .45

TABLE I
MENTAL STATES ELICIT THE ADOPTION OF CONTROL FRAMES FOR

MOODS, CONFIDENCES AND RESOURCE ALLOCATION POLICIES

the related AEUs, it may happen he registers a close series of
harmful (unexpected) events, i.e. fire collisions (Fig. 3.a). This
elicit the negative expectation that the agent is approaching to
a dangerous area and thus induce him to pass to a Cautious
state (Fig. 3.b). This negative, background expectation causes
the agent to adopt a new control frame, re-allocating his
resources to cope harmful circumstances (Tab.I). Cautiousness
causes changes both in the long and the short term: firstly
it induces arousing by modulating attentive resources (i.e.
enhancing Sr, looking ahead and augmenting r and reducing
s, see Tab.I). A risk avoidance goal Gs interrupts the ongoing
practical action to escape from threats and accordingly the
agents arranges activities to better check the situation. On
the long term, cautiousness brings to a watchful mood, by
reducing the self confidence on beliefs (γMS), augmenting
the control (e.g. enhancing perceptive iterations Sr) and/or
performing the action in a less risky way(e.g. using safest
alternatives in repertoire). Prevalence of positive surprising

Fig. 3. Intention Reconsideration upon the activation of the Cautiousness
Mental State

events induces the agent to shift to Excitation, that on the
short term is used to arouse the agent, to augment epistemic
activities and to search for those ‘good’ events. A positive
surprise (i.e. valuables discovering) may induce the agent to
abandon a previous intention and to reformulate his behavior
to exploit the new opportunity triggering a new goal Gs.
On the long term, excited agent adopt an ‘optimistic’ mood
increasing the confidence (γMS) of those unexpected, positive

events9. The lack of surprise progressively empties the SAM
and reduces situated perceptive activities. In the long run, it
produces a special frame: Boredom. Boredom indicates that
the environment is almost stationary (no unexpected events
are happening) and that the agent can fully exploit his purpo-
sive behavior governed by the deliberation driven reasoning.
This enhances the subjective confidence in beliefs and in
building predictions. Further persistence of boredom leads
to Curiosity, a control state used to automatically arbitrate
from exploitation to exploration activities. The exploration
attitude is goal driven: once the agent does not recognize
relevant events in his SAM10, he may infer the low-level
expectation that the environment is becoming more static,
hence biases his activities towards actions that shows promise
to perform a better field coverage and to maintain an updated
knowledge. Bypassing the deliberation of practical reasoning,
the curious agent pro-actively activates the epistemic Gs of
exploring new rooms searching for new facts and events. This
has a twofold effect: on the one side it enhances territorial
exploration augmenting the chances to discover new LOIs, on
the other side it improves knowledge and maintains updated
beliefs11.

V. CONFIDENCE AND MODULATION OF THE PROBABILITY
FUNCTION

Effects of MSs can be reconciled with the deliberative level.
The intuition behind this integration relies on the fact that
each MS endows a certain grade of self-confidence (due to
the ongoing mood) that can be related to the belief base.
Once we detailed beliefs with a certain strength, one may
introduce the self-confidence as a further discount factor to
affect the likelihood of the predictions. In so doing agents
can dynamically adopt a ’more or less confident’ capability
to build predictions. For example, positive moods provided
by excitation can induce the agent to optimistically over-
estimate the probability of a certain outcome. On the contrary,
negative moods like cautiousness may introduce pessimistic
under-estimations. On these basis, respect to the one given in
(2), the affective expected utility results:

AEU ′(Gi) =
∑

ajεP lan(Gi)

[Ab×U(OGi
)]× [γMS×P (Oaj

|aj)]

(3)
where γMS is associated to the ongoing mental state (Tab.I).
By associating a given confidence to the subjective capability
to make predictions, γMS introduces a further affective mod-
ulation on agent rationality.

9Notice that, differently from Excitement emerging on appraisal of an
achieved goal, Excitation has been related to a situated positive surprise.

10Heuristic thresholds define the k-length time window used for passing
from Boredom to Curiosity.

11The benefits of interleaving epistemic and practical activities are generally
accepted in situated cognition [24]. Different policies can be retrieved in
literature to manage exploitation Vs. exploration. Among others, Ahn and
Picard [30] proposed an affective signal to abandon exploitation and trigger
the process of exploration.

109

VI. DISCUSSION

Recent computational models are providing simple affec-
tive states in terms of their effects on agent’s reasoning,
behavior and attentive activities [31]. Their functional roles
may enable adaptive and situated behaviors and span from
reactive methods of control (similar to those employed in
primitive biological organisms [32]) to the control of com-
putational resources [33] and the decision making [22], [11].
In our model we propose a quantitative influence of af-
fective states upon the terms of a rational decision. As in
appraisal-inspired models, we provide emotions to coordinate
the different computational and physical components required
to effectively interact in complex environment [34], [35].
Appraisal based systems like Gratch and Marsella’s EMA
[35], [11], stresses different relations between emotions and
cognition, arguing that emotions are a causal precursor of
the mechanisms to detect, classify, and adaptively respond to
significant changes of environment. Differently from EMA, we
adopted a two step approach. First we distinguished between
long-term practical reasoning and situated reasoning. The
disambiguation of slow, decisional processes from situated
ones elicits a clear methodological separation of concerns and
may greatly assist the modeler by breaking down the work
into two separate and independent activities: while the former
is defined referring to the goal overview and clearly involves
decisional processes and deliberation of alternative goals, the
latter can be defined through control frames, clustering domain
dependent strategies, aggregates of heuristics and functional
even affective responses used to respond to local events. In
the second phase, we reintegrate the two processes by taking
into account the correlations and the relative interactions,
enlightening how low situated reasoning can be used to inform
higher decisional processes. To this end the contribute of MSs
is twofold: from the one side they can relieve the deliberative
and the attentive processes from the burdens to process weakly
relevant information in decision processes, excluding action
alternatives that are likely to be less promising or have
vanishing likelihood to be achieved. Besides, MSs provide
ready to use action selection and resource allocation policies
that may relieve agent’s need for resource-demanding and meta
decision processes. The emergent nature of affective states
enables agent to adopt a mental frame while both expectations
and emotions are conveyed to inform reasoning for redirecting
resources and adopt long term strategies once a disturbing
event is detected.

An additionally effect of modeling mental states is for
agent’s intention reconsideration. Traditional reconsideration
strategies indicate an agent to abandon an intention when
a related goal is achieved, when a goal become infeasible
or when the agent relieve some inconsistencies between the
world state and the external conditions necessary for goal
achievement. Our model allows basic emotions to elicit an
interruption on normal cognitive processes when unexpected
events require servicing. Once based on expectations of future
states, intention reconsideration becomes anticipatory and can

be used to coordinate behavior with prediction of future states.

REFERENCES

[1] M. Bratman, Intention, Plans and Pratical Reasoning. Harvard: Harvard
University Press, 1987.

[2] A. Rao and M. Georgeff, “BDI agents: From theory to practice,” Proc.
of the 1st conf. on MAS (ICMAS95), 1995.

[3] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge, “The
Belief-Desire-Intention Model of Agency,” Proc. of the 5th International
Workshop on Intelligent Agents V: Agent Theories, Architectures, and
Languages (ATAL-98), vol. 1, p. 1555, 1998.

[4] C. Cherniak, Minimal rationality. MIT Press, Cambridge, 1986.
[5] P. Maes, “Modeling adaptive autonomous agents,” Artificial

Life, I, vol. (1&2), no. 9, 1994. [Online]. Available:
citeseer.ist.psu.edu/maes94modeling.html

[6] M. Miceli and C. Castelfranchi, “The mind and the future. the (negative)
power of expectations,” Theory & Psichology, vol. 12(3), pp. 335–366,
2002.

[7] C. Castelfranchi, “Mind as an Anticipatory Device: for a theory of
Expectations,” 1st intern. symposium Brain, Vision, and Artificial In-
telligence (BVAI 2005), pp. 258–276, 2005.

[8] R. W. Picard, Affective Computing. MIT Press, 1997.
[9] P. Gmytrasiewicz and C. Lisetti, “Using decision theory to formalize

emotions for multi-agent systems,” in 2nd Workshop on Game Theoretic
and Decision Theoretic Agents (ICMAS-2000), 2000.

[10] M. Scheutz, “How to determine the utility of emotions,” in Proc. of
AAAI Spring Symposium 2004., 2004.

[11] J. Gratch and S. Marsella, “A Domain-independent Framework for
modelling Emotions,” Journal of Cognitive Systems Research, vol. 5
(4), pp. 269–306, 2004.

[12] R. Lazarus, Emotion and Adaptation. Oxford University Press, 1991.
[13] J. L. Pollock, “Taking perception seriously,” in Proceedings of the 1st

International Conference on Autonomous Agents (Agents’97), W. L.
Johnson and B. Hayes-Roth, Eds. New York: ACM Press, 1997, pp.
526–527.

[14] D. Weyns, E. Steegmans, and T. Holvoet, “A model for Active Perception
in situated Multi-Agent Systems,” in Proc. of the 1st European Workshop
on MAS, 2003.

[15] E. Lorini and M. Piunti, “The benefits of surprise in dynamic environ-
ments: from theory to practice,” in Proceedings of 2nd conference on
affective computing and intelligent interactions (ACII07), 2007.

[16] R. Reisenzein, The message within: The role of subjective experience
in social cognition and behavior. Psychology Press, 2000, ch. The
subjective experience of surprise.

[17] E. Lorini and C. Castelfranchi, “The cognitive structure of surprise: look-
ing for basic principles,” Topoi: an International Review of Philosophy,
vol. 26(1), 2007.

[18] A. Ortony and D. Partridge, “Surprisingness and Expectation failure:
What is the difference?” in Proc. of the 10th Inter. Joint Conf. on
Artificial Intelligence, Los Altos, CA, 1987, pp. 106–108.

[19] J. Thangarajah, L. Padgham, and J. Harland, “Representation and
reasoning for goals in BDI agents,” in In Proc. of the 25th Australian
Computer Science Conf. (ACS2002), 2002.

[20] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf, “Goal represen-
tation for bdi agent systems,” The Second International Workshop on
Programming Multiagent Systems (PROMAS-2004), 2004.

[21] L. Savage, The Foundations of Statistics. Dover, 1954.
[22] J. Doyle, “Rationality and its roles in reasoning,” Computational Intel-

ligence, vol. 8 (2), pp. 376–409, 1992.
[23] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from

incomplete data via the EM Algorithm.” Journal of the Royal Statistical
Society, vol. 39(1), p. 138, 1977.

[24] D. Kirsha and P. Maglio, “On distinguishing epistemic from pragmatic
action,” Cognitive Science: A Multidisciplinary Journal, vol. 18(4), pp.
513–549, 1994.

[25] E. Lorini and C. Castelfranchi, “The role of epistemic actions in
expectations,” in In Proc. of the ABiALS workshop, 2004.

[26] J. J.R. Busemeyer, J. J.T. Townsend, and J. Stout, “Motivational under-
pinnings of utility in decision making: Decision field theory analysis of
deprivation and satiation,” Emotional Cognition, 2002.

[27] M. Piunti, C. Castelfranchi, and R. Falcone, “Surprise as shortcut for
Anticipation: clustering Mental States in reasoning,” in Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI-07),
Hyberadad, India., 2007.

110

[28] R. Schank and R. Abelson, Scripts, Plans, Goals and Understanding: an
Inquiry into Human Knowledge Structures. Hillsdale, NJ: L. Erlbaum,
1977.

[29] L. Cholvy and A. Hunter, “Information fusion in logic: A brief
overview,” in ECSQARU-FAPR, 1997, pp. 86–95. [Online]. Available:
citeseer.ist.psu.edu/cholvy97information.html

[30] H. Ahn and R. W. Picard, “Affective cognitive learning and decision
making: The role of emotions,” in 18th European Meeting on Cybernet-
ics and Systems Research (EMCSR 2006), Vienna, Austria., 2006.

[31] M. Scheutz, “Agents with or without emotions?” in Proceedings of
FLAIRS 02, AAAI Press, 89-94., 2002.

[32] M. Scheutz and A. Sloman, “Affect and agent control: Experiments with
simple affective states,” in Proceedings of IAT-01, 2001.

[33] H. A. Simon, “Motivational and emotional controls of cognition,”
Psychological Review, vol. 74, pp. 29–39, 1967.

[34] L. Cosmides and J. Tooby, Handbook of Emotion (Second Edition).
Guilford Press, 2000, ch. Evolutionary Psychology and the Emotions,
pp. 91–115.

[35] J. Gratch and S. Marsella, Integrated Models of Cognitive Systems.
Oxford University Press, 2006, ch. The architectural role of emotions
in cognitive systems.

111

Adding Roles to Relationship Patterns
Matteo Baldoni

Dipartimento di Informatica
Universit̀a di Torino - Italy.
Email: baldoni@di.unito.it

Guido Boella
Dipartimento di Informatica
Universit̀a di Torino - Italy.

Email: guido@di.unito.it

Leendert van der Torre
University of Luxembourg.

Email: leendert@vandertorre.com

Abstract—In this paper we study how roles can be added to
patterns modelling relationships in Object Oriented program-
ming, and which new relationship patterns can be introduced
using roles. Relationships can be introduced in programming
languages either by reducing them to attributes of the objects
which participate in the relationship, or by modelling the rela-
tionship itself as a class whose instances have the participants of
the relationships among their attributes. However, even if roles
have been recognized as an essential component of relationships,
also in modelling languages like UML, they have not been
introduced in Object Oriented programming when it is necessary
to model relationships. Introducing roles allows to add attributes
and behaviors to the participants in the relationship, rather
than to the relationship itself, and to distinguish natural types
as classes participating in the relationships from the roles the
participants acquire in the relationships. In this paper we show
how the role model proposed in powerJava can be used to endow
relationships with roles, both in the relationship as attribute and
in the relationship object pattern. Finally, since these patterns
have different advantages and limitations, we propose a third
pattern based on roles which benefits from the advantages of the
two previous patterns when modelling relationships.

I. I NTRODUCTION

The need of introducing the notion of relationship as a first
class citizen in Object Oriented (OO) programming, in the
same way as this notion is used in OO modelling, has been
argued by several authors, at least since Rumbaugh [1]. For
example, one would like to be able to model the following
scenario: a student can be related to a university by an en-
rollment relationship, he can attend a course, and give exams.
Moreover, a course can be a basic course in one curriculum
and an advanced one in another. Similarly, other relationships
link professors to students and courses, students to tutors,etc.
Another example is the case of a contract net protocol, where
two objects participate in a negotiation relationship, and inside
this they can perform negotiation moves.

Relationships are also known as collaborations or associa-
tions, like they are called in UML, to distinguish them from
specialized relationships like aggregation, relating an object to
its parts, and inheritance, relating a class to a superclass.

Rumbaugh [1] claims that relationships are complementary
to, and as important as, objects themselves. Thus, they should
not only be present in modelling languages, like ER or UML,
but they also should be available in programming languages,
either as primitives, or, at least, represented by means of
suitable patterns.

Two main alternatives have been proposed by Noble [2] for
modelling relationships by means of patterns:
• The relationship as attribute pattern: the relationship is

modelled by means of an attribute of the objects which
participate in the relationship. For example, theAttend
relationship between aStudent and a Course can
be modelled by means an attributeattended of
the Student and of an attributeattendee of the
Course .

• The relationship object pattern: the relationship is mod-
elled as a third object linked to the participants. A class
Attend must be created and its instances related to
each pair of objects in the relationship. This solution
underlies programming languages introducing primitives
for relationships, e.g., Bierman and Wren [3].

These two solutions have different pros and cons, as No-
ble [2] discusses. But they both fail to capture an important
modelling and practical issue. If we consider the kind of
examples used in the works about the modelling of rela-
tionships, we notice that relationships are also essentially
associated with another concept: students are related to tutors
or professors [3], [4], basic courses and advanced courses [4],
customers buy from sellers [5], employees are employed by
employers, underwriters interact with reinsurers [2],etc.From
the knowledge representation point of view, as noticed by
ontologists like Guarino and Welty [6], these concepts are not
natural kinds like person or organization. Rather, they all are
roles involved in a relationship.

Roles have different properties than natural kinds, and, thus,
are difficult to model with classes: roles can be played by
objects of different classes, they are dynamically acquired,
they depend on other entities - the relationship they belong to
and their players. Moreover, when an object of some natural
type plays a certain role in a relationship, it acquires new
properties and behaviors. For example, a student in a course
has a tutor, he can give the exam and get a mark for the exam,
another property which exists only as far as he is a student of
that course.

Thus, roles cannot simply be modelled as subclasses or
superclasses of natural types by means of dynamic reclassi-
fication [7]: a student is not simply a subtype of person nor
viceversa.

As Steimann [7] argues, there is an intrinsic role of roles
as intermediaries between relationships and the objects that
engage in them. Thus, in this paper, we focus on the following

112

research questions: How to introduce roles in the relationship
as attribute pattern and in the relationship object pattern?
Which other patterns are possible for modelling relationships
when roles are introduced in Object Orientation? As sub-
questions: How to distinguish natural types from roles when
designing a program? Which are the pros and cons of the
two patterns when roles are added? How to overcome the
limitations of the existing patterns?

In this paper we do not propose a new primitive of rela-
tionship in programming languages, but we introduce roles
in patterns for relationships, and as methodology we use our
model of roles in OO programming languages, an extension
which adds roles to the Java programming language, called
powerJava, described in [8], [9], [10], [11], for which a
precompiler has been built.

The language powerJava introduces roles as a way to
structure the interaction of an object with other objects calling
their methods. Roles express the possibilities of interaction
offered by the object to other ones, i.e., the methods they can
call. First, these possibilities change according to the class
of the callers of the methods. Second, a role maintains the
state of the interaction with a certain individual caller. As
roles have a state and a behavior, they share some properties
with classes. However, roles can be dynamically acquired and
released by an object playing them. Moreover, they can be
played by different types of classes. This is why roles in
powerJava can be useful in modelling relationships, where the
behavior of an object changes when it enters a relationship,
until it subsequently abandons it.

In Section II we discuss why and how relationships are
introduced in OO programming. In Section III we discuss
the link between relationships and roles. In Section IV we
summarize our model of roles in powerJava and in Section
V we use it to introduce roles in the relationship as attribute
and relationship object patterns. In Section VI, we describe
a new pattern combining the previous ones. Conclusions end
the paper.

II. I NTRODUCING RELATIONS INOO

To understand the importance of relations in programming
consider the efforts done to model relationships in defining
patterns for them [2], [5], [12] or in extending existing
languages like Java [3].

There is not yet a standard language with the relationship
primitive, notwithstanding some interesting proposals like [3].
Hence, in this paper, to discuss the role of roles in relation-
ships, we will focus on patterns for modelling relationships.
The most important patterns for modelling relationships are
the relationship as attribute pattern and the relationship object
pattern [2]. We will not consider here other solutions like the
collection object, mutual friends and active value patterns.

We will describe these two alternatives with reference to a
university domain. Consider a student who can attend different
kind of courses: basic ones and advanced ones. The same
course can be a basic one in the curriculum of a senior student
and an advanced one for junior student. A student can give the

exam of the basic course he is attending and it is possible to
send a message to the student of the course. Finally, a course is
associated with a tutor if it is taken as a basic course; the tutor,
which is not present in advanced courses, can be different for
every student attending it.

The relationship as attribute pattern is described in Figure
1: the relationship between a student and a basic course he
attends is modelled by means of an attributeattends of the
instances of classStudent which participate in the relation-
ship. The type of the attribute is a set ofBasicCourse . Sym-
metrically, theStudent appears in the attributeattendees
of the classBasicCourse of type set ofStudent . The
BasicCourse is also related with other courses by a rela-
tionship representing the prerequisites.

This solution, however, does not allow to add a state and
behavior to the elements related by the relationship. For
example, it is not possible to specify a different tutor for
eachStudent of theBasicCourse . Moreover, theenrol
method is arbitrarily implemented inBasicCourse rather
than inStudent .

The relationship object pattern is instead described in
Figure 2: the relationshipAttendBasicCourse is mod-
elled by a class whose instances link eachStudent to
the BasicCourse he attends. The second solution solves
some of the issues discussed in this section, in particular, it
facilitates the cohesion of the program, by factoring in the
class AttendBasicCourse all the relevant information.
In particular, the class can contain the properties and the
operations which the participants are endowed with when they
enter the relationship. For example, aStudent can take the
exam of theBasicCourse and get a mark if he is successful.
Note that the mark is a property belonging to the relationship.
Moreover, theStudent can be associated with a tutor in a
BasicCourse .

Also this solution can be modelled in UML, which specifies
information proper of an association via an association class,
where the properties and behaviors of the relationship are
represented. An association class has exactly one instance
for each set of objects linked through the association and a
lifetime delimited by the existence of the association. If a link
is dissolved, the association class instance is destroyed. Due
to the association, certain information exists that is specific to
the association. In UML a dashed line is used to specify an
association class.

But the relationship object solution shares with the rela-
tionship as attribute some limitations. First, we would like
to model the university scenario introducing natural types
like Person and Course rather than theStudent and
BasicCourse classes only. The reason for such modelling
choice is that aPerson is not always aStudent , and he
can play also other roles at the same time as he is aStudent .
Moreover, aPerson is a Student , and, thus, he can give
exams or receive communications concerning the course, only
if he is related by theAttendBasicCourse relationship
with a Course which he follows as aBasicCourse . He
has different marks in different exams, and even different

113

class Student {
String name;
int number;
HashSet<BasicCourse> attends; }

class BasicCourse {
String code;
String title;
HashSet<Student> attendees;
HashSet<BasicCourse> prerequisites;
void enrol(Student s) {

attendees.add(s);
s.attends.add(this); } }

Fig. 1. The relationship as attribute pattern

class Student {
String name;
int number; }

class BasicCourse {
String code;
String title; }

class AttendBasicCourse {
BasicCourse attended;
Student attendee;
Person tutor;
int mark;
AttendBasicCourse(Student s, Course c) {

attended = c;
attendee = s; }

int giveExam(String work){mark = ...}
void communicate(String text){...} }

Fig. 2. The relationship object pattern

students can have different tutors for the same course. Anal-
ogously aCourse has a tutor only if it plays the role of
BasicCourse .

Second, the relationship as attribute allows to add new
properties and behaviors. However, it does not allow to
satisfy completely the requirement that properties and be-
haviors are associated to the participants: this pattern does
not distinguish which properties belong to theStudent
and which ones to theBasicCourse . This problem
is more evident in the case of behaviors, since all the
methods are invoked on the relationship object of class
AttendBasicCourse rather than on the two related objects
Student andBasicCourse . This is not only a modelling
problem. It is not possible to have a method with the same
name which should be called on either participant,Student
and BasicCourse , with a different meaning. Thus, poly-
morphism is limited, for example, when the method should be
specified as part of an interface implemented by both classes
participanting in the relationship.

As noticed by Steimann [13], some of these problems
cannot be solved by using subclassing: playing a role is not
equivalent to subclassing (aPerson becomes aStudent),
since a role can be played by instances of different classes.

Consider the case of a role customer which can be played
either by a person or by an organization.

Finally, these patterns do not consider a further dimension:
the complexity of encapsulation when relations are considered.
This problem has been highlighted by Noble and Grundy [5]:
“Extra relationship objects existing ‘outside’ their participating
objects may also be seen as breaking the participating object’s
encapsulation [1]. The first point to note here is that many
relationships occur between objects which are themselves
parts of another aggregate object: that is, the relationship and
the participating objects may all be encapsulated by another
object. The second point here is that if encapsulation is
broken by the relationship, this is because the encapsulated
objects need to be accessed by the relationship object in order
to implement the semantics of the relationship. Without the
explicit relationship object, the analysis relationship would
have to be implemented in another way, by being built in to the
participating objects. If the relationship requires access to the
‘inside’ of an object breaking its encapsulation, these objects
would therefore need to break each other’s encapsulation
anyway. In short, using an explicit relationship object cannot
worsen breaches of encapsulation. The root of the problem
is not the relationshipobject (i.e., how the relationship is
implemented), but the existence of the relationship as part of
the problem domain.

In some circumstances, relationship objects may actually in-
crease encapsulation, as the implementation of the relationship
itself becomes encapsulated against the participating objects
when it is moved in to a separate relationship object.”

In the next section we will explain how roles and relation-
ships are related and how to overcome these problems.

III. ROLES AND RELATIONSHIPS

Relations are deeply connected with roles. This is accepted
in several areas: from modelling languages like UML and
ER to knowledge representation discussed in ontologies and
multiagent systems.

The link between roles and relationships is explicit in mod-
elling languages like UML in the context of collaborations: a
classifier role is a classifier like a class or interface, but “since
the only requirement on conforming instances is that they must
offer operations according to the classifier role, [...] they may
be instances of any classifier meeting this requirement” [14].
In other words: a classifier role allows any object to fill its
place in a collaboration no matter what class it is an instance
of, if only this object conforms to what is required by the
role. Classification by a classifier role is multiple since it does
not depend on the (static) class of the instance classified, and
dynamic (or transient) in the sense above: it takes place only
when an instance assumes a role in a collaboration [15].

As noticed by Steimann [13], roles in UML are quite similar
to the concept of interface, so that he proposes to unify the
two concepts. Instead, there is more in roles than in interfaces.
Steimann himself is aware of this fact: “another problem is
that defining roles as interfaces does not cover everything one
might expect from the role concept. For instance, in certain

114

situations it might be desirable that an object has a separate
state for each role it plays, even for different occurrences in
the same role. A person has a different salary and office phone
number per job, but implementing the Employee interface
only entails the existence of one state upon which behaviour
depends. In these cases, modelling roles as adjunct instances
would seem more appropriate.”

To do this, Steimann [7] proposes to model roles as clas-
sifiers related to relationships, but such that these classifiers
are not allowed to have instances. In Java terminology, roles
should be modelled as abstract classes, where some behavior
is specified, but not all the behavior, since some methods are
left to be implemented in the class extending them. These
abstract classes representing roles should be then extended by
other classes. However, given that in Java multiple inheritance
is not allowed, this solution is not viable, and roles can be
identified to interfaces only.

Roles as defined in programming languages [11], [16],
[17], instead, are different from interfaces, even if they share
some properties with interfaces, like the fact of being partial
specifications of behavior, thus allowing objects of different
classes entering the same role in a relationship. In particular,
roles have a state, add new operations to their players, and
depend on a context [11], [17].

Also Whitehurst [18] argues that behavior depends on roles:
“the behavior of an object can change depending on the role it
plays. When an association is formed between two instances,
the behavior of the associated instances is altered in some
way. A real world example is a person who becomes a parent.
The person has a parental association with a young person (a
child) and the behavior of the person is changed due to this
association”.

Pearce and Noble [12] notice that relationships have sim-
ilarities with roles. Objects in relationships have different
properties and behavior: “behavioural aspects have not been
considered. That is, the possibility that objects may behave
differently when participating in a relationship from when
they are not. Consider again the student-course example [...].
In practice, a course will have many more attributes, such
as a curriculum, than we have shown. Such attributes will
change over time in line with changes to the course. A useful
constraint would be to prevent any changes when students
are attending the course it would be unfair if the curriculum
changed just before the exam! Thus, Course objects behave
differently (i.e., they don’t accept changes) when they are
participating in a relationship from when they are not (i.e.,
they do accept changes).”

Thus, roles and relationships are strictly related.
In UML, it is possible to specify information and behavior

specific to an association via an association class, but not with
roles, which are partial description of behavior which do not
add anything to their players.

In conclusion, it seems that besides the relationship objects
it is necessary to introduce further objects representing the
roles as adjunct instances of new classes.

IV. ROLES IN POWERJAVA

Baldoni et al. [8], [9], [10], [11] introduce roles as af-
fordances in powerJava, an extension of the object oriented
programming language Java. powerJava is translated into Java
by means of a precompiler, whose details are described in [11].

We only summarize here the powerJava language.
Java is extended with:

1) A construct defining the role with its name, the require-
ments and the signatures of the methods offered to the
objects by playing the role, called powers.

2) The implementation of a role as a class, inside an object,
and according to the definition of its powers.

3) A construct for playing a role and invoking the opera-
tions offered to the role.

