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Rémy Haemmerlé, François Fages and Sylvain Soliman

INRIA Paris-Rocquencourt – France
FirstName.LastName@inria.fr

Abstract. There are two somewhat contradictory ways of looking at
modules in a given programming language. On the one hand, module
systems are largely independent of the particulars of programming lan-
guages. On the other hand, the module constructs may interfere with the
programming constructs, and may be redundant with the other scope
mechanisms of a specific programming language, such as closures for in-
stance. There is therefore a need to unify the programming concepts
that are similar, and retain a minimum number of essential constructs
to avoid arbitrary programming choices. In this paper, we realize this
aim in the framework of linear logic concurrent constraint programming
(LCC) languages. We first show how declarations and closures can be
internalized as agents in a variant of LCC for which we provide precise
operational and logical semantics in linear logic. Then, we show how a
complete module system can be represented within LCC, and prove for
it a general code protection property. Finally we study the instanciation
of this scheme to the implementation of a safe module system for con-
straint logic programs, and conclude on the generality of this approach
to programming languages with logical variables.

1 Introduction

Module systems are an essential feature of programming languages as they facili-
tate the re-use of existing code and the development of general purpose libraries.
There are however two contradictory ways of looking at a module system. On the
one hand, a module system is essentially independent of the particulars of a given
programming language. “Modular” module systems have thus been designed and
indeed adapted to different programming languages, see e.g. [15]. On the other
hand, module constructs often interfere with the programming constructs and
may be redundant with other scope mechanisms supported by a given program-
ming language, such as closures for instance. There is therefore a need to unify
the programming concepts that are similar in order to retain a minimum number
of essential constructs and avoid arbitrary programming choices. In this paper,
we realize this aim in the framework of linear logic concurrent constraint (LCC)
programming languages.

The class of concurrent constraint (CC) programming languages was intro-
duced in [18] as an elegant merge of constraint logic programming (CLP) and



concurrent logic programming. In the CC paradigm, CLP goals become concur-
rent agents communicating through a common store of constraints, each agent
being able to post constraints to the store, and to synchronize by asking whether
a guard constraint is entailed by the store. Research on the logical semantics of
CC languages [6] led to a simple solution in Girard’s Linear Logic [8]. Through
a straightforward translation of CC agents into intuitionistic LL (ILL) formulas,
CC operational transitions indeed correspond to deductions in ILL, and com-
pleteness theorems hold for the observation of successes as well as accessible
stores [6].

Moreover, the soundness and completeness theorems still hold when consid-
ering constraint systems based on Linear Logic instead of classical logic, that
constitutes the LCC framework. From a programming point of view, ILL con-
straint systems are a refinement of classical constraint systems allowing for the
non-monotonic evolution of the constraint store, as advocated in [2], through
the consumption of Linear Logic tokens by linear implication [6]. In LCC, con-
straint programming and imperative programming features are thus reconciled
in a unified framework, and LCC has been proposed in [9] as a kernel language
for developing constraint programming libraries in a modular fashion.

In this paper, we focus on a closure mechanism and a module system that
can be naturally internalized in LCC. We first show in Sect. 2, that the linear
tokens and the bang operator of LL can be used to internalize CC declarations
and procedure calls as respectively constraint posting and constraint asking in
LCC. A quite general notion of closure can then be encoded as a banged agent
with an environment. The case of an empty environment corresponds to the
usual CC declarations. Then in Sect. 3, we develop a complete module system
for LCC via a simple syntactical convention for encapsulating procedure decla-
rations and calls. This restriction allows us to prove a general property of code
protection by showing that the implementation hiding follows from the usual
scope mechanism for variables. This module system is then illustrated in Sect.
4, by its instantiation to constraint logic programming (CLP) languages, and
by its relationship to the module system proposed in [10]. Its implementation is
discussed there along the lines of its semantics in LCC, and is illustrated with
examples of code hiding, closure programming and module parameterization in
CLP. Finally, we conclude on the generality of this approach for programming
languages with logical variables.

Related Work

Concerning CC languages, the implementation of modules has not been much
discussed up to now, being considered as an orthogonal issue. For instance, the
MOZART-OZ language [17, 4] contains an ad-hoc module system allowing for
separate compilation, but presented as an extra logical feature separated from
the other programming constructs.

Concerning programming languages developed in Linear Logic using the
Logic Programming paradigm, like for instance LO [1], Lolli [13] or Lygon [12],



it is worth noticing that persistent asks (which could be represented as impli-
cations under a ! in most of these languages) have not been considered, nor the
direct encoding of dynamic clause assertions. On the other hand, the banged ask
appears in the recent work of [16] on the expressiveness of linearity and persis-
tence in process calculi for security. In LCC, we shall use the full power provided
by both persistent and non persistent inputs and outputs.

The internalization of declarations as agents proposed in this paper also goes
somehow in the opposite direction to that of definition-based logics, as described
for instance in [11]. Here, we represent definitions are represented by banged
agents as first-class citizens. This makes it possible to represent closures just by
definitions sharing variables with other agents.

2 Declarations as Agents

In this paper, a set of variables is denoted by x, y, z... while a sequence of
variables is denoted by x, y... The set of free variables occurring in a formula A
is denoted by V(A), A[x\t] denotes the formula A in which the free occurrences
of variables x have been replaced by terms t (with the usual renaming of bound
variables, avoiding variable clashes).

In this section, we give a presentation of LCC languages where the usual CC
declarations are replaced by banged ask agents, called persistent asks. This con-
struct actually generalizes usual declarations to closures with the environment
represented by the free variables in the persistent asks. Before that, we recall
the definition of linear logic constraint systems as given in [6].

2.1 Linear Logic Constraint Systems

LCC languages essentially extend CC languages by considering constraint sys-
tems based on Girard’s Linear Logic [8] instead of classical logic [6]. From a
programming point of view, this extension introduces state change and impera-
tive features in constraint languages by allowing a non-monotonic evolution of
the store of constraints [2].

Let T be the set of terms (noted t, s, . . . ) formed from a set V of variables
and a set ΣF of function symbols. An atomic constraint is a formula built from
V , ΣF and a set ΣC of relation symbols. The constraint language is the least
set containing all atomic constraints, closed by multiplicative conjunction (⊗)
existential quantification (∃) and exponentiation (!).

Definition 1 (LL Constraint System). A linear constraint system is a pair
(C,C) where C is a constraint language containing 1 the neutral element of the
multiplicative conjunction and C is a subset of C×C which defines the non-
logical axioms of the system. The entailment relation `C is the least subset of
C∗×C containing C and closed by the rules of ILL for 1, >, !, ∃ and ⊗.



In this setting, classical constraints are written under a bang !, while linear
logic constraints without bang can be consumed by linear implication. In prac-
tice, the non classical constraints will be restricted to linear tokens which have
no axiom, except the general axiom of equality : l(x)⊗!(x=y) ` l(y)

The vocabulary of predicate symbols ΣC is thus partitioned into two sets
ΣD, ΣL, where ΣD contains the classical constraints with at least true (1), false
(0) and =, and ΣL contains the linear token predicates. The constraint languages
built from ΣD and ΣL are noted D and L respectively.

Example 1. A typical LL constraint system is that of a combination of classical
constraints, such as Herbrand terms, with linear tokens like value(x, v) that can
be added added to and deleted from the store to encode imperative variables
and assignment. In the following, linear tokens will also be used to represent
procedure calls, by tokens consumed by the procedure definition at the time of
its execution.

As no classical constraint but 0 can entail a linear token, we have :

Proposition 1. Let c ∈ D and l ∈ L. If c ` l ⊗> then c ` 0.

The set of free variables occurring in the linear tokens of some constraint c is
denoted by Vl(c). Formally, Vl(l(t)) = V(t) if l ∈ ΣL, and Vl(l(t)) = ∅ if l ∈ ΣD,
and this is extended to non-atomic constraints as usual.