We illustrate powerJava by means of an example. Let us
suppose to have a printer which supplies two different ways of
accessing it: one as a normal user, and the other as a superuser.
Normal users have the power to print their jobs and the number
of printable pages is limited to a given maximum. Superusers
have the power to print any number of pages and can query
for the total number of prints done so far. To be a user one
must have an account, which is printed on the pages. The role
specifications are the following:

role User playedby Accounted {
int print(Job job);
int getPrintedPages(); }

role SuperUser playedby Accounted {
int print(Job job);
int getTotalPages(); }

Requirements must be implemented by the objects which
act as players.

interface Accounted
{ Login getLogin(); }

class Person implements Accounted {
Login login; // ...
Login getLogin() {return login;} }

Instead, roles are implemented in the class which offers the
role. To implement roles inside it we revise the notion of Java
inner class, by introducing the new keyworddefinerole
instead ofclass followed by the name of the role definition
that the class is implementing (see the classPrinter in
Figure 3).

As a Java inner class, the methods of a role implementation,
called powers, have access to the private fields and methods
of the outer class (in the above example the private method
print of Printer used both in roleUser and in role
SuperUser) and of the other roles defined in the outer class.
This possibility does not disrupt the encapsulation principle
since all roles of a class are defined by the same programmer
who defines the class itself. In other words, an object that has
assumed a given role, by means of the role’s methods, has
access and can change the state of the object the role belongs
to and of the sibling roles.

115

All the constructors of roles have an implicit first parameter
to which it must be passed as value the player of the role: to
construct a role we need both the object the role belongs to
(the object the constructnew is invoked on) and the player of
the role (the first implicit parameter). This parameter has as
its type the requirements of the role and it is assigned to the
keyword that . A role instance is created by means of the
constructnew starting from the object offering the role and
by specifying the name of the inner class implementing the
role which we want to instantiate. This is like it is done in
Java for inner class instance creation. Differently than other
objects, role instances do not exist by themselves and are
always associated to their players and to the object the role
belongs to.

The following instructions create a printer objectlaser1
and two person objects,chris and sergio . chris is a
normal user whilesergio is a superuser. Indeed, instructions
four and five define the roles of these two objects w.r.t. the
created printer.

Printer laser1 = new Printer();

//players are created as Person
Person chris = new Person();
Person sergio = new Person();

//roles are created
laser1.new User(chris);
laser1.new SuperUser(sergio);

An object has different (or additional) properties when it
plays a certain role, and it can perform new activities, the
powers, as specified by the role definition. Moreover, a role
represents a specific state which is different from the player’s
one, which can evolve with time by invoking methods on the
roles. The relationship between the object and the role must
be transparent to the programmer: it is the object which has
to maintain a reference to its roles.

The behavior of a role instance depends on the player
instance of the role, so in the method implementation the
player instance can be retrieved via a new reserved keyword:
that , which is used only in the role implementation. In
Figure 3,that.getLogin() is a parameter of the method
print .

Methods can be invoked from the players, given that the
player is seen in its role. To do this, we introduce the new
construct, calledrole cast. Role casting views an object as
having a different state and different behaviors when playing
different roles. Role casting allows to make transparent to the
programmer the association of a role and an object instance:
the programmer invokes a method of a role on the object
playing it casted into the role; the language transforms this
method invocation in a message sent to the delegated role
instance, which is hidden in its player.

In the example the two users invoke the methodprint on
laser1 . They can do this because they have been empowered
of printing by playing their roles. The act of printing is carried
on by the private methodprint . Nevertheless, the two roles

class Printer {
private int totalPrintedPages = 0;
private void print(Job job, Login login) {

totalPrintedPages += job.getNumberPages();
// performs printing

}

definerole User {
int counter = 0;
public int print(Job job) {

if (counter > MAX_PAGES_USER)
throws new IllegalPrintException();

counter += job.getNumberPages();
Printer.this.print(job, that.getLogin());
return counter;}

public int getPrintedPages()
{ return counter; }

}

definerole SuperUser {
public int print(Job job) {

Printer.this.print(job, that.getLogin());
return Printer.this.totalPrintedPages;}

public int getTotalpages()
{ return Printer.this.totalPrintedPages; }

}
}

Fig. 3. ThePrinter class and its roles

of User andSuperUser offer two different ways to interact
with thePrinter : User counts the printed pages and allows
a user to print a job if the number of pages printed so far is
less than a given maximum;SuperUser does not have such
a limitation. Moreover,SuperUser is empowered also of
viewing the total number of printed pages. Notice that the page
counter is maintained in the role state and persists through
different calls to methods performed by a same sender/player
towards the same receiver as long as it plays the role.

((laser1.User) chris).print(job1);
((laser1.SuperUser) sergio).print(job2);
((laser1.User) chris).print(job3);
System.out.println("The printer printed" +

((laser1.SuperUser) sergio).getTotalPages());

Since an object can play multiple roles, the same method
will have a different behavior depending on the role which the
object is playing when it is invoked. It is sufficient to specify
which is the role of a given object, we are referring to. In the
examplechris can become alsoSuperUser of laser1 ,
besides being a normaluser

laser1.new SuperUser(chris);
((laser1.SuperUser) chris).print(job4);
((laser1.User)chris).print(job5);

In this case two different sessions will be kept: one
for chris as normalUser and the other forchris as
SuperUser . Only when it prints its jobs as a normalUser
the page counter is incremented.

116

role Student playedby Person {
int giveExam(String work); }

role BasicCourse playedby Course {
void communicate(String text); }

class Person{
String name;
private Queue messages;
private HashSet<BasicCourse> attended;

definerole BasicCourse {
Person tutor;
void communicate (String text){

Person.this.messages.add(text);}
BasicCourse(Person t){

tutor=t;
Person.this.attended.add(this); }

}
}

class Course {
String code;
String title;
private HashTable registry =

new HashTable();
private HashSet<Student> attendees;
private int evaluate(String x){...}

definerole Student {
int number;
int mark;
int giveExam(String work){

mark = Course.this.evaluate(work);
registry.set(that.hashCode(), mark);
return mark;
}

Student (){
Person.this.attended.add(this); }

}
}

Fig. 4. Relationship-role as attribute pattern in powerJava

V. RELATIONSHIPS WITH ROLES USING POWERJAVA

In this section we describe how new patterns for modelling
relationships with roles can be defined, in analogy with both
the relationship as attribute and the relationship object pattern.
We will use the example of Section II to present them.

First of all, using powerJava we can model instances of
natural types likePerson and Course which become,
respectively,Student andBasicCourse when they enter
the relationship. This is possible becauseStudent and
BasicCourse are roles represented in powerJava by in-
stances associated with the players of the roles, which include
the state and behaviors acquired by the players of the roles in
the relationship.

In the relationship-role as attribute pattern, a relation-
ship is not reduced only to two symmetric attributes
basicCourses andattendees . The relationship is mod-
elled also by means of a pair of roles. ThePerson plays
the role of Student with respect to theCourse and

public static void main (String[] args){
Course c = new Course();
Person p = new Person();
//create a role Student for p in c
Student s = c.new Student(p);
BasicCourse b = p.new BasicCourse(c,tutor);
//p as a Student of Course c gives the exam
((c.Student)p).giveExam(work);
//a message text is sent
((p.BasicCourse)c).communicate(text); }

Fig. 5. Using the relationship-role as attribute in powerJava

the Course plays the role ofBasicCourse with respect
to the Person (see Figures 4, 5 and 6 where the UML
representation is illustrated1).

Thus, the attributeattendees of type Student in
Course is not replaced by one of typePerson . Rather,
Student is defined as role andPerson is a class which
can play the role (see the role definition connecting a role to
the classes playing it). The roleStudent is associated with
players of typePerson in the role definition, which specifies
that aStudent can give an exam (giveExam). Analogously,
the role BasicCourse is associated with players of type
Course in the role definition, which specifies that aCourse
can communicate with the attendee.

The role Student is implemented locally in the class
Course and, viceversa, the roleBasicCourse is defined
locally in the classPerson . Note that this is not contradictory,
since roles describe the way an object offers interaction to
another one: aStudent represents how aPerson can in-
teract with aCourse , and, thus, the role is defined inside the
classCourse . Moreover the behavior associated with the role
Student , i.e., giving exams, modifies the state of the class
including the role (it access theregistry variable) or calls
its private methods (evaluate), thus violating the standard
encapsulation. Analogously, thecommunicate method of
BasicCourse , modifies the state of thePerson hosting
the role by adding a message to the queue. These methods, in
powerJava terminology, exploit the full potentiality of powers
of violating the standard encapsulation of objects.

To associate aPerson and aCourse in the relationship,
the role instances must be created starting from the objects
offering the role, e.g.:c.new Student(p) (see themain
in Figure 5).

When the player of a role must invoke a power it must be
first role casted to the role. For example, to invoke the method
giveExam of Student , the Person must first become a
Student . To do that, however, also the object offering the
role must be specified, since thePerson can play the role
Student in different instances ofCourse ; in this case the
Course c : ((c.Student)p).giveExam(...) .

The alternative relationship-role object pattern intro-
duces anAttendBasicCourse class modelling the re-
lationship betweenPerson and Course . However, the

1The arrow starting from a crossed circle, in UML, represents the fact that
the source class can be accessed by the arrow target class.

117

+ communicate(String)

Course

+ name: John

+ tutor: person

+ number: 1234

− ...

− messages: ...
− attended: ...

− evaluate(String)

− attendees: ...
+ title: "programming"

RQ

RQ

+ mark: 10

+ Student(Person)

+ BasicCourse(Course)

+ giveExam(String)Person.this

that

that

:Person.BasicCourse

:Course.Studentp:Person

Course.this

c.Course

+ code: CS110

Person

Fig. 6. The UML representation of the relationship-role as attribute pattern example

AttendBasicCourse class is not linked to aPerson and
a Course . Rather, thePerson plays the roleStudent in
the classAttendBasicCourse and theCourse the role
BasicCourse (see Figures 7 and 8). Like in the previ-
ous solution the roles are modelled as classes implemented,
in this pattern, in the classAttendBasicCourse whose
instances contain the properties and behaviors added when
instances ofPerson andCourse , respectively, participate in
the relationship. Additionally, properties and behaviors which
are associated to the relationship itself, like entering in the
relationship and constraints on the participants can be added
to the relationship class.

To relate aPerson and a Course in a relationship,
an instance ofAttendBasicCourse must be created, to-
gether with an instance ofStudent played by thePerson
and of BasicCourse played by theCourse . To invoke
a power of Student , a Person must be role casted to
the role Student starting from an instance of the class
AttendBasicCourse .

With respect to the previous pattern, it is possible to
notice that the roles can interact with each other: the role
Student invokes in the methodgiveExam the private
methodevaluate of theBasicCourse role. However, the
roles cannot anymore access the private state and methods of
the player of the class. For this reason, it is necessary to add
a public getMessage method in Person , and to define
evaluate in the role rather than in theCourse class.

The two patterns have different pros and cons; the following
list integrates Noble [2]’s discussions on them.

Advantages of the Relationship-role as attribute pattern:
• It allows simple one-to-one relationships: it does not

require a further class and its instance to represent the
relationship between two objects.

• It allows to introduce a state and operations to the objects
entering the relationship, which was not possible without
roles in the relationship as attribute pattern.

• It allows the integration of the role and the element
offering it by means of powers.

• It allows to show which roles can be offered by a class,
and, thus, in which relationships they can participate,
since they are all defined in the class.

Disadvantages of the Relationship-role as attribute pattern:
• It requires that the roles are already implemented offline

inside the classes which participate in the relationship.
• It does not assure coherence of the pair of roles like

student-course, buyer-seller, bidder-proponent, since they

are defined separately in two different classes.
• The role cast to allow a player to invoke a power of its

role requires to know the identity of the other participant
in the relationship.

• It does not allow to distinguish which is the role played
in the other object participating in the relationship (e.g.,
a Student in the attendees set of a Course
can follow the Course as a BasicCourse or an
AdvancedCourse).

Advantages of the Relationship-role object pattern:

• It allows to introduce a state and operations of the
relationship besides the state and operations added to the
objects entering the relationship.

• It allows to list all instances of the relationship and
centralize operations like entering the relationship and to
check constraints on the relationship.

• It enforces to create both role instances at the same time,
since they are linked to the same relation instance, thus
avoiding the risk of inconsistencies.

• It allows the integration of the role with the relationship
and with the other role, since the powers of a role
can access both. In this way it is possible to deal with
coordination issues [8].

• To make a role cast it is necessary only to know the rela-
tionship instance, thus, the other participant can change
without notice.

• It does not require that the classes of players already
implement the role classes. To play a role it is sufficient
to satisfy the requirements.

Disadvantages of the Relationship-role object pattern:

• It requires a further class and its instance.
• It does not allow the integration of roles with the objects

offering them (e.g.,Student is defined separately of
the classCourse , which, as a consequence, cannot be
accessed). Thus, private variables of classes offering the
role cannot be accessed anymore (seeregistry of
Course in Figure 4), otherwise an object is required
to offer additional public methods to access them (see
getMessage in Figure 7), which endangers encapsula-
tion.

• The roles cannot be tailored anymore with the class
offering the role. E.g., the methodevaluate cannot
be anymore modelled as a private method ofCourse :
different courses cannot evaluate an exam in different
manners.

118

role Student playedby Person {
int giveExam(String work); }

role BasicCourse playedby Course {
void communicate(String text); }

class AttendBasicCourse{
Student attendee;
BasicCourse attended;
static Hashset<AttendBasicCourse> all;

definerole Student {
int mark;
int number;
int giveExam(String work){

mark = AttendBasicCourse.this.attended.evaluate(work); }
}

definerole BasicCourse {
String program;
Person tutor;
private int evaluate(String work){...}
void communicate(String text){

//invoke the requirement of the Person playing the role
AttendBasicCourse.this.attendee.that.getMessage(text);}

}

AttendBasicCourse(Person p, Course c, String p, Person t){
attendee = this.new Student(p);
attended = this.new BasicCourse(c);
AttendBasicCourse.all.add(this);

}
void communicate(String text){

foreach (AttendBasicCourse x: all)
x.attended.communicate(text);}

}

class Person{
String name;
private Queue messages;
void getMessage(String text) {

messages.add(text) };
}

class Course {
String code;
String title;

}

class University{
public static void main (String[] args){

Person p = new Person();
Course c = new Course();
a = new AttendBasicCourse(p,c,program,tutor);
//p as a Student gives the exam
((a.Student)p).giveExam(work);
//c is used to send a message
((a.BasicCourse)c).communicate(text);}

Fig. 7. Relationship-role object pattern

119

− attendee: ...

+ mark: 10

+ Student(Person,...)+ getMessage(String)

+ tutor: person

+ giveExam(String)
+ communicate(String)
−evaluate(String)

c.Course

+ code: CS110
+ title: "programming"

:AttendBC.BasicCourse

+ BasicCourse(Course,...)

:AttendBC.Student

a:AttendBasicCourse

+ communicate(String)
+ AttendBasicCourse(...)

− attended: ...

that

Person

RQ

that

Course

RQ

AttendBasicCourse.this AttendBasicCourse.this

p:Person

+ name: John
− messages: ...

+ number: 1234

Fig. 8. The UML representation of the relationship-role object pattern example

In summary, we can define an informal program transfor-
mation, which is common to both patterns, to add roles to
relationship patterns using powerJava:

1) Identify the natural types of the objects playing the
roles (e.g.,Person for Student , or Person and
Organization for Customer).

2) Change the type of the classes which participate in the
relationship from the name of the role to the name of
the natural kind playing the role (now there can be more
than one class playing the role); e.g., the classStudent
becomesPerson .

3) Add a role definition relating the role to the natural types
which can play the roles, or to an interface implemented
by these natural types, and insert in the role defini-
tion the signature of the powers (e.g.,communicate ,
giveExam).

4) Identify the two links to the participants in the rela-
tions, either in the classes representing the participants
(e.g., attendees of type Student in Course), or
in the class representing the relationship (for example
attendee of type Student andattended of type
BasicCourse in AttendBasicCourse).

5) In the same class the link belongs to, add a role class im-
plementing the role definition with the same name as the
type of the link (e.g.,Student in the BasicCourse
class which is now calledCourse , or Student and
BasicCourse in AttendBasicCourse). Add to
this role class the attributes and the implementation,
according to the role definition, of the powers.

6) In the code which relates the two participant instances
to the relationship, instead of adding the players to
the links, first create two roles instances played by the
respective playes, and, second, add these instances to
the links modelling the relationship (either in the class
of the players, e.g.,Person or in the class modelling
the relationship object, e.g.,AttendBasicCourse).

7) When a method added by the relationship must be
invoked, first, make a role cast from the object playing
the role to the role it plays.

VI. A NEW RELATIONSHIP PATTERN WITH ROLES

The two relationship patterns added with roles still leave
some unsolved problems. On the one hand, the relationship-
role as attribute pattern allows a strict coupling between the
role and the class offering it. For example, the roleStudent
can access the classCourse when thePerson playing the
role gives an exam: the registry of the courses can be added
with a new entry with the mark of that exam.

On the other hand, the relationship-role object pattern
allows a better coordination of the two roles. All roles of a
relationship share the same namespace, and, thus, can access
each other and the relation too. In this way, it is possible
to define the interaction between the roles separately from
the classes of possible players, and to guarantee that that the
interaction among the players will be performed in the desired
way. In contrast, the roles are separated from the class offering
them in the relationship-role as attribute patterns, and, thus,
roles cannot access the classes offering the roles. They only
share the relationship namespace.

So the two patterns offer a tradeoff between the coupling
of the role together with the class offering it (Student of
a Course , Employee of an Organization , etc.), and
the coordination among the roles. The ideal situation should
allow both aspects to be dealt with. These problems are the
result of the complexities concerning encapsulation arising
when relatioships are taken seriously, as noted by Noble and
Grundy [5] and reported in Section II.

A solution is possible in powerJava by exploiting an often
disregarded feature of Java. The idea is as follows, and it is
illustrated and in Figure 9 as an UML diagram. First, as in the
relationship-role object pattern, a class for creating relationship
objects is created, containing the roles (e.g.,Student and
BasicCourse in AttendBasicCourse), see Figure 10 .
The interaction between the roles is defined at this level since
the powers of each role can access the state of the other roles
and of the relationship.

Differently from the relationship-role pattern, these roles
must be defined as abstract and so cannot be instantiated.
Moreover, the methods containing the details about how these
methods describing interaction work can be left unfinished and
declared as abstract.

Second, the same roles can be defined according to the
relationship-role as attribute pattern in the classes offering
them (and, thus, they can be developed separately), see Fig-

120

:AttendBC.Student

that

+ number: 1234
+ mark: 10

+ Student(Person,...)
- evaluate(String)

AttendBasicCourse.this AttendBasicCourse.this

a:AttendBasicCourse

+ communicate(String)
+ AttendBasicCourse(...)

− attended: ...
− attendee: ...

that

RQ

+ number: 1234
+ mark: 10

+ Student(Person,...)

:Course.Student

− evaluate(String)

RQ

Course

PersonCourse.this

Person.this

+ tutor: person

+ communicate(String)

:AttendBC.BasicCourse

+ BasicCourse(Course,...)

+ tutor: person

+ communicate(String)

:Student.BasicCourse

+ BasicCourse(Course,...)c.Course

+ code: CS110
+ title: "programming"

p:Person

+ name: John
− messages: ...

Fig. 9. The UML representation of the new relationship-role pattern

ure 11. However, these roles, rather than being implemented
from scratch (e.g.,Student and BasicCourse), they ex-
tend the abstract roles of the relationship object class, filling
the gaps left by abstract methods in the abstract roles. The
extension is necessary to customize the roles to their context.
Methods which are declared as final in the abstract roles cannot
be overwritten, since they represent the interaction among
roles in the scope of the relationship. Further methods can
be declared, but they are not visible from outside since both
the abstract role and the concrete one have the signature of
the role declaration.

Note that the abstract roles are not extended by the classes
participating in the relationship (e.g.,Course andPerson),
but by roles offered by (i.e., implemented into) these classes.
Otherwise, the classes participating in the relationship could
not extend further classes, thus limiting the code reuse possi-
bilities.

The advantage of these solutions is that roles can share
both the namespace of the relationship object class and the
one of the class offering the roles, as we required above.
This is possible since extending a role implementation is the
same as extending an inner class in Java: roles are compiled
into inner classes. When a class extends an inner class in
Java, it maintains the property that the methods defined in
the inner class it is extending continue to have access to
the outer class instance containing the inner class. If the
inner class is extended by another inner class, the resulting
inner class belongs to the namespaces of both outer classes.
Moreover, the inner class instance has a reference to both
outer class instances so to be able to access their states.
The possible ambiguities of identifiers accessible in the two
outer classes and in the superclass are resolved by using the
name of the outer class as a prefix of the identifier (e.g.,
Course.this.registry).

This feature of Java, albeit esoteric, has a precise semantics,
as discussed by [19]. We exploit this mechanism for extending

roles in relationship object classes, thus giving a new, more
usable, meaning to this construct and hiding the complexities
to the programmer.

Basing on this idea we propose here an extension of power-
Java, which allows to define abstract roles inside relationship
object classes, and to let standard roles extend them. The
resulting roles will belong both to the namespace of the class
offering them and to the relationship object class. Moreover,
the resulting roles will inherit the methods of the abstract roles.

Note that the abstract roles cannot be instantiated, so that
the are used only to implement both the methods which
define the interaction among the roles, and the methods which
are requested to be contextualized. The former will be final
methods which are inherited, but which cannot be overwritten
in the extending role: they will access the state and methods
of the outer class and of the sibling roles. The latter will be
abstract protected methods, which are used in the final ones,
and which must be implemented in the extending class to tailor
the interaction between the abstract role and the class offering
the role. If these methods are declared as protected they are
not visible outside the package. These methods have access to
the class offering the extending roles.

Besides adding the propertyabstract to roles, three other
additions are necessary in powerJava.

First of all, the methods of the abstract role can make
reference to the outer class of the extending role. This is
realized by means of a reserved variableouter , which is
of type Object since it is not possible to know in advance
which classes will offer the extended role. This variable is
visible only inside abstract roles.

Second, to create a role instance it is necessary to have
at disposal also the relationship object offering the abstract
roles, and the two roles must be created at the same time. For

121

role Student playedby Person complements BasicCourse {
int giveExam(String work); }

role BasicCourse playedby Course complements Student {
void communicate(String text); }

class AttendBasicCourse{
Student attendee;
BasicCourse attended;

abstract class Student {
int mark;
int number;
//method modelling interaction
final int giveExam(String work){

return mark = evaluate(work);}
//method to be implemented
abstract protected int evaluate(String work);

}

abstract class BasicCourse {
String program;
Person tutor;
//method to be implemented
abstract void communicate(String text);

}

AttendBasicCourse(Person p, Course c, String pr, Person t){
attendee = c.new Student(p,this);
attended = p.new BasicCourse(c,this,t);

}
}

Fig. 10. The new relationship-role pattern

example:

AttendBasicCourse(Person p, Course c){
...
c.new Student(p,this);
p.new BasicCourse(c,this);

}

WhereStudent andBasicCourse are the name of the
concrete roles implemented inp and c and it is the same as
the abstract roles defined in the relation.

The types of the argumentsPerson andCourse are the
requirements of the rolesStudent andBasicCourse .

Moreover, the first and the second argument of the construc-
tor are added by default: the first one represents the player of
the role, while the second one, present only in roles extending
abstract roles, is the reference to the relationship object. This
is necessary since the inner class instance represented by the
role has two links to the two outer classes it belongs to. This
reference is used to invoke the constructor of the abstract role,
as required by Java inner classes, for example, the constructor
of the roleCourse.Student is the following one.

Student(Person p, AttendBasicCourse a){
a.super();
... }

However, these complexities are hidden by powerJava which
adds the necessary parameters and code during precompilation.

The entities related by the relationship must preexist to it:

Person p = new Person();
Course c = new Course();
AttendBasicCource r =

new AttendBasicCourse(p,c);
((c.Student)p).giveExam(w);

Note that the role cast((r.Student)p) is equivalent to
((c.Student)p) .

Third, in the extension of powerJava abstract roles only
come in pairs (e.g.,Student and BasicCourse). Thus,
the definition of a role must be extended to specify not only
that the possible players comply with the requirements, but
also which role must be offered in turn to play a role. E.g., a
classPerson to play the roleStudent has to offer in turn
the roleBasicCourse . For this reason, the role definition
is extended with the keywordcomplements specifying the
other role of the relation. E.g.,

role Student playedby Person
complements BasicCourse {

int giveExam(String work); }

Thus, a class can play a role not only if it implements the
requirements in the role definition, but also if it offers the role
specified as complementary.

Finally, we add an additional constraint to powerJava: if
a role implementation extends another role, it must have the

122

class Course {
String code;
String title;
private HashSet<Student> attendees;
private HashTable registry = new HashTable();

class Student extends AttendBasicCourse.Student {
Student(){

Course.this.attendee = this;
}
//abstract method implementation
protected int evaluate(String work){

mark = ...
Course.this.registry.set(that.hashCode(), mark);
return mark;

}
}

}

class Person {
String name;
private Queue messages;
private HashSet<BasicCourse> attended; //courses followed as BasicCourse

class BasicCourse extends AttendBasicCourse.BasicCourse{
BasicCourse(Person t){

tutor=t;
Person.this.attended=this;

}
//abstract method implementation
void communicate (String text) {

Person.this.messages.add(text);
}

}
}

Fig. 11. The new relationship-role pattern

same name. Thus, the abstract and concrete role have the same
requirements. Moreover, it is possible to extend only abstract
roles, while general inheritance among roles is not discussed
here.

In Figures 10 and 11, we report the example used in the
previous sections using the new pattern. Note in particular, that
the classPerson does not have anymore agetMessage
method, like in the example of Figure 7, since the role
BasicCourse of Person has access directly to the private
queue of messages of a person. Moreover, theregistry
of exams in aCourse can be updated when giving an
exam, as in the relationship as attribute solution, since the
role Student has access to the class offering it. Finally, the
methodevaluate is defined inside the role implementation
Student of the classCourse , so that it can be tailored to
different kind of courses.

This example, however, does not show how the interaction
among roles can be separated from the classes of the players
and gathered inside the relationship object class. For this
reason we add also another example.

Consider a relationship like a negotiation protocolCNP
(Contract Net Protocol). It relates two objects: first, an object
of type Manager which plays the role ofInitiator and,

as Initiator , makes calls for proposalscfp ; second, an
object of typeWorker , who is able to execute a task, can play
the role ofParticipant and, as such, to makeproposal s
in return to thecfp . Note that as in the relationship-role as
attributes pattern, theInitiator role is offered byWorker
to allow theManager to call the methodcfp to interact with
theWorker . Viceversa, the roleParticipant is offered by
theManager to theWorker to respond with aproposal to
the Manager . However, differently than in the relationship-
role as attributes pattern all the interaction among the roles
happens inside the abstract roles defined in the classCNP.
In this way, objects entering a negotiation are guaranteed
that the role offered by the other participant is coherent with
the one offered by their own. The only function of the role
Manager.Participant andWorker.Initiator is to
tailor the behavior of the abstract roles to the classes offering
their extensions.

VII. C ONCLUSION

In this paper we discuss why roles need to be introduced
when relationships are modelled in OO programs: it is possible
to distinguish between the natural type of objects populating
the program and the state and behaviors they acquire when

123

role Initiator playedby InitiatorReq complements Participant {
void cfp(Task task);
void rejectProposal(Proposal proposal);
void acceptProposal(Proposal proposal);
}

role Participant playedby ParticipantReq complements Initiator {
void propose(Proposal proposal);
void refuse();
void inform(String result);
void failure();
}

public class CNP {
final static int STATE_1 = 1;
final static int STATE_2 = 2; //...
int state = STATE_1;

abstract definerole Initiator {
public final void cfp(Task task) throws IllegalPerformativeException {

if (state != STATE_1) throw new IllegalPerformativeException ();
state = STATE_2;
if (evaluateTask(task))

((that.Participant)outer).propose(getProposal(task));
else

((that.Participant)outer).refuse();
}
public final void rejectProposal(Proposal proposal) throws ... {

if (state != STATE_3) throw new IllegalPerformativeException();
state = STATE_4;

}
public final void acceptProposal(Proposal proposal) throws ... {

if (state != STATE_3) throw new IllegalPerformativeException();
if (performTask(proposal, task))

((that.Participant) outer).inform(performTask(proposal,task));
else ((that.Participant)) outer).failure(error);
state = STATE_5;

}//methods to be implemented
abstract protected boolean evaluateTask(Task task);
abstract protected String performTask(Proposal proposal, Task task);
}

abstract definerole Participant {
public final void propose(Proposal proposal) throws ... {

if (state != STATE_2) throw new IllegalPerformativeException();
state = STATE_3;
if (evaluateProposal(proposal))

((that.Initiator)outer).acceptProposal(proposal);
else

((that.Initiator)outer).rejectProposal(proposal);
}

public final void inform(String s) throws ... {
if (state != STATE_2) throw new IllegalPerformativeException();
state = STATE_3;

}
public final void refuse() throws ... {

if (state != STATE_2) throw new IllegalPerformativeException();
state = STATE_6;

}
public final void failure() throws ... {

if (state != STATE_2) throw new IllegalPerformativeException();
state = STATE_7;

}
abstract protected boolean evaluateProposal(Proposal proposal);

}
}

Fig. 12. The CNP example

124

class Manager implements InitiatorReq{

definerole Participant extends CNP.Participant {
protected boolean evaluateTask(Task task){...}

}
}

class Worker implements ParticipantReq {

definerole Initiator extends CNP.Initiator{
protected String performTask(Proposal proposal, Task task){...}
protected boolean evaluateProposal(Proposal proposal){...}

}
}

public static void main (String[] args){
Worker w = new Worker();
Manager m = new Manager();
CNP c = new CNP(m,w);
try{((w.Initiator)m).cfp(...);}
catch (IllegalPerformativeException e){}; }

}

Fig. 13. The CNP example

they participate in a relationship. The state and behaviors
which are dynamically acquired are modelled by roles.