2.2 Syntax and Operational Semantics of LCC Agents

Given an LL constraint system (C,C), the syntax of LCC(C,C) agents is de-
fined by the following grammar : A ::= A ||A | ∃x.A | c | ∀x(c → A) | ∀x(c ⇒ A)
where c stands for any constraint in C and x ⊂ Vl(c). As usual || stands for
parallel composition, the ∃ operator hides variables in an agent, and the tell
agent, written as a constraint, adds that constraint to the store. Two forms of
ask agents are considered here : ∀x(c → A) for the usual ask, and ∀x(c ⇒ A)
for the persistent ask that will serve to represent procedure definitions. In both
cases we impose x ⊂ Vl(c). This restriction limits the binding of variables by
pattern matching to the variables occurring in linear tokens, and prevents the
possible enumeration of all variables by ask agents.

The choice operator is defined here as an abbreviation as in the classical
encoding of the non-deterministic choice in CLP with two clauses with the same
head : A + B = ∃x(choice(x) || (choice(x) ⇒ A) || (choice(x) ⇒ B))

The operational semantics of LCC with persistent ask is defined similarly to
[6] with an equivalence and a transition relation defined over configurations. A
configuration is a tuple 〈X; c; Γ 〉 where X is a set of variables, Γ a multiset of
agents and c a constraint, called store. ≡ is the least equivalence satisfying the
following rule of parallel composition: 〈X; c; A ||B, Γ 〉 ≡ 〈X; c; A, B, Γ 〉

The transition relation −→ is the least relation satisfying the following rules
modulo ≡ (its transitive and reflexive closure is denoted by ∗−→):



Hiding
z 6∈ X ∪ V(c, Γ )

〈X; c; ∃z.A, Γ 〉 −→ 〈X ∪ {z}; c; A, Γ 〉

Tell 〈X; c; d, Γ 〉 −→ 〈X; c⊗ d; Γ 〉

Ask
c `C ∃Y.(d[z\s]⊗ e) Y ∩ (X ∪ V(A, Γ )) = ∅
〈X; c; ∀z(d → A), Γ 〉 −→ 〈X ∪ Y ; e; A[z\s], Γ 〉

Persistent ask
c `C ∃Y.(d[z\s]⊗ e) Y ∩ (X ∪ V(A, Γ )) = ∅

〈X; c; ∀z(d ⇒ A), Γ 〉 −→ 〈X ∪ Y ; e; A[z\s], ∀z(d ⇒ A), Γ 〉

Definition 2 (Observables). Let A be an LCC(C) agent. We say that a con-
straint d ∈ C is an accessible constraint for A if there exists a derivation of
the form 〈∅; 1; A〉 ∗−→ 〈X; c; Γ 〉 such that ∃X.c `C d ⊗ >. Similarly, d is a
success for A, if in addition Γ is a multiset of persistent asks , ∃X.c `C d, and
〈X; c; Γ 〉 6−→.

Definition 3 (Operational Semantics).

– Oconst(A) is the set of accessible constraints for the agent A.
– ODconst(A) = Oconst(A) ∩ D is the set of accessible D-constraints for A.
– Osucc(A) is the set of successes for the agent A.
– ODsucc(A) = Osucc(A) ∩ D is the set of D-successes for the agent A.

Example 2. In LCC, the scope mechanism of variables and the persistent ask
make it possible to encode closures. For instance, the agent ∀x(apply(c, x) ⇒
min(x,minint) ⊗ max(x,maxint)) waits for a token of application of a clo-
sure c to a variable x to add new constraints on x. From a functional perspec-
tive, C is equivalent to (λX.min(X, minint)⊗max(X, maxint)), and the agent
apply(C,X) to C.X. This schema for closures makes it possible to define iterators
on data structures such as forall on lists, passing the closure as an argument
as follows (the frist two lines define the iterator and the last one uses it):

∀C.forall(C, [ ]) ⇒ true ||
∀H, T, C.forall(C, [H|T ]) ⇒ apply(C, H)⊗ forall(C, T ) ||
∃C.(∀X(apply(C, X) ⇒ min(X, minint)⊗max(X, maxint)) || forall(C, L))

Example 3. Rewriting rules with constraints such as in the CHR [7] can be easily
encoded in LCC. For instance, the three following CHR rules for defining the
ordering constraint =< assuming the built-in equality constraint = :

X=<Y <=> X=Y|true. X=<Y,Y=<X <=> X=Y. X=<Y,Y=<Z ==> X=<Z.

can be represented by the following LCC agent (Note that as in the naive se-
mantics of CHR, the last rule does not terminate) :

∀X, Y ((X =< Y ⊗X =Y ) ⇒ 1) ||
∀X, Y ((X =< Y ⊗ Y =<X) ⇒ X = Y ) ||
∀X, Y, Z((X =< Y ⊗ Y =<Z) ⇒ (X =< Y ⊗ Y =< Z ⊗X =< Z))

This example illustrates the mixing in ask guards of linear tokens =< with the
classical (built-in) constraint =.