Using the language powerJava, a role endowed version of
Java, we show how to introduce roles in the two major patterns
for modelling relationships: the relationship as attribute pattern
and the relationship object pattern. We discuss the pros and
cons of both patterns when roles are introduced. In particular,
we show that the relationship as attribute pattern extended with
roles enables to model the extension of behavior of the objects
entering a relationship, without the introduction of a further
class modelling the relationship.

The two resulting patterns differ also for the fact that the
former emphasise the coupling of the role with the class
offering it (e.g., Student and Course), while the latter
emphasise the coupling of the roles with the relationship class
and with each other.

Finally we propose a new pattern where both couplings can
be considered at the same time: first abstract roles are defined
in the relationship object class, which specify the interaction,
and then the roles are defined in the classes offering them.
This pattern solves the encapsulation problems raised when
relationship are introduced in OO.

Future work includes studying how to introduce roles for
relationship patterns developed for aspect programming, like
the one proposed by Pearce and Noble [12].

REFERENCES

[1] J. Rumbaugh, “Relations as semantic constructs in an object-oriented
language.” inProcs. of OOPSLA, 1987, pp. 466–481.

[2] J. Noble, “Basic relationship patterns,” inPattern Languages of Program
Design 4. Addison-Wesley, 2000.

[3] G. Bierman and A. Wren, “First-class relationships in an object-oriented
language.” inProcs. of ECOOP, 2005, pp. 262–286.

[4] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini, “An object data
model with roles,” inProcs. of Very Large DataBases (VLDB’93), 1993,
pp. 39–51.

[5] J. Noble and J. Grundy, “Explicit relationships in object-oriented devel-
opment,” inProcs. of TOOLS 18, 1995.

[6] N. Guarino and C. Welty, “Evaluating ontological decisions with onto-
clean,” Communications of ACM, vol. 45(2), pp. 61–65, 2002.

[7] F. Steimann, “On the representation of roles in object-oriented and
conceptual modelling,”Data and Knowledge Engineering, vol. 35, pp.
83–848, 2000.

[8] M. Baldoni, G. Boella, and L. van der Torre, “Roles as a coordina-
tion construct: Introducing powerJava,”Electronic Notes in Theoretical
Computer Science, vol. 150, no. 1, pp. 9–29, 2006.

[9] ——, “Modelling the interaction between objects: Roles as affor-
dances,” inProcs. of Knowledge Science, Engineering and Management,
KSEM’06, ser. LNCS, vol. 4092. Berlin: Springer, 2006, pp. 42–54.

[10] ——, “Interaction among objects via roles: sessions and affordances in
powerjava,” inProcs. of PPPJ ’06. New York (NY): ACM, 2006, pp.
188–193.

[11] ——, “Interaction between objects in powerJava,”Journal of Object
Technology, vol. 6, no. 2, pp. 7–12, 2007.

[12] D. Pearce and J. Noble, “Relationship aspects.” inProcs. of AOSD, 2006,
pp. 75–86.

[13] F. Steimann, “A radical revision of UML’s role concept,” inProcs. of
UML2000, 2000, pp. 194–209.

[14] OMG, OMG Unified Modeling Language Specification, Version 1.3,
1999.

[15] I. Jacobson, G. Booch, and J. Rumbaugh,The Unified Software Devel-
opment Process. Addison-Wesley, 1999.

[16] B. Kristensen and K. Osterbye, “Roles: conceptual abstraction theory
and practical language issues,”Theory and Practice of Object Systems,
vol. 2, no. 3, pp. 143–160, 1996.

[17] S. Herrmann, “Object teams: Improving modularity for crosscutting
collaborations,” inProcs. of Net.ObjectDays, 2002.

[18] A. Whitehurst, “Association frameworks in simulation reuse,” inProcs.
of OOS, 1998.

[19] M. Smith and S. Drossopoulou, “Inner classes visit aliasing,” inECOOP
2003 Workshop on Formal Techniques for Java-like Programming, 2003,
2003.

125


Abstract—This work deals with trust management in open and

decentralized agent-based environments. Analysis and solutions
are geared towards peer to peer networks, intended not just as a
technology, but above all as a web of trust relationships, where
parties interoperate directly, without reliance on any centralized
directory or authority.

Index Terms— Cooperative systems, Security, Public key
cryptography, Resource management

I. INTRODUCTION

HILE a number of architectures and systems are being
proposed to deal with the problem of service

composition, some issues remain open. In particular, multi-
agent systems allow the dynamical and intelligent composition
of services by means of delegation of goals and duties among
partners. But these delegations can never come into effect, if
they're not associated with a corresponding delegation of
privileges, needed to access some resources and complete
delegated tasks, or achieve desired goals.

This work deals with trust management in open and
decentralized agent-based environments. Analysis and
solutions are geared towards peer to peer networks, intended
not just as a technology, but above all as a web of trust
relationships, where parties interoperate directly, without
reliance on any centralized directory or authority.

In particular, this paper will show how it is possible to join
multiple XML-based certificates in a delegation chain,
expressing a degree of trust between two agents. This kind of
delegation can allow secure collaboration also among agents
who don’t have direct acquaintance.

Securing access to the resources made available by the peers
is a requirement to make peer to peer networks a more
widespread paradigm of cooperation among loosely coupled
software agents. The secure management of trust relationships,
the ability to precisely control the flow of delegated
permissions to trusted entities, are a fundamental requirement
to allow the composition of the more disparate services
provided on the network.

A. Poggi is with University of Parma, Dipartimento di Ingegneria
dell’Informazione, Viale G. Usberti 43100 Parma, Italy (poggi@ce.unipr.it).

M. Tomaiuolo is with University of Parma, Dipartimento di Ingegneria
dell’Informazione, Viale G. Usberti 43100 Parma, Italy
(tomamic@ce.unipr.it).

II. RETHINKING PKI

Traditionally, the problem of identity management was
considered equivalent to PKI, and in some sense it is.
However, in practice, all efforts to deploy a X.509 [1]
infrastructure have all fallen below expectations. Professionals
share with users a widespread bad taste about PKI. PKI is
expensive and hard to manage, even harder to use for the
average human, and implementations lack the broad
interoperability the standards promised. [8]

According to a number of proposals (e.g. PolicyMaker [2],
KeyNote [3], Simple Distributed Security Infrastructure [4],
Simple Public Key Infrastructure [5]) the very foundation of
digital certificates needs to be re-thought, trying to make them
really useful in application scenarios. The main rationale is
that what computer applications need is not to get the real-life
identity of keyholders, but to make decisions about them as
users. Often these decisions are about whether to grant access
to a protected resource or not.

In available PKI systems, these decisions should be taken on
the basis of a keyholder's name. However, a keyholder's name
does not make much sense to a computer application, other
than use it as an index for a database. For this purpose, the
only important thing is the name being unique, and being
associated with the needed information. Given this reasoning,
it is extremely unlikely that the given name by which we
identify people could work on the Internet, as it will not be
unique.

Moreover, since the explosion of the Internet, contact with
person became often only digital, without ever encountering
partners personally. In this cases, which are more and more
common, there is no body of knowledge to associate with the
name. Trying to build an on-line, global database of facts and
people is obviously unfeasible, since it will face privacy
problems, as well as business unwillingness to disclosure
sensible data about their employees and their contacts.

A. Authorization Certificates

In fact, security cannot be founded just on identity, or given
names, but more appropriately on principals and authorization.
In general, a principal is any entity that can be taken
accountable for its own actions in the system, and in particular,
principals could be simply thought as entities associated with
public keys. The SPKI documentation goes even further,
dealing with principals as they “are” public keys. This means
that each principal must have its own public key, through
which it can be identified, and each public key can be granted
rights to access system resources.

XML-based Trust Management in MAS

Agostino Poggi and Michele Tomaiuolo, University of Parma

W

126

The key concept in a trust management system, in fact, is
authorization, and more precisely distributed authorization.
Each entity in the system has the responsibility to protect its
own resources, and it is the ultimate source of trust, being able
to refuse or accept any request to access the resource.

On the other end, each entity can access some resources
without being listed in a comprehensive Access Control List
(ACL).

In fact, relying on local authorities and delegation, ACLs
can be relegated to a marginal role, while a central role is
played by authorization certificates. A basic authorization
certificate defines a straight mapping: authorization -> key.

The complete structure of a certificate can be defined as a 5-
tuple:

1. issuer: the public key (or an hash of it)
representing the principal who signs the certificate;

2. subject: the public key (or, again, an hash, or a
named key) representing the principal for whom
the delegation is intended to; other types of
subjects are allowed, but they can be always
resolved to a public key; for example, a threshold
subject can be used to indicate that k of n
certificate chains must be resolved to a single
subject (i.e. to a public key) to make the
authorization valid;

3. delegation: a flag to allow or block further
delegations;

4. authorization: an s-expression which is used to
represent the actual permissions granted by the
issuer to the subject through the certificate;

5. validity: the time window during which the
certificate is valid and the delegation holds.

Thus, through an authorization certificate, a manager of
some resources can delegate a set of access rights to a trusted
entity. This newly empowered principal can, on its side, issue
other certificates, granting a subset of its access rights to other
entities. When finally requesting access to a resource, the
whole certificate chain must be presented. Precise algorithms
are presented in the SPKI proposal to combine certificates in a
chain and to solve them to an authorization decision.

It can be easily noted that, in the whole process of
delegation, identities and given names never appear.
Keyholder names are certainly important, and careful
identification is obviously a necessary condition before
delegation can be granted. Otherwise principals (i.e. public
keys) cannot be associated with the humans ultimately
responsible for their actions.

But the interesting thing is that this association is never used
in the authorization process, as in fact it is not necessary. The
result is a radical simplification of the whole security
infrastructure. Also, the whole system is much more flexible,
allowing arbitrary delegation of permissions and anonymous
communications (in the sense that user's identity is never
communicated through the network). Above all, trust chains
are made part of the system, being its real core, and they can

be easily traced following the chains of authorization
certificates issued by the involved principals.

B. Name Certificates

The Simple Digital Security Infrastructure (SDSI) [4],
which eventually became part of the SPKI [5] proposal,
showed that local names could not only be used on a local
scale, but also in a global, Internet-wide, environment. In fact
local names, defined by a principal, can be guaranteed to be
unique and valid in its namespace, only. However local names
can be made global, if they are prefixed with the public key
(i.e. the principal) defining them.

A convention of SDSI is to give names defined in a
certificate a default namespace, being the issuer of the
certificate itself. Otherwise local names have always to be
prefixed with a public key which disambiguates them. When
used in this way, names become Fully Qualified SDSI Names.
Compound names can be built by joining local names in a
sequence. So, for example, PK1's Joe's Bill can be resolved to
the principal named Bill by the principal named Joe by the
principal (holding the public key) PK1.

Another type of SPKI certificates is defined for associating
names with their intended meaning: name -> subject. A SPKI
Name Certificate doesn't carry an authorization field but it
carries a name. It is 4-tuple:

1. issuer: the public key (or an hash of it)
representing the principal who signs the certificate;

2. name: a byte string;
3. subject: the intended meaning of the name; it can

be a public key or another name;
4. validity: the time window during which the

certificate is valid and the delegation holds.
There's no limitation to the number of keys which can be

made valid meanings for a name. So in the end, a SPKI name
certificate defines a named groups of principals. Some authors
[9] interpret these named groups of principals as distributed
roles.

C. SAML Overview
The main scope of this work is an integrated environment,

where multi-agent systems, as well as systems built on
different models and technologies, can interoperate both
providing and accessing services. For this purpose, it is also
important to use security models which can enable a
corresponding interoperability with regard to the management
and delegation of privileges, allowing trusted partners to
access protected resources even when their particular
application is founded on different models and technologies.

The Security Assertion Markup Language [6], being
standardized by OASIS, is an open, XML-based format to
convey security information associated with a principal. While
SAML allows to exploit digital signature and PKI
technologies, its specifications are not about the deployment of
some PKI, but about their use in a federated environment
along with other technologies. The Liberty Alliance, for
example, concentrates its work on SSO, to allow the use of

127

services from different providers without repeating the login
operations at every site.

The approach of SAML is radically different from X.509,
above all as its specifications start from realistic use cases,
which deal with problems that traditional, X.509 based, PKI
was never able to solve. The lack of attention to real world
cases is probably one of the worst characteristics of X.509.
SAML and federated identity, instead, deal with the problem
of system security following a bottom-up software engineering
approach, taking into account already existing infrastructures.

Instead of defining, and imposing, a top down model,
SAML and federated security credentials enable already
deployed systems to grow and join others, on the basis of
precise and limited agreements. This way, the experience
gained in the implementation and deployment of security
infrastructures is not lost. On the contrary, it is the basis for the
new generation of integrated security systems.

Moreover, SAML is based on XML, and so it easily
integrates with Web-services and other XML based
applications. It can leverage existing standards and protocols,
like XML Digital Signature, XML Encryption, SOAP, WSDL
and WS-Security.

SAML itself deals with three different kinds of assertions:
 authentication assertions;
 attribute assertions;
 authorization decision assertions.

Authorization decision assertions are a somehow “frozen”
feature in current specifications, suggesting a better solution is
to rely on other available standards for security policies, like
XACML. A profile to integrate XACML authorization
decisions into a SAML assertion has been standardized with
SAML 2.0.

The three types of assertions are issued, in principle, by
three different authorities. The Policy Enforcement Point
(PEP) represent the component of the system which takes care
of analyzing provided assertions, and generate authorization
decisions, about whether to grant or to deny access to a
protected resource.
The generic structure of a SAML assertion makes evident it is
very similar to what is usually called a “digital certificate”.
Like in every other certificate, an issuer attests some properties
about a subject, digitally signing the document to prove its
authenticity and to avoid tampering. Conditions can be added
to limit the validity of the certificate. As usual, a time window
can be defined. Moreover, it can e limited to a particular
audience or to a one-time use. Conditions can also be put on
the use of the certificate by proxies who want to sign more
assertions on its basis.

D. SAML from the “Trust Management” Perspective

Being designed to allow interoperability among very
different security systems, SAML offers a variety of schemes
to format security assertions. In particular, there are a number
of possible ways to represent a subject, which also allow to
keep away X.500 directories and DN names.

One interesting possibility is to use a SubjectConfirmation

object to represent a subject directly by its public key, which
resembles the basic concepts of SPKI, where, at the end,
principals “are” always public keys.

Thinking about the use of SAML as a representation of
SPKI authorization certificates, it would be important to have
access rights, or permissions, associated with the subject.
Simple authorization decisions could be encoded directly in
SAML assertions till version 1.1. In the latest specifications,
these assertions are considered “frozen”, even if not yet
deprecated. However, the very same specifications suggest
alternative schemes, first of all integrating an XACML policy
into a SAML assertion. The precise way to accomplish this is
described in a separate profile, which will be briefly discussed
in the following pages.

But, apart from direct delegation of permissions, SPKI-like
trust management frameworks can also be used to implement
distributed RBAC access control systems, as discussed in
[LI2]. For this purpose, local names are particularly important,
as they allow each principal to manage its own name space,
which, on the other hand, is also one of the foundations of
“federated identity” and SAML.

In fact, while SAML allows the use of X.509 distinguished
names, it also support a number of other heterogeneous
naming schemes. In this sense, its reliance on XML for
assertion encoding is not irrelevant, as it provide intrinsic
extendibility through schemas and namespaces.

Assigning a local name to a public key, or to a set of public
keys, is as simple as defining a role, as in SAML names, and
roles, are not considered globally unique by design. And also
assigning a named principal to a local name, or to a role, is
perfectly possible.

E. XACML Overview

The eXtensible Access Control Markup Language
(XACML) [7] is a language for specifying role or attribute
based access control policies. It is standardized by the OASIS
group and, at the time of this writing, its latest release is 2.0.

A high level model of the XACML language is shown in the
following picture. Its main components are:

 Rule – the basic element of each policies;
 Policy – A set of rules, together with the

algorithms to combine them, the intended target
and some conditions;

 Policy set – A set of policies, together with the
algorithms to combine them, the intended target
and some obligations.

In particular, each XACML rule is specified through its:
 target – indicating the resources, the subjects, the

actions and the environment to which the rule
applies;

 effect – can be Allow or Deny;
 condition – can further refine the applicability of

the rule.

F. XACML from the “Trust Management” Perspective
As described in the previous sections, trust management is

128

based on public keys as a mean to identify principals, and on
authorization certificates to allow delegation of access rights
among principals. SAML defines some rudimentary structures
to convey authorization decisions in assertions. However,
these structure are not able convey all the information that can
be represented using the XACML language. On the other
hand, XACML lacks means to protect requests and responses
of its Policy Enforcement Points (PEP). It is clear, and so it
appeared to both the SAML and the XACML working groups,
that the two languages were in many senses complementary,
and thus a SAML profile of XACML was defined. It
effectively makes the two languages work together in a
seamless way.

From the “trust management” perspective, the conjunction
of SAML and XACML, in particular the inclusion of XACML
authorization decisions into SAML assertions, provides a rich
environment for the delegation of access rights. From this
point of view, the fact that logic foundations of the XACML
language exist is very important, as they provide XACML with
a clear semantic. The problem is to find algorithms through
which the combination of permissions granted in a chain of
certificates could be computed in a deterministic way, as it is
already possible in SPKI.

In fact, even if the semantic of a XACML policy is logically
sound, nevertheless subtle problems can appear when different
policies are linked in a chain of delegation assertions. One
major problem is about monotonicity of authorization
assertions, which cannot be guaranteed in the general case.

Using XACML authorization decisions as SAML assertions,
it is possible to assert that access to a particular resource is
denied, instead of allowed. Though being a perfectly legal and
meaningful concept, the denial of a permission (a “negative
permission”) is is not desirable in decentralized environments.
In this case, a service provider can never allow access, as it
cannot be sure to possess all issued statements. On the other
hand, the non-monotonicity of the system can also lead to
attacks, as issued assertions can be prevented to reach the
provider, this way leading it to take wrong authorization
decisions.

Therefore, it is necessary to define a specific profile of
SAML and XACML which could enable the secure delegation
of permissions in decentralized environments. One of the first
requirements is to make “negative permissions” illegal.

III. IMPLEMENTATION

The first step to implement the architecture described in the
previous sections consisted in evaluating available software
tools which can manipulate SAML and XACML structures.
Unfortunately, probably due to the relative of relevant
standards (especially for their latest versions), the software
park is not particularly vast.

With regards to SAML, the choice fall on the OpenSAML
library. In fact, while still being in a development phase, it is
the only one supporting all functionalities of SAML 2.0 and,
above all, allowing to define new classes with relative

simplicity. Extensibility is in fact particularly important, in our
case, to realize a “glue” level between SAML and XACML,
embodied by the XACMLPolicyStatement element.

About XACML, instead, the choice of Sun's XACML
Implementation was obliged, in practice, as it's the only valid
open source tool to deal with the language. Anyway, a little
explaining is necessary. In fact, to handle the version 2.0 of
XACML, the CVS version of the library must be used. Such
version, anyway, presents a small defect which, at this
moment, has not been corrected yet. In fact its APIs miss a
method to obtain the list of targets of policies. The author of
the library, contacted about this, confirmed the missing and
suggested us to implement the method (which we did) waiting
for the definitive release of the 2.0 version of the library.

Then, it was decided to give a standard structure to our
library, realizing its API like a Java security provider. The
Java Cryptographic Architecture (JCA) foresees in fact the
possibility to realize packages, called security provider, which
provide JDK with a concrete implementation of a subset of
Java cryptograohic functionalities. For developers wanting to
use the library, the main advantage of this choice is the
availability of a set of API with a well known and collaudated
structure. Moreover, this will allow the use of certificates and
paths which will be realized with normal Java API, without
duplicating their functionalities. In fact, in principle any
component (also external ones), operating on a Java
certificate, will be able to operate on SPKI certificate of the
new library, too.

To realize an extension of the Cryptographic Architecture
(JCE), first of all it was necessary to extend Java basic data
types, which in our case are represented by certificates and
paths; then engine classes had to be realized, which specify
algorithms to be implemented. Finally, a master class for the
provider had to be implemented, which is necessary to register
new classes and allow them to be used by Java.

A. Certificates

To represent certificates, Java cryptographic APIs define an
abstact class: Certificate. Within it, all basic methods to
manage public key certificates can be found.. Extending this
class, an abstract class, SPKICertificate, has been realized,
containing common methods of name certificates and
authorization certificates.

In particular, the SPKINameCertificate class extends
SPKICertificate and describes a name certificate. Within it, all
methods need to set the certificate subject are present, in all
three possible forms: public key, namespace qualified local
name and hash of a public key. Different get methods exist,
corresponding to each type of subject to obtain. Moreover, the
getPublicKey() method, defined by Java API, also returns the
subect's public key.

Two methods, getStatedName() and setStatedName(), allow
instead to set and read the SPKI name field, i.e. the name
associated to the certificate subject by the certificate creator.
In both methods just the local part of the name is needed, as
the issuer's namespece is taken as a default.

129

The SPKIAuthorizationCertificate class also extends
SPKICertificate, and allows to create and manage
authorization certificates.

Its most important method is addPolicy(), which allows to
add a security policy to the certificate (in fact, according to
SAML specifications, it's possible to add more security
policies to a single certificate). Such policy has to be
represented by a class implementing the simple
AuthorizationPolicy interface, whose only needed
functionality is to convert the policy to a Policy object, as
defined by Sun's XACML Implementation. The
getXACMLPolicies() method allows to obtain the security
policies contained in the certificate, represented as Sun's
XACML classes.

The allowDelegation() method, instead, allows to indicate
an explicit delegation, as defined in the SPKI proposal. The
opposite method, denyDelegation(), is useful only in the case
you want to remove the delegation attribute from a certificate,
where it's present. In fact, in the case allowDelegation() is not
explicitly invoked, the delegation is not active.

Finally, the getPublicKey() method is also present, because
it is required by the Certificate abstract class; however, as an
explicit key is not normally present in this type of certificate,
to be associated with the subject, the method always returns
null.

B. Certificate Path Validation
An algorithm to evaluate the correctness of a certificate

chain is described in the original SPKI proposal. To this aim,

Java APIs define the CertPathValidator class. By means of it,
through the implementation of its validate() method, the
validity of a chain can be controlled.

Similarly to what happens for the creation of certification
paths, the validation operation requires, as parameters, the
CertPath that is meant to be verified and an implementation of
the CertPathParameters interface, describing all parameters
needed by the validation algorithm. The result of the operation
will be eventually represented by an implementation of the
CertPathValidatorResult interface.

Thus, a subclass of CertPathValidator had to be developed,
implementing the SPKI validation algorithm. Parameters of the
validation process are represented as ValidatorParameters
objects, containing the list of keys trusted by the principal
operating the verification, and possibly additional parameters.

The result of the process, in the case of SPKI certificates, is
represented by a set of roles associated with the public key
which terminates the chain. The information is included into a
KeyRoles object.

The other operation to be offered by the library is that of
validating a request to access a local resource. The request
itself is represented by an instance of the AuthorizationRequest
interface. Users of the library can provide different
implementations of the interface, according to their needs.

It must be noted, however, that the authorization request
must be formulated in compliance with the structure of
security policies. Thus, the implementations of
AuthorizationPolicy and AuthorizationRequest must use the
same types and the same identifiers. For this reason, the

1.public void sign(KeyPair keys, SignatureParameters params)
2.{
3. // Create the SignatureBuilder and build the signature
4. Signature sign = (Signature) buildSAMLObject(Signature.DEFAULT_ELEMENT_NAME);
5.
6. // Set up signature parameters
7. sign.setSigningKey(keys.getPrivate());
8. sign.setSignatureAlgorithm(params.getAlgorithm());
9. sign.setCanonicalizationAlgorithm(params.getCanonicalization());
10.
11. // Add the public key to the signature
12. KeyInfo keyInfo = (KeyInfo) buildSAMLObject(KeyInfo.DEFAULT_ELEMENT_NAME);
13.
14. keyInfo.setPublicKey(keys.getPublic());
15. sign.setKeyInfo(keyInfo);
16.
17. // Link the signature and the assertion togheter
18. SAMLObjectContentReference contentReference = new SAMLObjectContentReference(assertion);
19. sign.getContentReferences().add(contentReference);
20. assertion.setSignature(sign);
21.
22. // Delete del old marshalled assertion
23. marshalledAssertion = null;
24.}

Fig. 1. A code snippet regarding certificate signature.

130

SimpleAuthorizationRequest has been implemented, as a
request corresponding to security policies in use by the library.

Apart from the request, the algorithm with the list of
authorization certificates to use and the list of trusted keys
needed during the certificate verification process must be
provided. Finally, in the case some additional conditions exist,
it could be necessary to specify additional parameters for the
verification process.

The validation happens through the creation of a Policy
Decision Point (PDP). The Sun's XACML library provide the
methods for creating such a decision block. However, to be
able to obtain all needed policies, to validate the request, the
PDP class of XACML uses various finder modules allowing to
retrieve information. It was thus necessary to develop a finder
module, called AuthzPolicyFinderModule, which is in charge
of retrieving policies from authorization certificates provided
as parameters.

During the process of creation of a PDP it is possible to
insert additional finder modules. Such modules can be
specified in the phase of construction of the
AuthorizationEvaluator object and allow to extend the object's
capabilities to search for information. Moreover, this way it is
possible to provide the validation module with a series of local
policies which are not stored within SPKI authorization
certificates.

The final result of the operation is a list of
AuthorizationResponse objects, one for each resource which
was asked to be accessed. Each instance contains in its
structure an identifier of the resource which it refers to, a
decision value and a status code.

C. RAIS

As a first test, the library has been integrated into RAIS, a
distributed system developed at University of Parma. RAIS
(Remote Assistant for Information Sharing) is a peer-to-peer
and multi-agent system composed of different agent platforms
connected through the internet. Each agent platform acts as a
“peer” of the system and is based on three agents: a personal
assistant, an information finder and a directory facilitator;
moreover, another agent, called personal proxy assistant,
allows a user to remotely access her/his agent platform.

The RAIS system has been designed and implemented
taking advantage of agent, peer-to-peer, information retrieval
and security management technologies and, in particular, of
three main software components: JADE, JXTA and Google
Desktop Search.

Using the security library described here, a RAIS user can
not only provide the permission to access his own files, but can
also assign the permission to upload a new version of one or
more existing files. In this case the PA informs his/her user
about the updated files the first time he/she logs in. This
functionality can be useful for the members of a workgroup
involved in common projects or activities. Basic versioning
capabilities are planned to be added to the Distribute Desktop
Search system in the near future.

IV. CONCLUSION

Federated identities and security assertions are a novel
technique to loosely couple already existing security systems,
without requiring to design and deploy a whole new one,
which could hardly fit the extremely heterogeneous variety of
goals and requirements the different applications have.

Particular attention deserve SAML and XACML, for their
wide applicability, their intrinsic extensibility, and their XML
grounding, which allows them to easily fit into the existing
web-based applications, as well as into new systems based on
web or grid services. While being proven to have sound
grounding in logical models, anyway they can be used in a
distributed environment only under some restrictions.
Otherwise, the combination of different assertions and policies
could lead to unexpected results, or, even worse, expose the
system to attacks.

REFERENCES

[1] Housley, R. et al. Internet X.509 PKI Certificate and CRL Profile. IETF
RFC 3280, April 2002. http://www.ietf.org/rfc/rfc3280.txt.