2.3 Logical Semantics of LCC Agents

In this section, we show how the logical semantics of LCC in ILL [6] extends to
persistent asks. The translation of LCC agents into ILL is straightforward :

c† = c (∃x.c)† = ∃x.c† (A || B)† = A† ⊗B†

(∀x(c → A))† = ∀x(c ( A†) (∀x(c ⇒ A))† =!∀x(c† ( A†)

This translation extends to a multiset of agents Γ by {A1, . . . , An}† = A†
1 ⊗ · · · ⊗An†,

and ∅† = 1. The translation of a configuration 〈X; c; Γ 〉 is the formula 〈X; c; Γ 〉† =
∃X.(c⊗ Γ ). As in [6], we get:

Theorem 1 (Soundness). Let 〈X; c; Γ 〉 and 〈Y ; d; ∆〉 be two configurations.
If 〈X; c; Γ 〉 ∗−→ 〈Y ; d; ∆〉 then 〈X; c; Γ 〉† `C 〈Y ; d; ∆〉†

Theorem 2 (Completeness). For any LCC agent A, Oconst(A) = {c ∈ C | A† `C
c⊗>}, ODconst(A) = {d ∈ D | A† `C d⊗>}.

Because LCC declarations are represented here with persistent asks using the bang
operator, the logical characterization of successes requires persistent asks to have a
linear token in their guard :

Definition 4 (L-persistent). Let C be a constraint system partitioned into classical
constraints D and linear tokens L. An agent is L-persistent if the guards in its persistent
asks all contain tokens in L.

Theorem 3 (Completeness on D-successes). For any L-persistent LCC(C) agent
A for which 0 is not an accessible constraint we have ODsucc(A) = {d ∈ D | A† `C d}.

3 Modules as Agents

3.1 Syntactical Conventions

The declaration and closure mechanism provided by the persistent ask in LCC can be
used to build a complete module system within LCC. In this approach, a module is
named by a variable and the scope of module declarations thus depends on the scope
of these variables. It is worth noting that for the issue of separate compilation not
considered here, modules should also be named by constants making them visible by
separate modules. That will be used in the next section.

We use the syntactical convention x{A} to denote the agent A in module x. Sim-
ilarly, telling a token constraint l of module x is denoted by x : l, while classical con-
straints are not localized. With these conventions, the syntax of modular LCC (MLCC)
agents is the following: A ::= x{A} | x : l | d | A ||A | ∃x.A | ∀x(c → A) | ∀x(c ⇒ A)
where l stands for a linear token constraint, d stands for a classical constraint and c
stands for an arbitrary constraint.

Now, MLCC agents are translated into LCC agents over a modified constraint
system, noted Ċ, in which an extra argument is added to every linear token. The
resulting LCC agents enjoy some sort of code protection as shown in next section.

Definition 5 (Translation in LCC). For any variable x referencing a module, the
translation ()x of MLCC(C) agents to LCC(Ċ) agents is defined recursively by:

d(t)x = d(t) l(t)x = l̇(x, t) (c⊗ c′)x = cx ⊗ c′x (∃y.c)x = ∃y.cx

(∃y.A)x = ∃y.Ax (y{A})x = Ay (y : l)x = ly (A || B)x = Ax || Bx



(!c)x =!cx (∀y(c → A))x = ∀y(cx → Ax) (∀y(c ⇒ A))x = ∀y(cx ⇒ Ax)
where y ∩ V(x) = ∅, d ∈ ΣD, l ∈ ΣL, c ∈ C and c′ ∈ C.