[2] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust
management”. In Proc. of the 17th Symposium on Security and Privacy.
1996, pp. 164-173, IEEE Computer Society Press.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis and A. Keromytis. 1999. “The
KeyNote Trust-Management System Version 2.” RFC 2704.

[4] Rivest, R.L., Lampson, B. SDSI - A Simple Distributed Security
Infrastructure. http://people.csail.mit.edu/rivest/sdsi11.html.

[5] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.
SPKI certificate theory. IETF RFC 2693, September 1999.

[6] OASIS Security Services (SAML) TC. http:// www.oasis-
open.org/committees/security/.

[7] OASIS eXtensible Access Control Markup Language (XACML) TC.
http://www.oasis-open.org/committees/xacml/.

[8] Lewis, J. “Reinventing PKI: Federated Identity and the Path to Practical
Public Key Security”. 1 March 2003. Available from:
http://www.burtongroup.com/.

[9] Li, N. Local names in SPKI/SDSI. In Proc. 13th IEEE Computer
Security Foundations Workshop, pages 2--15. IEEE Press, 2000.

[10] Li, N., Grosof, B. A practically implementable and tractable delegation
logic. Proc. 2000 IEEE Symposium on Security and Privacy (Oakland
CA, May 2000), 29-44.

131

Preserving player’s goals: a choreography-driven
matchmaking approach

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, and Claudio Schifanella

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)
{baldoni,baroglio,mrt,patti,schi}@di.unito.it

Abstract—An agent interaction protocol, a service choreogra-
phy, can quite naturally be interpreted as an alliance of parties,
which cooperate to achieve a goal. On the other hand, each
participant entered the alliance moved by goals of its own, which
it would like to fulfill by playing one of the roles. The achievement
of the shared and of the specific goals depend both on the
interaction schema, that is captured by the choreography, and
on the participant’s capabilities, where by this word we mean
the skills of the participant, the actions that it can execute. We
show in this paper that the choice of which capabilities to use
cannot rely totally on local criteria, as instead it is commonly
done by the approaches to matchmaking, but it must take into
account the choreography/protocol. This happens whenever the
match is not exact, e.g. when plugin match is used. We also
describe an extended plugin match that takes into account also
the constraints given by the choreography for performing the
capability selection.

I. I NTRODUCTION

Web services have a platform-independent nature, that en-
deavors enterprises to develop new business processes by
combining existing services, retrieved over the web. Web
service composition is still much of a costly and manual
process, which is made more and more difficult by the growing
width of the space to search. Hence, the need of methods for
reducing the search space and for making compositions in
an automatic way. This direction has been suggested in [1],
where a UML specification of a business process was used
to abstract the description of a composition away from the
specification of the actually composed services. This abstract
specification defined amodel, used for driving the retrieval and
the composition task. The idea of capturing the overall schema
of interaction of a set of entities is exploited also in other
areas, like multi-agent systems. In this context, the role of the
abstract specification is played by the so-called “interaction
protocol” [2], while actions take the place of services..

Kolp, Giorgini, and Mylopoulos have investigated [3] the
possibility of using real world organizational structuresas
a metaphor for defining MAS architectures. The derived
architectures are evaluated w.r.t. a set of quality attributes,
amongst which predictability and adaptability. One of the
studied human organizational structures is “strategic alliance”.
A strategic alliance links specific facets of a group of organi-
zations and is defined with the purpose of achieving an overall,
shared goal. The organizations within the alliance, however,

remain independent and have control over the assigned tasks.
Each actor, however, has to reconcile and adjust its own
views with the policies of the organization. This is particularly
true in the case of “co-optation”, a special kind of strategic
alliance, in which the partners become part of a newly founded
organization, hence having, on the one hand, a commitment
on pursuing the alliance goals and interests, and, on the other
hand, their own and specific goals to reach.

Among the many quality attributes that the authors define,
the following are particularly interesting w.r.t. our work.

• Coordinability: agents are not really useful if they can-
not coordinate. Coordination is used to distribute exper-
tise, information, etc. among agents, which depend on
one another.Cooperativity is a form of coordination.
Cooperation is achieved either communicative or non-
communicative.

• Modularity: it increases the efficiency of task execution,
results in higher flexibility and reduces the communica-
tion overhead, although, on the other hand it constrains
inter-module communication.

• Predictability: agents have many degrees of freedom in
the way they undertake action, in their domains. The
capability of predicting the behaviour of the individuals
is important when we need to aggregate such individuals
in an organization.

It is quite natural, then, in the case of multi-agent systems
and of (web) services, to interpret an interaction protocol,
or a choreography, as the specification of an alliance (in
particular, a joint venture or a co-optation), because they
specify a coordination pattern based on communication. Roles
can be considered as modules that capture an activity within
the schema, constraining the interaction of the partners. The
fact that a partner takes a role in a choreography guarantees
that the partner will behave as expected (predictability of
the behavior). The choreography/protocol can be seen as an
alliance of independent partners. This alliance is aimed at
pursuing a goal, that is subscribed by all the participants,but
each partner has alsoits owngoals, that motivate its taking part
to the alliance. The achievement of the shared goal and of the
specific agent’s goal not only depends upon the choreography-
given schema of interaction but also on the skills that each

132

agent has, i.e. by each agent’s specificcapabilities. Indeed,
every agent has control over the ways for accomplishing the
assigned tasks. Thus, before an agent subscribes the alliance,
there is a need to check if its capabilities match with those that
are requested by a role, i.e. if its capabilities allow it to achieve
its goal in the context of the given choreography. It is implicit
that the choreography (the protocol) specify in some way
the necessary capabilities. In [4], we have shown that there
is the need of enriching the choreography specification by
introducing the concept ofcapability requirement. A capability
requirement expresses an operation that a peer should be able
to perform at some specific point of the choreography.

(Web) services share many facets with multi-agent systems
[5]. The introduction of the concept of “choreography” (andof
languages like WS-CDL [6]) has opened new perspectives on
the way an abstract specification of a system of services should
be described. Choreographies can be used to build policies that
some peer will execute. In order for a policy to be “playable”
by a peer, the peer must have the requested capabilities. For
instance, it must have some means for producing or retrieving
(e.g. by contacting a third service) a piece of information to
send. This approach can be extended by considering different
kinds of actions (e.g. communicative actions) or a different
granularity (e.g. agents, services, or other software compo-
nents). More in details, a role specification in a choreography
can be used to produce apolicy skeleton, which is to be com-
pleted bysubstitutingcapabilities to capability requirements,
so to make it executable. The substitution can be defined by
applying amatching processbetween the abstract specification
given by capability requirements and the available capabilities.
In general, it is unlikely to have capabilities that perfectly
match the requirements; the retrieval process will identify
capabilities whichslightly differ from the specification. If one
wants to use them anyway, rather than writing new software,
it is necessary to verify that the policy obtained after the
substitution still allows the achievement of the goal, which
is not granted anymore [4].

The task of retrieving capabilities that match given require-
ments is analogous to the task of service discovery. We can,
then, think to use the same techniques, e.g. [7], [8], [9], [10]. In
particular, in this work we focus on the matches proposed by
Zaremski and Wing in their seminal work [8], where various
kinds of relaxed match are proposed. We show that none of
the matches (but the so-called exact pre/post match) guarantee
that a synthesized policy, in which capabilities have been
selected according to them, will still allow to reach the goal
of interest. The reason is that they take into account only the
“local” information given by the capability requirement and do
not consider constraints posed by the choreography (“global”
constraints). We also show how to integrate theplugin match
in the context given by a choreography in such a way that the
goal is preserved by the substitution.

The article is organized as follows. In Section II we recall
the matches introduced in [8], and explain their relations with
a choreography and with the goals. Section III introduces a
simple representation for services and choreographies, that is

Fig. 1. The lattice of the different local matches: on top the strongest. Our
claim is that the local and global constraints are related; the stronger the local
match, the weaker the global constraints.

based on a declarative language. Section IV shows that the
local matches alone do not guarantee the preservation of the
goal, and it also shows how to integrate the plugin match
so to produce substitutions that preserve the goal. We will
introduce the notion ofconservative substitution. Conclusions
and related works end the paper.

II. CAPABILITY MATCH : LOCAL VS. GLOBAL PROPERTIES

We suppose, in the line of previous work [4], that chore-
ographies are enriched with additional descriptions of those
actions, that peers must be able to perform for playing roles
(capability requirements). Capability requirements are used
to select the specific capabilities that are necessary to build
an executable policy. As mentioned in the introduction, this
selection can be done by applying matching techniques that
are analogous to those used for service discovery. Zaremski
and Wing [8] propose a formal specification to describe the
behavior of software components. Each software component
has preconditionSpre and postconditionSpost written as
predicates in first-order logic. Requirements are coherently
specified as having preconditionRpre and postconditionRpost.
Five kinds of relaxed match betweenR andS are defined:

• EM (Exact Pre/Post Match): Rpre ⇔ Spre ∧ Rpost ⇔
Spost

• PIM (Plugin Match): Rpre ⇒ Spre ∧ Spost ⇒ Rpost

• POM (Plugin Post Match): Spost ⇒ Rpost

• GPIM (Guarded Plugin Match): Rpre ⇒ Spre∧ ((Spre∧
Spost) ⇒ Rpost)

• GPOM (Guarded Post Match): ((Spre∧Spost) ⇒ Rpost)

Exact pre/post matchstates the equivalence ofR andS. Plugin
matchis weaker:S must only be behaviorally equivalent toR
when plugged-in to replaceR. Plugin post matchrelaxes the
former: only the postcondition is considered.Guarded matches
focus on guaranteeing that the desired postcondition holds
when the precondition ofS holds, not necessarily in general.
The different matches can be organized according to a lattice
[8], that we have reported in Fig. 1.

In our application domain,R will be a capability require-
ment, whileS will be a capability. Capability requirements

133

are contextualized in some choreography. Capabilities are
specific software components and depend on the player of a
choreography role: they are matched against requirements in
the process of checking if a player can play a certain role, by
selecting –at the same time– its right capabilities. In general,
since the final aim is software reuse, it will be quite difficult
to retrieve an exact match for a capability requirement. More
likely (and more interesting) is the case when one of the other
four degrees of match hold.

All these matches have been defined for the retrieval of
single components, and have alocal nature, i.e. they compare
a requirement to a software specification (in our case, a
capability) independently of the context of usage (in our
work, the service choreography). In other words, the software
specification must respect some constraints. Relaxing the exact
match means relaxing these “local constraints” (see Fig. 1). On
the other hand, a choreography defines theglobal execution
context, in which capability requirements are immersed. Intu-
itively, the selection of a capability (for replacing a capability
requirement) shouldpreservethose properties of the chore-
ography that motivated its choice, in particular, thegoal for
which it was chosen. In the case of theexact match, the whole
verification is donelocally. Due to the fact that it is a kind
of equivalence, matching exactly a requirement is a sufficient
condition to preserve the goal. As we will see in Section IV,
the other kinds of match do not give this guarantee. It becomes,
therefore, necessary toadd some constraintsby using the
available source of global information: the choreography.

Our claim (see Fig. 1) is that the more relaxed is the local
match, the stronger should be the compensation supplied at
the global level. The extreme is given by the bottom of the
lattice: the match that returns alwaystrue. In this case, the
choice of the capabilities could be performed, for instance,
by randomly choosing capabilities and by substituting the to
the requirements while simulating the execution of the policy.
When the goal is not verified by the current choice, aback-
tracking mechanism allows the revision. The whole process
relies on the choreography. Checking global constraints can
be expensive but it is possible to reduce the costs by limiting
the attention to those capability requirements which belong to
the execution traces, which actually allow to achieve the goal.

III. R EASONING ABOUT CAPABILITIES

For what concerns the representation of choreographies
and specific peers, in order to abstract from the specific
language (e.g. WS-CDL, WSDL) and from the details of the
implementation, we adopt adeclarative representation and
focus on the study of the properties of interest.

Each choreography is made of a set ofinteracting roles. It
can be described as a set of subjective views of the interaction
that is encoded, each corresponding to one of the roles. We call
the implementation of each role apolicy. We will represent
both roles and policies by means of thedeclarative language
DyLOG [11], by interpreting interactions among services,
capabilities and capability requirements asactions, and by

using reasoning about actionsfor making predictions about
the effects of role and policies executions.

DyLOG has been developed as a language for programming
agents and is based on a logical theory for reasoning about
actions and change in a modal logic programming setting.
DyLOG is equipped with a communication kit for dealing with
interactions, and has already been used for customizing Web
service composition [12]. An agent’s behavior is describedin
a non-deterministic way by giving the set of actions that it can
perform. Each action can have preconditions to its application
and cause some effects. Given this view of actions, we can
think to the problem of reasoning as the act of building or of
traversing a sequence of transitions betweenstates. A state is
a set offluents, i.e., properties whose truth value can change
over time. Such properties encode the information that flows
during the execution of the agent actions. InDyLOG we do
not assume that the value of each fluent in a state is known: it
is possible to represent unknown fluents and to reason about
the execution of actions on incomplete states. We introduced
an epistemic operatorBi, to represent the beliefs that an entity
i has about the world:Bif means that the fluentf is believed
to be true by the entityi, Bi¬f means that the fluentf is
believed to be false. A fluentf is undefined,ui(f), when
both ¬Bif and¬Bi¬f hold. Thus each fluent in a state can
have one of the three values:true, falseor unknown.

In a DyLOG description of a service role (or policy) the
interactions between the service and its interlocutor(s) can
be defined in terms of communicative actions performed by
the service (speech acts) and get-message actions. A speech
act is an atomic action of formperformative(sender, receiver,
content), whereperformativeis the kind of speech act (e.g.
inform), senderand receiverare the name of the interacting
peers, whilecontent is a fluent literal representing the piece
of information that is passed by its execution. The set of all
performatives is supposed to beshared by the two parties. Get-
messageactions allow to represent the reception of information
and to reason about the outcome of the speech acts performed
by the interlocutor. The range of possible incoming speech
acts is supposed to be finite: the interlocutor is supposed
to use a performative out of a finite and predefinite set
to produce its answer within a choreographed interaction.
Capability requirements/capabilities in a service role/policy
are represented as (possibly communicative) atomic actions.

Complex behaviors can be specified inDyLOG by means
of procedures, Prolog-like clauses built upon the other kind of
actions mentioned. We represent the behavior of bothrolesand
policiesby DyLOG procedures1. Intuitively, a role is a pro-
cedure that combines speech acts, get-message acts,capability
requirementsand procedure calls, and apolicy is a procedure
combining speech acts, get-message acts,capabilities and
procedure calls.

A role in a choreography can, therefore, be specified as a
quadruple of the formRd = 〈SA,GA, CR,P〉, where:

1Since our focus is to study the preservation of global properties, we will
assume that the sets of terms used for representing speech actsand capabilities
are the same in the choreography and in the peer description.

134

1) SA is a set ofspeech acts, represented as2:

performative(sender, receiver, l)
causes {E1, . . . , En}

performative(sender, receiver, l)
possible if {P1, . . . , Pt}

whereEi, andPj are respectively: the fluents that are
obtained as effect of the speech act, and the precondition
to the execution of the performative.

2) GA is a set of get-message actions, they
are represented as: receive act(receiver,
sender, [l1, . . . , ln]) receives I, where I is a
set of alternative speech act, that can be received by
the executor ofreceive act; each speech act inI has
an element in[l1, . . . , ln] as content.

3) CR is a set of capability requirements, they are modeled
as atomic actions and are represented as:

c causes {E1, . . . , Em}
c possible if {P1, . . . , Pt}

where c is the name of the required capability and
the semantics of the clauses is the same as above. We
will use the functionsEffs(c) = {E1, . . . , Em} and
Precs(c) = {P1, . . . , Pt} to return the effects and the
preconditions ofc. The same functions apply also to
speech acts.

4) P encodes the behavior for the role; it is represented as a
collection of clauses of the kindp0 is p1, . . . , pn (n ≥
0), where p0 is the name of the procedure andpi,
i = 1, . . . , n, is either an atomic action, aget-message
action, a test action, or a procedure name (i.e. a proce-
dure call). Procedures can be recursive and are executed
in a goal-directed way, similarly to standard logic pro-
grams, and their definitions can be non-deterministic as
in Prolog.

Policies are defined in a way that is analogous to role
descriptions. LetC be the set of capabilities of a peer, then, a
policy is quadruplePd = 〈SA,GA, C,P〉, whereSA, GA, and
P are defined as above.

Example 1:As an example, let us introduce a choreography
(enriched with capability requirements) that rules a simple
room reservation protocol with two roles: thebuyer wants to
book a room at the hotel managed by theseller. Figure 2
depicts the interaction between the two roles: first the buyer
sends to the seller the date for the room reservation; then, the
seller must have the capability of performing areserveRoom
action, and inform the buyer about the room price. The buyer
checks the price, by performing anevaluatePriceaction. Then,
it informs the seller about the results of this evaluation: it can
either decide to refuse the offer and conclude the interaction or
it can inform the seller about the desired payment mode (cash
or credit card). At this point, the seller must have the capability

2In DyLOG the semantics of speech acts is inspired to the standard
semantics of FIPA Communicative Acts [13]. Therefore speech acts are
characterized in terms of (a) feasibility preconditions denoting the ability of
the speaker to perform the act and (b) the desired and rational perlocutionary
effectsof the utterance. See [11] for more details.

Fig. 2. The Room Reservation Protocol, represented by means of UML
sequence diagrams, and enriched with capability requirements (oval elements).

of performing thepaymentaction, and finalize the business
transaction. Finally it notifies the buyer the reservation and
transaction numbers.

Let us focus on theseller role description3 Rseller =
〈SA,GA, CR,P〉, whereP = {booking, finalize reservation},
SA = {inform(s, b, price), inform(s, b, resNum), inform(s
, b, transNum)}, GA = {receive date(s, b, date),
receive evaluation(s, b, [no business, cash, cc])},
CR = {reserve roomCR, paymentCR}. The procedures
in P are described by the following clauses:

booking is receive date(s, b, date),
reserve roomCR, inform(s, b, price),
receive evaluation(s, b, [no business, cash, cc]),
finalize reservation

finalize reservation is Bno business?
finalize reservation is paymentCR, inform(s, b, resNum),

inform(s, b, transNum)
The get message actions inGA are described by:

receive date(s, b, date) receives [inform(b, s, date)]
receive evaluation(s, b, [no business, cash, cc])

receives [inform(b, s, no business) or

inform(b, s, cash) or inform(b, s, cc)]
The capability requirements inCR:

reserve roomCR causes {Bprice}
reserve roomCR possible if {Bdate}
paymentCR causes {BtransNum,BresNum}
paymentCR possible if {BPcashSupported,
BPccSupported}

Finally, the semantics of theinform(sender, receiver, l) ac-
tions inSA andGA is given by the rules (for more details see
[12]):

inform(s, b, l) possible if {Bsl}
inform(s, b, l) causes {}
inform(b, s, l) possible if {}

3In the following examples all the beliefs refer to the seller mental state,
thus, for sake of readability we will omit to index the modal operatorB.

135

inform(b, s, l) causes {Bsl}
Intuitively, the first two clauses state that I (the seller) can
execute an inform act only if I believel; the execution of
the action will modify the interlocutor’s mental state, while
do not have any effects on my mental state. The last two
clauses describe what happen in my mental state when I am
the receiver of the information. In this case, since I am not the
actor, the action of informing is consideredalwaysexecutable;
moreover I will adoptl as my own belief.�

In DyLOG, it is possible to perform a form of reasoning
known astemporal projection, by means ofexistentialqueries
of the form: Fs after p, where p is a policy name and
Fs is a conjunction of fluents. Checking if a formula of this
kind holds corresponds to answering the query “Is there an
execution trace ofp that leads to a state in whichFs is true?”.
By execution trace we mean a sequence of atomic actions, i.e.
speech acts and capabilities (capability requirements). When
the answer is positive, such sequence is a plan to bring about
Fs. This plan can beconditional because whenever aget-
messageaction is involved none of the possible answers from
the interlocutor can be excluded. In other words, we will have
a different execution branch for every option.

Let us consider a role descriptionRd = 〈SA,GA, CR,P〉.
We can apply temporal projection toP to find an execution
trace, that makes a goal of interest become true. Let us, then,
consider a procedurep belonging toP, and denote byG the
DyLOG query: Fs after p, whereFs is the set of fluents
that we want to be true after the execution ofp. Given a state
S0, containing all the fluents that we know as being true in
the beginning, we will denote the fact thatG is successful in
Rd by:

(〈SA,GA, CR,P〉, S0) ⊢ G

The execution of the above query returns as a side-effect anex-
ecution traceσ of p. The execution traceσ can either belinear,
i.e. a terminating sequencea1, . . . , an of atomic actions, or it
can beconditional, when the procedure contains get-message
actions. Intuitively, by this mechanism it is possible to verify,
by reasoning about the choreography, if the role allows for an
execution after which a condition of interest holds.

Example 2: In the context of the Example 1, let us consider
the goal:

G = {BtransNum,BresNum} after booking

where the initial state S0 contains the fluents
{BPcashSupported, BPccSupported}, while all the
other fluents are unknown. There are two possible execution
traces that lead to a state whereG holds, hereafter we report
one of them:

σ = inform(b, s, date); reserve roomCR;
inform(s, b, price); inform(b, s, cc); paymentCR;
inform(s, b, resNum); inform(s, b, transNum).

�

A policy can be built from arole descriptionby substituting
capability requirements with a set of capabilities of a peer
that should play the role. If we denote byC the capabilities

of the peer, byCR the capability requirements, and byθ the
substitution[C/CR], the policy built from the role description
Rd = 〈SA,GA, CR,P〉 will be Pd = 〈SA,GA, C,Pθ〉.
Given a policy descriptionPd = 〈SA,GA, C,Pθ〉, a goal
G = Fs after p, and an initial stateS0, we can verify
if G is successful inPd by:

(〈SA,GA, C,Pθ〉, S0) ⊢ G

Intuitively, this allows to verify, by reasoning about the peer
description, if the policy allows for an execution that brings
about the condition of interest.

IV. CHOREOGRAPHY-DRIVEN MATCH

When the matching process is applied for selecting a
capability that is part of a role specification, the desire is
that the selected capability preserves the properties of the
specification. Generally, the matchmaking process will result
in a set of alternativeθi because each capability requirement
has a set of matching capabilities. The selectedθ not only must
satisfy the matching rules but it must also beconservative, i.e.
it must guarantee that thosegoals, that can be achieved by
reasoning on therole specification, will be achieved also after
the substitution. Then, the following implication must hold:

Definition 1 (Conservative substitution):Let
〈SA,GA, CR,P〉 be a role description,S0 the initial
state, andG the goal of interest. Suppose that the following
relation holds:

∃σ, θ = [C/CRσ], CRσ ⊆ CR s.t.
(〈SA,GA, CR,P〉, S0) ⊢ G w.a. σ ⇒

(〈SA,GA, C,Pθ〉, S0) ⊢ G w.a. σθ
where σ is an execution trace which makes the goal true
when reasoning at the level of the choreography, andθ is a
substitutionCRσ → C, whereCRσ ⊆ CR, CRσ = {cr ∈
CR | cr occurs inσ}. In this case, the substitutionθ is
conservative.
Notice that we are interested in a substitutionθ that involves
only the capability requirements contained in the execution
traceσ, which is, therefore, used to select the requirements to
be matched. The substitutionθ is obtained by applying one
of the matching rules, described in Section II, that we here
rephrase as follows (c represents a single capability andcr a
single capability requirement):

• EM (Exact Pre/Post Match): Precs(cr) = Precs(c) ∧
Effs(cr) = Effs(c)

• PIM (Plugin Match): Precs(cr) ⊇ Precs(c) ∧ Effs(c) ⊇
Effs(cr)

• POM (Plugin Post Match): Effs(c) ⊇ Effs(cr)
• GPIM (Guarded Plugin Match): Precs(cr) ⊇ Precs(c) ∧

((Precs(c) ∪ Effs(c)) ⊇ Effs(cr))
• GPOM (Guarded Post Match): ((Precs(c) ∪ Effs(c)) ⊇

Effs(cr))

For short, we will respectively denote byθEM , θPIM , θPOM ,
θGPIM , θGPOM , the substitutions obtained by applying the
five degrees of match. For simplicity we will call a substitution
obtained by applying the plugin match a PIM substitution,
the one obtained by applying Exact Pre/Post match an EM

136

substitution, and so on for the other kinds. It is immediate
to see that any substitution, obtained by applying theexact
pre/post match, satisfies Definition 1. In other words, the local
constraints are sufficient to guarantee the property (see Fig. 1).
However this is not true for the other kinds of match.

Theorem 1:The class of PIM, POM, GPIM and GPOM
substitutions are not conservative.

Proof: The proof is given by a counterexample.
Let us consider a role descriptionRd = 〈SA,GA, CR,P〉,

whereP = {p is cr1, a}, SA = {a}, GA is empty, and the
capability requirementcr1 in CR and the speech acta in SA
are described by4:

cr1 causes {Bl1} a causes {Bl2}
cr1 possible if true a possible if {Bl1,Bl3}

Assuming as goalG = Bl2 after p, where the initial state
containsBl3 while all the other fluents are unknown, the rea-
soning process will generate the execution traceσ = cr1; a for
achievingG. If we consider the set of capabilitiesC = {c1}:

c1 causes {Bl1,B¬l3}
c1 possible if true

By applying the substitutionθ = {[c1/cr1]} we obtain the new
policy Pθ = {p is c1, a}. However, by using this policy,
the query(〈SA, GA, C,PθPIM 〉, S0) ⊢ G does not succeed: in
fact, the additional effectB¬l3 of the capabilityc1 inhibits the
executability of the speech acta. On the other hand, it is easy
to check thatθ is an instance of all the kinds of substitutions
that we have listed, i.e. it is a PIM substitution as well as a
POM substitution, a GPIM and a GPOM substitution.
This example witnesses that working at the level of the local
constraints is not sufficient. Our claim is that, in general,in
order for a substitution to be conservative, it must take into
account not only thelocal aspects but also theoverall struc-
ture, encoded by the choreography. The locality of the matches
used in the matchmaking phase, indeed, seriously limits the
possibility of re-using software (services) by selecting and
composing it in an automatic way.

Let us now focus on theplug-in match(PIM), which is one
of the most used and which immediately follows the exact
match in the lattice (therefore it is the strongest of the flexible
matches). We show that, by introducing appropriate constraints
at the level of the choreography, it is possible to guaranteethe
selection of conservative substitutions. To this aim, we take
into account thedependenciesbetween actions, which produce
as effects fluents, that are used as preconditions by subsequent
action. Intuitively, the idea is to verify that the “causal chain”
which allows the execution of the sequence of actions, is not
broken by the differences between capabilities and capability
requirements, as instead happens in the example. The obvious
hypothesis is that we have a choreography and that we know
that it allows to achieve the goal of interest, i.e. that there
is an executionσ of the role specification, which allows the

4In the following, for the sake of readability, we will omit theindexing of
the modal operatorB when it is clear that the beliefs belong to the same role.

achievement of the goal. We will use this trace for defining
the additional properties for the match.

Let us start by introducing the notions that define dependen-
cies between actions and dependency sets for fluents. Consider
a role descriptionRd = 〈SA,GA, CR,P〉 and suppose that,
given the initial stateS0, the goalG = Fs after p succeeds,
thus obtaining as answer the successful sequence of actions
σ = a1; a2; . . . ; an, which is an execution trace ofp.5 We
denote byσ the sequence of actionsa0; a1; a2; . . . ; an; an+1,
wherea0 andan+1 are twofictitious actions that will be used
respectively to represent the initial stateS0 and the set of
fluentsFs, which must hold afterσ. That is, we assumea0

has no precondition andEffs(a0) = S0, and thatan+1 has no
effect butPrecs(an+1) = Fs.

Consider two indexesi and j, such thatj < i, i, j =
0, . . . , n + 1. We say thatin σ the actionai depends onaj

for the fluentBl, written aj 〈Bl,σ〉 ai, iff Bl ∈ Effs(aj),
Bl ∈ Precs(ai), and there is not ak, j < k < i, such
that Bl ∈ Effs(ak). Given a fluentBl and a sequence of
actionsσ, we can, therefore, define thedependency setof Bl
asDeps(Bl, σ) = {(j, i) | aj 〈Bl,σ〉 ai}.

Let [c/cr] be a specific substitution of a capability require-
ment with a capability, that is contained inθPIM , we say that
a fluentBl ∈ Effs(c) − Effs(cr) (i.e. an additional effect of
the capabilityc w.r.t. the effects of the capability requirement
cr) is anuninfluential fluentw.r.t. the sequenceσθPIM iff for
all pairs (j, i) ∈ Deps(B¬l, σ), identifying by k the position
of cr in σ, we have thatk < j or i ≤ k, Intuitively, this
means that the fluent will not break any dependency between
the actions which involve the inverse fluent because either
it will be overwritten or it will appear after its inverse has
already been used. Note thatσ and σθPIM have the same
length and are identical as sequences of actions but for the fact
that in the latter capabilities substitute capability requirements.
For this reason, we can reduce to reasoning onσ for what
concerns the action positions. A substitutionθPIM is called
uninfluentialiff for any substitution[c/cr] in θPIM , all beliefs
in Effs(c)−Effs(cr) are uninfluential fluents w.r.t.σ. Now we
are in position to prove that a substitution which exploits the
plugin matchand which is alsouninfluential, is conservative.

Theorem 2:Let G be a goal and letRd = 〈SA,GA, CR,P〉
a role description. If(〈SA,GA, CR,P〉, S0) ⊢ G w.a. σ and
there is an uninfluential substitutionθPIM = [C/CRσ],
CRσ ⊆ CR then(〈SA,GA, C,PθPIM 〉, S0) ⊢ G w.a. σθPIM .

Proof: The proof is by absurd and it uses
the proof theory introduced in [11]. Let us
assume that (〈SA,GA, CR,P〉, S0) ⊢ G w.a. σ but
(〈SA,GA, C,PθPIM 〉, S0) 6⊢ G w.a. σθPIM . Since,
by hypothesis, for any substitution[c/cr] in θPIM ,
Effs(c) ⊆ Effs(cr) holds, there exists a fluentF such
that a0, a1, . . . , ai−1 ⊢ F but (a0, a1, . . . , ai−1)θPIM 6⊢ F ,
where σ = a0, a1, . . . , ai−1, ai, . . . , an and F ∈ Precs(ai).
Now, sincea0, a1, . . . , ai−1 ⊢ F , there existsj ≤ i − 1,

5In this work we focus on linear plans. Conditional plans can be tackled
by considering each path separately.

137

such that a0, a1, . . . , aj ⊢ F and F ∈ Effs(aj) but
(a0, a1, . . . , aj)θPIM 6⊢ F , that is F 6∈ Effs(ajθPIM). This
is absurd due to the hypothesis thatθPIM is an uninfluential
substitution.

Example 3:Let us refer to the running example introduced
in Section III and let us consider the set of capabilitiesC =
{reserve roomC1, reserve roomC2, paymentC}:

reserve roomC1 causes {B¬PccSupported,Bprice}
reserve roomC1 possible if {Bdate}
reserve roomC2 causes {BfreeDinner,Bprice}
reserve roomC2 possible if {Bdate}
paymentC causes {BtransNum,BresNum}
paymentC possible if {BPcashSupported,
BPccSupported}

By choosing theplugin matchas matching rule, there are two
possible substitutions calledθ′PIM andθ′′PIM respectively:

θ′PIM = {[reserve roomC1/reserve roomCR],
[paymentC/ paymentCR]},

θ′′PIM = {[reserve roomC2/reserve roomCR],
[paymentC/ paymentCR]}.

While paymentC exactly matchespaymentCR, reserve roomC1

and reserve roomC2 slightly differ from the requirement. By
applying the substitutionθ′PIM we obtain the set of policies
Pθ′PIM :

booking is receive date(s, b, date), reserve roomC1,
inform(s, b, price), receive evaluation(s, b,
[no business, cash, cc]), finalize reservation

finalize reservation is Bno business?
finalize reservation is paymentC, inform(s, b, resNum),

inform(s, b, transNum)

Differently than in Example 2, by using the resulting policies,
the query(〈SA, GA, C,Pθ′PIM 〉, S0) ⊢ G does not succeed: in
fact, the additional effectB¬PccSupported of the capability
reserve roomC1 inhibits the executability of the capability
paymentC. On the other hand, we observe that the application
of the other substitutionθ′′PIM , provides the agent with a
set of policies (Pθ′′PIM) that allows to satisfy the query
(〈SA, GA, C,Pθ′PIM 〉, S0) ⊢ G. Thus, θ′′PIM represents an
uninfluential substitution. �

The verification that a substitution is uninfluential involves
the derivationσ, and it is based on checking whether the
chains of dependencies between actions for the various fluents
are not interrupted by some opposite fluent. Obviously, if
the domain is such that no fluent, once asserted, can be
negated, anyθPIM will be conservative. This can be verified
statically on the choreography and the set of capabilities,by
checking that every fluent (that appears as effect of some
action) is always positive or negative, including the initial
state and the goal in the verification. Indeed, the application
domains in which actions produceknowledgeare of this kind.
One example is given by e-learning applications where the
capabilities supply knowledge elements that are either supplied
or used as prerequisites.

V. CONCLUSIONS AND RELATED WORKS

In this work we have studied the relation between the match-
making and the achievement of a goal in an interaction ruled
by a choreography. We have proved that local matches (but
the exact match) do not preserve the goal when capabilities
are substituted to capability requirements. It is necessary to
introduce a verification that involves the choreography defini-
tion. We argue that the more relaxed are the local matches,
the stricter must be the the global verification. As an example,
we have presented the integrated approach in the case for the
plugin match.

In the agent framework, the adoption of an interaction policy
has been proposed in CooBDI and Coo-AgentSpeak [14], [15].
These works extend the BDI (Belief, Desire, Intention) model
in such a way that agents are enabled to exchange plans.
This mechanism is activated when the agent cannot find a
plan, for pursuing a goal of interest, by just exploiting its
own capabilities. The ideas behind the CooBDI theory have
been implemented by means of web services technologies,
leading [16] to the development of CooWS agents. Another
recent work is the one by [17]. Here, in the setting of the
DALI language, agents can cooperate by exchanging sets
of rule that can either define a procedure, or constitute a
module for coping with some situation, or be just a segment
of a knowledge base. Agents have reasoning techniques that
enable them to evaluate how useful the new knowledge is.
Nevertheless, these techniques cannot be directly imported in
the context of service-oriented computing. The reason is that,
while in agent systems it is not a problem to discover during
the interaction that an agent does not own all the necessary
actions, in service composition it is necessary that all theactors
are known before the interaction takes place.

In [18] (inspired by JACK [19] and extended in [20]), the
term “capability” is used for identifying the “ability to react
rationally towards achieving a particular goal” in the BDI
framework. An agent has the capability to achieve a goal if its
plan library contains a plan for reaching the goal. Therefore, an
agent’s goals and intentions are constrained to be compatible
with its capabilities.

For what concerns (web) services and matchmaking, it
is not easy to be exhaustive. The matches proposed in [8]
have inspired most of the semantic matches for web service
discovery. Amongst them, Paolucci et al. [9] propose four
degrees of match (exact, plugin, subsumes, and fail) that are
computed on the ontological relations of the outputs of an
advertisement for a service and a query.

WSMO (Web Service Modeling Ontology) [10] is an orga-
nizational framework for semantic web services. As such, it
does not suggest a specific matching rule, which is up to the
specific implementations. However, the authors propose in [21]
an approach that is based on [8] and on [22], which, in turn,
is based upon [9]. More recently, a WSMO matchmaker has
been proposed in [23], which combines several aspects: type
matching, relation matching, constraint matching, parameter
matching, intentional matching. Last but not least, in [7] a

138

multi-level evaluation model is proposed, for deciding whether
two services are composable. This is done through four levels
of control (quality, dynamic semantics, static semantics,and
syntax). Dynamic semantics is the name given to the matches
of [8]. None of these approaches relates the matching with
the possible context of application of the sought services,
even WSMO which, as a framework, includes the possibility
of composing orchestrations of services. On the other hand,
so far we have not yet tackled the integration of ontological
reasoning in our work. This is surely an interesting extension
that we will face soon, given that all these proposals as well
as ours have the same kernel, and we expect similar results.

The idea of synthesizing a policy from an abstract spec-
ification (a choreography) is also stated in [24], where it
is observed that services are often conceived so as to be
delivered individually, while there is a growing need of reusing
this software, either by composing services or by tailoring
a composition to some specific client. In [25] a tool for
service (activity in the paper) coordination and evaluation is
introduced, based on the MetaFrame open tool coordination
environment. Differently than in our approach, there is no
specification of a choreography as we have used here but
the desired behavior is given in terms of global constraints.
Temporal logic is used to express both the constraints and
the goal to achieve, enabling the automatic synthesis of a
composition of activities.

Finally, works like [26], [27] propose approaches for goal-
driven service composition based on planning. However, this
task is accomplished without reference to any choreography.
In particular, in [26] the composition phase and the semantic
reasoning phase (carried on on inputs and outputs) are sepa-
rated and the latter is performed on a local basis only.

ACKNOWLEDGMENT

This research has partially been funded by the European
Commission and by the Swiss Federal Office for Education
and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net), and it
has also been supported by MIUR PRIN 2005 “Specifica-
tion and verification of agent interaction protocols” national
project. Claudio Schifanella is partially supported by the
fellowship program “Fondazione CRT - Progetto Lagrange”
(cf. http://www.progettolagrange.it).

REFERENCES

[1] B. Örriens, J. Yang, and M. Papazoglou, “Model driven service compo-
sition,” in ICSOC 2003, 2003.

[2] M. P. Huget and J. Koning, “Interaction Protocol Engineering,” in
Communication in Multiagent Systems, ser. LNAI 2650. Springer, 2003,
pp. 179–193.

[3] M. Kolp, P. Giorgini, and J. Mylopoulos, “Multi-agent architectures as
organizational structures,”Autonomous Agents and Multi-Agent Systems,
vol. 13, no. 1, 2006.

[4] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “Rea-
soning on choreographies and capability requirements,”International
Journal of Business Process Integration and Management, 2007, to
appear.

[5] M. Singh and M. Huhns,Service-Oriented Computing: Semantics,
Processes, Agents. John Wiley and sons, Ltd., 2005.

[6] WS-CDL, “http://www.w3.org/tr/ws-cdl-10/.”

[7] B. Medjahed and A. Bouguettaya, “A multilevel composability model
for semantic web services,”IEEE Trans. on KDE, vol. 17, no. 7, pp.
954–968, 2005.

[8] A. M. Zaremski and J. M. Wing, “Specification matching of software
components,”ACM Transactions on SEM, vol. 6, no. 4, pp. 333–369,
1997.

[9] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic match-
ing of web services capabilities,” inProc. of ISWC ’02. Springer, 2002,
pp. 333–347.

[10] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman, and
A. Polleres,Enabling Semantic Web Services : The Web Service Mod-
eling Ontology. Springer.

[11] M. Baldoni, L. Giordano, A. Martelli, and V. Patti,
“Programming Rational Agents in a Modal Action Logic,”
AMAI, vol. 41, no. 2-4, pp. 207–257, 2004. [Online]. Available:
http://www.kluweronline.com/issn/1012-2443

[12] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
interaction protocols for customizing web service selection and com-
position,” JLAP, special issue on Web Services and Formal Methods,
vol. 70, no. 1, pp. 53–73, 2007.

[13] F. for Intelligent Physical Agents, “FIPA communica-
tive act library specification, 2002.” [Online]. Available:
http://www.fipa.org/repository/aclspecs.html

[14] D. Ancona and V. Mascardi, “Coo-BDI: Extending the BDI Model with
Cooperativity,” in Proc. of the 1st Declarative Agent Languages and
Technologies Workshop (DALT’03), Revised Selected and Invited Papers,
J. A. Leite, A. Omicini, L. Sterling, and P. Torroni, Eds. Springer, 2004,
pp. 109–134, lNAI 2990.

[15] D. Ancona, V. Mascardi, J. F. Ḧubner, and R. H. Bordini, “Coo-
AgentSpeak: Cooperation in AgentSpeak through Plan Exchange,” in
Proc. of AAMAS 2004. ACM press, 2004, pp. 698–705.

[16] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta, “CooWS:Adaptive
BDI agents meet service-oriented computing,” inProceedings of the Int.
Conference on WWW/Internet, 2005, pp. 205–209.

[17] A. T. S. Costantini, “Learning by knowledge exchange inlogical agents,”
in Proc. of WOA 2005: Dagli oggetti agli agenti, simulazione e analisi
formale di sistemi complessi, F. Corradini, F. De Paoli, E. Merelli, and
A. Omicini, Eds. Camerino, Italy: Pitagora Editrice Bologna,november
2005.

[18] L. Padgham and P. Lambrix, “Agent capabilities: Extending BDI
theory,” in AAAI/IAAI, 2000, pp. 68–73. [Online]. Available:
citeseer.ist.psu.edu/625805.html

[19] P. Busetta, N. Howden, R. Ronquist, and A. Hodgson, “Structuring bdi
agents in functional clusters,” inProc. of the 6th Int. Workshop on Agent
Theories, Architectures, and Languages (ATAL99), 1999.

[20] V. Padmanabhan, G. Governatori, and A. Sattar, “Actionsmade explicit
in BDI,” in Advances in Artificial Intelligence, ser. LNCS, no. 2256.
Springer, 2001, pp. 390–401.

[21] U. Keller, R. L. A. Polleres, I. Toma, M. Kifer, and D. Fensel, “D5.1 v0.1
wsmo web service discovery,” WSML deliverable, Tech. Rep., 2004.

[22] L. Li and I. Horrocks, “A software framework for matchmaking based
on semantic technology,” inProc. of WWW Conference. ACM Press,
2003.

[23] F. Kaufer and M. Klusch, “WSMO-MX: A logic programming based
hybrid service matchmaker,” inProc. of ECOWS’06. IEEE Computer
Society, 2006, pp. 161–170.

[24] F. Casati and M. Chien, “Dynamic and adaptive compositionof e-
services,”Information Systems, vol. 26, pp. 143–163, 2001.

[25] B. Steffen, T. Margaria, and V. Braun, “The electronic tool integration
platform: Concepts and design.”STTT, vol. 1, no. 1-2, pp. 9–30, 1997.

[26] M. Pistore, L. Spalazzi, and P. Traverso, “A minimalist approach to
semantic annotations for web processes compositions.” inESWC, 2006,
pp. 620–634.

[27] J. Bryson, D. Martin, S. McIlraith, and L. A. Stein, “Agent-based
composite services in DAML-S: The behavior-oriented designof an
intelligent semantic web,” inWeb Intelligence. Springer, 2003.

139

simpA-WS: A Simple Agent-Oriented Programming Model &
Technology for Developing SOA & Web Services

Alessandro Ricci, Enrico Denti

Abstract— Service-Oriented Architecture (SOA) is more and
more recognised by the industry as the reference blueprint
for building inter-operable, distributed enterprise applications
based on open standards such as Web Services (WS). In the
current state-of-the-art, the programming models for engineering
SOA systems proposed by the leading industries are essentially
component-based – typically, rooted in object-oriented abstrac-
tions and technologies. On the side, such a choice benefits
from the well-know advantages of component-based software
engineering and from the maturity of the available technologies;
on the other, however, the abstraction level provided is inadequate
to model some fundamental SOA aspects – such as autonomy,
control-uncoupling, data-driven interaction, activities – as first-
class concepts. Such features can be modelled quite naturally by
adopting an agent-oriented perspective.

In this paper we describe simpA-WS, a Java-based framework
for developing SOA/WS applications which adopts an agent-
oriented programming model based on the general-purpose
Agents and Artifacts meta-model (A&A). simpA-WS makes it
possible to conceive, design and program services (and applica-
tions using services) as workspaces where ensemble of pro-active,
activity-oriented entities (agents) work together by exploiting
different kinds of passive function-oriented entities (artifacts)
used as resources, along with tools to support their business
activities. Accordingly, we first present the simpA-WS framework
and the related simpA language – an extension of Java aimed
at capturing the A&A metaphors as first-class entities; we then
show how agents and artifacts can be programmed in simpA and
how SOA/WS applications can be programmed in simpA-WS; a
simple running example is discussed for concreteness.

I. INTRODUCTION

Nowadays Web Services (WS) represent the reference
standard technologies for setting up distributed systems that
need to support interoperable machine-to-machine interaction
between heterogeneous applications distributed over a network
[17]. In that context, Service-Oriented Architecture (SOA) ap-
pears to be more and more the reference software architecture
promoted by leading industries—IBM, Microsoft, Sun, IONA,
Bea, to cite few ones—as a blueprint for organising, designing
and building distributed enterprise applications based WS open
set standards [2], [4].

Generally speaking, SOA can be defined as an open, agile,
extensible, federated, composable architecture comprised of
autonomous, QoS-capable, vendor diverse, inter-operable, dis-
coverable, and potentially reusable services [4]. From a soft-
ware architecture perspective, SOA defines how to use loosely
coupled software services for supporting the requirements of
the business and software users, making resources available on
a network as independent services that can be accessed without
knowing their implementation platform. From an information

A. Ricci is with the DEIS Department, Università di Bologna, Cesena.
E. Denti is with the DEIS Department, Università di Bologna.

systems perspective, SOA enables the creation of applications
by combining loosely-coupled, inter-operable services. Despite
the specific perspective, service-oriented architectures based
on Web Services are well going to be adopted by the industry
as the reference choice for inter-operable, distributed systems.

A key issue here is the programming model to be adopted
for SOA applications [7] – that is, the model defining the
concepts and abstractions made available to developers. From
this viewpoint, SOA per-se is not committed to any specific
programming model: however, the ones currently promoted
by leading software vendors are essentially component-based
[16], so as to rely on mature and widespread technologies.
Yet, in this paper we argue that such a choice is unable to
handle some essential requirements of SOA systems—such
as autonomy, control-uncoupling and data / message-driven
interactions—at a suitable abstraction level. For this reason,
there is a need for a programming model based on agent-
oriented abstractions, which makes it possible to deal with
such requirements in an effective and more natural way.

Agents and Multi-Agent Systems (MAS) have already been
recognised as suitable approaches for engineering complex,
intelligent service-oriented applications, aimed at integrating
research outcomes from different contexts such as Semantic
Web and Artificial Intelligence [10]. Here, however, we explic-
itly focus on designing and programming issues, discussing
how agents and MAS could provide effective building blocks
for the design and development of SOA applications.

The remainder of the paper is organised as follows. In
Section II we focus on the requirements that any programming
model for SOA application programming should satisfy, and
briefly review from this viewpoint the main programming
models currently promoted by the industry. Then, in Sec-
tion III we introduce an agent-oriented programming model
for SOA/WS based on agents and artifacts. In Section V we
present simpA-WS, as a simple Java-based middleware for
supporting such a programming model; conclusions are drawn
in Section VI.

II. BACKGROUND: SOA PROGRAMMING MODELS

In order to evaluate the effectiveness of a programming
model for SOA, it is first necessary to outline the main
properties that a SOA system should exhibit according to the
reference literature (see for instance [2], [4]).

Encapsulation is the basic property for achieving service in-
dependency from the context: services encapsulate their logic,
whose size and scope can vary, and can possibly encompass
the logic provided by other services; in other words, one or
more services can be composed into a collective service.

Autonomy is strongly related to encapsulation, since services
must clearly have control over the logic they encapsulate. As

140

a consequence of such an autonomy, inter-service relation-
ships should minimise dependencies – in particular, control
dependencies – retaining only the awareness of each other:
this is what we mean by loose coupling. Such an awareness
is achieved through the use of service descriptions, which are
exploited by users to understand how to use and interact with
the service. Communication is another fundamental dimension
in SOA, since services must exchange information in order to
interact and accomplish their task.

Autonomy, encapsulation and loose coupling properties
clearly condition the interaction model that can be used to en-
able communication both between the service user and service
providers, and among services. In principle, any interaction
model capable of preserving loosely coupled relationship
can be adopted: messaging is the reference communication
framework typically considered for this purpose. Conversely,
interaction models based on Remote Procedure Call (RPC) or
method invocation are inadequate, since they involve a control
coupling between the interacting parts. This is indeed quite a
critical aspect: most of the frameworks currently proposed as
killer technologies for the rapid prototyping of Web Service
applications adopt a pure OO-style in defining and interact-
ing with Web Services, mapping – for instance – service
invocations onto method invocations. A clear example of this
trend is the programming model adopted by the Java API
for XML Web Services (JAX-WS) [8], which defines a Web
Service by simply annotating the corresponding Java class
class with the @WebService annotation, and its methods
– which implementing the Web Service operations – with
the @WebMethod annotation. An analogous support can be
found in the Web Service Extension (WSE) provided by the
Microsoft .NET platform.

Our view is that the above critical aspect is mainly due to a
fundamental mismatch between the SOA and object-orientated
paradigm – with the object-oriented paradigm often adopted
to engineer distributed (and concurrent) systems – rather than
to weaknesses in today’s technologies. In fact, although it is
possible to build such kinds of systems on top of available
OO platforms exploiting middleware such as CORBA, RMI or
alike, the abstraction level provided is inadequate for applica-
tion design and implementation, in that OO lacks abstractions
to deal with loose-coupled communication, concurrency, and
distribution.

Consequently, new programming models are needed for
implementing SOA systems, which preserve the basic prop-
erties required from Web Services. For this purpose, some
proposals have been pushed by leading industries in the
state-of-the-art: Service Component Architecture (SCA) [5],
for instance, is promoted by independent software vendors
such as IBM, SAP, IONA, Oracle, BEA, TIBCO — to cite
some. Analogous initiatives are the Windows Communication
Foundation (previously called Indigo), promoted by Microsoft,
and the Java Business Integration (JBI), promoted by the
Java Community process [9]. All such approaches adopt a
component-based programming model: components imple-
ment the business logic, offer their capabilities to other com-
ponents, and consume functions offered by other components
through suitable Service-Oriented interfaces (Figure 1 shows

Fig. 1. An abstract representation of the Service Component Architecture,
reported in [5].

abstract representation of the Service Component Architec-
ture, taken from [5]) using a minimum of middleware APIs.
Components are linked together according to some wiring
model, which is meant to support different kinds of interaction
models and features, including synchronous and asynchronous
invocation, transactional behaviour of components invocation,
and so on. Service implementation and service composition are
uncoupled from both the details of the infrastructure and of
the access methods used for service invocation: these typically
include Web services, Messaging systems and CORBA IIOP.

As it can be expected, such an approach inherits on the one
side the well-known strong points of the component-oriented
paradigm in terms of dynamic configurability, reusability, etc.,
but also its weakness in dealing with processes and activities,
concurrency, autonomy, distribution, decentralisation and en-
capsulation of control – to cite some. Neither object-oriented,
nor component-based programming models provide first-class
abstractions to explicitly model and manage the above issues:
in particular, both objects and components are passive entities
encapsulating their state and behaviour, but not the control
of such a behaviour, which is typically hidden in some part
of the component’s “container” – whatever this may be. As
a consequence, even if components are meant in principle to
encapsulate the business-level logic, they fail to encapsulate
some key aspects of such a logic – such as, for instance,
the execution and control of (possibly concurrent, possibly
interacting) business activities and processes. To overcome
these limitations, in the next section we introduce a program-
ming model based on agent-oriented abstractions, aimed at
capturing the above aspects in a full-fledged way. troppo forte?

III. AN AGENT-ORIENTED PROGRAMMING MODEL FOR
SOA AND WEB SERVICES

Interestingly, the word agent appears both in the abstract
description of the Web Service reference architecture provided
by W3C [17] (sketched in Figure 2), and – more generally –
in the high level characterisation of SOA [4]. There, an agent
is used to represent:

• the service requestor, which encapsulates the business
logic on how to use services: from an interaction point
of view, this results in sending and receiving messages in
compliance with the service interface specification;

141

Fig. 2. Service Model of Web Services, according to W3C

• the service provider, which encapsulates the business
logic of the service: this processes the requestor mes-
sages, executes the related activities and interacts with the
requestor via the message exchange protocol specified in
the service description.

So, some notion of agent already appears in the standards
as a key part of the picture, representing the entities that
perform some activity or achieve some goal, thus shaping
the business logic either on the user’s or on the service’s
side. However, such abstraction level disappears when moving
from the abstract characterisation down to the design and
development levels, as discussed in the previous section. Our
proposal is to keep that abstraction level alive throughout
the engineering process, exploiting agents and MAS as the
basic bricks of a programming model explicitly tailored to the
definition of services and of applications using such services.

The fundamental outcome of this approach is to reduce the
gap between the business-level description and the models and
architectures used at the system implementation level.

In fact, despite the differences between the existing agent-
oriented methodologies, models and architectures, the agent-
oriented paradigm in se provides precisely the high-level
concepts — activity, goal, task, message-driven interaction,
. . . — that are needed from a programming model in order to
map the metaphors used at the business description level. In
the next Section we introduce an agent-oriented programming
model called SA&A, based on a the A&A conceptual model.

A. The A&A Conceptual Model

A wide range of agent programming models, architectures
and platforms can be found in literature (see [6] for a
brief survey of the programming languages and platforms).
For historical reasons, most of them are AI-oriented, thus
with a characterisation of the agent and MAS abstractions
focussed on AI concepts, aimed at building systems exhibiting

a somewhat intelligent behaviour. The Agents and Artifacts
conceptual model (A&A henceforth) [12], instead, was defined
with a software engineering perspective in mind: as such,
it highlights the features needed for an effective design and
development of complex software systems.

Grown from inter-disciplinary studies involving Activity
Theory and Distributed Cognition [11], A&A adopts agents
and artifacts as high-level abstractions to design and build
distributed, concurrent software systems. These metaphors are
taken from human cooperative working environments, where
“systems” are composed by individual autonomous entities
(humans) who pro-actively carry on some kind of work (ac-
tivities) by interacting and cooperating. A fundamental aspect
of such cooperative systems is the context—i.e. the environ-
ment—that makes it possible for such activities to take place.
Humans cooperative environments are full of suitable artifacts
and tools, that humans produce, consume and use to support
their work. Following Activity Theory, the term artifact is used
here to identify both the resources and objects constructed
during the activities, as well as whatever instrument built or
exploited by humans to support their activities.

In A&A these metaphors are brought into the software engi-
neering process, modelling complex software systems in terms
of workspaces where ensembles of pro-active entities—the
agents—work together by producing, consuming, sharing and
cooperatively using different kinds of artifacts, analogously to
the human case.

B. Agents and Artifacts
Agents represent entities with a (pro-)active behaviour, de-

signed by engineers so as to perform some kind of useful work,
cooperatively and concurrently to the work of the other agents.
The agent abstraction is well suited for encapsulating the
execution and control of the business activities and processes
that are part of the business logic. Artifacts, in turn, represent
passive entities that populate the agents’ working environment:
they are designed by engineers as resources and tools to be
used by agents for their (individual or collective) work.

So, on the agent side, A&A promotes an activity-oriented
model, where the agents’ pro-active behaviour is modelled
in terms of activities whose execution and control is fully
encapsulated inside the agent; on the other, agents manipulate,
produce, exploit, update artifacts which constitute the tools
needed for their work.

Activities are expressed in terms of actions, that is atomic
step determining some kind of change either in the agent
state (internal actions) or in the environment (external actions
or simply actions). Sensing—representing here the action of
perceiving —is the basic mechanisms that enables an agent to
get information from its environment.

Artifacts are used by agents as source or target of their work,
and greatly vary nature and function — including, for instance,
the tools for enabling agent communication and coordination
such as blackboards, message boxes, and calendars, which are
typical coordination artifacts [13]. Instead, shared knowledge
bases or artifacts representing or wrapping I/O devices are
typical examples of resource artifacts. Each artifact is explic-
itly designed by MAS engineers to encapsulate some kind of

142

INTERFACE
CONTROL
(COMMAND)

<NAME+PARAMS>

 OPERATION Y

 OPERATION Z

 OPERATION X

USAGE
INTERFACE

PROP_NAMEX
PROP_VALUEX OBSERVABLE

PROPERTIES
<NAME,VALUE>

OBSERVABLE
PROPERTIES

OBSERVABLE EVENTS
GENERATION ARTIFACT

MANUAL<DESCR,CONTENT>

Fig. 3. (Left) An abstract representation of an application according to the A&A programming model, as a collection of agents (circles) sharing and using
artifacts (squares), grouped in workspaces. (Center) An abstract representation of an agent, as an entity executing actions and getting perceptions from the
environment where it is logically situated. (Right) An abstract representation of an artifact, with its usage interface and observable properties in evidence.

function, here synonym of “intended purpose”; any function
is structured into a set of operations. In order to be used by
agents, each artifact exposes a usage interface, which defines
the set of controls on which the agents can act upon so as to
trigger and control the execution of operations. Such execution
can result in the generation by the artifact of observable events,
that can be perceived by the agents which are using the artifact.
Usage interface controls have a name and possibly parameters,
which must be specified by agents when using the artifact.