An LCC(Ċ) agent A is modular if it is the translation of an MLCC(C) agent i.e.
there exists an MLCC(C) agent B and a variable x such that A = Bx. An LCC(Ċ)
configuration is modular if all its agents are modular.

Example 4. With these conventions, a module for lists can be defined with internal
anonymous modules for hiding the implementation of predicates, such as the reverse
predicate with a ternary implementation using an accumulator :

List{∃I. ( ∀X, Y.reverse(X, Y ) ⇒ I : reverse(X, [], Y ) ||
I { ∀X, Y.reverse([], X, Y ) ⇒ !(X =Y ) ||

∀X, Y, Z, T.reverse([X|Y ], Z, T ) ⇒ reverse(Y, [X|Z], T ).)}}

For the sake of readability, in the following section, constraints of Ċ and agents of
LCC(Ċ) will be denoted respectively by ċ, ḋ, ė . . . and by Ȧ, Ḃ . . . , whereas constraints
of C and agents of MLCC(C) will be denoted respectively by c, d, e . . . and by A, B . . . .
Moreover, note that if κ is a modular configuration and κ ∗−→ κ′ then κ′ is modular.

3.2 Code Protection

MLCC programs enjoy a general property of code protection provided that the con-
straint system does not allow to make arbitrary variables equal. This is enforced by
assuming that {x, y}⊂V(c) whenever c C x=y⊗> for any distinct variables x and y.

Definition 6. Let 〈X; ċ; ∆, Ḃ, l̇〉 be a modular configuration. The transitions from Ḃ
are independent from the linear tell agent l̇ if for any derivation that first reduces tell
l̇ then B, i.e. of the form :

〈X; ċ; ∆, Ḃ, l̇〉 −→ 〈X; ċ⊗ l̇; ∆, Ḃ〉 −→ 〈Y ; ḋ′; ∆, Ḃ′〉
there exists a derivation that first reduces B then l of the form:

〈X; ċ; ∆, Ḃ, l̇〉 −→ 〈Y ′; ė; ∆, Ḃ′, l̇〉 −→ 〈Y ; ċ′ ⊗ l̇; ∆, Ḃ′〉 with ċ′ ⊗ l̇a`Ċ ḋ′ .

Definition 7 (Code Protection). An agent Ȧ is protected in a modular agent C[Ȧ]
if the transitions from Ḃ are independent from l̇ in any configuration 〈X; ċ; ∆, Ḃ, l̇〉
such that 〈∅; 1; C[Ȧ], Γ 〉 ∗−→ 〈X; ċ; ∆, Ḃ, l̇〉, Ḃ derives from Ȧ and l̇ derives from Γ .

Theorem 4. Let A and B be two MLCC(C) agents. If A has no inner module and y
is used in A and B only in modular tells of the form y : l with y 6∈ V(l), then (A)y is
protected in (∃y.(y{A} || B))x for any variable x.

The proof of this theorem relies on general properties on the scope of variables,
and on technical properties of constraint decomposability and variable accessibility.
The intuition behind decomposability is that linear tokens can be separated from the
rest of the constraint without making it logically weaker.

Definition 8 (Decomposable constraint). A constraint is in separated form if it
is of the form d⊗ l̇1 ⊗ · · · ⊗ l̇k where d is a classical constraint and the l̇i’s are atomic
linear token constraints. A constraint is in decomposed form if it is of the form ∃Y.ḋ
where ḋ is in separated form. A constraint is decomposable (resp. separable) if it is
equivalent to a decomposed (resp. separated) form.

Lemma 1. Let Γ be a multiset of consistent constraints in decomposed form, ċ ∈ Ċ a
constraint, and Y a set of variables. If Γ `Ċ ∃Y.(ċ⊗>) then ċ is decomposable.



Proposition 2. Let 〈X; ċ; Γ 〉 ∗−→ 〈Y ; ḋ; ∆〉 be a derivation between two modular
configurations. If ċ is consistent and decomposable then ḋ is decomposable.