Summing up, the interaction between agents and artifacts
is based on the notions of use and observation, and strictly
mimics the way in which humans use their artifacts. As a
simple example, a coffee machine is an artifact whose usage
interface provides controls to make coffee and select the sugar
level, and whose state and behaviour are observable by the
generation of events exposed through a display.

Artifacts can also be composed together by means of link
interfaces, which make it possible to create complex artifacts
as dynamic compositions of existing simpler artifacts.

Although a detailed description of A&A is outside the scope
of this paper (interested readers are referred to [12]), our
aim here is to identify some essential properties that make
it an interesting reference for a SOA programming model.
First, the agent abstraction explicitly enables and captures the
encapsulation of control, along with a notion of autonomy
as depicted by SOA requirements. Moreover, the interaction
model adopted for agents and artifacts interaction is strongly
uncoupled and data-oriented (vs. control oriented), thus pro-
viding for uncoupled and data-driven interaction: in fact, there
are no flows of control from an agent to an artifact or other
agents, as it happens instead in the case of Remote Procedure
Calls (RPC) or classical object-oriented method invocation.
Finally, concurrency can be naturally modelled both in the
form of concurrent activities carried on by an individual agent,
and as separate works carried on independently by distinct
agents (seamless concurrency support).

C. A SOA/WS Programming Model Based on A&A
In this section we introduce a basic programming model

for SOA based on A&A abstractions, referenced in the fol-

lowing as SA&A. Both services and service-user applications
in SA&A are uniformly modelled as a workspace where
an ensemble of agents work together, interacting both via
direct communication and by producing, consuming, sharing
and cooperatively using a dynamic set of artifacts. Agents
encapsulate the responsibility of the execution and control
of the business activities that characterise the SOA specific
scenario, while artifacts encapsulate the business resources and
tools needed by agents to operate in the application domain.
Figure 4 represents an abstract picture of a (web) service
designed upon the SA&A programming model: agents act
as service providers processing incoming service messages,
but some of them also act as clients of other services, as an
example of service composition.

Two kinds of artifacts are used in almost any service-
oriented application: ws-service-panel and ws-service-
interface. Both are used as interfaces or media enabling the
communication with the service clients or with external Web
services, based on open standards. In particular, the former
is used by agents implementing the business logic to retrieve
and be aware of the requests and messages sent to the (web)
service: so, for each service, one instance of such an artifact
encapsulates the functionalities related to a specific WSDL
and WS-Policy service description. In the simplest model, the
usage interface of this artifact provides just controls to manage
messages and requests—for instance, a control to retrieve the
messages to be processed, another to send response messages,
one further to check the number of pending messages, etc. In
more complex models, however, this artifact could encapsulate
the management of some quality-of-service aspects (such as
security, reliability, etc.), as defined by WS-* specification.
The latter one, instead, is used by agents to interact with an
existing service. So, an instance of the ws-service-interface
is usually first instantiated referring to a specific WSDL and
possibly WS-Policy description, and then used (by one or
more agents) to interact with a specific Web Service. In the
simpler case, its usage interface should provide controls just
to invoke services and observe possible response messages.
However, other functionalities could be encapsulated here for
the management of QoS aspects (described in the WS-Policy

143

Fig. 4. An abstract representation of a (web) service architecture according to the SA&A programming model, composed by agents and artifacts building
blocks. Artifact usage interface is represented as a panel with some controls inside. Some of them are labelled with a name which is equal to the operation
that the control is meant to trigger. The ws-service-panel and ws-service-interface artifacts in the figure are used respectively to collect request messages
and to interact with existing (web) services.

specification).
In the abstract representation in Figure 4, other kinds of

general purpose artifacts are represented, such as a shared
knowledge base, a blackboard, a spreadsheet. Specific kind
of artifacts could be instantiated dynamically, or disposed
of, according to the evolution of the service provision. Two
remarks are worth before closing this section. First, the picture
refers to the service side of a SOA: the client-side would be
similar, yet with no the need for ws-service-panel artifacts1

Moreover, only the basic aspects of a service have been
presented, since our aim is to give the reader the “taste” of the
shift from state-of-the-art, component-based to agent-oriented
approaches, rather than developing a full-fledged application
scenario.

IV. PROGRAMMING AGENTS AND ARTIFACTS IN simpA

simpA is an open-source extension2 of the Java platform
aimed at assuming the A&A abstractions as the basic high-level
building blocks to program concurrent applications [15]. This
approach contrasts with most of the current approaches, which
often model concurrency aspects by “adapting” object-oriented
abstractions (classes, objects, methods)—e.g. [3]. Rather, we
introduce the new A&A abstractions, and exploit real object-
orientation to model any basic low-level data structure used
to program agents and artifacts, as well as any information
exchanged through interaction. This approach leaves concur-
rency and high-level organisation aspects orthogonal to the

1Of course, agents would encapsulate the business activities of the client
side of the application.

2The simpA technology is available for download at the simpA web site,
http://www.alice.unibo.it/simpa

object-oriented abstraction layer, leading, in principle, to a
more coherent programming framework.

Currently, the simpA extension is realised as a library,
exploiting Java annotations to define the new programming
constructs: consequently, a simpA program can be compiled
and executed using the standard Java compiler and virtual
machine, with no need for specific extensions of the Java
framework (preprocessors, compilers, class loaders, or JVM
patches). Hence, the newest constructs take the form of
annotated classes and methods—which, however, are clearly
separated from their non-annotated, underlying object-oriented
versions used at the implementation level. The choice of using
the library & annotations solution to implement a language and
a platform extension has the advantage to maximise the reuse
of a widely adopted platform like Java: at the same time, it
has some relevant drawbacks, due to the lack of agents and
artifacts as first-class abstractions both in the language and in
the virtual machine. Accordingly, part of our ongoing work
is devoted to the definition and the prototype implementation
of a new full-fledged language and platform called simpAL,
rooted on agents and artifacts as real first-class entities.

In the remainder of the section we first describe how to
define the structure of an agent (Subsection IV-A) and of an
artifact (Subsection IV-B), then present the API supporting
the agent-artifact interaction (Subsection IV-C) and the overall
shape of a simpA application (Subsection IV-D).

A. Defining Agents

Since one of our main objectives was to minimise the
number of classes to be defined by users for introducing new
agents and artifacts, we adopted a very simple, one-to-one
mapping—just one class per agent or artifact template—so as

144

to make things as agile as possible. Accordingly, a new agent
template3 is defined by extending the alice.simpa.Agent
base class provided in the simpA API: the class name is equal
to the agent template’s name. At runtime, new instances of this
agent type can then be spawn when needed. The execution of
an agent consists in executing the activities specified in its
template, starting from the main one.

In the following, we stress the four key aspects of agent tem-
plates’ definition: the memo-space as a way to provide long-
term memory (Subsection IV-A.1), the definition of atomic vs.
structured activities (Subsection IV-A.2), the coordination of
such (sub-)activities (Subsection IV-A.3), and the definition of
cyclic behaviours (Subsection IV-A.4).

1) Agents’ long-term memory: the memo space: Agent
long-term memory is realised as an associative store called
memo-space, where the agent can dynamically attach, associa-
tively read and retrieve chunks of information called memos. A
memo is a tuple, characterised by a label and an ordered set of
arguments, possibly bound to data objects. If some arguments
are left unbound, the memo is partially specified. A memo-
space is just a dynamic set of memos: each memo is identified
by its label and argument list.

Each agent is provided of internal actions—available in
the implementation as protected methods—to atomically
and associatively access and manipulate the memo space.
In particular, memo(Label,Arg0,Arg1,...) is used to
create a new memo with a specific label and arguments: these
can be null or bound to specific data objects. Conversely,
readMemo(Label,Arg0,Arg1,...):Memo and
removeMemo(Label,Arg0,Arg1, ...):Memo
respectively read and remove a memo that matches both the
label and the given arguments: these can be either concrete
values or variables—in the latter case, represented as instances
of the MemoVar class. In the special but frequent case that,
due to the designer’s own choice and convention, the label
alone is enough to uniquely identify the memo type—that is,
the same label in not used twice with a different argument
list to denote different memo types—and that a single tuple
of a given type is present in the memo space at a time, two
linguistic shortcuts are provided: getMemo(Label):Memo
and delMemo(Label):Memo respectively get and remove
a memo with a given label, chosen non-deterministically
among the existing ones.

By default, the boot args(Arg0,Arg1,...) memo
is available in each agent’s memo space at the agent’s boot
time, and contains the parameters optionally specified when
the agent has been instantiated.

It is worth remarking that the memo-space is the only
data structure adopted for supporting the agent’s long-term
memory: the instance fields of agent classes are not used.

2) Atomic and structured activities: Agent activities can
be either atomic—i.e. not composed of sub-activities—or
structured, composed by some kinds of sub-activities. Atomic
activities are implemented as methods with the @ACTIVITY

3The term “template” is used here as a higher-level synonym of “class”,
intended as the entity describing the structure and behaviour of all the template
instances.

activityA

activityB

activityC

activityD

main

Fig. 5. A representation of an agent’s main structured activity composed
of two parallel sub-activities activityB and activityC to be executed after
activityA; activityD is executed after the completion of both activityB and
activityC.

annotation, with no input parameters and with void return
type. The body of a the method specifies the computational
behaviour of the agent corresponding to the accomplishment
of the activity. Method local variables are used to encode data-
structures representing the short-term memory related to the
specific activity. By default, the main activity of an agent is
called main, and must be defined by every agent template.
Here is a naı̈ve example of agent template:

public class MyAgent extends Agent {
@ACTIVITY void main(){

log("Hello, world!");
}

}

In this case, the agent behaviour simply logs the “Hello,
world” message onto standard output and then terminates.

Structured activities are (hierarchically) composed of sub-
activities. The notion of agenda is introduced to specify
the set of the potential sub-activities composing the activity,
referenced as todo in the agenda. Each todo specifies the
name of the sub-activity to be executed, and optionally a pre-
condition. When a structured activity is executed, all the todos
in the agenda are executed as soon as their pre-conditions hold:
no pre-condition means that the todo can be executed immedi-
ately. So, multiple sub-activities can be executed concurrently
in the context of the same (super) activity.

A structured activity is implemented by a method anno-
tated with an @ACTIVITY WITH AGENDA annotation, which
contains the todo descriptions as a list of @TODO annota-
tions. Each @TODO specifies the name of the sub-activity to
be executed, as well as a pre property for the optionally
precondition, expressed as a boolean expression of Prolog
predicates, possibly combined through the classical and, or
and not connectors (represented by the ,, ;, and ! symbols,
respectively). Predicates can be predefined or user-defined—
actually, any valid Prolog expression (clause body) can be
specified. Essentially, these predicates make it possible to
specify conditions on the current state of the activity agenda, in
particular on (i) the state of the sub-activities (todos)—whether
they have completed / aborted / started, and on (ii) the memos
that could have been attached to the agenda. Preconditions
can depend only on the local (inner) agent’s state, not on the
agent-environment state.

Now let us see a simple example of an agent with a
structured activity, whose agenda is composed by four todos:
activityA, activityB, activityC, and activityD

145

(see Figure 5). activityA is meant to be executed as soon
as the main activity starts, activityB and activityC
are executed in parallel when activityA completes, while
activityD starts when both activityB and activityC
have been completed.
public class MyAgent extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO("activityA"),
@TODO("activityB", pre="completed(activityA)"),
@TODO("activityC", pre="completed(activityA)"),
@TODO("activityD",

pre="completed(activityB),completed(activityC)")
}) void main(){}

@ACTIVITY void activityA(){
memo("x",1); // attach a new memo x(1)

}

@ACTIVITY void activityB(){
int v = getMemo("x").intValue(0); // retrieve 1st arg
memo("y", v+1, v-1); // attach a new memo y(2,0)

}

@ACTIVITY void activityC(){
memo("z", getMemo("x").intValue(0)*5); // attach z(5)

}

@ACTIVITY void activityD(){
MemoVar y0 = new MemoVar();
MemoVar y1 = new MemoVar();
readMemo("y",y0,y1); // read memo arguments
int z = getMemo("z").intValue(0); // z = 5
int w = z*(y0.intValue() + y1.intValue()); // w = 10
log("the result is: "+w); // should log 10

}
}

In this example, the agent attaches and retrieves some memos
in the memo-space to share data among its (sub-)activities
and store the result of its work. In particular, in activityA
the agent stores a memo x(1), then in activityB and
activityC reads the memo labelled with x and uses its con-
tent to create the two new memos y(2,0) and z(5); finally,
in activityD, it reads both memos y and z and uses them to
compute the desired result. The Memo class provides methods
for accessing the memo content: for instance, intValue(i)
retrieves the i-th argument as an integer value.

It is worth noting that local method variables are exploited
as a kind of short-term memory, in contrast with the memo-
space exploited as a long-term memory.

3) Coordinating sub-activities: Memos can be used both to
contain data objects elaborated by activities, and to support the
coordination of sub-activities. This is possible by exploiting
the memo predicate in the specification of the pre-conditions so
as to test the presence of a specific memo in the memo space—
and possibly to associatively retrieve its argument values, if
needed. Below is a variant of the previous example, where the
pre-conditions for the execution of sub-activities are no longer
expressed as conditions on the completion of other activities,
but are based on the availability of the information that each
sub-activity needs in order to be executed:
public class MyAgent extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO("activityA"),
@TODO("activityB", pre="memo(x(_))"),
@TODO("activityC", pre="memo(x(_))"),
@TODO("activityD", pre="memo(y(_)),memo(z(_))")

}) void main(){}
...

}

Accordingly, activityB is triggered as soon as a memo
matching the template x()4 is found in the memo space,
and the same for the other activities.

4) Cyclic behaviour: In order to define a cyclic behaviour,
a todo can be specified to be persistent: then, once it has
been completely executed, it is automatically re-inserted in the
agenda, so that it is eventually executed again. In the following
example, the agent’s main activity consists of repeatedly
acquiring a new task to do and serving it concurrently with
the other running tasks.
public class MyAgent extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO("getNewTaskTodo", persistent=true),
@TODO("doTask", pre="memo(new_task_todo)",

persistent=true)
}) void main(){}

@ACTIVITY void getNewTaskTodo(){
// <wait for a task todo>
memo("new_task_todo");

}

@ACTIVITY void doTask(){
removeMemo("new_task_todo");
// <do task>

}
}

B. Defining Artifacts

Analogously to agents, artifacts are mapped onto a single
class, too. An artifact template is described by a single class
extending the alice.simpa.Artifact base class. Again,
the elements defining an artifact—its inner and observable
state and the operations defining its computational behaviour—
are mapped onto suitably annotated class elements. The in-
stance fields of the class are used to encode the inner state
of the artifacts, while suitably annotated methods are used to
implement artifacts operations.

In particular, for each operation (control) listed in the
usage interface, a method with no return parameter and anno-
tated with the @OPERATION annotation must be defined: the
method name and arguments must coincide with the name and
arguments of the operation to be triggered. Any method an-
notated with @OPERATION represents the first computational
step executed when the homonymous operation is triggered.
Moreover, since any useful artifact has to be somehow observ-
able, the signal primitive is used to generate events that can
be observed by the agent using the artifact.

As a simple example, the following code shows the defi-
nition of a Count artifact functioning as a simple counter,
whose usage interface defines just one operation (inc) for
incrementing the counter value:
public class Count extends Artifact {
int count;

public Count(){ count = 0; }

@OPERATION void inc(){
count++;
signal("new_count_value", count);

}
}

4Following the Prolog syntax, the underscore means any value. Analo-
gously, symbols starting with an uppercase letter represent variables.

146

An observable event is characterised by a label describing
the kind of the event and possibly an object representing
the event data. In the previous example, for instance, a
new count value event is generated each time the counter
is updated.

Some events are automatically generated for any operation
execution: in particular, op execution completed and
op execution failed are generated when an operation
completes with a successful or a failure result, respectively.

Besides observable events, an artifact can define a number
of observable properties—that is, labelled inner state variables
whose change is made observable to agents which are fo-
cussing the artifact (this aspect is discussed more in detail
in Subsection ??). Observable properties are expressed as in-
stance fields annotated with the @OBSPROPERTY annotation:
a basic set of primitives is available to manipulate the property
values. As an example, let us consider a variant of the Count
artifact, which defines the count observable property:
public class Count extends Artifact {
OBSPROPERTY int count;

public Count(){ count = 0; }

@OPERATION void inc(){
updateProperty("count",count++);

}
}

Now, each time the operation inc is executed, the prop-
erty value is updated by the updateProperty primitive,
which causes the generation of an observable event of type
property updated(count): the event data carry the new
property value.

In the following, we stress more in detail three key aspects
of artifact definition: the definition of structured operations
(Subsection IV-B.1), temporal guards (Subsection IV-B.2),
and linkability (Subsection IV-B.3); other artifact features are
reported in Subsections IV-B.3, IV-B.4 and IV-B.5.

1) Structured operations: In previous examples, artifact op-
erations were always atomic—i.e., made of a single step. How-
ever, structured operations, composed of multiple (atomic)
steps, can also be implemented: to this end, each operation
step has to be encoded by a method annotated with @OPSTEP
annotation, which is triggered by the nextStep primitive.
This primitive specifies the name of the step to be triggered
along with its parameters, as a kind of continuation.

In addition, each operation or operation step can be provided
with a guard, that is, a condition that must hold for actually
executing the triggered operation or operation step. Guards are
implemented as boolean methods annotated with the @GUARD
annotation, whose arguments must exactly match those of the
guarded operation or operation step: as soon as the guard
is evaluated to true, the step is executed. For the sake of
concreteness, let us consider the following example:
public class MyArtifact extends Artifact {

int m;

@OPERATION void op1(){
m = 1;
nextStep("opStepB");

}

@OPSTEP(guard="canExecOpStepB") void opStepB(){

log("op1 completed.");
}

@GUARD boolean canExecOpStepB(){ return m == 5; }

@OPERATION void op2(){ m++; }
}

Here the operation op2 is atomic, while the operation op1 is
composed of two steps: the first coincides with the operation
itself5 (and initialises m to 1), while the second, opStepB, is
explicitly labelled and encoded by the homonymous method
(which writes a message to the log). Of course, the definition
order of these methods is not significant—the above writing
order is just a matter of readability.

The opStepB step is triggered by the first step in op1
through the explicit invocation of the nextStep primitive:
once triggered, the step is executed only when (and as soon
as) its guard, canExecOpStepB, evaluates to true. This
guard conditions the step execution to the value of the internal
artifact variable m, which must be equal to 5 for opStepB to
be actually executed. In turn, m is incremented by the operation
op2: so, opStepB is executed only after agents have invoked
op2 four times, raising m to 5. This completes the execution
of operation op1.

As anticipated above, a guard can also be applied to an
operation, with the obvious meaning that the guard must be
true for (the first step of) the operation to be executed:
public class MyArtifact extends Artifact {
int m;
public MyArtifact(){ m=1; }
@OPERATION(guard = "canExecOp1") void op1(){ m++; }
@GUARD boolean canExecOp1(){ return m < 10; }
}

It is worth noting that multiple instances of the same operation
can be triggered for execution, typically by distinct agents: in
that case, a strict ordering semantics applies on their execution,
based on to the time when the operation has been triggered
(besides the evaluation of the guard).

Summing up, structured operations make the implementa-
tion of long-term operations encapsulated, flexible and effec-
tive, allowing for multiple structured operations to be executed
concurrently by interleaving the guarded execution of their
steps, while enforcing the mutual exclusion on the access to
the artifact state. For further details, we forward the interested
reader to the simpA manual available at [1].

2) Temporal guards: Besides guards based on the arti-
fact state, simple temporal guards are also supported: their
evaluation becomes true after a given time is elapsed since
they have been triggered. To define a temporal guard, a
tguard property must be specified inside the @OPSTEP
annotation instead of guard: the property should then be
assigned a (long) positive value, indicating the guard duration
in milliseconds. Let us consider the following example:
public class Clock extends Artifact {
OBSPROPERTY int nticks;
boolean stopped;

public Clock(){ nticks = 0; stopped = false; }

5This choice makes it easier to express single-step operations, which are
the most frequent case.

147

@OPERATION void start(){
stopped = false;
nextStep("tick");

}

@OPSTEP(tguard=1000) void tick(){
if (!stopped){

updateProperty("nticks",nticks+1);
nextStep("tick");

}
}

@OPERATION void stop(){ stopped = true; }
}

Once started via the start interface command, this artifact
generates a tick event approximatively every second, which
increments the clock value. When some agent issues the stop
command, the counting finally terminates.

3) Linkability: Besides the usage interface, artifacts can be
provided with a link interface, that is, a set of operations to be
invoked (linked) by other artifacts (not by agents). This feature
makes it possible to create complex artifacts by dynamically
composing simpler artifacts, mimicking the way in which
human artifacts are linked together. From the concurrency
model viewpoint, linked operations have the same behaviour of
operations triggered by the usage interface: the only difference
is that the observable events generated by a linked operation
are made observable not to the artifact linking the operation
(which would not make sense in the simpA model), but to the
agent originating the execution chain.

4) Observable states: The observable behaviour of an arti-
fact can be partitioned in states, each equipped with a different
usage interface and observable property set.

5) Artifact manual: Finally, each artifact should be
equipped with a document containing a formal machine-
readable, semantic-based description of the artifact function-
ality and usage instructions (usually called operating instruc-
tions). Such a description is meant to provide a semantic
layer making it possible to envision, in principle, scenarios
where agents could be able to select and use artifacts that are
added dynamically to their working environment, without a
pre-programmed knowledge about their functionality and use.
Again, the interested reader is forwarded to the simpA web
site for up-to-date documentation on the work in progress.

C. Agent API for Interacting with Artifacts

The API for enabling agents to interact with artifacts con-
cerns two main categories: use and observation (Subsection IV-
C.1) on the one side, instantiation and discovery (Subsec-
tion IV-C.2), on the other.

1) Artifact use and observation: Artifact use is the basic
form of interaction between agents and artifacts. In fact, also
artifact instantiation and artifact discovery are realised by us-
ing proper artifacts—a factory and a registry artifacts—which
are supposed to be available in any working environment.

Following the A&A model, the use of an artifact by an
agent involves two basic aspects: (i) executing operations on
the artifact, and (ii) perceiving the observable events possibly
generated by the artifact through agent sensors.

Agents execute operations on artifacts by exploiting the
interface controls (or commands) provided by the artifact
usage interface. The use basic action is provided for this
purpose, and specifies the identifier of the target artifact,
the operation to be triggered and optionally the identifier of
the sensor used to collect observable events generated by
the artifact. When the action execution succeeds, the value
returned by use is the operation’s unique identifier. If, instead,
the action execution fails—for instance, because the interface
control specified is not part of artifact usage interface—an
exception is raised.

Sensors are represented by specific classes, which extend
the basic abstract class alice.simpa.AbstractSensor.
A concrete default implementation is provided, called
alice.simpa.DefaultSensor. Default sensors provide
a simple FIFO policy in managing observable events collected
from the environment. Sensors are dynamically created as nor-
mal objects—specifying a logic name—and are then dynami-
cally linked to / unlinked from agents’ bodies. An agent can
link / unlink any number of sensors, possibly of different kind,
according to its own strategy for sensing and observing the
environment, by means of specific primitives (linkSensor,
unlinkSensor, and linkDefaultSensor).

The sense primitive makes it possible to retrieve the events
collected by a sensor: it waits until a matching event appears
— that is, until an event collected by a given sensor matches
an optional pattern (for data-driven sensing) — or until an
optional timeout is reached. Pattern matching is based on
regular-expression patterns, matched over the event type (a
string). In the case of a successful execution, the event is re-
moved from the sensor and a perception related to that event—
represented by an object instance of the class Perception—
is returned. If, instead, no perception is sensed for specified
time, a NoPerceptionAvailableException is raised.
The following code shows the CountUser agent creating
and using a Count artifact, then locating and using the
myArchive artifact (instantiation and discovery will be de-
scribed later).
public class CountUser extends Agent {

@ACTIVITY void main() {

SensorId sid = linkDefaultSensor();
ArtifactId countId = makeArtifact("myCount","Count");

use(countId,new Op("inc"));
use(countId,new Op("inc"),sid);

try {
Perception p = sense(sid,"count_value",1000);
long value = (Long) p.getContent();

ArtifactId dbaseId = lookupArtifact("myArchive");
use(dbaseId, new Op("write",new DBRecord(value));

} catch (NoPerceptionException ex){
log("No count_value perception from the count");

}
}

}

The agent activity accounts for: (i) creating a Count artifact
as described in previous section; (ii) using the artifact, ex-
ecuting twice the inc operation provided by Count usage
interface and observing the count event generated by the
artifact (carrying the count value) only the second time that

148

the operation is executed; (iii) locating and using a DBase
artifact called myArchive, performing the write operation
to record the value perceived by myCount.

The class ArtifactId is exploited to represent arti-
facts’ unique identifiers. The first time that an agent executes
inc, it is not interested in observing the events generated
by the operation execution, so no sensor is specified. The
sense primitive is used to perceive only the events matching
count value, and with a timeout of one second. The
Perception class provides a getContent method to get
the content of the perception (event).

It is worth remarking here the similarities but also the deep
differences between the notion of sensor, on the one side, and
the future construct / pattern used in concurrent programming
for handling asynchronous calls, on the other. In fact, a sensor
can be used to collect possibly-multiple observable events
generated as a consequence of possibly-multiple use actions,
on possibly-distinct artifacts. Futures, instead, are typically
used to get asynchronously the single result of the execution
of a single call.

Finally, a support for continuous observation is provided.
If an agent is interested in observing every event generated
by an artifacts—including those generated as a result of the
interaction with other agents—two primitives can be used:
focus and unfocus. The former starts observing the ar-
tifact, and therefore specifies the sensor to be used to collect
the events and optionally the reg-ex filter defining the events to
be observed; the latter obviously stops the observation process.

2) Artifact instantiation and discovery: In the above
example two further actions, makeArtifact and
lookupArtifact, are used to instantiate and lookup
artifacts. As briefly mentioned in the previous Subsection,
both these auxiliary actions are realised on top of a bunch
of use and sense actions executed on two pre-defined
artifacts available in each simpA application—the factory
and the registry artifacts, respectively.

In particular, instantiation is actually handled by the fac-
tory’s makeArtifact operation, which takes the logical
name of the new artifact, its template (full class name
or Class type) and possibly the parameters needed for
its creation (which coincide with the constructor parame-
ters of the artifact template class). In case of success, a
make succeeded event is generated, and the artifact identi-
fier is provided as the event content. The factory also provides
an analogous operation, makeAgent, to instantiate & spawn
agents.

In quite the same way, artifact discovery is handled by the
registry’s lookupArtifact operation, whose argument is
the name of the artifact to be located: upon success, the artifact
identifier is returned as the content of a lookup succeeded
event.

D. A simpA Application

The core of a simpA application is a simple main class
where a simpA working environment is created and an initial
sets of agents are booted, possibly with a starting set of
artifacts.

In the following example, the my-app workspace is cre-
ated, initially composed of an instance of the DBase artifact
(not reported) and a CountUser agent (which in turn will
create a Count artifact):
public class MyApp {
public static void main(String[] arg) throws Exception{

ISimpaWorkspace env = Simpa.createWorkspace("my-app");
env.createArtifact("myArchive","DBase");
env.spawnAgent("a-user","CountUser");

}
}

Any non-naı̈ve application, however, can be expected to de-
mand the creation of multiple agents working concurrently in
a workspace populated by multiple artifacts of different kinds.

V. PROGRAMMING SOA/WS APPLICATIONS ON TOP OF
simpA: THE simpA-WS FRAMEWORK

simpA-WS is a framework on top of simpA which makes
it possible to build Web Service applications as simpA
workspaces with agents and artifacts, following the model
described in Subsection III-C. Besides simpA, simpA-WS
exploits Apache AXIS2 open-source technology6 as an en-
abling low-level Java-based web service technology effective
for managing (SOAP) message exchange, for an effective
management of XML data, etc. simpA-WS is a fully Java-
based open-source technology, and can be downloaded at the
simpA-WS web site7.

A. simpA-WS Programming Interface

The simpA-WS framework provides a uniform model to
conceive both Web services and applications interacting with
Web Services as simpA workspaces with agents and artifacts
encapsulating the business logic: such pre-defined artifacts
can be exploited as part of the service-oriented infrastructure.
There are two basic kinds of artifacts:

• ServiceInterface—an implementation of the ws-
service-interface artifact, meant to be instantiated and
used by agents to interact with a specific Web Ser-
vice, to send messages for executing operations and
to get the replies sent back by the service. Multiple
ServiceInterface artifacts can be instantiated and
used in a given workspace to interact with multiple Web
services.

• ServicePanel—an implementation of the ws-
service-panel artifact, meant to be used by agents in a
service application to manage the incoming requests and
messages from the Web Service. One ServicePanel
must be created and used for each (web) service to
implement. Multiple ServicePanel artifacts can
be instantiated and used in the same workspace to
implement multiple services within the same simpA-WS
application.

So, in simpA-WS the interaction with and among Web service
applications is totally conceived in terms of message ex-
changes; operations represent, from this point of view, the con-
text in which message exchange protocols or MEPs take place,

6Apache AXIS2 web site is available at: http://ws.apache.org/axis2/
7http://www.alice.unibo.it/simpa-ws

149

as described in the service documents (WSDL, choreography,
etc.). Even if this is quite obvious by considering the reference
SOA/WS model, most of the existing platforms supporting
SOA/WS hides the message level to the programmer, provid-
ing API where the execution of an operation typically accounts
for invoking a method in stub objects or components providing
an interface that mirrors the service interface. Conversely,
in simpA-WS interacting with a service accounts (from an
agent viewpoint) for using a ServiceInterface artifact
to send messages to the service according to the protocol
characterising by the operation to be executed.

The message level is adopted here also at the service side,
while in non-agent oriented platforms the message processing
is typically not realised by the components that encapsulate
the service’s business logic. Conversely, in simpA-WS the
message level is brought to the business logic, so that one or
multiple agents—encapsulating the business logic activities—
exploit a ServicePanel artifact to retrieve and process
messages, possibly sending one or multiple replies during their
activities (which can be long-term).

Summing up, a Web service application in simpA-WS (both
on the service and on the user’s side) is programmed as a
workspace where one or multiple agents create and use one
or multiple ServiceInterface artifacts to interact, even
concurrently, with services; at the same time, they share and
use other kinds of artifacts that represent useful resources and
tools needed to support their (cooperative) activities. On the
service side, one or multiple ServicePanel artifacts—the
latter case concerns multiple services implemented in the same
Web service application—are created and used by agents to
process the requests, possibly in parallel.

In the following we describe the ServiceInterface
and ServicePanel artifacts more in detail, and provide a
simple running example.

B. Interacting with existing Web Services

ServiceInterface defines a simple usage interface
for executing operations on a Web Service, providing a di-
rect support for exchanging messages realising any possible
MEP, from simple ones with at-most one message input and
one message output to more articulated ones—as defined
by WSDL 2.0—possibly including multiple input and output
messages in the context of the same operation.

A ServiceInterface artifact must be instantiated by
specifying—as artifact configuration parameters—the URI of
the WSDL containing the service description, the name of
the specific service and port type (interface) “pointed” by
the artifact, and a local endpoint name, which represents the
endpoint to which the artifact is bound to receive messages
(such as replies). Thus, the artifact usage interface provides
two basic operations:

• sendMsg, to send a message to the service, in the
context of an operation. Abstract description:
sendMsg(opName:String, {,msgName:String,}

msgContent:OMElement {,relatedToMsgID:String})

where msgName identifies the message to be sent (ac-
cording to the WSDL), opName is the name of the opera-
tion, msgContent is the content of the message (a XML

piece of data, according to the XML schema described
in the WSDL), and optionally relatedToMsgID is
the identifier of the message to which this message is
related to. msgName is optional: if it is not specified,
its value is determined by accessing the WSDL. The
execution of the message generates an observable event
msg sent(msgID:String) if it succeeded, contain-
ing the identifier of the message sent, or an event
msg send failed if it fails.

• getReply, to get the reply to a message previously sent
during an operation. Abstract description:
getReply(msgID:String})

where msgID is the identifier of the message to
which the reply message must be related. When an
output message related to msgID is received by the
artifact, the operation generates an observable event
msg reply(msg:MsgInfo).

Besides these two basic operations, other auxiliary operations
are provided to directly support basic MEPs; for instance:

• requestOp, which implements the basic request-
response (in-out) MEP by sending a request message and
generating an event with the response message as soon
as it arrives. Abstract signature:
requestOp(opName:String, msgContent:OMElement)

where opName is the name of the operation and
msgContent is the content of the message (a XML
piece of data, according to the XML schema described in
the WSDL). It’s worth noting that in this case the message
name is automatically retrieved from the description
of the operation in the WSDL. The main observable
events generated by the operation are the following:
request sent(msgID:String) if the request mes-
sage is sent successfully (request failed otherwise),
and msg reply(msg:MsgInfo) as soon as the reply
is received.

C. Processing requests and messages for a Web Service

A ServicePanel artifact is used to manage and con-
trol the messages which arrive to a service, providing basic
functionalities to retrieve them and to send the related replies.
A ServicePanel artifact is instantiated by specifying—
as artifact configuration parameter—the URI of the WSDL
containing the description of the service. The artifact usage
interface provides two basic operations:

• getNextRequestMsg, used to retrieve incoming mes-
sages representing new operation requests to be served.
Abstract signature:
getNextRequestMsg(filter:MsgFilter)

where filter can be specified to select the request mes-
sages to which the agent is interested to (for instance, re-
lated to a specific operation). The operation generates an
observable event new op request(msg:MsgInfo)
as soon as an message matching the filter is received
by the artifact, containing information about the message
arrived.

150

Fig. 6. An abstract representation of the stock quote user and service applications, with in evidence the agents and artifacts involved.

• getMsgRelatedTo, used to retrieve incoming mes-
sages related to previously sent messages. Abstract sig-
nature:
getMsgRelatedTo(msgID:String)

where msgID is the identifier of the message to which
the reply is related. The operation generates an observable
event new msg(msg:MsgInfo) as soon as an message
matching the filter is received by the artifact, containing
information about the message arrived.

• sendReply, used to send message replies. Abstract
signature:
sendReply(toMsg:MsgInfo,

msgContent:OMElement)

where toMsg contains the information about the message
to which the reply is related and msgContent is the
content of the reply message (a XML piece of data,
according to the XML schema described in the WSDL).

D. A simple example: Stock Quote with Agents and Artifacts

To give a concrete taste of simpA-WS, in the following
we report the sketch of the implementation of a stock quote
service, which is typically found among the basic examples of
Web Service technologies: here we consider a slightly more
articulated version, with a support not only for in-only and
in-out (request-response) MEPs, but also out-only.

1) Stock Quote Service: The stock quote service is char-
acterised by three basic operations (a sketch of the WSDL
is reported in the appendix): GetLastTradePrice, an
in-out (request-response) operation useful to get the current
value of a stock given its name, Subscribe, an in-only
(fire-and-forget) operation to subscribe the service in order
to receive periodically the quote of a specified stock, and
NotifyTradePrice, an out-only operation executed by
the service to notify the value of a stock to a previously
subscribed user. Figure 6 shows the architecture of a possible
implementation of the service using simpA-WS: Table I,
Table II, Table III and Table IV show the implementation of
the service side, while Table V, Table VI and Table VII show
the implementation of a simple application interacting with
the service.

The service is composed by two types of agents: (i)
StockQuoteServiceAgent, responsible for creating the
service panel artifact and using it to process the incom-
ing GetLastTradePrice and Subscribe requests; (ii)
a StockQuoteNotifierAgent, responsible for periodi-
cally notifying its subscribers of the stock quotes. Besides
these agents, two kinds of artifacts are exploited (other than
ServicePanel): a StockQuoteDBase artifact, which
functions as a store containing the stock quote values, and
a SubscribersRegistry, which is used to keep track of
the list of the service subscribers.
StockQuoteServiceAgent uses ServicePanel

to process the requests as soon as they are collected: then,
in the case of GetLastTradePrice requests, the agent
accesses the database artifact to get the current value of the
stock quote, and sends a reply with such information; instead,
in the case of Subscribe requests, the agent registers
the new subscribers by executing the addSuscriber
operation on the SubscribersRegistry artifact.
StockQuoteNotifierAgent periodically retrieves
the subscribers’ list by executing a getSubscribers
operation on the SubscribersRegistry artifact: for
each subscriber it then sends a NotifyTradePrice
message with the updated value of the stock quote, retrieved
from the database artifact. Table I and Table II report a sketch
of the source code of the agents, Table III the skeleton of the
artifacts, and Table IV the main of the service application
(called StockQuoteService), which actually creates the
initial set of agents and artifacts composing the application
(apart the ServicePanel artifact, which is created by the
StockQuoteServiceAgent agent).

Despite its simplicity, this example should give a quite
concrete idea about how complex services—characterised, for
instance, by complex message-exchange protocols, possibly
including both pro-active and reactive parts, short and long-
running activities, etc.—can be structured in terms of agents
and artifacts.

2) Stock Quote User Application: Table V, Table VI
and Table VII show an example of a simpA-WS
user application exploiting Web services, in particu-
lar the stock quote service described by the WSDL
reported in the Appendix. The application is com-

151

public class StockQuoteServiceAgent
extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity="preparing"),
@TODO(activity = "processingMsg",

pre="completed(preparing)", persistent = true),
}) void main() {}

@ACTIVITY void preparing() throws ActivityFailure {
makeArtifact("StockQuoteService","alice.simpaws.ServiceInterface",

new ArtifactConfig("http://localhost:8080/axis2/wsdl/StockQuoteService.wsdl"));
}

@ACTIVITY void processingMsg() throws ActivityFailure {
ArtifactId panel = lookupArtifact("StockQuoteService");
SensorId sid = linkDefaultSensor();

use(panel, new Op("getNextOpRequest"), sid);
Perception p = sense(sid, "new_op_request", 300000);
MsgInfo msg = (MsgInfo) p.getContent(0);
String name = msg.getOperationName();

if (name.equals("GetLastTradePrice")) {
OMElement replyMsg = getStockValue(msg.getMsgContent());
use(panel, new Op("sendReply", msg, replyMsg));

} else if (name.equals("Subscribe")) {
String stockName = getStockName(msg.getMsgContent());
ArtifactId reg = lookupArtifact("subscribers-registry");
use(reg,new Op("addSubscriber",msg,stockName));

}
unlinkSensor(sid);

}

private OMElement getStockValue(OMElement msg) {...}
private String getStockName(OMElement elem){...}

}

TABLE I
STOCK QUOTE AGENT ON THE SERVICE SIDE

public class StockQuoteNotifier
extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity = "notifyingStockQuotes", persistent = true),

}) void main() {}

@ACTIVITY void notifyingStockQuotes() throws ActivityFailure {
ArtifactId reg = lookupArtifact("subscribers-registry");
SensorId sid = linkDefaultSensor();

use(reg, new Op("getSubscribersList"), sid);
Perception p = sense(sid, "subcribers_list");

List<SubscriberInfo> list = (List<SubscriberInfo>) p.getContent();
if (list.size()>0){

ArtifactId panel = lookupArtifact("StockQuoteService");
for (SubscriberInfo sinfo: list){

OMElement replyMsg = getStockValue(sinfo.getStock());
use(panel, new Op("sendReply", sinfo.getMsgSource(), replyMsg));

}
}
unlinkSensor(sid);
suspendActivityFor(2000);
}

private OMElement getStockValue(String stock) {...}
}

TABLE II
NOTIFIER AGENT ON THE SERVICE-SIDE

152

public class SubscriberInfo {
MsgContext msg;
String quote;

public SubscriberInfo(MsgContext msg, String quote){
this.msg = msg;
this.quote = quote;

}
public MsgContext getMsgSource(){ return msg; }
public String getStock(){ return quote; }

}

public class SubscriberRegistry extends Artifact {
private ArrayList<SubscriberInfo> list;

public SubscriberRegistry(){
list = new ArrayList<SubscriberInfo>();

}

@OPERATION void addSubscriber(MsgContext ctx, String quote){
list.add(new SubscriberInfo(ctx,quote));

}

@OPERATION void getSubscribersList(){
signal("subcribers_list", list.clone());

}
}

public class StockQuoteDBase extends Artifact { ... }

TABLE III
ARTIFACTS USED ON THE SERVICE SIDE

public class StockQuoteService extends
WSApplication {

public void setup(){
try {

createArtifact("stock-quote-dbase",StockQuoteDBase.class);
createArtifact("subscribers-registry",SubscriberRegistry.class);
spawnAgent("stock-notifier-agent",StockQuoteNotifier.class);
spawnAgent("stock-quote-agent",StockQuoteServiceAgent.class);

} catch (Exception ex){
ex.printStackTrace();

}
}

}

TABLE IV
ENTRY POINT (MAIN) OF THE WEB SERVICE APPLICATION (SERVICE-SIDE)

public class StockQuoteUserAgent
extends WSAgent {

@ACTIVITY void main() throws ActivityFailure {
SensorId sid = linkDefaultSensor();
ArtifactId ServiceInterface =

makeServiceInterface("interface-1",
"http://localhost:8080/axis2/wsdl/StockQuoteService.wsdl",
"StockQuoteUserApplication");

use(ServiceInterface,new Op("requestOp", "getStockQuote", makeGetStockQuoteMsg("ACME")),sid);
Perception res = sense(sid, "msg_reply", 300000);
OMElement replyMsg = (OMElement) res.getContent();

log("Result: " + replyMsg.toString());
}

private OMElement makeGetStockQuoteMsg(String stockName) {...}
private void log(String st){...}

}

TABLE V
STOCK QUOTE USER AGENT ON THE CLIENT SIDE

153

public class StockQuoteMonitorAgent
extends WSAgent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity="subscribing"),
@TODO(activity="collectingQuotes",

pre="completed(subscribing)", persistent=true)
}) void main(){}

@ACTIVITY void subscribing() throws ActivityFailure {
SensorId sid = linkDefaultSensor();
ArtifactId ServiceInterface =

makeServiceInterface("interface-2",
"http://localhost:8080/axis2/wsdl/StockQuoteService.wsdll",
"StockQuoteUserApplication");

OMElement subscribeMsg = makeRegisterMsg("ACME"));
use(ServiceInterface,new Op("sendMsg","Subscribe",subscribeMsg),sid);
Perception p = sense(sid, "msg_sent|msg_send_failed", 5000);
if (p.getLabel().equals("msg_sent")){

memo("subscribe_message_id",(String)p.getContent());
unlinkSensor(sid);

} else {
throw new ActivityFailure();

}
}

@ACTIVITY void collectingQuotes() throws ActivityFailure {
SensorId sid = linkDefaultSensor();
ArtifactId ServiceInterface = lookupArtifact("interface-2");
String msgId = (String)getMemo("subscribe_message_id").getArg(0);

use(ServiceInterface, new Op("getReply", msgId), sid);
Perception res = sense(sid, "msg_reply", 300000);
OMElement replyMsg = (OMElement) res.getContent();

log("New quote value: "+replyMsg.toString());
unlinkSensor(sid);

}

private OMElement makeRegisterMsg(String stockName) {...}
protected void log(String st){...}

}

TABLE VI
STOCK QUOTE MONITOR AGENT ON THE CLIENT-SIDE

public class StockQuoteUserApplication
extends WSApplication {

public void setup(){
try {

spawnAgent("stock-quote-user-agent",StockQuoteUserAgent.class);
spawnAgent("stock-quote-monitor-agent",StockQuoteMonitorAgent.class);

} catch (Exception ex){
ex.printStackTrace();

}
}

}

TABLE VII
ENTRY POINT (MAIN) OF THE WEB SERVICE APPLICATION (CLIENT-SIDE)

posed by two agents, StockQuoteUserAgent and
StockQuoteMonitorAgent. The former is characterised
by a simple main activity, which creates a proxy artifact
for interacting with the stock quote service—in particular,
to request the GetLastTradePrice operation (specifying
ACME as stock quote name), and get the reply, which is then
logged to the standard output. The latter has a slightly more
complex behaviour: first, it creates a service interface artifact
to interact with the stock quote service (alternatively, a single
service interface artifact could be shared and used by the two
agents), and subscribes (via the Subscribe operation) to
receive a periodic notification. The agent then starts its cyclic
collectingQuotes activity, receiving and logging all the

notifications sent back by the service. A sketch of the source
code of the agents is reported in Table V and Table VI,
while Table VII shows the main of the application (called
StockQuoteUserApplication), which simply spawns
an instance of both agents.

VI. CONCLUSIONS

In this paper we introduced an agent-oriented programming
model for developing SOA/WS applications, based on the
A&A meta-model, and simpA-WS, a framework built on top
of the Java platform for concretely programming service and
user applications in terms of agents and artifacts. This ap-
proach contrasts with the choices adopted by leading software

154

vendors in the state-of-the-art, which is typically based on a
component-oriented programming model. This paper extends
a previous work [14], with the description of the simpA-WS
framework.

Actually, as widely reported in literature [10], Service-
Oriented Computing and Web Services are considered among
the most promising and important application contexts for
agents and MAS. However, the focus of existing agent and
MAS research approaches is typically on exploiting AI-related
features and techniques for supporting the dynamic discovery
and flexible composition and orchestration of services. In this
paper, instead, we focussed on programming and software
engineering issues, highlighting the value of agent-oriented
abstractions as basic building blocks for designing and pro-
gramming services and applications using services.

Indeed the programming model introduced and the related
technologies—such as simpA-WS—are still in their infancy
and further work is needed along several directions. In the
paper we have just considered the very basic issues concerning
SOA and Web Services, without dealing with other important
advanced topics such as quality of service (security, reliabil-
ity, trust,...), service composition and coordination (orchestra-
tion, choreography, transactions), along with the related WS-
* specifications (WS-Security, WS-Trust, WS-Coordination,
etc). Future work will then be devoted to frame such issues in
the SA&A programming model, and to stress the approach
with real-world case studies and applications, besides the
simple toy examples included in the current distribution. In
particular, as a concrete case-study we will consider the sample
application provided in the WS-I web site8, trying to compare
our approach with those of the leading software vendors (IBM,
Microsoft, Sun, SAP—to mention some) available on such
site.

REFERENCES

[1] The aliCE Research Group. simpA official web site.
http://www.alice.unibo.it/projects/simpa.

[2] Sriram Anand, Srinivas Padmanabhuni, and Jai Ganesh. Perspectives
on service oriented architectures. In Proceedings of the 2005 IEEE
International Conference on Service Computing, volume 2. IEEE, 2005.

[3] Nick Benton, Luca Cardelli, and Cedric Fournet. Modern concurrency
abstractions for C#. ACM Trans. Program. Lang. Syst., 26(5):769–804,
2004.

[4] Thomas Erl. Service-Oriented Architecture: A Field Guide to Integrating
XML and Web Services. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2004.

[5] IBM et al. Service component architecture. http://www-
128.ibm.com/developerworks/library/specification/ws-sca/, 2006.

[6] Rafael Bordini et. al. A survey of programming languages and platforms
for multi-agent systems. In Informatica 30, pages 33–44, 2006.

[7] Donald F. Ferguson and Marcia L. Stockon. Service-oriented archi-
tecture: Programming model and product architecture. IBM Systems
Journal, 44(4):753–780, 2005.

[8] Sun Microsystems. The java API for XML web services (JAX-WS 2.0).
http://java.sun.com/webservices/jaxws/.

[9] Sun Microsystems. Service oriented business integration.
http://java.sun.com/integration/.

[10] Michael N. Huhns, Munindar P. Singh, Mark Burstein, Keith Decker,
Edmund Durfee, Tim Finin, Les Gasser, Hrishikesh Goradia, Nick
Jennings, Kiran Lakkaraju, Hideyuki Nakashima, H.Van Dyke Parunak,
Jeffrey S. Rosenschein, Alicia Ruvinsky, Gita Sukthankar, Samarth
Swarup, Katia Sycara, Milind Tambe, Tom Wagner, and Laura Zavala.

8http://www.ws-i.org/

Research directions for service-oriented multiagent systems. IEEE
Internet Computing, 9(6):69–70, November 2005.

[11] Bonnie A. Nardi, editor. Context and Consciousness: Activity Theory
and Human-Computer Interaction. MIT Press, 1996.

[12] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Agens Faber:
Toward a theory of artefacts for MAS. Electronic Notes in Theoretical
Computer Sciences, 150(3):21–36, 29 May 2006.

[13] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castel-
franchi, and Luca Tummolini. Coordination artifacts: Environment-
based coordination for intelligent agents. In Nicholas R. Jennings, Carles
Sierra, Liz Sonenberg, and Milind Tambe, editors, 3rd international Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2004), volume 1, pages 286–293, New York, USA, 19–23 July 2004.
ACM.

[14] Alessandro Ricci, Claudio Buda, and Nicola Zaghini. An agent-oriented
programming model for soa & web services. In 5th IEEE International
Conference on Industrial Informatics (INDIN’07). Special Session on
Agents Theory and Practice for Industry (ATPI), Vienna, Austria, July
2007.

[15] Alessandro Ricci and Mirko Viroli. simpA: An agent-oriented approach
for prototyping concurrent applications on top of java. In Proceedings
of the ACM International Conference on Principle and Practice of
Programming in Java (PPPJ’07), Lisboa, Portugal, September 2007.
ACM.

[16] Clemens Szyperski. Component Software. Addison-Wesley Professional,
November 2002.

[17] W3C WS Working Group. Web Services Architecture.
http://www.w3.org/TR/ws-arch/.

155

APPENDIX

This appendix reports a sketch of the WSDL code of the stock
quote service discussed in the text.
<?xml version="1.0"?>
<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsd1="http://example.com/stockquote.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://example.com/stockquote.xsd"

xmlns="http://www.w3.org/2000/10/XMLSchema">
<element name="TradePriceRequest">

<complexType>
<all>

<element name="tickerSymbol" type="string"/>
</all>

</complexType>
</element>
<element name="TradePrice">

<complexType>
<all>
<element name="price" type="float"/>

</all>
</complexType>

</element>
...

</schema>
</types>

<message name="GetLastTradePriceInput">
<part name="body" element="xsd1:TradePriceRequest"/>

</message>
<message name="GetLastTradePriceOutput">
<part name="body" element="xsd1:TradePrice"/>

</message>
<message name="GetLastTradePriceOutput">
<part name="body" element="xsd1:TradePrice"/>

</message>
<message name="SubscribeMsg"> ... </message>
<message name="NotifyTradePriceMsg"> ... </message>

<portType name="StockQuotePortType">

<operation name="GetLastTradePrice">
<input message="tns:GetLastTradePriceInput"/>
<output message="tns:GetLastTradePriceOutput"/>

</operation>

<operation name="Subscribe">
<input name="Subscribe" message="tns:SubscribeMsg"/>

</operation>

<operation name="NotifyTradePrice">
<output name="NotifyTradePrice" message="tns:NotifyTradePriceMsg"/>

</operation>

</portType>

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetLastTradePrice">

<soap:operation soapAction="http://example.com/GetLastTradePrice"/>
<input>

<soap:body use="literal"/>
</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
...

</binding>

<service name="StockQuoteService">
<documentation>Stock quote service example </documentation>
<port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">

<soap:address location="http://example.com/stockquote"/>
</port>

</service>

</definitions>

156


Abstract — Industry is more and more interested in executing

business functions that span multiple applications. This demands
high-levels of interoperability and a more flexible and adaptive
business process management. The trend is to have systems
assembled from a loosely coupled collection of Web services,
which are ubiquitous and organically integrated. This technical
area appears to be a natural environment in which the agent
technology can be exploited with significant advantages.

In the present paper, we propose a framework with the aim of
supporting an agent-based SOA. The peculiar characteristic and
strength of our research work is the integration of the agent
technology with other strategic technologies, that is Web services,
workflow, rule engine and semantic Web.

Index Terms — Multi -agent systems, service oriented
architecture, workflow, ontology, rule engine, trust management.

I. INTRODUCTION

ost of the technology and market research companies,
which provides their clients with advice about

technology's impact on business and consumers, agree on the
fact that the adoption of a SOA paradigm is strategic and
should be part of the most forward-looking software projects.
Nevertheless the paradigm shift is still quite challenging.

Agent technology is more and more considered one of the
most interesting technologies to successfully support SOA. In
fact, besides being an ideal mechanism for implementing
complex systems, agent technology is well-suited to
applications that are communication-centric, based on
distributed computational and information systems, and
requiring autonomous components readily adaptable to
changes.

Considering their peculiar features, the central role that
agents should play in a SOA scenario is to efficiently support
distributed computing and to allow the dynamically
composition of Web services. To be successful, it is crucial to
appropriately engineer and integrate agent technology with
other technologies that have found and will find a purpose
within enterprise computing: workflows, rule engines, the
semantic Web and Web services.

The vision which is making its way into the research

A. Poggi is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905728 ; e-mail: poggi@ce.unipr.it).

M. Tomaiuolo is with DII, University of Parma, Parco Area delle Scienze
181A, 43100, Parma, Italy (phone: +39 0521 905712; e-mail:
tomamic@ce.unipr.it)

P. Turci is with DII, University of Parma, Parco Area delle Scienze 181A,
43100, Parma, Italy (phone: +39 0521 905708; e-mail: turci@ce.unipr.it).

community is to encapsulate the organization’s functionalities
within appropriate interfaces and advertise them as one or
more Web services, which could be integrated, when brought
into play, in workflows. This innovative idea brings with it
new outstanding opportunities but also new great issues,
related mainly to the ability of automatically discovering and
composing Web services. An answer to these problems could
come from the semantic Web technology.

Recently, we have seen an explosion of interest in
ontologies as artefacts to represent human knowledge and as a
critical component in several applications; among these the e-
business applications. Moreover the “marriage” between
agents and ontologies seems to be the kind of technology that
can significantly change the face of enterprise software.

On the one hand, ontologies should accomplish the task of
giving a precious support to solve two tricky problems: how to
efficiently discover Web services and how to make possible
the interoperability of heterogeneous Web services. In order to
facilitate the resolution of such a structural and semantic
heterogeneity, Web services, which play the role of workflow
components, will have their interfaces semantically described
by ontological concepts.

On the other hand, ontologies enable agents to communicate
in a semantic way, exchanging messages which convey
information according to explicit domain ontologies.

In this scenario agents represent the backbone of the system
and the “glue” that could hold these pieces together and make
them perform properly.

Assuming to adopt an agent-based approach, a typical
agent-based SOA scenario would be characterized mainly by
three actors: service providers, business process manager and
users, playing roles which would be allocated to different
concrete agents. The system architecture would likely be
organized in communities constituted by different kinds of
agents: service providers, personal assistants and middle
agents (e.g. service brokers, user profile managers, workflow
managers, etc). In order to achieve their goals (semantic
matching, service contracting and so on) these autonomous
agents should be able to perform their tasks in cooperation or
competition with other agents and to interoperate with external
entities (e.g., legacy software systems). Moreover they should
show reasoning capabilities and should have a support for
dynamic behaviour modification based on business rules.
Finally they should be able to build workflows, compose the
external Web services and monitor their execution. The entire
process should be supported by a distributed trust
management.

An Agent-Based Service Oriented Architecture

Agostino Poggi, Michele Tomaiuolo, Paola Turci

M

157

Clearly the researchers are well aware that such a scenario is
quite ambitious and the outlined objectives difficult to achieve
in a short period. Indeed there are several overlooked technical
issues and the existing technology presents significant
limitations. Nevertheless the realizations of prototype systems
centred on the underlying infrastructure can be of great help in
order to raise awareness of these issues and to delineate
possible solutions.

Bearing in mind what said above, the aim of the present
paper, which is an evolution of our previous paper [23], is to
introduce a framework, under development at the University of
Parma, for the realization of an agent-based SOA.

In the next section we discuss the related work in the fields
of the emergent and more established technologies which we
aim at integrating with agent technology. Section 3 describes
the framework aiming at being the basis for the realization of
successful and innovative agent-based SOA. In this section we
focus mainly on its architecture, the BPEL engine, the
ontological support, the integration with a rule engine and our
proposal for a distributed trust management. The paper ends
by drawing some conclusions around the results of the work
done, and by outlining some considerations regarding our
future research directions.

II. RELATED WORK

There is evidence from several research studies [1],[24] that
agents represent one of the most suitable technologies which
can be used to meet the performance needs for innovative
business applications. In particular the current interest in using
agents for developing e-business applications, business process
management and enterprise integration is rising mostly
because different works have shown how agent technology can
be leveraged if used together with technologies exploited in
the Internet, that is, semantic Web, Web services and
workflows [5],[7],[12],[19],[22].

Semantic Web technologies appear to be the right means to
provide the semantic integration between data and processes
across systems that can be owned by different enterprises [6].
This technology is not completely mature yet; some major
activities related to the definition of languages for expressing
the semantics of the Web are still in progress [16],[8].
Nevertheless different works have shown how the powerful
synergism between agents and semantic Web could be very
promising [19],[29] and some efforts have been made in order
to define ontology models and develop tools suitable for
agents aiming at being truly semantic aware agents. The
research community contributions have been mainly devoted
to cope with three different issues:
- The formal definition of a standard language for

expressing semantics on the web which has led to the Web
Ontology Language,

- The development of integral software infrastructures, for
writing semantic web applications, offering a variety of
tools to engineer ontologies.