Let ċ ∈ Ċ be a separable constraint and X a set of variables. We define the set of
variables accessible by unification in ċ from X as :

Au
ċ (X) = X ∪ {x ∈ V(ċ)| d ∈ D, y ∈ V(d), V(ċ) ∩ V(d) ⊂ X,

ċ⊗ d `Ċ x=y ⊗> and Γ, d 6`Ċ 0}.
The set of variables accessible by substitution in ċ from X is :

As
ċ(X) = X ∪

˘
x ∈ V(t)

˛̨
l̇ ∈ Σm y ∈ X ċ `Ċ l̇(y, t)⊗> ċ 6̀ Ċ 0

¯
The set of directly accessible variables in ċ from X is A1

ċ(X)=As
ċ(X) ∪ Au

ċ (X).

Proposition 3. For any consistent separable constraint ċ, A1
ċ is extensive, monotone

and bound.

This proposition allows us to define the set of accessible variables in ċ from X,
noted Aċ(X), as the least fix point of A1

ċ containing X. The set of accessible variables
in a decomposable constraint ḋ is Aċ(X) \ Y where Y is a set of variables and ċ is a
separable constraint such that ḋ `Ċ ∃Y.ċ and without loss of generality Y ∩X = ∅.

Lemma 2. Let ċ and ḋ be two consistent decomposable constraints of Ċ and X an
arbitrary set of variables. If ċ `Ċ ḋ⊗> then Aċ(X) ⊃ A

ḋ
(X).

Proposition 4. Let 〈X; ċ; Γ, ∆〉 ∗−→ 〈Y ; ḋ; Γ ′, ∆′〉 be a derivation between two con-
sistent configurations such that Γ ′ be the reduced of Γ , and ċ is decomposable. If
x ∈ V(X, ∆) and x /∈ Aċ(V(Γ )) then x /∈ A

ḋ
(V(Γ ′)).

4 Implementation as a Module System for CLP

The MLCC scheme presented above instantiates into a powerful module system for
Constraint Logic Programming languages, called mCLP. This module system is an ex-
tension including dynamic modules of the module system proposed for CLP in [10]. It is
provided here with a logical semantics in linear logic, and with an implementation with
closures in the line of its semantics in LCC. A prototype implementation of mCLP is
available for download at http://contraintes.inria.fr/~haemmerl/pub/mclp.tgz.

4.1 mCLP Syntactical Conventions

We shall adopt for mCLP a pragmatic syntax close to that of classical CLP systems.
The typewriter font is used for programs, where, as in classical Prolog programs, the
identifiers beginning with a capital letter represent variables. The syntax defined by
the following grammar distinguishes declarations from goals as usual:

G ::= module(T, E){D} | T : p(S1, . . . , Sn) | p(S1, . . . , Sn) | c(S1, . . . , Sn) | G, G | G; G
D ::= p(S1, . . . , Sn) : −G.D | p(S1, . . . , Sn).D |: −G.D | ε

where T is a term, E a list of variables, S1, . . . , Sn a sequence of terms, c a
constraint of C and p a predicate construct using the alphabet ΣL.

An mCLP declaration is either a clause, a fact or a goal of the form :-
G. executed at the initialization of the module. Besides the usual conjunction,
disjunction and constraint posting goals, the goal module(T, E){D} denotes the



instantiation of a module T with the implementation D and the environment
E. This environment is simply a list of global variables whose scope is the entire
module clauses. If T is a free variable, the resulting module is anonymous, whereas
if T is an atom (or a compound term), it is a named module, as proved useful for
separate compilation. The goal T:p(S1, ..., Sn) denotes the external call of
the predicate p/n defined in the module T, which is distinguished from the local
call, noted p(S1, ..., Sn), of the predicate p/n defined in the current module.

4.2 Interpretation and Compilation

Classical clauses are interpreted by persistent asks waiting for the linear token
that represents the procedure call. The module environment provides a new
feature allowing for global variables in a module. Formally, the interpretation of
mCLP goals and declaration in MLCC is defined by [[G]]T and [[D]]TE where T is the
current module and E the current environment:

[[G1, G2]]
T = [[G1]]

T || [[G2]]T [[P]]T = T :P [[S :P]]T= S :P
[[G1; G2]]

T = [[G1]]
T + [[G2]]

T [[C]]T = T : (!C) [[module(S, E){D}]]T = S{[[D]]SE}
[[ :- G.D]]TE = ∃Y[[G]]S || [[D]]TE [[p(t).D]]TE = ∀X(p(X) ⇒ ∃Y[[X=t]]S) || [[D]]TE

[[p(t) :- G.D]]TE = ∀X(p(X) ⇒ ∃Y[[X = t, G]]S) || [[D]]TE
where X is a set of fresh variables and Y = V(t, G) \ E.