- The development of ontological supports specifically

thought for multiagent systems.
The second and third points are strictly connected to the

first one since OWL is considered the reference language;
therefore the work carried out, starting from OWL, has
developed tools more suitable for different contexts.

As far as the second point is concerned, an interesting
approach is characterized by the definition of a meta-model
that closely reflects the OWL syntax and semantics. This is the
case of the modelling APIs of Jena, which is the most famous
and widely used tool in the sphere of the semantic web (and
recently also in the context of multiagent systems).

Considering the third point, the focus is on the specific
needs of multiagent systems, and the objective is to provide a
communication support enabling agent to perform the proper
semantic checks on a given content expression. A significant
example of the efforts made in this direction is represented by
the ontological support of JADE, designed to represent, using
Java objects, a taxonomy of concepts. Such semantically aware
agents should then be able to discover, invoke, compose and
monitor those Web resources that provide services. In order to
make agents able to use a service, they need a computer
interpretable description of the service itself and furthermore
to know the means by which it is accessible. To that purpose, a
community of researchers is developing an ontology of
services, called OWL-S, with the aim of providing a semantic
orientation to the description of Web services.

To enable software systems for innovative business
applications, security issues have to be carefully analysed and
sound solutions have to be deployed. A number of different
solutions for the problems of authentication and authorization
in open systems have been proposed in the scientific literature,
and some standards have emerged through the years. Most of
them are based on some kind of PKI and signed certificates
issued by a Certification Authority. In particular, this is the
case of X.509, which is the best known and adopted standard
for authentication and authorization. However, its weaknesses
have been clearly demonstrated in a number of works [15],
above all related to its effort to create a global directory of
unique names. Relying on an external entity as root of all
certifications represents an additional, not directly
controllable, point of failure for the whole system.

In contrast, different approaches have been proposed, based
on local names. Both SDSI and PetName Markup Language
allow local names to be used in a global scale by prefixing
them with the public key of the principal defining them, in the
form of (key, name) couples. This way, name conflicts are
solved thanks to the uniqueness of the public keys. In [32],
authors show that local names and YURLs are more robust
than global names to phishing attacks, arguing the root for
these attacks lie in the global namespace itself. Moreover, in
[21], authors shows that local names and a subset of the
SDSI/SPKI standard [9] can be used to implement a
distributed RBAC infrastructure, in which local names are
interpreted as distributed roles, whose name is localized to
their defining principal (key).

158

Local names and delegation certificates are the key to build
systems adhering trust management principles [18]. These
systems are completely distributed as they avoid any
centralized authority. This way they can easily scale to large
peer-to-peer networks, where each node is in charge of
protecting its own resources and to show proper credentials
when accessing resources of other nodes.

In recent years a lot of research work has been undertaken
ranging from the use of workflows in distributed systems to the
use of agent technology for the management of workflows
[7][24][19]. The most important contribution of our work is
firstly the use of agents as a support of all the activities
involved in the development and execution of a business
process, i.e. the workflow generation, the distribution of
workflow tasks, the control of their execution and finally the
re-allocation of tasks in case of failure of some service
components. Secondly, the integration of the agent technology
with those technologies we consider crucial for accomplishing
strategic business objectives.

To conclude just a few remarks on JADE since it is
considered the reference implementation of the FIPA
specifications and one of the most used and promising agent
development framework. The present release of JADE tries to
provide agent developers with a support integrating almost all
these technologies, even if in our opinion only partially. As a
matter of fact, JADE agents can exploit an ontological model
of the application domain to improve their interactions, are
able to interact with external Web services [12] and finally
different works have shown how the integration of a JADE
agent with the Jess rule engine is feasible. But this simply
represents a first step towards an effective support of the SOA
paradigm.

III. TOWARDS A SERVICE ORIENTED ARCHITECTURE

To overcome the limits of the present release of JADE, we
have realized an agent based framework called MASE (Multi-
Agent Service Environment), which is the evolution of our
previous framework GAIN [22], that allows dynamically
composing Web services. Its architecture is based on a society
of agents, mostly composed of two kinds of agents: component
managers and workflow managers.

Each component manager is associated to one or more Web
services and is responsible for the interaction with them.
Through the use of the WSIG JADE add-on [12], the
component managers are able to invoke a Web service,
converting ACL messages into WSDL descriptions and vice
versa. Moreover, a component manager allows a flexible
provision of services defining “on the fly” the features of the
services (price, timing, etc.) through a set of business rules
managed by a rule engine and modifiable by the operators of
the service provider through a Web interface.

Workflow managers have the goal of supporting users in the
process of building the workflows, composing external Web
services and monitoring their execution. To accomplish this
complex activity the workflow managers provide the users

with two alternative automatic procedures:
Predefined workflow; the workflow is extracted from a

repository of standard and common templates, e.g. templates
used in previous computations. In this case the duty of the
workflow manager is to support the user in the selection of the
most appropriate Web services for the execution of the
different workflow tasks. The workflow manager is able to
select a matching service thanks to the exploitation of a shared
ontology that gives a common knowledge background to all
the agents in the system.

Dynamic workflow; the workflow manager, according to the
user’s requirements, creates a new workflow, composing the
atomic services available in the system. This is done by
applying a planner (we have realized it by extending the SGP
planner [28]) that works on the operators extracted from the
OWL-S descriptions of the Web services, provided by
component managers. After the composition of the final
workflow, the workflow manager is able to update it and
possibly replace those Web services that are failed or no more
available or cannot satisfy the execution time constraints.

Moreover, MASE offers to the users the possibility of
manually building workflows. In this case, a personal assistant
(i.e. an agent, associated with each user active in the system,
responsible for the interaction between the user and the other
parts of the system) helps its user presenting her/him the tasks
(Web services) that can be composed and possibly informing
her/him when the realized workflow does not satisfy the
composition rules, coming from the related OWL-S
descriptions. When a complete workflow is realized, the user
can ask its personal assistant to delegate the workflow
execution to a workflow manager. The enactment is clearly a
problematic phase. When a workflow is going to be executed,
a Web service could be no more available due to the
expiration of a timeout, a failure of a resource or other
unpredictable problems. In this case the workflow manager
helps the user finding a new solution, creating a new contract
phase with all the component managers that are able to satisfy
the task and suggesting to the user the replacement of the
failed service with the new one.

So far we have given a concise description of the system
architecture and the responsibilities of the major system
components, intentionally leaving out the treatment of the
issues connected to the tools needed by the agents, in order to
carry out their activities. In the following subsections, we will
go into details, illustrating our proposals and the implemented
tools.

A. The BPEL Engine
The WS-BPEL specification defines an XML-based

language for the formal description of a business process
based on Web services orchestration. It is an open standard
recently approved as an OASIS standard.

159

Figure 1 - Excerpt of the internal model representing the BpelDocumentImpl class and its relationship with the correlated classes

Figure 2 - Excerpt of the internal model representing the ControlFlowActivity class and its relationship with the correlated classes

160

flow

sequence while

main engine

ExecutionContext

remote engine

while

ExecutionContext

remote engine

ExecutionContext

sequence

WorkflowManagerAgent

ComponentManagerAgent ComponentManagerAgent

flow

sequence while

main engine

ExecutionContext

flowflow

sequencesequence whilewhile

main enginemain engine

ExecutionContext

remote engineremote engine

whilewhile

ExecutionContext

remote engineremote engine

ExecutionContext

sequencesequence

WorkflowManagerAgent

ComponentManagerAgent ComponentManagerAgent

Figure 3 - The major classes of the BPEL engine

Figure 4 - An example of distributed execution

161

A WS-BPEL workflow is a structured XML document
composed of three main parts: (i) the definition of the process’
attributes, (ii) the definition of the execution context and (iii)
the activities to be executed. Due to industry’s increased
interest on business process management and the wide
acceptance of WS-BPEL as the language to use in the
workflow definition, several vendors are producing software
tools for workflow design, specification and enactment. The
main drawbacks of these tools are that they enact the workflow
in a centralized manner and furthermore they are not able to
dynamically exploit new Web services in case of unpredictable
event.

In the attempt to give an answer to such problems, we have
realized a framework for the distributed execution of a BPEL
process and the dynamically composition of Web services. The
BPEL process execution is constituted of three phases: (i)
interpretation of the BPEL document, (ii) creation of an
internal process model, aiming at describing in a consistent
way the business process characteristics and at the same time
to make easy and efficient the execution of the business
process itself, (iii) preparation of the execution context and
distributed execution, possibly providing for the exploitation
of new Web services.

In the first phase of the execution process we have utilized
XMLBeans (a framework, part of the Apache XML project.),
which has the advantage of fully supporting XML Schema and
XML Infoset. As far as a BPEL process is concerned there are
two schemas that have to be provided to XMLBeans in order
to parser the BPEL document: WS-BPEL schema and WSDL
schema (we have referred to WS-BPEL 2.0 and WSDL 1.1).

Regarding the second phase, in order to give an idea of how
the internal model is structured, in Figure 1 and Figure 2 two
excerpts of the model are shown. In particular, they represent
respectively the model core class, i.e. the BPELDocumentImpl
class, and a representative BPEL structured activity, i.e. the
AbstractControlFlowActivity class, together with their major
correlated classes.

The engine is responsible for efficiently executing a BPEL
process, instance of the model. The classes, playing a key role
in its implementation, are shown in Figure 3.

The main engine, part of the workflow manager agent, is
responsible for initiating and coordinating the entire execution
process. It creates the execution context, an instance of the
ExecutionContextImpl class, which will represent the
reference context during the execution process. Next, it will
identify those parts of the workflow (e.g. scope activities, sub-
activities of the flow activities, and so on), that if executed
remotely will positively affect the performance of the system,
and will delegate their execution to specific component
manager agents. Figure 4 shows an example of distributed
execution.

From what said above, it emerges clearly that we have
chosen to have stateless engines and thus to share the
execution context. As a consequence the remote engines have
to send messages to the main engine in order to update

consistently the reference execution context. We have found
out that this choice has several advantages, primarily it makes
easier to handle the possibly dependency between activities.

B. Ontology Support

The idea which mostly inspired the design of the JADE
content language and ontological support was to define an
ontology independent abstract model of the content language
that could be subsequently bound to any domain ontology
representation expressed using an object-oriented data model.
This ontological support has been conceived when the
Semantic Web was on its very early stage of research and
development and OWL was not already established as a
standard. Consequently its expressive power is clearly limited
with respect to OWL and basically allows expressing
taxonomy of concepts, predicate and actions and therefore it is
not able to represent completely the different application
domains where JADE agent may be used.

In order to provide a JADE agent with an adequate
expressive power (i.e., equivalent to the one offered by OWL
DL), it is necessary either to replace or to integrate the JADE
ontological support. In the attempt to find a suitable solution to
this problem one has to choose among the proposals described
above and others, each characterized by different domain
knowledge modelling techniques and answering different
needs. The majority of the research work in this field is
thought for the semantic Web. But while in the vision of the
semantic Web the increasing interest in ontologies is driven by
the large volumes of information available and by the need of
automating many information retrieval activities, in the agent
context the focal point is slightly different and it is mainly on
communicative acts - communications which implies actions.
Agents would use ontologies to perform the proper semantic
checks on a given content expression, and therefore ontologies
should include concepts (objects of the domain of the
discourse) but also predicates (assertions on properties of
concepts) and actions (that agents can perform in the domain).
Moreover a peculiar characteristic of the agent community is
the heterogeneity of resources available and the roles played
by different agents of a system. This leads us to choose
different approaches in different contexts. Our solution was to
realize a compound tool, called OWLBeans [5], that allows the
use of ontologies described by using OWL DL. These
ontologies can be used by agents for performing their tasks in
cooperation with other agents, for interoperating with external
entities (e.g., legacy software systems) and for performing a
semantic matching of Web services, described by using OWL-
S and having inputs and outputs associated with concepts
belonging to a domain ontology.

OWLBeans is based on a two-level approach with the aim
of coping with both the issues of managing complex ontologies
and of providing ontology management support to lightweight
agents, which seldom need to deal with the whole complexity
of a OWL DL ontology. Therefore, lightweight agents
maintain the simple JADE ontology support whereas one or
more dedicated agents, acting as ontology servers, are able to

162

use and manage complete OWL DL ontologies and provide the
service to the agents that need it.

The main functionality of OWLBeans is to extract JADE
ontologies from OWL DL ontologies realizing a set of
ontologies usable by JADE agents, with the obvious
shortcoming that not all the information maintained in the
original OWL ontologies are taken into account. Therefore, for
all those systems that need a complete support for OWL DL
ontologies, OWLBeans offers a set of ontology server agents
implemented as JADE agents, providing a common knowledge
base and reasoning facilities. These ontology servers use the
Jena toolkit to load, maintain and reasoning about OWL
ontologies. The other agents of the system do not need to
know anything about the Jena toolkit given that these ontology
servers provide them with a set of simple actions for querying
and manipulating the ontologies. Furthermore, ontology
servers take into account proper authorization mechanisms. In
particular, the underlying trust management support (discussed
in the following subsection) has been leveraged to implement a
certificate-based access control. Only authenticated and
authorized principals will be granted access to managed
ontologies. A delegation mechanism allows the creation of
communities of trusted entities, which can share a common
ontology, centrally managed by the ontology server.

Finally, despite the fact that the JADE ontological support is
quite simple, it could still be complex for some devices with
limited resources such as smart phones. This is the reason why
we have decided to improve OWLBeans adding a further
feature which allows agents to import taxonomies and
classifications from OWL ontologies, in the form of a
hierarchy of Java classes with the purpose of providing very
simple artefacts to access structured information. Given its
modular architecture, based on an intermediate ontology
model, OWLBeans also provides further functionalities, e.g.,
saving a JADE ontology into an OWL file, or generating a
package of JavaBeans from the description provided by a
JADE ontology.

C. Production Rule Management

JADE provides the integration with the JESS rule engine,
which is probably the most known Java rule engine
implementing the Rete algorithm [11]. This integration is
realized through a so-called JessBehaviour that allows the
encapsulation of a JESS rule engine inside a JADE agent and
has the duty of storing and retrieving information in/from the
rule engine. The main limits of this solution are: i) the rule
engine is completely hidden to the other agents of the system
and there is not any support for the cooperation among
different rule-based agents (i.e., agents encapsulating a JESS
rule engine) and ii) JESS is a commercial software and so we
have additional costs if we plan to realize commercial
applications by using JADE together with JESS.

In order to cope with the limits of the current JADE support
for rule engines, we realized a software library, called D4J
(Drools4JADE) [4], that integrates JADE agents with the
Drools rule engine. Drools is a well known, freeware

implementation of the so-called Rete-OO algorithm. Apart of
its open-source availability, one of the main advantages of
Drools is exactly the fact that it is not just a literal
implementation of the Rete algorithm, but rather an adap tation
for the object-oriented world. This greatly eases the burden of
integrating the rule engine and the application rules with the
existing external objects. In Drools, asserted facts are simple
Java objects, that can be modified through their public
methods and properties. Where Jess requires hundreds of lines
of code, for example to simply access an ACL message
mapped into a Java object, Drools rules can obtain the same
result in a dozen of easy-reading code lines.

D4J guarantees both the advantages of full rule-based
agents, i.e., agent whose behaviour and/or knowledge is
expressed by means of rules [17], and the advantages of rule-
enhanced agents, i.e., agents whose behaviour is not normally
expressed by means of rules, but that use a rule engine as
additional component to perform specific reasoning, learning
or knowledge acquisition tasks [14]. In facts, in D4J, the
Drools rule-engine is integrated into an agent as a JADE
behaviour, but it also provides an API for interacting with it
through ACL messages allowing both remote storing and
retrieval of knowledge and the cooperation among different
rule-based agents. Moreover, this API allows rules mobility,
i.e., a rule-based agent can move a rule to another rule-based
agent.

Given their nature, business rules often refer to domain
specific concepts and, especially when dealing with data on the
semantic Web, these concepts are part of a domain ontology.
To better support this scenario, rule-enhanced JADE agents
should be augmented with a tool for the automatic
transformation of concepts, relations and individuals of an
OWL ontology to java classes, properties, and instances. The
D4J framework can be integrated with OWLBeans, which
enables the extraction of JavaBeans from an OWL ontology.
The JavaBeans can then be directly asserted as facts into the
working memory of Drools.

D. Distributed Trust Management

Out of the box e-business applications are not certainly
possible if security problems are not analyzed and addressed.
Our framework supports the implementation and deployment
of secure systems, adhering trust management principles. For
this purpose, local names, interpreted as distributed roles, and
delegation certificates are made available, to build peer-to-
peer networks of trusted entities.

The accurate release of authorizations is often the most
critical point of security systems. Ideally, systems should
respect the principle of least privilege , but this often contrasts
with other requirements, as easiness of understanding,
scalability and manageability. In this respect, the RBAC model
has proven to be a good abstraction to manage large and
complex systems, up to corporate and virtual-organizations
environments.

Following the RBAC model, each resource manager of our
system (i.e. each node in the peer-to-peer network) has to deal

163

with three main concepts: principals (i.e. authenticable entities
which act as users of resources and services), permissions (i.e.
rights to access resources or use services) and roles.

A many to many relationship binds principals and the roles
they are assigned to. In the same way, a many to many
relationship binds permissions and the roles they are granted
to, thus creating a level of indirection between a principal and
his access rights. This also leads to a better separation of
duties (between the assignment of principals to roles and the
definition of role permissions), to implement privilege
inheritance schemes among superior and subordinate roles and
to permit temporary delegations of some of the assigned roles
towards other principals. The fundamental principle here is
that each node is in charge of defining its own roles, and of
assigning principals to them.

Dynamic delegation of access rights is made possible
through the use of delegation certificates, whose structure is
based on the theory of [9]. But we have avoided s-expressions,
preferring XML to them, as it provides a better ground to
exploit and integrate standard technologies. In particular, in
recent times SAML [27] have emerged as a language to
express properties of authenticable principals, encoded in the
generic form of signed security assertions. SAML assertions
can easily bind public keys to local names, and certify the links
between two different local namespaces, as it happens in
SDSI/SPKI certificates.

Delegation is particularly important to deal with the
activation of intermediate agents, acting between the human
user and the concrete service providers, i.e. personal agents,
workflow managers and agents providing composite services.
In this case, privileges must be forwarded in the form of
delegation certificates from the user toward each agent in the
chain, up to the final service provider, which will check them
for consistency with local security policies. These policies are
stored and managed locally as XACML documents [31].

To cope with the security problems coming from the remote
utilization of the rule engine and from the mobility of rules,
also D4J exploits this security layer to enforce security policies
at two different levels: proper authorization is necessary to
modify the working memory and the rule set of an agent;
moreover, each rule is associated with a specific protection
domain, limiting the resources made accessible when it is
scheduled for execution.

IV. CONCLUSION

In this paper, we have presented an agent-based framework
for SOA that integrates agent technology with other
technologies that have found, and will find, a purpose within
enterprise computing: web services, workflows, ontologies and
rule engines.

Up to now, we have not experimented the system with real
users and real services, but we have tested and evaluated the
system functionalities implementing some “artificial” services
and involving a group of students, acting either as service
provider operators or as customers. Some of the information

used by the service providers, implemented just for the
experimentation of the system, comes from the Web site of
some real service providers (e.g., flight companies, hotel
brokers, etc.). The results, though still preliminary, are quite
encouraging

We are well aware that the current multi-agent solutions
need to be improved since the technologies used are still not
completely mature. However a lot of researchers and software
developers are really interested in giving a significant
contribution in this direction, driven by the motivation of
providing a strengthening of the related standards and new
methodologies, algorithms and implementations to realize real
flexible, adaptive SOA [1],[10].

Our future activities will be oriented towards the
aforementioned goal. In particular, we will continue working
on the JADE software environment in order to both improve
the integration of the JADE agents with the most interesting
knowledge and internet-oriented technologies and realize real
adaptive agents that will be the basis of next and future
business applications. At present, we are working in three main
directions: i) to finalize the implementation of a full OWL DL
support through a home-made framework supplying ontology
management and reasoning functionalities, with the main
purpose of reducing the amount of computational resources
and time required (compared to the Jena engine), ii) to
enhance the distribution algorithm in order to achieve a more
efficient execution of a workflow and iii) to finalize the
implementation of a framework for the dynamic composition
of semantic Web services.

REFERENCES

[1] AgentLink III. Agent Technology Roadmap. Available from
http://www.agentlink.org/roadmap/index.html

[2] Akkermans, H. Intelligent E-Business - From Technology to Value.
IEEE Intelligent Systems, 16(4):8-10, 2001.

[3] Bechhofer, R. Volz, and P. Lord. Cooking the semantic web with the
OWL API. In Proc. Int Semantic Web Conference, pp. 659-675, Sanibel
Island, FL, 2003.

[4] Beneventi, A., Poggi, A., Tomaiuolo, M., & Turci, P. Integrating Rule
and Agent-Based Programming to Realize Complex Systems. WSEAS
Trans. on Information Science and Applications, 1(1):422-427, 2004.

[5] Bergenti, F., Poggi, A., Tomaiuolo, M., Turci, P. An Ontology Support
for Semantic Aware Agents. In Proc. Seventh International Bi-
Conference Workshop on Agent-Oriented Information Systems (AOIS-
2005 @ AAMAS), Utrecht, The Netherlands, 2005.

[6] Berners-Lee, T., Hendler, J., Lassila O. The Semantic Web - A new
form of Web content that is meaningful to computers will unleash a
revolution of new possibilities. 284(5):34-43, 2001.

[7] Buhler P.A., Vidal, J.M. Towards Adaptive Workflow Enactment Using
Multiagent Systems. Information Technology and Management,
6(1):61-87, 2005.

[8] de Bruijn, J., Polleres, A., Lara, R., Fensel, D. OWL DL vs. OWL
Flight: Conceptual Modeling and Reasoning for the Semantic Web. In
Proc. of the 14th Int. World Wide Web Conference (WWW2005), pp.
623-632, Chiba, Japan, 2005.

[9] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.
SPKI Certificate Theory. RFC 2693, 1999.

[10] Fensel, D., Bussler, C. The Web Service Modeling Framework WSMF.
Electronic Commerce Research and Applications 1(2): 113-137, 2002.

164

[11] Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many Pattern /
Many Object Pattern Match Problem, Artificial Intelligence 19(1), pp.
17-37.

[12] Greenwood, D., Callisti, M. Engineering Web Service-Agent
Integration. In IEEE Conference of Systems, Man and Cybernetics,
2004. Available from
http://www.whitestein.com/resources/papers/ieeesmc04.pdf.

[13] Gibbins, N., Harris, S., Shadbolt, N. Agent-based semantic web
services. In Proc of the 12th International World Wide Web Conference
(WWW2003), Budapest, Hungary, 2003.

[14] Gutknecht, O., Ferber, J., Michel, F. Integrating tools and infrastructures
for generic multi-agent systems. In Proc. of the 5th International
Conference on Autonomous Agents. Montreal, Canada, 2001.

[15] Gutmann, P. (2000). X.509 Style Guide. Available from
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

[16] Horrocks, I. and Patel-Schneider, P. F. A proposal for an OWL rules
language. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), pp. 723-731, 2004.

[17] Hindriks, K.V., de Boer, F.S., van der Hoek, & W., Meyer, J.C. Control
Structures of Rule-Based Agent Languages. In Lecture Notes In
Computer Science, Proceedings of the 5th International Workshop on
Intelligent Agents V, Agent Theories, Architectures, and Languages,
Vol 1555, pp. 381-396, 1998, London, UK: Springer-Verlag.

[18] Khare, R., Rifkin, A. Weaving a Web of trust, World Wide Web Journal
Special Issue on Security, 2(3):77–112, 1997.

[19] R. Kishore, H. Zhang & R. Ramesh, Enterprise integration using the
agent paradigm : foundations of multi-agent-based integrative business
information systems, Decision Support Systems, 42 (2006) (1), pp. 48–
78..

[20] Labrou, Y. Agents and ontologies for e-business. Knowledge
Engineering Review, 17(1):81-85, 2002.

[21] Li, N., Mitchell, J.M.. RT: A Role-based Trust-management
Framework. In Proc of the Third DARPA Information Survivability
Conference and Exposition (DISCEX III), pp. 201-212, 2003.
Washington, D.C.

[22] Negri, A., Poggi, A., Tomaiuolo, M., Turci, P,. Dynamic Grid Tasks
Composition and Distribution through Agents,. Concurrency and
Computation: Practice and Experience, 2005.

[23] Negri A., A. Poggi, M. Tomaiuolo, P. Turci, Agents for e-Business
Applications, In Proc. AAMAS 2006, Hakodate, Japan 2006

[24] Papazoglou, M.P.. Agent-oriented technology in support of e-business.
Communication of ACM, 44(4):71-77, 2001.

[25] Papazoglou, M.P. The World of e-Business: Web-Services, Workflows,
and Business Transactions In Lecture Notes In Computer Science,
CAiSE '02/ WES '02: Revised Papers from the International Workshop
on Web Services, E-Business, and the Semantic Web, Vol 2512, pp.
153-173, 2002. London, UK. Springer-Verlag

[26] Poggi, A., Rimassa, G., Tomaiuolo, M. Multi-user and security support
for multi-agent systems. In Proc. of WOA 2001, pp. 13-18, 2001.
Modena, Italy: Pitagora.

[27] SAML - Security Assertion Markup Language. Available from
http://xml.coverpages.org/saml.html.

[28] Sensory Graph Planner software and documentation. Available from
http://www.cs.washington.edu/ai/sgp.html.

[29] Silva, N., Rocha, J., Cardoso, J. E-Business Interoperability Through
Ontology Semantic Mapping. In Proc. of the Processes and Foundations
for Virtual Organizations, pp. 315-322, 2003. Lugano, Switzerland.

[30] Weikum G. Special Issue on Infrastructure for Advanced E-services,
IEEE Data Engineering, 24(1), 2001.

[31] XACML- Extensible Access Control Markup Language. Available
from http://xml.coverpages.org/xacml.html.

[32] YURL - Decentralized Identification. Available from
http://www.waterken.com/dev/YURL.

165

Indice degli Autori

Addis, Andrea, 48
Anghinolfi, Davide, 65, 71
Armano, Giuliano, 48
Arnaudo, Erik, 8

Baldoni, Matteo, I, 8, 34, 112, 132
Baroglio, Cristina, 34, 132
Berio, Giuseppe, 34
Boccalatte, Antonio, I, 65, 71
Boella, Guido, 8, 112
Burmeister, Birgit, 1

Cannata, Nicola, 42
Castelfranchi, Cristiano, 104
Centineo, Fabio, 20
Cord̀ı, Valentina, 55
Corradini, Flavio, 42
Costantini, Stefania, 78

De Paoli, Flavio, I
Denti, Enrico, 140
Deufemia, Vincenzo, 26

Falcone, Rino, 104
Fortino, Giancarlo, 14

Garro, Alfredo, 14
Genovese, Valerio, 8
Grenna, Roberto, 8
Grosso, Alberto, 65, 71

Marengo, Elisa, 34
Marguglio, Angelo, 20
Martelli, Alberto, 132
Martelli, Maurizio, I
Mascardi, Viviana, I, 55
Mascia, Francesco, 48

Mascillaro, Samuele, 14
Merelli, Emanuela, 42
Morreale, Vito, 20
Mostarda, Leonardo, 78

Paolucci, Massimo, 65, 71
Passadore, Andrea, 65, 71, 87
Patti, Viviana, 132
Pezzuto, Giorgio, 87
Piersigilli, Francesca, 42
Piunti, Michele, 104
Pizzi, Giorgio, 22, 96
Poggi, Agostino, 126, 157
Polese, Giuseppe, 26
Puccio, Michele, 20

Ricci, Alessandro, 140
Rimassa, Giovanni, 1
Rosso, Paolo, 55
Russo, Wilma, 14

Schifanella, Claudio, 132
Soares Corrêa da Silva, Flávio, 22, 96

Tocchio, Arianna, 78
Tomaiuolo, Michele, 126, 157
Tortora, Genoveffa, 26
Tsintza, Panagiota, 78
Turci, Paola, 157

Vacca, Mario, 26
van der Torre, Leon, 112
Vargiu, Eloisa, 48
Vecchiola, Christian, 65, 71
Vito, Leonardo, 42
Vizzari, Giuseppe, 22, 96

166