Let C◦ be the translation of the constraint system C into linear logic (using
for example the well know Girard’s translation classical logical into LL [8]). The
constraint system (CP,CP) corresponding to this translation is defined such
that CP is the smallest set respecting the following conditions (1) if (C C◦ C)
then (C CP C) and (2) for any predicate symbol p (p(X), X=Y CP p(Y)) .

Notice that all the [[A]]TE are L-persistent (see Def. 4), therefore all results of
previous Section can be applied to mCLP programs.

In addition to a first order logical semantics, this translation provides a way
to compile mCLP using classical Prolog compilation techniques. Typically a
module is referenced by a special variable to which module environment and
module procedures are attached as attributes [14]. A mCLP predicate is then
implemented by a Prolog predicate with an extra-argument, inherit from logical
semantics of persistent (c.f. Def. 5) storing the current module variable.

4.3 Global Variables

Module environments introduce global variables, i.e. variables shared among the
different clauses of the module. This construct can be used for instance to avoid
passing an argument to numerous module predicates. However, these variables
are still usual, backtrackable, logic variables.

The following code illustrates the use of a global variable Depth to implement
a Prolog meta-interpreter with a fair search strategy proceeding by iterative
deepening [19]. The predicate clause looks for clause definitions [5]; the predicate
for(I, Begin, End) produces a choice point where I will be assigned any of
the integer values between Begin and End (see for instance [3]).



Example 5. (Iterative Deepening):
:-module(iter deep, [Depth]){

solve(G):- for(Depth,1,1000), iter deep(G,0).

iter deep( ,I) :- I >= Depth, !, fail.

iter deep(((A,B)),I) :- !, iter deep(A,I), iter deep(B,I).

iter deep(A, ) :- clause((A:-true)), !.

iter deep(A,I) :- clause((A:-B)), J is I+1, iter deep(B,J). }.

4.4 Code Hiding

As above, one can use an environment to make a variable global to a module,
but this time, this variable will be used to keep an anonymous inside module
hidden from the outside. Since the name of the inside module is this variable,
only accessible to the clauses inside the module definition, the corresponding
implementation is protected from the clauses outside the external module.

This is illustrated in the following program that provides the sort predicate
and hides the implementation quicksort predicate.

Example 6. (Quicksort):
:- module(sort, [Impl]){

sort(Lst,SrtdLst):- Impl:quicksort(Lst,SrtdLst).

:- module(Impl,[]){
quicksort([],[]).

quicksort([X|Tl],Srtd) :- split(X,Tl,Smll,Bg),

quicksort(Smll,SrtdSmll), quicksort(Bg,SrtdBg),

list:append(SrtdSmll,[X|SrtdBg],Srtd).

split(X,[],[],[]).

split(X,[Y|Tl],[Y|Smll],Bg) :- X<Y,!,split(X,Tail,Small,Big).

split(X,[Y|Tl],Smll,[Y|Bg]) :- split(X,Tl,Smll,Bg). }. }.
The code protection property 3.2 ensures that no call to the quicksort predicate
is possible outside the sort predicate. The execution of the following goal prints
on screen the sorted list [2/7,1/2,2/3,1,4/3,5].
? L=[1, 2/3, 5, 4/3, 1/2, 2/7], sort:sort(L, L1), print(L1), nl.

4.5 Closures

The classical notion of closure can be recovered through the definition of modules
with a predicate apply/1 waiting for the argument to apply the persistant ask
(corresponding to the clauses of apply/1).

This makes it possible to define iterators on data structures such as forall
on lists, passing the closure as an argument as follows:

Example 7. : :- module(iterator, []){
forall([], ).

forall([H|T], C) :- C:apply(H), forall(T, C). }.



The usual domain/3 (or fd domain/3) built-in predicate of finite domain con-
straint solvers, can be implemented using the list iterator on its arguments:
fd domain(Vars,Min,Max):-module(Cl,[Min,Max]){apply(X):-Min=<X,X=<Max.},
(list(Vars)->iterator:forall(Vars, Cl) ; var(Vars)->Cl:apply(Vars)).

4.6 Module Parameterization

Parameterized modules greatly enhance the programmer capabilities to re-use
code by making its module implementation depend on other modules. Combin-
ing the idea of using the environment to parameterize a closure, and the code
hiding features demonstrated above, one can obtain a module with a hidden
implementation, parameterized from outside. The following example shows how
to parameterize the previous sort module by creating a generic sort/2 pred-
icate that dynamically creates a sorting module (its first argument) using the
comparison predicate given as second argument.

Example 8. (Parameterized quicksort):
:- module(sort, []){

generic sort(Sort,Order):- module(Sort,[Order, Impl]){
sort(List,SortedList):-Impl:qsort(List,SortedList).

:-module(Impl, [Order]){
qsort([],[]).

qsort([X|T],Srtd):-split(X,T,Smll Bg),qsort(Smll,SrtdSmll),

qsort(Bg,SrtdBg),list:append(SrtdSmll,[X|SrtdBg],Srtd).

split(X,[],[],[]).

split(X,[Y|T],[Y|Smll],Bg):-Order:(X >= Y),!,

split(X,T,Smll, Bg).

split(X,[Y|T],Smll,[Y|Bg]):-split(X,T,Smll,Bg). }. }.}.
Let math be a module defining the ordering predicate >= over numbers, and term
a module defining the ordering predicate @>= over terms. The execution of the fol-
lowing goal prints the lists [2/7,1/2,2/3,1,4/3,5] and [1,5,1/2,2/3,2/7,4/3]
which shows the parameterized use of the module sort.
?- L=[1, 2/3, 5, 4/3, 1/2, 2/7],

sort:factory(Sort1, math), Sort1:sort(L, L1), print(L1), nl,

module(OrderLex, []) X >= Y:- term:(X @>= Y) ,

sort:factory(Sort2, OrderLex), Sort2:sort(L, L2) print(L2), nl.

5 Conclusion

We have shown that a powerful module system for linear concurrent constraint
programming (LCC) languages can be internalized into LCC, by representing
declarations by persistent asks, referencing modules by variables and thus ben-
efiting from implementation hiding through the usual hiding operator for vari-
ables. We have presented the operational semantics of MLCC programs, showing
a code protection property, and proving the equivalence with the logical seman-
tics in linear logic for the observation of stores and successes.



These results have been illustrated with an instantiation of the MLCC scheme
to constraint logic programs, leading to a simple yet powerful module system
similar to the one proposed in [10], supporting code hiding, closures and module
parameterization, and provided here with a simple logical semantics in linear
logic. Another interesting use is the boostrapping of a complete implementation
of LCC that is currently under development [9].

We believe that this approach to internalizing a module system within a
programming language is of a quite general scope for programming languages
with logical variables, as well as its implementation with a closure mechanism.
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7. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming, 37(1-3):95–138,
Oct. 1998.

8. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1), 1987.
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unification. Technical Report TR-92-23, Österreichisches Forschungsinstitut für
Artificial Intelligence, Wien, 1992.

15. X. Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.



16. C. Palamidessi, V. A. Saraswat, F. D. Valencia, and B. Victor. On the expres-
siveness of linearity vs persistence in the asychronous pi-calculus. In LICS’06:
Proceedings of the 21th Annual IEEE Symposium on Logic In Computer Science,
pages 59–68, 2006.

17. P. V. Roy, P. Brand, D. Duchier, S. Haridi, M. Henz, and C. Schulte. Logic
programming in the context of multiparadigm programming: the Oz experience.
Theory and Practice of Logic Programming, 3(6):715–763, Nov. 2003.

18. V. A. Saraswat. Concurrent constraint programming. ACM Doctoral Dissertation
Awards. MIT Press, 1993.

19. M. E. Stickel. A prolog technology theorem prover: implementation by an extended
prolog compiler. Journal of Automated Reasoning, 44:353–380, 1988.


